JP6872359B2 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
JP6872359B2
JP6872359B2 JP2016238584A JP2016238584A JP6872359B2 JP 6872359 B2 JP6872359 B2 JP 6872359B2 JP 2016238584 A JP2016238584 A JP 2016238584A JP 2016238584 A JP2016238584 A JP 2016238584A JP 6872359 B2 JP6872359 B2 JP 6872359B2
Authority
JP
Japan
Prior art keywords
core material
displacement
joint portion
absorbing device
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016238584A
Other languages
Japanese (ja)
Other versions
JP2018096039A (en
Inventor
稔 前島
稔 前島
Original Assignee
株式会社横河Nsエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横河Nsエンジニアリング filed Critical 株式会社横河Nsエンジニアリング
Priority to JP2016238584A priority Critical patent/JP6872359B2/en
Publication of JP2018096039A publication Critical patent/JP2018096039A/en
Application granted granted Critical
Publication of JP6872359B2 publication Critical patent/JP6872359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、従来の棒状制振部材に対し、材軸方向の変形能力およびエネルギー吸収能力を高めた衝撃吸収装置に関するものであり、例えば、橋桁の端部と橋桁端部を支える橋台との間に設置して、地震時の衝撃吸収部材として用いることができる。 The present invention relates to a shock absorber having enhanced deformation capacity and energy absorption capacity in the material axis direction with respect to a conventional rod-shaped vibration damping member. For example, between an end of a bridge girder and an abutment supporting the end of the bridge girder. It can be installed in and used as a shock absorbing member in the event of an earthquake.

構造物の耐震性能、制震性能を高めるものとして、制振部材と構造部材を兼ねた制振ブレースなどの棒状制振部材が種々開発され、製品化されている。 Various rod-shaped vibration-damping members such as vibration-damping braces that also serve as vibration-damping members and structural members have been developed and commercialized to enhance the seismic performance and vibration-damping performance of structures.

例えば、特許文献1、特許文献2には、平板または断面十字形の鋼材からなる芯材とその座屈変形を拘束する山形鋼からなる拘束材を用いた座屈拘束型の軸力負担部材が記載されている。 For example, in Patent Document 1 and Patent Document 2, a buckling restraint type axial force bearing member using a core material made of a flat plate or a steel material having a cross section and a restraining material made of angle steel that restrains the buckling deformation thereof is described. Are listed.

また特許文献3には、鋼製芯材の外周をアンボンド層を介して座屈拘束用コンクリート部材で覆い、その座屈拘束用コンクリート部材の外周を鋼管で覆って補強した軸降伏型弾塑性履歴ブレースの改良技術が記載されている。 Further, Patent Document 3 describes a shaft yield type elasto-plastic history in which the outer periphery of a steel core material is covered with a buckling restraining concrete member via an unbonded layer, and the outer periphery of the buckling restraining concrete member is covered with a steel pipe to reinforce it. Brace improvement technology is described.

図19は、従来の棒状制振部材の一例として、平板芯材を用いた座屈拘束型の棒状制振部材の具体例を示したものである。 FIG. 19 shows a specific example of a buckling restraint type rod-shaped vibration damping member using a flat plate core material as an example of a conventional rod-shaped vibration damping member.

基本的な構成は、低降伏点鋼あるいは普通鋼からなるエネルギー吸収材としての芯材30本体の両端部に断面が拡大された継手部31、32を形成し、芯材30本体を四方より変形拘束部材33としての山形鋼で抑え、スペーサー34を介して変形拘束部材33どうしを高力ボルト35で締め付けて、芯材30本体が座屈しないようにしたものである。 The basic configuration is to form joints 31 and 32 with enlarged cross sections at both ends of the core material 30 body as an energy absorber made of low yield point steel or ordinary steel, and deform the core material 30 body from all sides. It is held by angle steel as a restraining member 33, and the deformation restraining members 33 are tightened with a high-strength bolt 35 via a spacer 34 to prevent the core material 30 body from buckling.

この例で、芯材30と変形拘束部材33とは、図19(a)における奥側の固定側継手部31と、手前側の可動側継手部32の2箇所において、それぞれ高力ボルト35で接合されており、可動側継手部32の高力ボルト35は芯材30に軸方向の引張力または圧縮力が作用したときに、変形拘束部材33に形成した長孔33aに沿って軸方向に摺動可能となっている。 In this example, the core material 30 and the deformation restraint member 33 are formed by high-strength bolts 35 at two locations, the fixed side joint portion 31 on the back side and the movable side joint portion 32 on the front side in FIG. 19 (a). The high-strength bolt 35 of the movable side joint portion 32 is joined in the axial direction along the elongated hole 33a formed in the deformation restraining member 33 when an axial tensile force or a compressive force is applied to the core material 30. It is slidable.

すなわち、芯材30に軸方向の引張力が作用したときは芯材30が弾性範囲または弾塑性範囲で伸び、芯材30に軸方向の圧縮力が作用したときは芯材30が弾性範囲または弾塑性範囲で縮み、変形拘束部材33には実質的に軸方向力が作用しないようになっている。 That is, when an axial tensile force acts on the core material 30, the core material 30 extends in the elastic range or the elasto-plastic range, and when an axial compressive force acts on the core material 30, the core material 30 stretches in the elastic range or the elastic range. It shrinks in the elasto-plastic range, and the deformation restraint member 33 is substantially free from axial force.

また、芯材30に軸方向の圧縮力が作用したとき、変形拘束部材33が芯材30本体を四方から拘束していることで、芯材30本体の座屈変形が生じないため、制振部材としてのエネルギー吸収能力をフルに発揮させることができる。 Further, when a compressive force in the axial direction acts on the core material 30, the deformation restraining member 33 restrains the core material 30 body from all sides, so that buckling deformation of the core material 30 body does not occur, so that vibration damping occurs. The energy absorption capacity as a member can be fully exhibited.

図20は、従来の棒状制振部材の一例として十字芯材を用いた座屈拘束ブレースの具体例を示したものであり、芯材30本体の断面を十字断面とした点以外の構成および作用効果は図17の平板の場合と同様であるが、同じ変形が生じた場合、芯材30の方が断面が大きい分エネルギー吸収能力が高い。 FIG. 20 shows a specific example of a buckling restraint brace using a cross core material as an example of a conventional rod-shaped vibration damping member, and has a configuration and operation other than the point where the cross section of the core material 30 body is a cross section. The effect is the same as in the case of the flat plate of FIG. 17, but when the same deformation occurs, the core material 30 has a higher energy absorption capacity due to the larger cross section.

ところで、道路橋などの橋梁においては、大規模地震時に上部工である橋桁の端部が橋桁端部を支える橋台や橋脚などの下部工から落橋しないように、下部工側に桁かかり長を十分に確保したり、上部工側の橋桁端部と下部工とを落橋防止材で連結することが行われている。 By the way, in bridges such as road bridges, the length of the girder is sufficient on the substructure side so that the end of the bridge girder, which is the superstructure, does not fall from the substructure such as the pier or pier that supports the end of the bridge girder during a large-scale earthquake. In addition, the bridge girder end on the superstructure side and the substructure are connected with a bridge collapse prevention material.

近年では、棒状制振部材に落橋防止材としての機能を兼用させる検討をしたり,落橋防止材単体として使用をする検討がなされたりしている。 In recent years, studies have been made to make the rod-shaped damping member also function as a bridge collapse prevention material, and to use it as a single bridge collapse prevention material.

特開2000−265706号公報Japanese Unexamined Patent Publication No. 2000-265706 特開2006−328688号公報Japanese Unexamined Patent Publication No. 2006-328688 特開2014−031654号公報Japanese Unexamined Patent Publication No. 2014-031654

従来の棒状制振部材の設計では、大規模地震時には芯材を必ず軸降伏させて履歴減衰により地震エネルギーを吸収させる設計をしていたが、想定外の地震も考慮した設計対応も要求されることがある。 In the conventional design of rod-shaped damping members, the core material is always shaft yielded to absorb seismic energy by historical damping in the event of a large-scale earthquake, but design support that takes into account unexpected earthquakes is also required. Sometimes.

例えば、橋桁と橋桁を支える橋台との間に取り付けて使用する場合、棒状制振部材の芯材が仮に大規模地震時の繰り返し履歴で既に破断をしていたとすると、それ以降の落橋防止材としての変形挙動に対しては地震エネルギーの吸収ができないことになる。 For example, when used by attaching it between a bridge girder and an abutment that supports the bridge girder, if the core material of the rod-shaped damping member has already broken in the repeated history during a large-scale earthquake, it can be used as a bridge collapse prevention material after that. Seismic energy cannot be absorbed for the deformation behavior of.

また、落橋防止材を主として設計をする場合は、落橋防止システムとして、支承部の機能が喪失するまでは、芯材を塑性変形させる必要はなく、その間、支承部の変形に追随できる構造が要求される。つまり、想定外の地震挙動で支承部の機能が喪失した場合、芯材を軸降伏させて塑性変形させれば良いことになり、使用目的により芯材を軸降伏させる設計のタイミングが異なってくるのである。 In addition, when designing mainly the bridge collapse prevention material, it is not necessary to plastically deform the core material until the function of the bearing is lost as a bridge collapse prevention system, and during that time, a structure that can follow the deformation of the bearing is required. Will be done. In other words, if the function of the bearing is lost due to unexpected seismic behavior, the core material should be axially yielded and plastically deformed, and the timing of designing the core material to be axially yielded differs depending on the purpose of use. It is.

本発明は、このような実情に鑑みてなされたもので、地震時の変形能力およびエネルギー吸収能力がきわめて高く、想定し得る範囲内で最大規模の地震(レベル2の地震動)に対してだけでなく、レベル2の範囲を超える想定外の大地震に対しても対応が可能で、例えば、橋桁の端部と橋桁端部を支える橋台との間に取り付けられる落橋防止材として適した衝撃吸収装置を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and has extremely high deformation capacity and energy absorption capacity at the time of an earthquake, and only for the largest earthquake (level 2 seismic motion) within the conceivable range. It is possible to respond to unexpected large earthquakes beyond the range of level 2, for example, a shock absorber suitable as a bridge collapse prevention material installed between the end of the bridge girder and the abutment that supports the end of the bridge girder. Is intended to provide.

本発明は、材軸方向の両端部に継手部を有し、材軸方向に伸縮する棒状の衝撃吸収装置の発明であり、塑性変形領域として設定される第1の変位区間では、衝撃吸収装置を構成する特定の第1の軸方向変形部材が破断に至らない範囲で弾性変形または塑性変形しつつ、第1の変位区間の上限において変位が拘束される構成とし、前記第1の変位区間を超え、第2の塑性変形領域として設定される第2の変位区間では、衝撃吸収装置を構成する特定の第2の軸方向変形部材が弾性変形または塑性変形する構成としたことを特徴とするものである。 The present invention is an invention of a rod-shaped shock absorbing device having joint portions at both ends in the material axial direction and expanding and contracting in the material axial direction, and in the first displacement section set as a plastic deformation region, the shock absorbing device. The first axially deforming member constituting the above is elastically or plastically deformed to the extent that it does not break, and the displacement is constrained at the upper limit of the first displacement section. In the second displacement section, which is set as the second plastic deformation region, the specific second axially deforming member constituting the shock absorbing device is elastically deformed or plastically deformed. Is.

前記第2の軸方向変形部材が第2の変位区間を超え、第3の塑性変形領域として設定される第3の変位区間では、衝撃吸収装置を構成する特定の第3の軸方向変形部材が弾性変形または塑性変形する構成とすることもできる。 In the third displacement section where the second axially deforming member exceeds the second displacement section and is set as the third plastic deformation region, a specific third axially deforming member constituting the shock absorbing device is used. It can also be configured to be elastically deformed or plastically deformed.

また、衝撃吸収装置を構成する特定の軸方向変位部材が、前記継手部の一方との連結が切り離された状態で実質的に無抵抗で軸方向に変位する遊間領域として設定される変位区間を設けることもできる。また、軸方向変形部材の材料としては、要求性能に応じて、JIS材である普通鋼に加えて、変形能に優れた低降伏点鋼または形状記憶合金を用いていることができる。 Further, a displacement section in which a specific axial displacement member constituting the shock absorbing device is set as a clearance region in which the specific axial displacement member is displaced in the axial direction with substantially no resistance in a state where the connection with one of the joint portions is disconnected. It can also be provided. Further, as the material of the axially deformable member, a low yield point steel or a shape memory alloy having excellent deformability can be used in addition to the ordinary steel which is a JIS material, depending on the required performance.

本発明の衝撃吸収装置は、レベル2地震動以上の地震動での支承の破壊を許容する構成とした橋梁の下部工と上部工との間に設置することができ、さらにレベル2地震動以上の地震動により一方の芯材が破壊したとしても、他方の芯材が衝撃吸収装置として機能するように、芯材の降伏荷重の階層化を行うことで対応できる。 The shock absorber of the present invention can be installed between the substructure and the superstructure of a bridge having a structure that allows the destruction of bearings in a ground motion of level 2 or higher, and further by a ground motion of level 2 or higher. Even if one core material is destroyed, it can be dealt with by layering the yield load of the core material so that the other core material functions as a shock absorber.

本発明の衝撃吸収装置は、棒状制振部材の衝撃吸収装置の吸収材となる芯材を2つに切り離すことで、それぞれの機能を明確にし、芯材の降伏荷重の階層化が実現できる。また、切り離された芯材間に遊間長を設けることが可能となり、常時に対する変形の追随性を付加することが可能な構造となる。その他、落橋防止構造としては、従来のケーブルタイプでは対応ができなかった圧縮力に対しても衝撃吸収が可能となる。 In the shock absorbing device of the present invention, by separating the core material serving as the absorbing material of the shock absorbing device of the rod-shaped vibration damping member into two, the functions of each can be clarified and the yield load of the core material can be layered. In addition, it is possible to provide a clearance length between the separated core materials, and the structure is capable of adding deformation followability with respect to normal times. In addition, as a bridge collapse prevention structure, it is possible to absorb shock even with a compressive force that cannot be handled by the conventional cable type.

本発明の衝撃吸収装置の第1の実施形態を図示したものであり、図1(a)は初期状態、図1(b)は引張り力が作用し、左側の芯材が軸降伏後、塑性変形をして作動した状態、図1(c)は仮に継手部を破壊させた場合の最終破壊状態の斜視図である。The first embodiment of the shock absorber of the present invention is illustrated. FIG. 1 (a) shows an initial state, FIG. 1 (b) shows a tensile force acting on the core material on the left side after shaft yielding and then plasticity. FIG. 1 (c) is a perspective view of the final fractured state when the joint portion is tentatively destroyed. 図2(a),(b)は、それぞれ図1(a)及び図11(a)におけるイ−イ線、ロ−ロ線断面図である。2 (a) and 2 (b) are cross-sectional views taken along the line 1 (a) and FIG. 11 (a), respectively. 本発明の衝撃吸収装置の設置例を図示したものであり、橋桁端部と橋台との間に設置された衝撃吸収装置の側面図である。It is the figure which illustrated the installation example of the shock absorbing device of this invention, and is the side view of the shock absorbing device installed between the bridge girder end portion and an abutment. 橋桁端部と橋台との間に設置された本発明の衝撃吸収装置の作動状態のうち引張り変形を示す側面図である。It is a side view which shows the tensile deformation in the operating state of the shock absorbing device of this invention installed between a bridge girder end part and an abutment. 橋桁端部と橋台との間に設置された本発明の衝撃吸収装置の作動状態のうち圧縮変形を示す側面図である。It is a side view which shows the compression deformation in the operating state of the shock absorbing device of this invention installed between the bridge girder end part and an abutment. 図1の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。圧縮側には橋台があり変位が限定される。引張り側は、設計最大荷重で破断する設計とした事例である。It is a graph which shows the load-displacement design curve when an axial force (compression and tension force) acted on the shock absorber of FIG. There is an abutment on the compression side and the displacement is limited. The pull side is an example of a design that breaks at the maximum design load. 本発明の衝撃吸収装置の第2の実施形態を図示したものであり、図7(a)は初期状態、図7(b)は引張り力が作用し、左側の芯材が軸降伏して作動した状態、図7(c)はその後、右側の芯材が軸降伏後塑性変形をし、仮に継手部を破壊させた場合の最終破壊状態の斜視図である。A second embodiment of the shock absorber of the present invention is illustrated. FIG. 7 (a) shows an initial state, and FIG. 7 (b) shows a tensile force acting on the left core material to yield and operate. FIG. 7 (c) is a perspective view of the final fractured state when the core material on the right side is then plastically deformed after the shaft yields and the joint portion is fractured. 図7の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。分割された芯材が降伏荷重の階層化によりそれぞれ軸降伏した後、塑性変形をし、設計最大荷重で破断する設計とした事例である。It is a graph which shows the load-displacement design curve when an axial force (compression and tension force) acted on the shock absorber of FIG. 7. This is an example of a design in which the divided core materials are subjected to plastic deformation after each shaft yields due to the layering of the yield load and then fractures at the maximum design load. 本発明の衝撃吸収装置の第3の実施形態を図示したものであり、図9(a)は初期状態、図9(b)は引張り力が作用し、左側の芯材が軸降伏して作動した状態の斜視図である。A third embodiment of the shock absorber of the present invention is illustrated. FIG. 9 (a) shows an initial state, and FIG. 9 (b) shows a tensile force acting on the left core material to yield and operate. It is a perspective view of the state. 図9の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。FIG. 5 is a graph showing a load-displacement design curve when an axial force (compression and tensile force) is applied to the shock absorber of FIG. 9. 本発明の衝撃吸収装置の第4の実施形態を図示したものであり、図11(a)は初期状態、図11(b)は左側の芯材が軸降伏後、圧縮・引張りの変位を繰り返した後、引張り荷重が右側の芯材の降伏荷重に達して塑性変形をした作動状態の斜視図である。A fourth embodiment of the shock absorbing device of the present invention is illustrated. FIG. 11A shows the initial state, and FIG. 11B shows the left core material repeatedly compressing and tensioning after the shaft yields. After that, it is a perspective view of an operating state in which the tensile load reaches the yield load of the core material on the right side and plastically deforms. 図11の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when an axial force (compression and tension force) are applied to the shock absorber of FIG. 本発明の衝撃吸収装置の第5の実施形態を図示したものであり、図13(a)は初期状態、図13(b)は左側の芯材が軸降伏後、圧縮・引張りの繰り返し変位を繰り返した後、引張り荷重が右側の芯材の降伏荷重に達して塑性変形をした作動状態の斜視図である。A fifth embodiment of the shock absorber of the present invention is illustrated. FIG. 13 (a) shows an initial state, and FIG. 13 (b) shows a repeated displacement of compression / tension after the core material on the left side yields to the shaft. It is a perspective view of the operating state in which the tensile load reaches the yield load of the core material on the right side and plastically deforms after repeating. 図13の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when an axial force (compression and tension force) are applied to the shock absorber of FIG. 本発明の衝撃吸収装置の第5の実施形態を図示したものであり、図15(a)は初期状態、図15(b)は芯材が軸降伏後、圧縮・引張りの変位を繰り返した後、引張り変位が設定変位に達して、さらに塑性変形をした作動状態の斜視図である。A fifth embodiment of the shock absorber of the present invention is illustrated. FIG. 15 (a) shows an initial state, and FIG. 15 (b) shows a core material after shaft yielding and repeated compression / tensile displacements. It is a perspective view of the operating state in which the tensile displacement reaches the set displacement and is further plastically deformed. 図15の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。It is a graph which shows the load-displacement design curve when an axial force (compression and tension force) are applied to the shock absorber of FIG. 本発明の衝撃吸収装置の第7の実施形態の衝撃吸収装置に軸力(圧縮および引張力)が作用した際の荷重−変位設計曲線を示すグラフである。第4の実施形態に無抵抗で軸方向に変位する遊間領域を設定した場合の設計事例である。It is a graph which shows the load-displacement design curve when an axial force (compression and tension force) acted on the shock absorber of the 7th Embodiment of the shock absorber of this invention. This is a design example in the case where a play area that is displaced in the axial direction without resistance is set in the fourth embodiment. 本発明の衝撃吸収装置において芯材として用いられる代表的な鋼材の応力ひずみ曲線を示すグラフである。It is a graph which shows the stress-strain curve of a typical steel material used as a core material in the shock absorber of this invention. (a)は従来の棒状制振部材としての座屈拘束ブレースの一例(平板芯材の場合)を示す部分透過斜視図、(b)は軸直角方向の断面図である。(a) is a partially transparent perspective view showing an example (in the case of a flat plate core material) of a buckling restraint brace as a conventional rod-shaped vibration damping member, and (b) is a cross-sectional view in the direction perpendicular to the axis. (a)は従来の棒状制振部材としての座屈拘束ブレースの他の例(十字芯材の場合)を示す部分透過斜視図、(b)は軸直角方向の断面図である。(a) is a partially transparent perspective view showing another example (in the case of a cross core material) of a buckling restraint brace as a conventional rod-shaped damping member, and (b) is a cross-sectional view in the direction perpendicular to the axis.

[実施形態1]
図1〜図6は、本発明の第1の実施形態であり、落橋防止材とその設置例を図示したものである。図において、橋桁1の端部と橋桁1端部を支える橋台2との間に落橋防止材3と支承4がそれぞれ取り付けられている。いずれも、橋桁1の幅方向に間隔をおいて複数取り付けられている。符号17は伸縮装置である。
[Embodiment 1]
1 to 6 are the first embodiment of the present invention, and show a bridge collapse prevention material and an installation example thereof. In the figure, the bridge collapse prevention material 3 and the bearing 4 are attached between the end of the bridge girder 1 and the abutment 2 supporting the end of the bridge girder 1. In each case, a plurality of bridge girders 1 are attached at intervals in the width direction. Reference numeral 17 is a telescopic device.

落橋防止材3は、材軸方向に伸縮する棒状に構成され、材軸方向の両端部に継手部5と継手部6がそれぞれ取り付けられている。継手部5は橋台2の側面に固定され、継手部6は橋桁1端部の下部側面に固定されている。 The bridge collapse prevention material 3 is formed in a rod shape that expands and contracts in the material axis direction, and joint portions 5 and joint portions 6 are attached to both ends in the material axis direction, respectively. The joint portion 5 is fixed to the side surface of the abutment 2, and the joint portion 6 is fixed to the lower side surface of the end portion of the bridge girder 1.

また、継手部5と継手部6との間に弾塑性変形領域として設定された第1の変位区間L1と第2の変位区間L2が落橋防止材3の材軸方向に隣接して設けられている。 Further, a first displacement section L 1 and a second displacement section L 2 set as elasto-plastic deformation regions between the joint portion 5 and the joint portion 6 are provided adjacent to the bridge collapse prevention material 3 in the material axial direction. Has been done.

第1および第2の変位区間L1、L2についてより具体的に説明すると、継手部5と継手部6間の同一材軸線上に変形芯材7と変位芯材8が材軸方向に隣接して配置され、変形芯材7および変位芯材8の軸直角方向の外側に複数の座屈拘束材9が配置されている。 More specifically, the first and second displacement sections L 1 and L 2 are described. The deformed core material 7 and the displacement core material 8 are adjacent to each other in the material axis direction on the same material axis between the joint portion 5 and the joint portion 6. A plurality of buckling restraint members 9 are arranged outside the deformed core member 7 and the displacement core member 8 in the direction perpendicular to the axis.

変形芯材7は、継手部5と継手部6間の材軸方向に細長い長尺板状に形成され、当該変形芯材7の材軸方向の両端部に側面視矢羽根形状をなしかつ断面十字形状をなす拡径部7a,7aが形成されている。また、継手部5側の端部に拡径部7aと同じ幅で継手部5側に突出する平板状の連結部7bが形成され、連結部7bは継手部5に回転自在に連結されている。 The deformed core material 7 is formed in the shape of an elongated long plate between the joint portion 5 and the joint portion 6 in the material axial direction, and has a side view arrow blade shape and a cross section at both ends of the deformed core material 7 in the material axial direction. Expanded diameter portions 7a and 7a forming a cross shape are formed. Further, a flat plate-shaped connecting portion 7b having the same width as the enlarged diameter portion 7a and projecting to the joint portion 5 side is formed at the end portion on the joint portion 5 side, and the connecting portion 7b is rotatably connected to the joint portion 5. ..

変位芯材8は、継手部6側において変形芯材7と隣接し、かつ継手部5と継手部6間に作用する軸力(引張力と圧縮力)に対して、継手部5との連結が切り離された状態で材軸方向に実質的に無抵抗で変位するように配置されている。 The displacement core material 8 is adjacent to the deformed core material 7 on the joint portion 6 side, and is connected to the joint portion 5 with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. Is arranged so as to be displaced in the direction of the material axis with substantially no resistance in a separated state.

変位芯材8についてさらに詳しく説明すると、変位芯材8は、継手部5と継手部6間の材軸方向に長尺に形成され、かつ断面略十字形状に形成されている。また、変位芯材8の材軸方向の両端部に側面視矢羽根形状をなしかつ断面十字形状をなす拡径部8a,8aが形成されている。 The displacement core material 8 will be described in more detail. The displacement core material 8 is formed to be long in the material axis direction between the joint portion 5 and the joint portion 6 and has a substantially cross-shaped cross section. Further, enlarged diameter portions 8a and 8a having a side view arrow blade shape and a cross-sectional cross shape are formed at both ends of the displacement core material 8 in the material axial direction.

また、変位芯材8の継手部6側の端部に拡径部8aと同じ幅で継手部6側に突出する平板状の連結部8bが形成され、連結部8bは継手部6に回転自在に連結されている。さらに、拡径部8a,8a と拡径部8a,8a 間に介在されたスペーサー11との間に継手部5と継手部6間の材軸方向に一定長の遊間Wが設けられている。 Further, a flat plate-shaped connecting portion 8b having the same width as the enlarged diameter portion 8a and projecting to the joint portion 6 side is formed at the end portion of the displacement core material 8 on the joint portion 6 side, and the connecting portion 8b can rotate to the joint portion 6. Is connected to. Further, a clearance W having a constant length in the material axial direction between the joint portion 5 and the joint portion 6 is provided between the enlarged diameter portions 8a and 8a and the spacer 11 interposed between the enlarged diameter portions 8a and 8a.

また、変形芯材7の拡径部7a,7a間が連結部7bより先に弾性変形または塑性変形するように、拡径部7a,7a間の断面積が連結部7bより小断面に形成され、さらに、変形芯材7は低降伏点鋼(例えば、LY225規格等)より形成され、変位芯材8は普通鋼(例えば、SM400)より形成されている(図18参照)。 Further, the cross-sectional area between the enlarged diameter portions 7a and 7a is formed to be smaller than that of the connecting portion 7b so that the diameter-expanded portions 7a and 7a of the deformed core material 7 are elastically deformed or plastically deformed before the connecting portion 7b. Further, the deformed core material 7 is formed of low yield point steel (for example, LY225 standard, etc.), and the displacement core material 8 is formed of ordinary steel (for example, SM400) (see FIG. 18).

座屈拘束材9は、変形芯材7および変位芯材8の材軸方向に連続し、かつ変形芯材7および変位芯材8の全長とほぼ同等の長さを有し、断面略等辺山形状に形成されている。また、変形芯材7および変位芯材8の軸直角方向の外側に変形芯材7および変位芯材8を四方から挟み込むように配置されている。 The buckling restraining material 9 is continuous in the material axis direction of the deformed core material 7 and the displacement core material 8, has a length substantially equal to the total length of the deformed core material 7 and the displacement core material 8, and has a substantially equilateral cross section. It is formed in a shape. Further, the deformed core material 7 and the displacement core material 8 are arranged so as to sandwich the deformed core material 7 and the displacement core material 8 from all sides on the outside in the direction perpendicular to the axis of the deformed core material 7 and the displacement core material 8.

また、各座屈拘束材9は、変形芯材7の拡径部7a,7aおよび変位芯材8の拡径部8a,8a の各側面部に複数の締付けボルト10aおよびガイドボルト10bによって接合され、また、各拡径部7a,7a間および拡径部8a,8a 間においてスペーサー11を介在し、複数の締付けボルト10aおよびガイドボルト10bによって互いに接合されている。また、各座屈拘束材9の材軸方向の両端部に形成されたガイドボルト10bのボルト孔9aは、座屈拘束部材9の材軸方向に長軸を有する長孔に形成されている。 Further, each buckling restraining member 9 is joined to each side surface of the enlarged diameter portions 7a and 7a of the deformed core material 7 and the enlarged diameter portions 8a and 8a of the displacement core material 8 by a plurality of tightening bolts 10a and guide bolts 10b. In addition, spacers 11 are interposed between the enlarged diameter portions 7a and 7a and between the enlarged diameter portions 8a and 8a, and are joined to each other by a plurality of tightening bolts 10a and guide bolts 10b. Further, the bolt holes 9a of the guide bolts 10b formed at both ends of each buckling restraining member 9 in the material axial direction are formed into elongated holes having a long axis in the material axial direction of the buckling restraining member 9.

このような構成において、継手部5と継手部6間に作用する軸力(引張力および圧縮力)に対し、変位芯材8と座屈拘束材9が、ボルト孔9aの長孔の範囲で材軸方向に相対変位する。これにより、橋桁1端部と橋台2間に作用するレベル2に至る規模の地震エネルギー(想定し得る範囲内で最大規模の地震)を吸収することができる(図6の荷重-変位設計曲線(1)-(2)-(3))。また、レベル2を超える想定外の大地震時には、変形芯材7が材軸方向に弾塑性変形(図6の荷重-変位設計曲線(3)-(4)-(5))し、さらに、変形芯材7の継手部5側の連結部7bが弾性または塑性変形する(図6の荷重-変位設計曲線(5)-(6))。 In such a configuration, the displacement core material 8 and the buckling restraining material 9 are in the range of the elongated holes of the bolt holes 9a with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. Relative displacement in the material axis direction. As a result, it is possible to absorb seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 (the largest earthquake within the conceivable range) (load-displacement design curve in FIG. 6 (Fig. 6). 1)-(2)-(3)). In addition, in the event of an unexpected large earthquake exceeding level 2, the deformed core material 7 undergoes elasto-plastic deformation in the material axis direction (load-displacement design curve (3)-(4)-(5) in FIG. 6), and further. The connecting portion 7b on the joint portion 5 side of the deformed core material 7 is elastically or plastically deformed (load-displacement design curve (5)-(6) in FIG. 6).

なお、変位芯材8と座屈拘束材9間の相対変位がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する軸力は座屈拘束材9を介して変位芯材7に伝達される。また、継手部5と継手部6間に作用する圧縮力に対しては、変位芯材8の拡径部8aの端部が変形芯材7の拡径部7aの端部に面タッチすることにより、変形芯材7および変位芯材8の芯材を通じて荷重が伝達される。 When the relative displacement between the displacement core material 8 and the buckling restraining material 9 exceeds the range of the elongated hole of the bolt hole 9a, the axial force acting between the joint portion 5 and the joint portion 6 is the buckling restraining material 9. It is transmitted to the displacement core material 7 via. Further, with respect to the compressive force acting between the joint portion 5 and the joint portion 6, the end portion of the enlarged diameter portion 8a of the displacement core material 8 touches the end portion of the enlarged diameter portion 7a of the deformed core material 7. As a result, the load is transmitted through the core materials of the deformed core material 7 and the displacement core material 8.

[実施形態2]
図7と図8は、本発明の第2の実施形態を図示したものである。図において、各座屈拘束材9が、継手部5と継手部6間の材軸方向に座屈拘束材ユニット9Aと9Bの2本の座屈拘束材ユニットより構成され、かつ各座屈拘束材ユニット9Aおよび9Bの外側に棒状ストッパー12が取り付けられている点で、実施形態1の落橋防止材と構成が異なっている。
[Embodiment 2]
7 and 8 show a second embodiment of the present invention. In the figure, each buckling restraining material 9 is composed of two buckling restraining material units 9A and 9B in the material axial direction between the joint portion 5 and the joint portion 6, and each buckling restraining material 9 is formed. The configuration is different from the bridge collapse prevention material of the first embodiment in that the rod-shaped stopper 12 is attached to the outside of the material units 9A and 9B.

座屈拘束材9を9Aおよび9Bに分割させることで、変位芯材8を想定外の地震時においては塑性変形芯材として機能させることができる。 By dividing the buckling restraining material 9 into 9A and 9B, the displacement core material 8 can function as a plastic deformed core material in the event of an unexpected earthquake.

詳しく説明すると、各座屈拘束材9は、変位芯材8のほぼ中間部を境に継手部5側の座屈拘束材ユニット9Aと継手部6側の座屈拘束材ユニット9Bの2本の座屈拘束材ユニットより構成されている。 To explain in detail, each buckling restraining material 9 consists of two buckling restraining material units 9A on the joint portion 5 side and a buckling restraining material unit 9B on the joint portion 6 side with the substantially intermediate portion of the displacement core material 8 as a boundary. It is composed of a buckling restraint unit.

各座屈拘束材ユニット9Aは、変形芯材7の拡径部7a,7aの側面部に複数の締付けボルト10aおよびガイドボルト10bよって接合され、また、拡径部7a,7a間においてスペーサー11を介在し、複数のガイドボルト10bによって互いに接合されている。 Each buckling restraint unit 9A is joined to the side surface portions of the enlarged diameter portions 7a and 7a of the deformed core material 7 by a plurality of tightening bolts 10a and guide bolts 10b, and a spacer 11 is provided between the enlarged diameter portions 7a and 7a. It is intervened and joined to each other by a plurality of guide bolts 10b.

また、座屈拘束材ユニット9Bは、変位芯材8の継手部6側に位置する拡径部8aの側面部にガイドボルト10bよって接合され、さらに、各座屈拘束材ユニット9Aどうし、および座屈拘束材ユニット9Bどうしは、変位芯材8の拡径部8a,8a間においてスペーサー11を介在し、複数の締付けボルト10aおよびガイドボルト10bによって接合されている。 Further, the buckling restraining material unit 9B is joined to the side surface portion of the enlarged diameter portion 8a located on the joint portion 6 side of the displacement core material 8 by the guide bolt 10b, and further, the buckling restraining material units 9A are joined to each other and the seat. The bending restraint unit 9B is joined by a plurality of tightening bolts 10a and guide bolts 10b with a spacer 11 interposed between the enlarged diameter portions 8a and 8a of the displacement core material 8.

棒状ストッパー12は、座屈拘束材ユニット9Aと9B間の離間距離を制御するためのストッパー材であり、変位制限時に干渉材を介在させれば、さらに衝撃干渉効果が高まることが期待できる。各座屈拘束材ユニット9Aおよび座屈拘束材ユニット9Bの軸直角方向の外側に配置され、かつ座屈拘束材ユニット9Aおよび9Bの材軸方向に沿って、座屈拘束材ユニット9Aおよび9Bの両方向にほぼ対称に所定長延長されている。 The rod-shaped stopper 12 is a stopper material for controlling the separation distance between the buckling restraining material units 9A and 9B, and it can be expected that the impact interference effect will be further enhanced if an interfering material is interposed when the displacement is limited. The buckling restraint units 9A and 9B are arranged outside the buckling restraint unit 9A and the buckling restraint unit 9B in the direction perpendicular to the axis, and along the material axial direction of the buckling restraint unit 9A and 9B. It is extended by a predetermined length almost symmetrically in both directions.

また、当該棒状ストッパー12の座屈拘束材ユニット9B側の端部12bは、座屈拘束材ユニット9Bの側部に突設された定着用リブ13に固定され、座屈拘束材ユニット9A側の端部12aは、座屈拘束材ユニット9Aの側部に突設された定着用リブ14に形成されたルーズ孔を貫通し、その先端部12aに抜止めストッパー15が取り付けられている。なお、棒状ストッパー12には長ボルト、抜止めストッパー15にはナットがそれぞれ用いられている。 Further, the end portion 12b of the rod-shaped stopper 12 on the buckling restraint unit 9B side is fixed to the fixing rib 13 projecting from the side of the buckling restraint unit 9B, and is fixed to the buckling restraint unit 9A side. The end portion 12a penetrates a loose hole formed in a fixing rib 14 projecting from the side portion of the buckling restraint unit 9A, and a retaining stopper 15 is attached to the tip portion 12a thereof. A long bolt is used for the rod-shaped stopper 12, and a nut is used for the retaining stopper 15.

このような構成において、継手部5と継手部6間に作用する軸力(引張力および圧縮力)に対し、変位芯材8と座屈拘束材9が、ボルト孔9aの長孔の範囲で材軸方向に相対変位する。これにより、橋桁1端部と橋台2間に作用するレベル2(想定し得る範囲内で最大規模の地震)に至る規模の地震エネルギーを吸収することができる(図8の荷重-変位設計曲線(1)-(2)-(3))。 In such a configuration, the displacement core material 8 and the buckling restraining material 9 are in the range of the elongated holes of the bolt holes 9a with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. Relative displacement in the material axis direction. As a result, it is possible to absorb seismic energy up to level 2 (the largest earthquake within the conceivable range) acting between the end of the bridge girder 1 and the abutment 2 (load-displacement design curve in FIG. 8 (FIG. 8). 1)-(2)-(3)).

また、レベル2を超える想定外の大地震時には、変形芯材7が材軸方向に弾塑性変形(図8の荷重-変位設計曲線(3)-(4)-(5))し、さらに設定荷重Py2に達すると変位芯材8が軸降伏をし、塑性変形することで衝撃吸収に寄与し、最後に設計最大荷重Pmaxに達した時点で継手部5側の連結部7bが破断する(図8の荷重-変位設計曲線(5)-(6) -(7))。 Further, in the event of an unexpected large earthquake exceeding level 2, the deformed core material 7 undergoes elasto-plastic deformation (load-displacement design curve (3)-(4)-(5) in FIG. 8) in the material axis direction, and is further set. When the load Py2 is reached, the displacement core material 8 yields on the shaft and contributes to shock absorption by plastically deforming, and when the maximum design load Pmax is finally reached, the connecting portion 7b on the joint portion 5 side breaks (Fig. Load-displacement design curve of 8 (5)-(6)-(7)).

なお、変位芯材8と座屈拘束材9間の相対変位がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する軸力は座屈拘束材9を介して変位芯材7に伝達される。また、座屈拘束材ユニット9Aと9B間に棒状ストッパー12が配置されていることにより、変位芯材8が変形芯材7の連結部7bより先に破断してしまうことはない。但し、設計制御として耐力の階層化を行うことで棒状ストッパー12の軸部を破断させることは可能である。 When the relative displacement between the displacement core material 8 and the buckling restraining material 9 exceeds the range of the elongated hole of the bolt hole 9a, the axial force acting between the joint portion 5 and the joint portion 6 is the buckling restraining material 9. It is transmitted to the displacement core material 7 via. Further, since the rod-shaped stopper 12 is arranged between the buckling restraining material units 9A and 9B, the displacement core material 8 does not break before the connecting portion 7b of the deformed core material 7. However, it is possible to break the shaft portion of the rod-shaped stopper 12 by layering the yield strength as design control.

さらに、継手部5と継手部6間に作用する圧縮力に対しては、変位芯材8の拡径部8aの端部が変形芯材7の拡径部7aの端部に面タッチすることにより、変形芯材7および変位芯材8の芯材を通じて荷重が伝達される。 Further, with respect to the compressive force acting between the joint portion 5 and the joint portion 6, the end portion of the diameter-expanded portion 8a of the displacement core material 8 touches the end portion of the diameter-expanded portion 7a of the deformed core material 7. As a result, the load is transmitted through the core materials of the deformed core material 7 and the displacement core material 8.

[実施形態3]
図9と図10は、本発明の第3の実施形態を図示したものである。図において、各座屈拘束材9が、継手部5と継手部6間の材軸方向に2本の座屈拘束材ユニット9Aと9Bより構成され、かつかつ各座屈拘束材ユニット9Aおよび9Bの外側に棒状ストッパー12が取り付けられている点で、実施形態1の落橋防止材と構成が異なっている。
[Embodiment 3]
9 and 10 illustrate a third embodiment of the present invention. In the figure, each buckling restraining material 9 is composed of two buckling restraining material units 9A and 9B in the material axial direction between the joint portion 5 and the joint portion 6, and each buckling restraining material unit 9A and 9B. The structure is different from the bridge collapse prevention material of the first embodiment in that the rod-shaped stopper 12 is attached to the outside.

詳しく説明すると、各座屈拘束材9は、変形芯材7のほぼ中間部を境に継手部5側の座屈拘束材ユニット9Aと継手部6側の座屈拘束材ユニット9Bの2本の座屈拘束材ユニットより構成されている。 To explain in detail, each buckling restraining material 9 consists of two buckling restraining material units 9A on the joint portion 5 side and a buckling restraining material unit 9B on the joint portion 6 side with the substantially intermediate portion of the deformed core material 7 as a boundary. It is composed of a buckling restraint unit.

各座屈拘束材ユニット9Aは、変形芯材7の拡径部7a,7aの側面部に複数の締付けボルト10aによって接合され、かつスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。 Each buckling restraint unit 9A is joined to the side surface portions of the enlarged diameter portions 7a and 7a of the deformed core material 7 by a plurality of tightening bolts 10a, and is joined to each other by a plurality of tightening bolts 10a via a spacer 11. There is.

各座屈拘束材ユニット9Bは、変形芯材7の継手部6側に位置する拡径部7aの側面部と変位芯材8の継手部6側に位置する拡径部8aの側面部に複数のガイドボルト10bによって接合され、さらに変位芯材8の拡径部8a,8a間においてスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。また特に、各座屈拘束材ユニット9Bの継手部6側の端部に形成されたボルト孔9aは座屈拘束材ユニット9Bの材軸方向に長軸を有する長孔に形成されている。 A plurality of buckling restraint unit 9Bs are provided on the side surface of the enlarged diameter portion 7a located on the joint portion 6 side of the deformed core material 7 and on the side surface portion of the enlarged diameter portion 8a located on the joint portion 6 side of the displacement core material 8. It is joined by the guide bolts 10b of the above, and further, a spacer 11 is interposed between the enlarged diameter portions 8a and 8a of the displacement core member 8 and is joined to each other by a plurality of tightening bolts 10a. In particular, the bolt holes 9a formed at the end of each buckling restraint unit 9B on the joint portion 6 side are formed into elongated holes having a long axis in the material axis direction of the buckling restraint unit 9B.

棒状ストッパー12は、座屈拘束材ユニット9Aと9B間の離間距離を制御するためのストッパー材であり、各座屈拘束材ユニット9Aおよび座屈拘束材ユニット9Bの軸直角方向の外側に配置され、かつ座屈拘束材ユニット9Aおよび9Bの材軸方向に沿って、座屈拘束材ユニット9Aおよび9Bの両方向にほぼ対称に所定長延長されている。 The rod-shaped stopper 12 is a stopper material for controlling the separation distance between the buckling restraint unit 9A and 9B, and is arranged outside the buckling restraint unit 9A and the buckling restraint unit 9B in the direction perpendicular to the axis. In addition, along the material axial direction of the buckling restraint unit 9A and 9B, the buckling restraint unit 9A and 9B are extended by a predetermined length substantially symmetrically in both directions.

また、当該棒状ストッパー12の座屈拘束材ユニット9B側の端部12bは、座屈拘束材ユニット9Bの側部に突設された定着用リブ13に固定され、座屈拘束材ユニット9A側の端部12aは、座屈拘束材ユニット9Aの側部に突設された定着用リブ14に形成されたルーズ孔を貫通し、その先端部12aに抜止めストッパー15が取り付けられている。 Further, the end portion 12b of the rod-shaped stopper 12 on the buckling restraint unit 9B side is fixed to the fixing rib 13 projecting from the side of the buckling restraint unit 9B, and is fixed to the buckling restraint unit 9A side. The end portion 12a penetrates a loose hole formed in a fixing rib 14 projecting from the side portion of the buckling restraint unit 9A, and a retaining stopper 15 is attached to the tip portion 12a thereof.

このような構成において、継手部5と継手部6間に作用する軸力(引張力および圧縮力)に対し、変位芯材8と座屈拘束材9が、ボルト孔9aの長孔の範囲で材軸方向に相対変位する。これにより、橋桁1端部と橋台2間に作用するレベル2に至る大規模の地震エネルギーを吸収することができる(図10の荷重-変位設計曲線(1)-(2)-(3))。 In such a configuration, the displacement core material 8 and the buckling restraining material 9 are in the range of the elongated holes of the bolt holes 9a with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. Relative displacement in the material axis direction. This makes it possible to absorb large-scale seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 (load-displacement design curve (1)-(2)-(3) in Fig. 10). ..

また、レベル2を超える想定外の大地震時には、変形芯材7と変位芯材8が材軸方向に弾塑性変形(図10の荷重-変位設計曲線(3)-(4)-(5))し、さらに、座屈拘束材ユニット9Aと9B間の離間距離が変位制御されると荷重が立ち上がり、最終的に設計最大荷重Pmaxに達した時点で継手部5側の連結部7bが破断する(図10の荷重-変位設計曲線(5)-(6))。 Further, in the event of an unexpected large earthquake exceeding level 2, the deformed core material 7 and the displacement core material 8 are elasto-plastically deformed in the material axial direction (load-displacement design curve (3)-(4)-(5) in FIG. 10). ) Further, when the separation distance between the buckling restraint unit 9A and 9B is displacement-controlled, the load rises, and when the design maximum load Pmax is finally reached, the connecting portion 7b on the joint portion 5 side breaks. (Load-displacement design curve (5)-(6) in Fig. 10).

なお、変位芯材8と座屈拘束材9間の相対変位がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する軸力は座屈拘束材9を介して変位芯材7に伝達される。また、座屈拘束材ユニット9Aと9B間に棒状ストッパー12が配置されていることにより、変形芯材7が変形芯材7の連結部7bより先に破断してしまうことはない。 When the relative displacement between the displacement core material 8 and the buckling restraining material 9 exceeds the range of the elongated hole of the bolt hole 9a, the axial force acting between the joint portion 5 and the joint portion 6 is the buckling restraining material 9. It is transmitted to the displacement core material 7 via. Further, since the rod-shaped stopper 12 is arranged between the buckling restraining material units 9A and 9B, the deformed core material 7 does not break before the connecting portion 7b of the deformed core material 7.

さらに、継手部5と継手部6間に作用する圧縮力に対しては、変位芯材8の拡径部8aの端部が変形芯材7の拡径部7aの端部に面タッチすることにより、変形芯材7および変位芯材8の芯材を通じて荷重が伝達される。 Further, with respect to the compressive force acting between the joint portion 5 and the joint portion 6, the end portion of the diameter-expanded portion 8a of the displacement core material 8 touches the end portion of the diameter-expanded portion 7a of the deformed core material 7. As a result, the load is transmitted through the core materials of the deformed core material 7 and the displacement core material 8.

[実施形態4]
図11と図12は、本発明の第4の実施形態であり、継手部5と継手部6間の同一材軸線上に、変位芯材8に代えて変形芯材16が変形芯材7に隣接して配置され、かつ変形芯材7の弾塑性領域を長く設定することによりダンパーの機能が付与されている点が実施形態1〜3の落橋防止材と異なっている。
[Embodiment 4]
11 and 12 are the fourth embodiment of the present invention, in which the deformed core material 16 is replaced with the deformed core material 7 on the same material axis between the joint portion 5 and the joint portion 6. It is different from the bridge fall prevention materials of the first to third embodiments in that the function of the damper is imparted by being arranged adjacent to each other and setting the elasto-plastic region of the deformed core material 7 to be long.

詳しく説明すると、継手部5と継手部6間の同一材軸線上に第1の変形芯材7と第2の変形芯材16が材軸方向に隣接して配置され、変形芯材16は変形芯材7の継手部6側に配置されている。 More specifically, the first deformed core material 7 and the second deformed core material 16 are arranged adjacent to each other in the material axis direction on the same material axis between the joint portion 5 and the joint portion 6, and the deformed core material 16 is deformed. It is arranged on the joint portion 6 side of the core material 7.

変形芯材7は、継手部5と継手部6間の材軸方向に細長い長尺板状に形成され、その材軸方向の両端部に側面視矢羽根形状をなしかつ断面十字形状をなす拡径部7a,7aが形成されている。また、継手部5側の端部に拡径部7aと同じ幅で継手部5側に突出する平板状の連結部7bが形成され、連結部7bは継手部5に回転自在に連結されている。 The deformed core material 7 is formed in the shape of an elongated long plate between the joint portion 5 and the joint portion 6 in the material axial direction, and has an expanded side view arrow blade shape and a cross-sectional cross shape at both ends in the material axial direction. The diameters 7a and 7a are formed. Further, a flat plate-shaped connecting portion 7b having the same width as the enlarged diameter portion 7a and projecting to the joint portion 5 side is formed at the end portion on the joint portion 5 side, and the connecting portion 7b is rotatably connected to the joint portion 5. ..

第2の変形芯材16は、継手部5と継手部6間の材軸方向に長尺に形成され、かつ断面略十字形状に形成されている。また、変形芯材16の材軸方向の両端部に側面視矢羽根形状をなしかつ断面十字形状をなす拡径部16a,16a が形成されている。さらに、変形芯材16の継手部6側の端部に拡径部16aと同じ幅で継手部6側に突出する平板状の連結部16bが形成され、連結部16bは継手部6に回転自在に連結されている。 The second deformed core member 16 is formed to be long in the material axial direction between the joint portion 5 and the joint portion 6, and is formed in a substantially cross-shaped cross section. Further, enlarged diameter portions 16a and 16a having a side view arrow blade shape and a cross-sectional cross shape are formed at both ends of the deformed core material 16 in the material axial direction. Further, a flat plate-shaped connecting portion 16b having the same width as the enlarged diameter portion 16a and projecting to the joint portion 6 side is formed at the end portion of the deformed core material 16 on the joint portion 6 side, and the connecting portion 16b can rotate to the joint portion 6. Is connected to.

なお、これらの部材は、設計の要求性能に応じて適宜選択、または組み合わせて使用することが望ましい。例えば同じ鋼材でも普通鋼あるいは低降伏点鋼や形状記憶合金では鋼材の降伏応力、伸び性能に違いがある(図18参照)。例えば、低ひずみの繰り返しを受ける場合は、これらの累積損傷度の度合いを主眼にした選定が望ましいと考えられる。 It is desirable that these members are appropriately selected or used in combination according to the required performance of the design. For example, even with the same steel material, there are differences in the yield stress and elongation performance of ordinary steel, low yield point steel, and shape memory alloy (see Fig. 18). For example, when receiving repeated low strains, it is desirable to select the degree of cumulative damage.

また、これらの部材断面の強度の階層化を行うことにより、塑性化させる順番を設計制御することが可能となる。例えば、同一鋼材の選定をした場合に断面積は、変形芯材7が一番小さく、続いて変形芯材16、変形芯材7の連結部7bの順で大きく、連結部16bの断面積が一番大きくなるように形成することで、これらの部材はこの順番で塑性変形させることができる。さらに、変形芯材7の材長を長くして弾塑性変形領域を広くすることにより、継手部5と6間に作用する地震動を減衰させるダンパーの機能が付与することができる。 Further, by layering the strength of these member cross sections, it is possible to design and control the order of plasticization. For example, when the same steel material is selected, the cross-sectional area of the deformed core material 7 is the smallest, followed by the deformed core material 16 and the connecting portion 7b of the deformed core material 7, and the cross-sectional area of the connecting portion 16b is larger. By forming so as to be the largest, these members can be plastically deformed in this order. Further, by lengthening the length of the deformed core material 7 and widening the elasto-plastic deformation region, it is possible to impart the function of a damper that attenuates the seismic motion acting between the joint portions 5 and 6.

座屈拘束材9は、変形芯材7および変形芯材16の材軸方向に連続し、かつ変形芯材7および変形芯材16の全長とほぼ同等の長さを有し、断面略等辺山形状に形成されている。また、変形芯材7および変形芯材16の軸直角方向の外側に変形芯材7および変形芯材16を四方から挟み込むように配置されている。 The buckling restraining material 9 is continuous in the material axis direction of the deformed core material 7 and the deformed core material 16, has a length substantially equal to the total length of the deformed core material 7 and the deformed core material 16, and has a substantially equilateral cross section. It is formed in a shape. Further, the deformed core material 7 and the deformed core material 16 are arranged so as to sandwich the deformed core material 7 and the deformed core material 16 from all sides on the outside in the direction perpendicular to the axis.

また、各座屈拘束材9は、変形芯材7の各拡径部7a,7aの側面部および変形芯材16の継手部6側に位置する拡径部16aの側面部に複数のガイドボルト10bによって接合され、かつ、変形芯材7の拡径部7a,7a間および変形芯材16の拡径部16a,16a 間において、スペーサー11を介在し、複数の締付けボルト10aおよびガイドボルト10bによって互いに接合されている。また、座屈拘束材9の両端部に形成されたガイドボルト10bのボルト孔9aは、座屈拘束材9の材軸方向に長軸を有する長孔に形成されている。 Further, each buckling restraining member 9 has a plurality of guide bolts on the side surface portions of the enlarged diameter portions 7a and 7a of the deformed core material 7 and the side surface portions of the enlarged diameter portion 16a located on the joint portion 6 side of the deformed core material 16. It is joined by 10b, and a spacer 11 is interposed between the enlarged diameter portions 7a and 7a of the deformed core material 7 and between the enlarged diameter portions 16a and 16a of the deformed core material 16 by a plurality of tightening bolts 10a and guide bolts 10b. They are joined to each other. Further, the bolt holes 9a of the guide bolts 10b formed at both ends of the buckling restraint member 9 are formed into elongated holes having a long axis in the material axis direction of the buckling restraint member 9.

このような構成において、継手部5と継手部6間に作用する軸力(引張力および圧縮力)に対し、変形芯材7がボルト孔9aの長孔の範囲で材軸方向に弾塑性変形(伸縮)する。これにより、橋桁1端部と橋台2間に作用するレベル2に至る大規模の地震エネルギーを吸収することができる(図12の荷重-変位設計曲線(1)-(2)-(3) -(4)-(5) -(6)-(7))。 In such a configuration, the deformed core material 7 is elasto-plastically deformed in the material axial direction within the range of the elongated holes of the bolt holes 9a with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. (Expand and contract). This makes it possible to absorb large-scale seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 (load-displacement design curve (1)-(2)-(3)-in Fig. 12). (4)-(5)-(6)-(7)).

また、レベル2を超える想定外の大地震時には、変形芯材16が長孔16aの範囲で材軸方向に弾塑性変形し(図12の荷重-変位設計曲線(3)-(8)-(9))、さらに、変形芯材7の継手部5側の連結部7bが弾性または塑性変形する(図12の荷重-変位設計曲線(8)-(9)-(10))。 In addition, in the event of an unexpected large earthquake exceeding level 2, the deformed core material 16 elastically deforms in the direction of the material axis within the range of the elongated hole 16a (load-displacement design curve (3)-(8)-(in FIG. 12). 9)) Further, the connecting portion 7b on the joint portion 5 side of the deformed core material 7 is elastically or plastically deformed (load-displacement design curve (8)-(9)-(10) in FIG. 12).

なお、変形芯材7の弾塑性変形(伸び)がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する軸力は座屈拘束材9を介して変形芯材16に伝達される。また、継手部5と継手部6間に作用する圧縮力に対しては、変形芯材16の拡径部16aの端部が変形芯材7の拡径部7aの端部に面タッチしていることにより、変形芯材7および変形芯材16の芯材を通じて荷重が伝達される。 When the elasto-plastic deformation (elongation) of the deformed core material 7 exceeds the range of the elongated hole of the bolt hole 9a, the axial force acting between the joint portion 5 and the joint portion 6 is transmitted through the buckling restraining material 9. It is transmitted to the deformed core material 16. Further, with respect to the compressive force acting between the joint portion 5 and the joint portion 6, the end portion of the enlarged diameter portion 16a of the deformed core material 16 touches the end portion of the enlarged diameter portion 7a of the deformed core material 7 in a surface manner. As a result, the load is transmitted through the core materials of the deformed core material 7 and the deformed core material 16.

[実施形態5]
図13と図14は、本発明の第5の実施形態を図示したものである。図において、各座屈拘束材9が材軸方向に二つの座屈拘束材ユニット9Aと9Bから構成され、かつ座屈拘束材ユニット9Aと9B間の離間距離を制御する棒状ストッパー12が設置されている点が、実施形態4の落橋防止材と構成が異なっている。
[Embodiment 5]
13 and 14 illustrate a fifth embodiment of the present invention. In the figure, each buckling restraining material 9 is composed of two buckling restraining material units 9A and 9B in the material axial direction, and a rod-shaped stopper 12 for controlling the separation distance between the buckling restraining material units 9A and 9B is installed. However, the configuration is different from that of the bridge collapse prevention material of the fourth embodiment.

以下、より詳しく説明すると、各座屈拘束材9は、変形芯材16の材軸方向のほぼ中間部を境に継手部5側の座屈拘束材ユニット9Aと継手部6側の座屈拘束材ユニット9Bの2本の座屈拘束材ユニットから構成されている。 Hereinafter, to be described in more detail, each buckling restraining member 9 has a buckling restraint unit 9A on the joint portion 5 side and a buckling restraint on the joint portion 6 side with a substantially intermediate portion in the material axial direction of the deformed core material 16 as a boundary. It is composed of two buckling restraint material units of the material unit 9B.

各座屈拘束材ユニット9Aは、変形芯材7の拡径部7a,7aの側面部および変形芯材16の継手部5側に位置する拡径部16aの側面部に複数の締付けボルト10aおよびガイドボルト10bによって接合され、かつ、変形芯材7の拡径部7a,7a間においてスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。また、座屈拘束材ユニット9Aの継手部5側の端部に形成されたガイドボルト10bのボルト孔9aは座屈拘束材ユニット9Aの材軸方向に長軸を有する長孔に形成されている。 Each buckling restraint unit 9A has a plurality of tightening bolts 10a and a plurality of tightening bolts 10a on the side surface portions of the enlarged diameter portions 7a and 7a of the deformed core material 7 and the side surface portions of the enlarged diameter portion 16a located on the joint portion 5 side of the deformed core material 16. It is joined by a guide bolt 10b, and a spacer 11 is interposed between the enlarged diameter portions 7a and 7a of the deformed core material 7 and is joined to each other by a plurality of tightening bolts 10a. Further, the bolt holes 9a of the guide bolts 10b formed at the end of the buckling restraining material unit 9A on the joint portion 5 side are formed in elongated holes having a long axis in the material axial direction of the buckling restraining material unit 9A. ..

各座屈拘束材ユニット9Bは、変形芯材16の継手部6側に位置する拡径部16aの側面部に複数の締付けボルト10aによって接合され、かつスペーサー11を介在し、複数の締付けボルト10aによって互いに接合されている。 Each buckling restraint unit 9B is joined to the side surface portion of the enlarged diameter portion 16a located on the joint portion 6 side of the deformed core material 16 by a plurality of tightening bolts 10a, and a spacer 11 is interposed, and the plurality of tightening bolts 10a are interposed. Are joined to each other by.

また、各座屈拘束材ユニット9Aおよび座屈拘束材ユニット9Bの軸直角方向の外側に、複数の棒状ストッパー12が座屈拘束材ユニット9Aおよび9Bの材軸方向に沿って配置されている。棒状ストッパー12は、座屈拘束材ユニット9Aと9B間の離間距離を制御するためのストッパー材であり、座屈拘束材ユニット9Aおよび9Bの両方向にほぼ対称に所定長延長されている。そして、当該棒状ストッパー12の座屈拘束材ユニット9A側の端部12aは、座屈拘束材ユニット9Aの側部に突設された定着用リブ13に固定され、座屈拘束材ユニット9B側の端部12bは、座屈拘束材ユニット9Bの側部に突設された複数の定着用リブ14に設けられたルーズ孔を貫通し、かつ先端部に抜止めストッパー15が取り付けられている。 Further, a plurality of rod-shaped stoppers 12 are arranged along the material axis direction of the buckling restraint unit 9A and 9B on the outside of each buckling restraint unit 9A and the buckling restraint unit 9B in the direction perpendicular to the axis. The rod-shaped stopper 12 is a stopper material for controlling the separation distance between the buckling restraining material units 9A and 9B, and is extended by a predetermined length substantially symmetrically in both directions of the buckling restraining material units 9A and 9B. Then, the end portion 12a of the rod-shaped stopper 12 on the buckling restraint unit 9A side is fixed to the fixing rib 13 projecting from the side of the buckling restraint unit 9A, and is fixed to the buckling restraint unit 9B side. The end portion 12b penetrates loose holes provided in a plurality of fixing ribs 14 projecting from the side portion of the buckling restraint unit 9B, and a retaining stopper 15 is attached to the tip portion.

このような構成において、継手部5と継手部6間に作用する軸力(引張力および圧縮力)に対し、変形芯材7がボルト孔9aの長孔の範囲で材軸方向に弾塑性変形(伸縮)する。これにより、橋桁1端部と橋台2間に作用するレベル2に至る大規模の地震エネルギーを吸収することができる(図14の荷重-変位設計曲線(1)-(2)-(3) -(4)-(5) -(6)-(7))。 In such a configuration, the deformed core material 7 is elasto-plastically deformed in the material axial direction within the range of the elongated holes of the bolt holes 9a with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. (Expand and contract). This makes it possible to absorb large-scale seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 (load-displacement design curve (1)-(2)-(3)-in Fig. 14). (4)-(5)-(6)-(7)).

また、レベル2を超える想定外の大地震時には、変形芯材16が長孔16aの範囲で材軸方向に弾塑性変形し(図14の荷重-変位設計曲線(3)-(8))、さらに、変形芯材7の継手部5側の連結部7bが弾性または塑性変形する(図14の荷重-変位設計曲線(8)-(9)-(10))。 In addition, in the event of an unexpected large earthquake exceeding level 2, the deformed core material 16 elastically deforms in the direction of the material axis within the range of the elongated hole 16a (load-displacement design curve (3)-(8) in FIG. 14). Further, the connecting portion 7b on the joint portion 5 side of the deformed core material 7 is elastically or plastically deformed (load-displacement design curve (8)-(9)-(10) in FIG. 14).

なお、変形芯材7の弾塑性変形(伸び)がボルト孔9aの長孔の範囲を超えた時点で、継手部5と継手部6間に作用する軸力は座屈拘束材9を介して変形芯材16に伝達される。また、座屈拘束材ユニット9Aと9B間に棒状ストッパー12が配置されていることにより、変形芯材16が変形芯材7の連結部7bより先に破断してしまうことはない。 When the elasto-plastic deformation (elongation) of the deformed core material 7 exceeds the range of the elongated hole of the bolt hole 9a, the axial force acting between the joint portion 5 and the joint portion 6 is transmitted through the buckling restraining material 9. It is transmitted to the deformed core material 16. Further, since the rod-shaped stopper 12 is arranged between the buckling restraining material units 9A and 9B, the deformed core material 16 does not break before the connecting portion 7b of the deformed core material 7.

さらに、継手部5と継手部6間に作用する圧縮力に対しては、変形芯材16の拡径部16aの端部が変形芯材7の拡径部7aの端部に面タッチしていることにより、変形芯材7および変形芯材16の芯材を通じて荷重が伝達される。 Further, with respect to the compressive force acting between the joint portion 5 and the joint portion 6, the end portion of the enlarged diameter portion 16a of the deformed core material 16 touches the end portion of the enlarged diameter portion 7a of the deformed core material 7 in a surface manner. As a result, the load is transmitted through the core materials of the deformed core material 7 and the deformed core material 16.

[実施形態6]
図15と図16は、本発明の第6の実施形態を図示したものである。図において、継手部5と継手部6間に変形芯材7が単体で配置され、かつ座屈拘束材9が変形芯材7のほぼ中間部を境に継手部5側の座屈拘束材ユニット9Aと継手部6側の座屈拘束材ユニット9Bの2本の座屈拘束材ユニットから構成され、さらに座屈拘束材ユニット9Aと9B間の離間距離を制御する棒状ストッパー12を備えている点が実施形態5の落橋防止材と構成が異なっている。
[Embodiment 6]
15 and 16 illustrate a sixth embodiment of the present invention. In the figure, the deformed core material 7 is arranged as a single unit between the joint portion 5 and the joint portion 6, and the buckling restraining material 9 is a buckling restraining material unit on the joint portion 5 side with the substantially intermediate portion of the deformed core material 7 as a boundary. It is composed of two buckling restraint units, 9A and the buckling restraint unit 9B on the joint portion 6 side, and is further equipped with a rod-shaped stopper 12 that controls the separation distance between the buckling restraint unit 9A and 9B. However, the configuration is different from that of the fall-prevention material of the fifth embodiment.

以下、より詳しく説明すると、継手部5と継手部6間の材軸線上に変形芯材7が配置され、変形芯材7の軸直角方向の外側に複数の座屈拘束材9が配置されている。 Hereinafter, to be described in more detail, the deformed core material 7 is arranged on the material axis between the joint portion 5 and the joint portion 6, and a plurality of buckling restraining members 9 are arranged outside the deformed core material 7 in the direction perpendicular to the axis. There is.

変形芯材7は、継手部5と継手部6間の材軸方向に細長い長尺板状に形成され、当該変形芯材7の材軸方向の両端部に側面視矢羽根形状をなし、かつ断面十字形状をなす拡径部7a,7aが形成されている。 The deformed core material 7 is formed in the shape of an elongated long plate between the joint portion 5 and the joint portion 6 in the material axial direction, and has a side view arrow blade shape at both ends of the deformed core material 7 in the material axial direction. Enlarged diameter portions 7a and 7a having a cross-shaped cross section are formed.

また、材軸方向の両端部に拡径部7aと同じ幅で継手部5側と継手部6側にそれぞれ突出する板状の連結部7b,7bがそれぞれ形成され、連結部7b,7bは継手部5と継手部6にそれぞれ回転自在に連結されている。 Further, plate-shaped connecting portions 7b and 7b having the same width as the enlarged diameter portion 7a and projecting to the joint portion 5 side and the joint portion 6 side are formed at both ends in the material axis direction, respectively, and the connecting portions 7b and 7b are joints. It is rotatably connected to the portion 5 and the joint portion 6, respectively.

各座屈拘束材9は、変形芯材7のほぼ中間部を境に継手部5側の座屈拘束材ユニット9Aと継手部6側の座屈拘束材ユニット9Bの2本の座屈拘束材ユニットより構成され、いずれも変形芯材7の拡径部7aの側面部に複数の締付けボルト10aおよびガイドボルト10bによって接合され、かつ拡径部7a,7a間においてスペーサー11を介在し、複数の締付けボルト10aおよびガイドボルト10bによって互いに接合されている。また、継手部5側の端部に形成されたガイドボルト10bのボルト孔9aは座屈拘束材ユニット9Aの材軸方向に長軸を有する長孔に形成されている。 Each buckling restraining material 9 has two buckling restraining materials, a buckling restraining material unit 9A on the joint portion 5 side and a buckling restraining material unit 9B on the joint portion 6 side, with the substantially intermediate portion of the deformed core material 7 as a boundary. It is composed of units, each of which is joined to the side surface of the enlarged diameter portion 7a of the deformed core material 7 by a plurality of tightening bolts 10a and guide bolts 10b, and a spacer 11 is interposed between the enlarged diameter portions 7a and 7a. They are joined to each other by tightening bolts 10a and guide bolts 10b. Further, the bolt hole 9a of the guide bolt 10b formed at the end portion on the joint portion 5 side is formed in a long hole having a long axis in the material axis direction of the buckling restraining material unit 9A.

棒状ストッパー12は、各座屈拘束材ユニット9Aおよび座屈拘束材ユニット9Bの軸直角方向の外側に、各座屈拘束材ユニット9Aおよび座屈拘束材ユニット9Bの材軸方向に沿って配置され、かつ座屈拘束材ユニット9Aおよび9Bの両方向にほぼ対称に所定長延長されている。 The rod-shaped stopper 12 is arranged outside the buckling restraint unit 9A and the buckling restraint unit 9B in the direction perpendicular to the axis along the material axis direction of each buckling restraint unit 9A and the buckling restraint unit 9B. In addition, the buckling restraint unit 9A and 9B are extended by a predetermined length substantially symmetrically in both directions.

また、棒状ストッパー12の座屈拘束材ユニット9A側の端部12aは、座屈拘束材ユニット9Aの側部に突設された定着用リブ13に固定され、座屈拘束材ユニット9B側の端部12bは、座屈拘束材ユニット9Bの側部に突設された複数の定着用リブ14に設けられたルーズ孔を貫通し、その先端部12aに抜止めストッパー15が取り付けられている。 Further, the end portion 12a of the rod-shaped stopper 12 on the buckling restraint unit 9A side is fixed to the fixing rib 13 projecting from the side of the buckling restraint unit 9A, and the end on the buckling restraint unit 9B side. The portion 12b penetrates a loose hole provided in a plurality of fixing ribs 14 projecting from the side portion of the buckling restraint unit 9B, and a retaining stopper 15 is attached to the tip portion 12a thereof.

このような構成において、継手部5と継手部6間に作用する軸力(引張力および圧縮力)に対し、変形芯材7がボルト孔9aの長孔の範囲内で材軸方向に弾塑性変形(伸縮)を繰り返えす。これにより、橋桁1端部と橋台2間に作用するレベル2に至る大規模の地震エネルギーを吸収することができる(図16の荷重-変位設計曲線(1)-(2)-(3) -(4)-(5) -(6)-(7))。 In such a configuration, the deformed core material 7 is elasto-plastic in the material axial direction within the range of the elongated hole of the bolt hole 9a with respect to the axial force (tensile force and compressive force) acting between the joint portion 5 and the joint portion 6. Repeat deformation (expansion and contraction). This makes it possible to absorb large-scale seismic energy up to level 2 acting between the end of the bridge girder 1 and the abutment 2 (load-displacement design curve (1)-(2)-(3)-(Fig. 16)-. (4)-(5)-(6)-(7)).

また、レベル2を超える想定外の大地震時には、変形芯材7がボルト孔9aの長孔の範囲で材軸方向に弾塑性変形し(図16の荷重-変位設計曲線(3)-(8))、さらに、変形芯材7の継手部5側の連結部7bが弾性または塑性変形する(図16の荷重-変位設計曲線(8)-(9))。 In addition, in the event of an unexpected large earthquake exceeding level 2, the deformed core material 7 elastically deforms in the material axial direction within the range of the elongated holes of the bolt holes 9a (load-displacement design curve (3)-(8) in FIG. 16). )) Further, the connecting portion 7b on the joint portion 5 side of the deformed core material 7 is elastically or plastically deformed (load-displacement design curve (8)-(9) in FIG. 16).

このように、変形芯材7の累積疲労損傷度が低ひずみの繰り替えしを受けても設計上問題ない場合は、その後の想定外の地震動においては、累積疲労損傷度の余力を使って落橋防止構造として機能させることが可能となる。
[実施形態7]
図17は、本発明の第7の実施形態であり、第4の実施形態に無抵抗で軸方向に変位する遊間領域を設定した場合の設計事例である。荷重−変位設計曲線を示している。
In this way, if there is no design problem even if the cumulative fatigue damage degree of the deformed core material 7 is repeatedly subjected to low strain, in the subsequent unexpected earthquake motion, the remaining capacity of the cumulative fatigue damage degree is used to prevent the collapse of the bridge. It becomes possible to function as a structure.
[Embodiment 7]
FIG. 17 is a seventh embodiment of the present invention, and is a design example in the case where a play area that is displaced in the axial direction without resistance is set in the fourth embodiment. The load-displacement design curve is shown.

本発明は、地震時の変形能力およびエネルギー吸収能力がきわめて大きく、想定し得る範囲内で最大規模の地震(レベル2の地震動)に対してだけでなく、レベル2の範囲を超える想定外の大地震に対しても対応が可能で、例えば、橋桁の端部と橋桁端部を支える橋台との間に取り付けられる落橋防止材として用いることができる。 The present invention has extremely large deformation capacity and energy absorption capacity during an earthquake, and is not only for the largest earthquake (level 2 seismic motion) within the conceivable range, but also unexpectedly large beyond the range of level 2. It can also respond to earthquakes, and can be used as a bridge collapse prevention material that is attached between the end of the bridge girder and the abutment that supports the end of the bridge girder, for example.

1 橋桁の端部
2 橋台
3 落橋防止材(衝撃吸収装置)
4 支承
5 継手部
6 継手部
7 変形芯材(軸方向変形部材)
7a 拡径部
7b 連結部
8 変位芯材(軸方向変位部材)
8a 拡径部
8b 連結部
9 座屈拘束材
10a 締付けボルト
10b ガイドボルト
11 スペーサー
12 棒状ストッパー
13 定着用リブ
14 定着用リブ
15 抜止めストッパー
16 変形芯材(軸方向変形部材)
16a 拡径部
16b 連結部
17 伸縮装置
1 End of bridge girder 2 Abutment 3 Bridge collapse prevention material (shock absorber)
4 Bearings 5 Joints 6 Joints 7 Deformation core material (axially deformable member)
7a Enlarged diameter part
7b Connecting part 8 Displacement core material (axial displacement member)
8a Enlarged diameter part
8b Connection 9 Buckling restraint
10a tightening bolt
10b guide bolt
11 spacer
12 Rod stopper
13 Fixing rib
14 Fixing ribs
15 Retaining stopper
16 Deformed core material (axially deformed member)
16a Enlarged diameter part
16b connection
17 Telescopic device

Claims (5)

材軸方向両端部に継手部を有し、材軸方向に伸縮する棒状の衝撃吸収装置であって、塑性変形領域として設定される第1の変位区間では、衝撃吸収装置を構成する特定の第1の軸方向変形部材が破断に至らない範囲で弾性変形または塑性変形しつつ、第1の変位区間の上限において変位が拘束される構成とし、前記第1の変位区間を超え、第2の塑性変形領域として設定される第2の変位区間では、衝撃吸収装置を構成する特定の第2の軸方向変形部材が弾性変形または塑性変形する構成とし、かつ衝撃吸収装置を構成する特定の軸方向変位部材が、前記継手部の一方との連結が切り離された状態で実質的に無抵抗で軸方向に変位する遊間領域として設定される変位区間を備えていることを特徴とする衝撃吸収装置。 A rod-shaped shock absorbing device having joints at both ends in the material axial direction and expanding and contracting in the material axial direction, and in a first displacement section set as a plastic deformation region, a specific first displacement device constituting the shock absorbing device. While the axially deforming member 1 is elastically deformed or plastically deformed within a range that does not lead to breakage, the displacement is constrained at the upper limit of the first displacement section, and the second displacement section is exceeded and the second plasticity is exceeded. In the second displacement section set as the deformation region, the specific second axially deforming member constituting the shock absorbing device is elastically or plastically deformed, and the specific axial displacement constituting the shock absorbing device is formed. A shock absorbing device comprising a displacement section in which a member is set as a clearance region that is displaced in the axial direction with substantially no resistance in a state where the connection with one of the joint portions is disconnected. 請求項1記載の衝撃吸収装置において、前記第2の軸方向変形部材が第2の変位区間を超え、第3の塑性変形領域として設定される第3の変位区間では、衝撃吸収装置を構成する特定の第3の軸方向変形部材が弾性変形または塑性変形する構成としたことを特徴とする衝撃吸収装置。 In the shock absorbing device according to claim 1, the second axially deforming member exceeds the second displacement section, and the third displacement section set as the third plastic deformation region constitutes the shock absorbing device. A shock absorbing device characterized in that a specific third axially deforming member is elastically deformed or plastically deformed. 請求項2記載の衝撃吸収装置において、前記第1の軸方向変形部材、前記第2の軸方向変形部材および/または前記第3の軸方向変形部材の材料として、形状記憶合金または低降伏点鋼を用いていることを特徴とする衝撃吸収装置。 In the shock absorbing device according to claim 2 , the material of the first axial deforming member, the second axial deforming member and / or the third axial deforming member is a shape memory alloy or a low yield point steel. A shock absorber characterized by using. 請求項1〜3の何れか一項に記載の衝撃吸収装置を、レベル2地震動以上の地震動での支承の破壊を許容する構成とした橋梁の下部工と上部工との間に介在させてあることを特徴とする衝撃吸収装置を備えた橋梁。 The shock absorber according to any one of claims 1 to 3 is interposed between the substructure and the superstructure of the bridge having a structure that allows the breakage of the bearing due to a ground motion of level 2 or higher. A bridge equipped with a shock absorber. 請求項4記載の衝撃吸収装置を備えた橋梁において、前記衝撃吸収装置をレベル2地震動以上の地震動であって、前記支承が破壊する地震動以下の地震動で破壊することを許容するように設定してあることを特徴とする衝撃吸収装置を備えた橋梁。 In the bridge provided with the shock absorbing device according to claim 4, the shock absorbing device is set so as to allow the shock absorbing device to be destroyed by a ground motion of level 2 or higher and less than or equal to the ground motion that the bearing destroys. A bridge equipped with a shock absorber characterized by being present.
JP2016238584A 2016-12-08 2016-12-08 Shock absorber Active JP6872359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016238584A JP6872359B2 (en) 2016-12-08 2016-12-08 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016238584A JP6872359B2 (en) 2016-12-08 2016-12-08 Shock absorber

Publications (2)

Publication Number Publication Date
JP2018096039A JP2018096039A (en) 2018-06-21
JP6872359B2 true JP6872359B2 (en) 2021-05-19

Family

ID=62632042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238584A Active JP6872359B2 (en) 2016-12-08 2016-12-08 Shock absorber

Country Status (1)

Country Link
JP (1) JP6872359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031827A (en) * 2017-08-08 2019-02-28 株式会社横河住金ブリッジ Function separation type shock absorber and bridge provided with function separation type shock absorber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145196B2 (en) * 2003-05-29 2008-09-03 川口金属工業株式会社 Fall bridge prevention device
JP4468212B2 (en) * 2005-03-01 2010-05-26 株式会社川金コアテック Fall bridge prevention device
JP4726094B1 (en) * 2010-12-10 2011-07-20 株式会社Ihi Fall prevention device and installation method thereof
JP5762780B2 (en) * 2011-03-22 2015-08-12 日本車輌製造株式会社 Hysteretic damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031827A (en) * 2017-08-08 2019-02-28 株式会社横河住金ブリッジ Function separation type shock absorber and bridge provided with function separation type shock absorber
JP7017879B2 (en) 2017-08-08 2022-02-09 株式会社横河Nsエンジニアリング A bridge equipped with a function-separated shock absorber and a function-separated shock absorber

Also Published As

Publication number Publication date
JP2018096039A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP6476055B2 (en) Seismic structure for bridges
JP4735585B2 (en) Concrete rod-shaped damper structure
TW201606164A (en) Earthquake resisting design method on the basis of PC binding articulation construction method
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
US9683365B2 (en) Piston based self-centering brace apparatus
CN105926794A (en) Assembly type soft steel damper optimized through equal-stress line
CN105421610A (en) Self-resetting soft steel energy dissipating brace
JP6563780B2 (en) Bridge structure
JP6184789B2 (en) Damping / seismic composite material and building using the same
JP5279356B2 (en) Plastic hinge structure of concrete member and concrete member
JP6872359B2 (en) Shock absorber
JP4468212B2 (en) Fall bridge prevention device
JP6476054B2 (en) Seismic structure for bridges
JP4838898B1 (en) Damping damper
JP4746023B2 (en) Seismic retrofit method for steel structures and seismic steel structures
JP6803661B2 (en) Rod-shaped damping member
JP5874336B2 (en) Vibration control device
JP2007126848A (en) Aseismatic repair method of existing bridge
JP4860938B2 (en) Vibration control structure
JP5658892B2 (en) Bearing walls and buildings
JP7141588B2 (en) Bridge fall prevention device
JP6780632B2 (en) Composite damper
JP4553631B2 (en) Vibration control device
JP6862057B2 (en) Building stigma displacement suppression structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6872359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250