JP6184789B2 - Damping / seismic composite material and building using the same - Google Patents

Damping / seismic composite material and building using the same Download PDF

Info

Publication number
JP6184789B2
JP6184789B2 JP2013154729A JP2013154729A JP6184789B2 JP 6184789 B2 JP6184789 B2 JP 6184789B2 JP 2013154729 A JP2013154729 A JP 2013154729A JP 2013154729 A JP2013154729 A JP 2013154729A JP 6184789 B2 JP6184789 B2 JP 6184789B2
Authority
JP
Japan
Prior art keywords
axial force
stiffening tube
plate
force member
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013154729A
Other languages
Japanese (ja)
Other versions
JP2015025272A (en
Inventor
植木 卓也
卓也 植木
一善 藤澤
一善 藤澤
和明 宮川
和明 宮川
英典 阿久津
英典 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Civil Engineering and Construction Corp
Original Assignee
JFE Steel Corp
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Civil Engineering and Construction Corp filed Critical JFE Steel Corp
Priority to JP2013154729A priority Critical patent/JP6184789B2/en
Publication of JP2015025272A publication Critical patent/JP2015025272A/en
Application granted granted Critical
Publication of JP6184789B2 publication Critical patent/JP6184789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Springs (AREA)
  • Vibration Dampers (AREA)

Description

本発明は制振耐震複合部材およびそれを用いた建物、特に、ブレースとして用いられる制振耐震複合部材およびそれを用いた建物に関する。   The present invention relates to a vibration-damping / seismic composite member and a building using the same, and more particularly to a vibration-damping / seismic composite member used as a brace and a building using the same.

従来から、建物の耐震設計は、中小地震時には、主架構を弾性範囲内にとどめて、建物の損傷を防止、大地震時には、主架構の塑性化を許容することで建物の倒壊を防止し、建物の継続使用を可能にするという考え方に基づいている。
また、塑性変形性能に優れた制振部材を建物に組み込むことで、中小地震時から大地震時までの広い範囲のエネルギーを効率的に吸収し、建物の損傷を軽減する制振構造が、超高層建物を中心に採用されている。
Traditionally, the seismic design of buildings keeps the main frame within the elastic range during small and medium-sized earthquakes to prevent building damage, and during large earthquakes, the main frame is allowed to be plasticized to prevent collapse, It is based on the idea of enabling continued use of the building.
In addition, by incorporating damping members with excellent plastic deformation performance into the building, a vibration damping structure that efficiently absorbs a wide range of energy from small to large earthquakes and reduces damage to buildings is It is mainly used for high-rise buildings.

昨今の、想定地震の規模増大(例えば、震度7クラス以上)に応じて、単純に設計時の地震荷重を大きく設定することは、制振構造である建物の主架構全体を高強度化すること(剛性と耐力の増強)に繋がり、資材の必要量や断面の増加を招くこととなる。
また、地震発生確率や超過確率を勘案すると、不経済な設計になることが容易に推定できる。さらに、既存建物の耐震補強においても同様に、部材の配置や経済性がネックとなり、耐震補強の実施が困難になると考えられる。
In response to the recent increase in the scale of assumed earthquakes (for example, seismic intensity of 7 or more classes), simply setting a large seismic load at the time of design increases the strength of the entire main frame of the building, which is a vibration control structure. This leads to (increase in rigidity and proof stress), leading to an increase in the required amount of material and cross section.
In addition, it can be easily estimated that the design becomes uneconomical considering the probability of occurrence of earthquakes and the probability of excess. Furthermore, in the case of seismic reinforcement of existing buildings, it is considered that the arrangement of members and the economic efficiency will become a bottleneck, making it difficult to implement seismic reinforcement.

また、塑性変形性能に優れた制振部材として、鋼材を用いた履歴型制振部材である軸力降伏型の座屈拘束ブレースが多用されている。座屈拘束ブレースは、軸力が作用する軸力材と、軸力が作用しない状態で軸力材を包囲する補剛管とから形成され、軸力による軸力材の座屈を、補剛管が抑えることで、軸力材の塑性変形量(地震エネルギーの吸収量)の増大を図っている(例えば、特許文献1参照)。   Further, as a vibration damping member having excellent plastic deformation performance, an axial force yielding type buckling restrained brace that is a hysteretic vibration damping member using a steel material is frequently used. A buckling-restrained brace is formed from an axial force material that acts on an axial force and a stiffening tube that surrounds the axial force material in the absence of an axial force, thereby stiffening the buckling of the axial force material caused by the axial force. By suppressing the pipe, the amount of plastic deformation (absorption amount of seismic energy) of the axial force material is increased (for example, see Patent Document 1).

特許第3246656号公報(第3頁、図1)Japanese Patent No. 3246656 (page 3, FIG. 1)

しかしながら、特許文献1に開示された軸力降伏型の座屈拘束ブレースは、以下のような問題があった。
すなわち、ある許容歪み範囲内で繰り返し履歴を受けることで、地震エネルギーを効率的に吸収するものの、一般的に塑性化部に生じる歪みが大きくなるほど、破断に至るまでのトータルエネルギー吸収量が低減し、また、許容範囲を超える歪みを受けると、数回の繰り返しで、破断に至る可能性もある。このため、パルス波が加わる直下型地震動などに対しては、瞬間的に大きな歪みを受けるため、トータルエネルギー吸収量が不十分になるおそれがある。
However, the axial force yielding type buckling restrained brace disclosed in Patent Document 1 has the following problems.
In other words, by receiving repeated history within a certain allowable strain range, the seismic energy is efficiently absorbed, but generally, the greater the strain generated in the plasticized part, the lower the total energy absorption amount until the fracture occurs. In addition, if the strain exceeds the allowable range, it may be broken several times. For this reason, a direct type seismic motion to which a pulse wave is applied is momentarily subjected to a large distortion, so that the total energy absorption amount may be insufficient.

そのため、内筒管を大型に(厚肉化、大径化)する、あるいは設置量を増やすことで、塑性化部に生じる歪みを小さく抑え、許容範囲を超える歪みが発生しないようにする必要が生じることから、結果として、装置自体(外筒管を含めた座屈拘束ブレース)が大型になり、設置スペースが多く必要とされていた。そうすると、製造コストおよび施工コストの上昇を招くと共に、設置場所の自由度が低下していた。   Therefore, it is necessary to keep the inner cylinder tube large (thickening, increasing its diameter) or increasing the installation amount so as to keep the distortion generated in the plasticized part small and prevent the distortion exceeding the allowable range from occurring. As a result, the apparatus itself (buckling restraint brace including the outer tube) has become large, and a large installation space has been required. If it did so, while raising the manufacturing cost and construction cost, the freedom degree of the installation place fell.

本発明は上記問題を解決するものであって、装置の大型化を抑えながら、従来とほぼ同等の設置スペースで、塑性化部に生じる歪みを小さくすることができる制振耐震複合部材およびそれを用いた建物を提供することにある。   The present invention solves the above-mentioned problem, and suppresses the increase in size of the apparatus and suppresses the distortion generated in the plasticized portion in an installation space substantially equivalent to the conventional one, and the vibration-damping and earthquake-resistant composite member The purpose is to provide the building used.

(1)本発明に係る制振耐震複合部材は、軸力材と、該軸力材を包囲する補剛管と、前記軸力材の一方の端部と前記補剛管の一方の端部とが接続された共通端板と、前記軸力材の他方の端部と前記補剛管の他方の端部との間に形成された間隙と、を有し、
前記間隙は、
前記軸力材の軸方向において前記軸力材の伸び方向及び縮み方向の両方に形成され、
前記軸力材が単独で軸方向に所定の変形量だけ変形したところで、前記間隙のうち一方が消滅し、前記間隙が消滅した後は、前記軸力材および前記補剛管の両方が軸方向にさらに変形することを特徴とする。
(1) A vibration-damping and earthquake-resistant composite member according to the present invention includes an axial force member, a stiffening tube surrounding the axial force member, one end of the axial force member, and one end of the stiffening tube. A common end plate connected to each other, and a gap formed between the other end of the axial force member and the other end of the stiffening tube,
The gap is
Formed in both the extending direction and the shrinking direction of the axial force member in the axial direction of the axial force member,
When the axial force material is deformed by a predetermined deformation amount in the axial direction alone, one of the gaps disappears, and after the gap disappears, both the axial force material and the stiffening tube are axially It is further characterized by being deformed.

(2)前記(1)において、前記補剛管の他方の端部に設置された補剛管当接板と、前記軸力材の他方の端部が接続された軸力材端板と、該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記軸力材端板と前記補剛管当接板との間、および前記補剛管当接板と前記軸力材当接板との間に、それぞれ前記間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする。
(2) In the above (1), a stiffening tube contact plate installed at the other end of the stiffening tube, and an axial force material end plate to which the other end of the axial force material is connected, An axial force member abutting plate connected to the axial force member end plate via an axial force member connecting portion; and a building installation means fixed to the common end plate and the axial force member abutting plate, respectively. Have
Wherein between the axial force member end plate and the stiffening tube abutment plate, and between the stiffening tube and the abutment plate and the axial force member abutment plate, the gap are formed respectively,
Wherein when the axial load is applied via the building installation for unit size varies in the gap, where the axial force member is deformed more than a predetermined amount of deformation, one of the of the gap It is characterized in that the gap disappears.

(3)前記(1)において、前記補剛管の他方の端部に一方の端部が固定された連結棒と、該連結棒の他方の端部に設置された連結棒ストッパーと、前記軸力材の他方の端部が接続された軸力材端板と、該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記補剛管の他方の端部と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ前記間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする。
(4)本発明に係る制振耐震複合部材は、軸力材と、該軸力材を包囲する補剛管と、前記軸力材の一方の端部と前記補剛管の一方の端部とが接続された共通端板と、前記補剛管の他方の端部に設置された補剛管当接板と、前記軸力材の他方の端部が接続された軸力材端板と、該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、前記軸力材端板と前記補剛管当接板との間、および前記補剛管当接板と前記軸力材当接板との間に、それぞれ間隙が形成され、前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の間隙が消滅することを特徴とする。
(5)本発明に係る制振耐震複合部材は、軸力材と、該軸力材を包囲する補剛管と、前記軸力材の一方の端部と前記補剛管の一方の端部とが接続された共通端板と、前記補剛管の他方の端部に一方の端部が固定された連結棒と、該連結棒の他方の端部に設置された連結棒ストッパーと、前記軸力材の他方の端部が接続された軸力材端板と、該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、前記補剛管の他方の端部と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ間隙が形成され、前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の間隙が消滅することを特徴とする。
)前記(1)〜(5)において、前記補剛管を包囲する第二補剛管を有することを特徴とする。
(3) In (1), a connecting rod having one end fixed to the other end of the stiffening tube, a connecting rod stopper installed at the other end of the connecting rod, and the shaft An axial force material end plate to which the other end of the force material is connected; an axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion; the common end plate; Building installation means fixed respectively to the axial force member contact plates,
Wherein each of the gap between the between the other end of the stiffening tube and the axial force member contact plate, and said axial force member abutment plate and the connecting rod stopper is formed,
Wherein when the axial load is applied via the building installation for unit size varies in the gap, where the axial force member is deformed more than a predetermined amount of deformation, one of the of the gap It is characterized in that the gap disappears.
(4) A vibration-damping and earthquake-resistant composite member according to the present invention includes an axial force member, a stiffening tube surrounding the axial force member, one end portion of the axial force member, and one end portion of the stiffening tube. A common end plate connected to each other, a stiffening tube abutting plate installed at the other end of the stiffening tube, and an axial force material end plate to which the other end of the axial force material is connected An axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion; and a building installation means fixed to the common end plate and the axial force material abutting plate, respectively. A gap is formed between the axial force member end plate and the stiffening tube contact plate, and between the stiffening tube contact plate and the axial force material contact plate, When an axial load is applied via the building installation means, the size of the gap fluctuates, and when the axial force member is deformed to a predetermined deformation amount or more, one of the gaps is Disappear The features.
(5) A vibration-damping and earthquake-resistant composite member according to the present invention includes an axial force member, a stiffening tube surrounding the axial force member, one end portion of the axial force member, and one end portion of the stiffening tube. A common end plate connected to each other, a connecting rod having one end fixed to the other end of the stiffening tube, a connecting rod stopper installed at the other end of the connecting rod, An axial force material end plate to which the other end of the axial force material is connected; an axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion; and the common end plate; Building installation means respectively fixed to the axial force material abutting plate, between the other end of the stiffening tube and the axial force material abutting plate, and the axial force material abutting A gap is formed between the plate and the connecting rod stopper, and when an axial load is applied via the building installation means, the size of the gap varies, and the axial force member When the deformed above shape amount, characterized in that one of the gap of the gap disappears.
( 6 ) Said (1)-(5) WHEREIN: It has a 2nd stiffening pipe | tube surrounding the said stiffening pipe | tube.

)また、軸力材と、該軸力材を包囲する第二補剛管と、該第二補剛管を包囲する補剛管と、前記軸力材の一方の端部と前記第二補剛管の一方の端部とが接続された共通端板と、前記第二補剛管の他方の端部と前記補剛管の他方の端部とが接続された補剛管連結板と、前記軸力材の他方の端部と前記補剛管連結板との間に形成された間隙と、を有し、
前記軸力材、前記補剛管および前記第二補剛管が所定の変形量だけ、軸方向に変形したところで、前記間隙が消滅し、前記間隙が消滅した後は、前記補剛管が単独で軸方向にさらに変形することを特徴とする。
)前記()において、前記補剛管の一方の端部に固定された補剛管端板と、前記軸力材の他方の端部に軸力材連結管を介して接続された軸力材当接板と、前記補剛管連結板の他方の端部に一方の端部が固定された連結棒と、該連結棒の他方の端部に設置された連結棒ストッパーと、前記補剛管端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記補剛管連結板と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の間隙が消滅することを特徴とする。
( 7 ) Further, the axial force member, a second stiffening tube surrounding the axial force member, a stiffening tube surrounding the second stiffening tube, one end of the axial force member, and the first A common end plate connected to one end of the two stiffening tubes, and a stiffening tube coupling plate connected to the other end of the second stiffening tube and the other end of the stiffening tube And a gap formed between the other end of the axial force member and the stiffening tube connecting plate,
When the axial force member, the stiffening tube, and the second stiffening tube are deformed in the axial direction by a predetermined deformation amount, the gap disappears, and after the gap disappears, the stiffening tube is independent. Further, it is further deformed in the axial direction.
( 8 ) In the above ( 7 ), the stiffening tube end plate fixed to one end of the stiffening tube and the other end of the axial force member are connected via an axial force member connecting tube. An axial force member contact plate, a connecting rod having one end fixed to the other end of the stiffening tube connecting plate, a connecting rod stopper installed at the other end of the connecting rod, Building installation means fixed to the stiffening tube end plate and the axial force member abutment plate, respectively,
A gap is formed between the stiffening tube connecting plate and the axial force material abutting plate and between the axial force material abutting plate and the connecting rod stopper,
When an axial load is applied via the building installation means, the size of the gap fluctuates, and when the axial force member is deformed to a predetermined deformation amount or more, one of the gaps is formed. Is characterized by disappearance.

)さらに、軸力材と、該軸力材に包囲された第二補剛管と、該第二補剛管に包囲された補剛管と、前記補剛管の一方の端部に固定された補剛管端板と、前記補剛管の他方の端部と前記第二補剛管の他方の端部とを連結する補剛管連結板と、前記第二補剛管の一方の端部と前記軸力材の一方の端部とを連結する共通端板と、前記軸力材の他方の端部に固定された軸力材当接板と、前記補剛管連結板と前記軸力材当接板との間に形成された間隙と、を有し、
前記軸力材、前記補剛管および前記第二補剛管が所定の変形量だけ、軸方向に変形したところで、前記間隙が消滅し、前記間隙が消滅した後は、前記補剛管が単独で軸方向にさらに変形することを特徴とする。
10)前記()において、前記軸力材の他方の端部に軸力材連結管を介して接続された軸力材当接板と、前記補剛管連結板の他方の端部に一方の端部が固定された連結棒と、該連結棒の他方の端部に設置された連結棒ストッパーと、前記補剛管端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記補剛管連結板と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量だけ軸方向に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする。
( 9 ) Further, an axial force member, a second stiffening tube surrounded by the axial force member, a stiffening tube surrounded by the second stiffening tube, and one end of the stiffening tube A fixed stiffening tube end plate, a stiffening tube connecting plate for connecting the other end of the stiffening tube and the other end of the second stiffening tube, and one of the second stiffening tubes A common end plate connecting the end of the axial force member and one end of the axial force member, an axial force member abutting plate fixed to the other end of the axial force member, and the stiffening tube connecting plate A gap formed between the axial force member contact plate,
When the axial force member, the stiffening tube, and the second stiffening tube are deformed in the axial direction by a predetermined deformation amount, the gap disappears, and after the gap disappears, the stiffening tube is independent. Further, it is further deformed in the axial direction.
( 10 ) In the above ( 9 ), an axial force member abutting plate connected to the other end portion of the axial force member via an axial force member connecting tube, and an other end portion of the stiffening tube connecting plate A connecting rod fixed at one end, a connecting rod stopper installed at the other end of the connecting rod, and a building installed fixed to the stiffening tube end plate and the axial force member abutting plate, respectively. Means for
A gap is formed between the stiffening tube connecting plate and the axial force material abutting plate and between the axial force material abutting plate and the connecting rod stopper,
When an axial load is applied via the building installation means, the size of the gap fluctuates, and when the axial force member is deformed in the axial direction by a predetermined deformation amount, one of the gaps wherein the gap disappears.

11)前記(1)〜(10)の何れかにおいて、前記間隙に緩衝材が配置されていることを特徴とする。
12)さらに、本発明に係る建物は 複数の柱と、柱同士を連結する梁とから形成された主架構と、該主架構の構面内に設置された前記(1)〜(11)の何れかに記載の制振耐震複合部材と、を有する。
( 11 ) In any one of (1) to ( 10 ), a buffer material is disposed in the gap.
( 12 ) Furthermore, the building according to the present invention includes a main frame formed of a plurality of columns and beams connecting the columns, and the (1) to ( 11 ) installed in the surface of the main frame. And the vibration-damping / seismic composite member according to any one of the above.

(i)本発明に係る制振耐震複合部材は、軸力材が単独で軸方向に変形した後、軸力材が所定の変形量以上に変形した後、軸力材および補剛管の両方が軸方向に変形する。
すなわち、変形が小さい間は、軸力材が制振部材として機能し、公知の座屈拘束ブレースと同様の作用効果を奏する。さらに、変形が大きくなると、軸力材および補剛管の両方が耐震部材として機能し、主に、補剛管が全体座屈を生じない耐震ブレースとしての機能を奏する。したがって、装置(制振耐震複合部材)自体の大型化が抑えられ、建物の過大な変更を抑えることが可能になる。
このとき、補剛管の耐力・剛性を調整することによって、巨大地震等における過大な地震荷重に対しても建物の過大な変形を抑え、建物の損傷を軽減することが可能になる。また、軸力材の変形も抑えられるから、軸力材の過大な変形による早期破断を防止することができる。
(I) The vibration-damping and earthquake-resistant composite member according to the present invention includes both the axial force member and the stiffening pipe after the axial force member is deformed in the axial direction alone and then the axial force member is deformed to a predetermined deformation amount or more. Is deformed in the axial direction.
That is, while the deformation is small, the axial force member functions as a vibration damping member, and has the same effect as a known buckling restrained brace. Further, when the deformation becomes large, both the axial force member and the stiffening tube function as a seismic member, and the stiffening tube mainly functions as a seismic brace that does not cause overall buckling. Therefore, an increase in size of the device (damping / seismic composite member) itself can be suppressed, and an excessive change in the building can be suppressed.
At this time, by adjusting the proof stress / rigidity of the stiffening pipe, it is possible to suppress excessive deformation of the building and reduce damage to the building even with an excessive earthquake load in a huge earthquake or the like. In addition, since deformation of the axial force member can be suppressed, early breakage due to excessive deformation of the axial force member can be prevented.

(ii)また、軸力材端板と補剛管当接板との間、および補剛管当接板と軸力材当接板との間に、それぞれ間隙が形成され、軸方向の荷重が作用した際、間隙の大きさが変動し、所定の変形量以上に変形したところで、間隙のうちの一方の間隙が消滅する。すなわち、形成された間隙の大きさが変動し、やがて無くなる(部材同士が当接する)から、簡素な構造でありながら、変形抑制機構を形成することになる。このとき、変形抑制機構は、制振耐震複合部材が設置される架構の影響を受けることなく、軸力材の軸方向の変形量のみによって決定される。
(iii)また、補剛管の他方の端部と軸力材当接板との間、および軸力材当接板と連結手段ストッパーとの間にそれぞれ間隙が形成され、軸方向の荷重が作用した際、間隙の大きさが変動し、所定の変形量以上に変形したところで、間隙のうちの一方の間隙が消滅する(部材同士が当接する)から、前記(ii)と同様の作用効果が得られる。
(iv)また、補剛管を包囲する第二補剛管を有するから、補剛管の座屈が抑制され、軸力材および補剛管の両方による耐震部材として機能(前記(ii)参照)がさらに増す。
(Ii) Also, gaps are formed between the axial force member end plate and the stiffening tube abutting plate, and between the stiffening tube abutting plate and the axial force member abutting plate, respectively. When this occurs, the size of the gap fluctuates, and one of the gaps disappears when the gap is deformed to a predetermined deformation amount or more. That is, since the size of the formed gap changes and eventually disappears (members come into contact with each other), a deformation suppressing mechanism is formed with a simple structure. At this time, the deformation suppression mechanism is determined only by the amount of axial deformation of the axial force member without being affected by the frame on which the vibration-damping and earthquake-resistant composite member is installed.
(Iii) Further, gaps are formed between the other end of the stiffening tube and the axial force member abutting plate, and between the axial force material abutting plate and the connecting means stopper, respectively, so that the axial load is reduced. When acting, the size of the gap fluctuates and when one of the gaps is deformed beyond a predetermined deformation amount, one of the gaps disappears (members come into contact with each other), so the same effect as the above (ii) Is obtained.
(Iv) Further, since the second stiffening tube surrounding the stiffening tube is provided, buckling of the stiffening tube is suppressed, and functions as an earthquake-resistant member using both the axial force member and the stiffening tube (see (ii) above). ) Further increases.

(v)また、軸力材、補剛管および第二補剛管が軸方向に変形した後、軸力材が所定の変形量以上に変形した後、軸力材および補剛管は弾性復元し、第二補剛管が単独で軸方向に変形する。
すなわち、変形が小さい間は、軸力材、補剛管および第二補剛管が制振部材として機能する。さらに、変形が大きくなると、第二補剛管のみが耐震部材として機能し、全体座屈を生じない耐震ブレースとしての機能を奏する。したがって、前記(i)と同様の作用効果が得られる。
(vi)また、補剛管連結板と軸力材当接板との間、および軸力材当接板と連結手段ストッパーとの間にそれぞれ間隙が形成され、軸方向の荷重が作用した際、間隙の大きさが変動し、所定の変形量以上に変形したところで、間隙のうちの一方の間隙が消滅する。したがって、簡素な構造でありながら、変形抑制機構が形成されるから、前記(ii)と同様の作用効果が得られる。
(V) In addition, after the axial force member, the stiffening tube, and the second stiffening tube are deformed in the axial direction, the axial force member and the stiffening tube are elastically restored after the axial force member is deformed to a predetermined deformation amount or more. Then, the second stiffening tube alone is deformed in the axial direction.
That is, while the deformation is small, the axial force member, the stiffening tube, and the second stiffening tube function as a damping member. Furthermore, when the deformation becomes large, only the second stiffening tube functions as an earthquake-resistant member, and functions as an earthquake-resistant brace that does not cause overall buckling. Therefore, the same effect as the above (i) can be obtained.
(Vi) When a gap is formed between the stiffening tube connecting plate and the axial force material abutting plate and between the axial force material abutting plate and the connecting means stopper, and an axial load is applied. When the size of the gap fluctuates and deforms to a predetermined deformation amount or more, one of the gaps disappears. Therefore, since the deformation suppressing mechanism is formed with a simple structure, the same effect as the above (ii) can be obtained.

(vii)また、間隙に緩衝材が配置されているから、隙間を形成する部材の衝突が緩衝(吸収)され、衝撃音の発生を抑えると共に、衝撃力による損傷が防止される。
(viii)さらに、本発明に係る建物は、前記(i)〜(vii)の作用効果を奏する制振耐震複合部材を有し、当該制振耐震複合部材の大型化が抑えられ、制振機能と耐震機能との両方を発揮するから、設置スペースを拡大する必要がなく、設置位置の自由度が増すと共に、建物に自由度の高い空間および地震に対する高い信頼性を提供することができる。
(Vii) Since the buffer material is disposed in the gap, the collision of the members forming the gap is buffered (absorbed), and the generation of impact sound is suppressed and damage due to the impact force is prevented.
(Viii) Furthermore, the building according to the present invention has a vibration-damping / seismic composite member that exhibits the effects (i) to (vii) described above, and an increase in the size of the vibration-damping / seismic composite member is suppressed. Since both the seismic function and the seismic function are exhibited, it is not necessary to expand the installation space, the degree of freedom of the installation position increases, and the building can be provided with a high degree of freedom and high reliability against earthquakes.

本発明の実施の形態1に係る制振耐震複合部材を説明する側面視の断面図であって、(a)は実施例1の1、(b)は実施例1の2。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing of the side view explaining the damping-seismic composite member concerning Embodiment 1 of this invention, Comprising: (a) is 1 of Example 1, (b) is 2 of Example 1. FIG. 本発明の実施の形態2に係る制振耐震複合部材を説明する側面視の断面図であって、(a)は実施例2の1、(b)は実施例2の2。It is sectional drawing of the side view explaining the damping-seismic composite member which concerns on Embodiment 2 of this invention, (a) is 1 of Example 2, (b) is 2 of Example 2. FIG. 本発明の実施の形態3に係る制振耐震複合部材を説明する側面視の断面図であって、(a)は実施例3の1、(b)は実施例3の2、(c)は実施例3の3。It is sectional drawing of the side view explaining the damping-seismic composite material which concerns on Embodiment 3 of this invention, (a) is 1 of Example 3, (b) is 2 of Example 3, (c) is Example 3-3. 本発明の実施の形態4に係る建物を模式的に説明する側面視の断面図。Sectional drawing of the side view explaining the building which concerns on Embodiment 4 of this invention typically.

[実施の形態1]
図1は本発明の実施の形態1に係る制振耐震複合部材を説明する側面視の断面図であって、(a)は実施例1の1、(b)は実施例1の2である。なお、各部は模式的に示すものであって、本発明は図示された形態(形状や相対的な大きさ)に限定されるものではない。
[Embodiment 1]
FIG. 1 is a cross-sectional view illustrating a vibration-damping and earthquake-resistant composite member according to Embodiment 1 of the present invention, where (a) is 1 of Example 1 and (b) is 2 of Example 1. FIG. . In addition, each part is shown typically, and the present invention is not limited to the illustrated form (shape and relative size).

(実施例1の1)
図1の(a)において、制振耐震複合部材100は、軸力材10と、軸力材10を包囲する補剛管20と、軸力材10の一方の端部10aと補剛管20の一方の端部20aとが接続された共通端板30と、軸力材10の他方の端部10bが接続された軸力材端板40と、を具備している。
そして、共通端板30には、図示しない建物に設置するための建物設置用板39が固定され、建物設置用板39には貫通して建物設置用孔38が設けられている。
なお、軸力材10には変形性能に優れた低降伏点鋼管を用い、補剛管20は炭素鋼が用いられるが、本発明はこれに限定するものではなく、同様の特性を有するものであれば何れの材料であってもよい。また、軸力材10は鋼管であっても鋼管でなくても(例えば、棒材、板材、断面H型材等)よいし、補剛管20は断面円形の鋼管に限定するものではなく、例えば、断面矩形であってもよい。建物との設置方法についても、ピン形式であっても、ボルト接合形式であってもよい。
(1 of Example 1)
In FIG. 1A, the vibration-damping and earthquake-resistant composite member 100 includes an axial force member 10, a stiffening tube 20 surrounding the axial force member 10, one end portion 10 a of the axial force member 10, and a stiffening tube 20. The common end plate 30 to which one end portion 20a of the axial force member 10 is connected, and the axial force member end plate 40 to which the other end portion 10b of the axial force member 10 is connected.
A building installation plate 39 for installation in a building (not shown) is fixed to the common end plate 30, and a building installation hole 38 is provided through the building installation plate 39.
In addition, although the low yield point steel pipe excellent in deformation performance is used for the axial force member 10 and the carbon steel is used for the stiffening pipe 20, the present invention is not limited to this and has similar characteristics. Any material may be used. Further, the axial force member 10 may be a steel pipe or not a steel pipe (for example, a bar, a plate, an H-shaped cross section, etc.), and the stiffening pipe 20 is not limited to a steel pipe having a circular cross section. The cross section may be rectangular. The installation method with the building may also be a pin type or a bolt joint type.

また、軸力材端板40には、軸力材端板40よりも外径が小さい軸力材連結部41が固定され、軸力材連結部41には補剛管20の外径に略同じ外径の(軸力材連結部41よりも外径が大きい)軸力材当接板42が固定され、軸力材当接板42には、図示しない建物に設置するための建物設置用板49が固定され、建物設置用板49には貫通して建物設置用孔48が設けられている。
さらに、補剛管20の他方の端部20bには、内面側に突出した内フランジ(円環状)である補剛管当接板21が形成されている。このとき、補剛管当接板21の内周に近い範囲は、軸力材連結部41に近い位置にあって、補剛管当接板21と軸力材端板40との間に間隙S1が形成され、補剛管当接板21と軸力材当接板42との間に間隙S2が形成され、後記する「軸力伝達部」が形成されている。
Further, the axial force member end plate 40 is fixed with an axial force member connecting portion 41 having an outer diameter smaller than that of the axial force member end plate 40, and the axial force member connecting portion 41 is substantially equal to the outer diameter of the stiffening tube 20. An axial force material abutting plate 42 having the same outer diameter (the outer diameter is larger than that of the axial force material connecting portion 41) is fixed, and the axial force material abutting plate 42 is for building installation for installation in a building (not shown). A plate 49 is fixed, and a building installation hole 49 is provided through the building installation plate 49.
Further, a stiffening tube abutting plate 21 which is an inner flange (annular shape) protruding toward the inner surface is formed at the other end 20b of the stiffening tube 20. At this time, the range close to the inner periphery of the stiffening tube abutting plate 21 is located near the axial force member connecting portion 41, and there is a gap between the stiffening tube abutting plate 21 and the axial force member end plate 40. S1 is formed, a gap S2 is formed between the stiffening tube abutting plate 21 and the axial force material abutting plate 42, and an “axial force transmitting portion” to be described later is formed.

次に、制振耐震複合部材100の作用効果について説明する。
制振耐震複合部材100に軸力が加わると、まず、軸力材10が弾性変形し、やがて、塑性変形する。すなわち、引張力によって軸力材10の軸方向の伸び量が、間隙S1よりも小さい場合には、軸力材端板40が補剛管当接板21に当接しないことから、補剛管20に引張力が伝達されない。
また、圧縮力によって軸力材10の軸方向の縮み量が、間隙S2よりも小さい場合には、軸力材当接板42が補剛管当接板21に当接しないことから、補剛管20に圧縮力が伝達されない。このとき、補剛管20は軸力材10の軸方向以外の変形(曲げ変形)を拘束する(正確には、僅かの曲げ変形が生じる)ため、軸力材10の座屈の発生が抑えられる。
したがって、制振耐震複合部材100は、変形量が小さい場合には、通常の「座屈拘束ブレース」として機能する。
Next, the function and effect of the vibration-damping / seismic composite member 100 will be described.
When an axial force is applied to the vibration-damping / seismic composite member 100, first, the axial force member 10 is elastically deformed and eventually plastically deformed. That is, when the axial extension amount of the axial force member 10 is smaller than the gap S1 due to the tensile force, the axial force member end plate 40 does not abut against the stiffening tube abutting plate 21, so that the stiffening tube No tensile force is transmitted to 20.
When the axial force material 10 is contracted in the axial direction by a compression force smaller than the gap S2, the axial force material contact plate 42 does not contact the stiffening tube contact plate 21. No compressive force is transmitted to the tube 20. At this time, the stiffening tube 20 restrains deformation (bending deformation) other than the axial direction of the axial force member 10 (precisely, slight bending deformation occurs), so that the occurrence of buckling of the axial force member 10 is suppressed. It is done.
Therefore, the vibration-damping / seismic composite member 100 functions as a normal “buckling-restrained brace” when the deformation amount is small.

さらに、引張力によって軸力材10の軸方向の伸び量が、間隙S1よりも大きくなった場合には、軸力材端板40が補剛管当接板21に当接することから、補剛管20に引張力が伝達される。
また、圧縮力によって軸力材10の軸方向の縮み量が、間隙S2よりも大きくなった場合には、軸力材当接板42が補剛管当接板21に当接することから、補剛管20に圧縮力が伝達される。このとき、塑性化した軸力材10よりも剛性が高く、かつ断面積が大きい補剛管20がより多くの軸力を負担することで、弾性変形を伴いながら、当接した以降の軸方向の縮み量を小さくすることができる。
Furthermore, when the axial extension amount of the axial force member 10 becomes larger than the gap S1 due to the tensile force, the axial force member end plate 40 abuts on the stiffening tube abutment plate 21, so that the stiffening is performed. A tensile force is transmitted to the tube 20.
Further, when the amount of axial force contraction of the axial force member 10 becomes larger than the gap S2 due to the compressive force, the axial force member contact plate 42 contacts the stiffening tube contact plate 21. A compressive force is transmitted to the rigid tube 20. At this time, the stiffening tube 20 having a higher rigidity and a larger cross-sectional area than the plasticized axial force member 10 bears more axial force, so that the axial direction after contact with elastic deformation is brought about. The amount of shrinkage can be reduced.

なお、補剛管20は、軸力材10が間隙S2に相当する変形量(縮み量)を生じる軸力を超える軸力分に対して、全体座屈を生じないために必要な断面に設計されている。   The stiffening tube 20 is designed to have a necessary cross section so that the axial force component 10 does not cause overall buckling with respect to an axial force exceeding an axial force that causes a deformation amount (shrinkage amount) corresponding to the gap S2. Has been.

以上のように、制振耐震複合部材100では、過大な地震力が発生した場合に、軸方向の力が、軸力材10と補剛管20との両方に分担されることになり、軸力材10のみで力を負担した場合に比較して、軸力材10の変形量が減少する。
したがって、当初の塑性化部である軸力材10に生じる歪みを許容歪み範囲内に抑え、地震エネルギーを確実に吸収することができる。
すなわち、軸力材10が主に制振機能を発揮し、軸力材10と補剛管20とが協働して主に耐震機能を発揮するということができるから、軸力材10(および補剛管20)の大型化を抑えることができ、また、設置スペースを増やすことなく、製造コストおよび施工コストの上昇を抑えた制振耐震複合部材100を得ることができる。
As described above, in the vibration-damping and earthquake-resistant composite member 100, when an excessive seismic force is generated, the axial force is shared by both the axial force member 10 and the stiffening tube 20, and the shaft The amount of deformation of the axial force member 10 is reduced as compared with the case where the force is borne only by the force member 10.
Therefore, the strain generated in the axial force member 10 that is the original plasticized portion can be suppressed within the allowable strain range, and the seismic energy can be reliably absorbed.
That is, it can be said that the axial force member 10 mainly exhibits a damping function, and the axial force member 10 and the stiffening pipe 20 cooperate to mainly exert an earthquake resistance function. An increase in the size of the stiffening tube 20) can be suppressed, and the vibration-damping and earthquake-proof composite member 100 that suppresses an increase in manufacturing cost and construction cost can be obtained without increasing the installation space.

(実施例1の2)
図1の(b)において、制振耐震複合部材101は、制振耐震複合部材100における補剛管当接板21に代えて、補剛管20に、高張力棒鋼である連結棒70の一方の端部70aを固定し、軸力材当接板42に連結棒70が貫通する軸力材当接孔44を設けられると共に、連結棒70の他方の端部70bの近くに連結棒ストッパー71を設置したものである。したがって補剛管20の他方の端部20bと軸力材当接板42との間に間隙S1が形成され、軸力材当接板42と連結棒ストッパー71との間に間隙S2が形成されている。
そして、軸力材当接板42は連結棒70に案内された状態で、補剛管20の他方の端部20bと軸力材当接板42との間を移動自在になっているから、制振耐震複合部材101は、制振耐震複合部材100と同様の作用効果を奏する。
(Example 1-2)
In FIG. 1B, the vibration-damping and earthquake-resistant composite member 101 is replaced with one of the connecting rods 70, which are high-tensile steel bars, instead of the stiffening tube contact plate 21 in the vibration-damping and earthquake-resistant composite member 100. The axial force material abutting plate 42 is provided with an axial force material abutting hole 44 through which the connecting rod 70 penetrates, and a connecting rod stopper 71 is provided near the other end 70 b of the connecting rod 70. Is installed. Therefore, a gap S1 is formed between the other end 20b of the stiffening tube 20 and the axial force material abutting plate 42, and a gap S2 is formed between the axial force material abutting plate 42 and the connecting rod stopper 71. ing.
The axial force member abutting plate 42 is movable between the other end 20b of the stiffening tube 20 and the axial force member abutting plate 42 while being guided by the connecting rod 70. The vibration-damping and earthquake-resistant composite member 101 has the same effects as the vibration-damping and earthquake-resistant composite member 100.

[実施の形態2]
図2は本発明の実施の形態2に係る制振耐震複合部材を説明する側面視の断面図であって、(a)は実施例2の1、(b)は実施例2の2である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
[Embodiment 2]
FIG. 2 is a side sectional view for explaining a vibration-damping / seismic composite member according to Embodiment 2 of the present invention, where (a) is 1 in Example 2 and (b) is 2 in Example 2. . In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 1, or an equivalent part, and one part description is abbreviate | omitted.

(実施例2の1)
図2の(a)において、制振耐震複合部材200は、制振耐震複合部材100(実施の形態1)を形成する補剛管20の外側に、さらに、炭素鋼鋼管からなる第二補剛管60を配置したものである。そして、軸力材端板40には緩衝材51が、軸力材当接板42には緩衝材52が、それぞれ設置されている。
(Example 2)
In FIG. 2A, a vibration-damping and earthquake-resistant composite member 200 is provided on the outer side of the stiffening tube 20 forming the vibration-damping and earthquake-resistant composite member 100 (Embodiment 1), and further a second stiffening made of a carbon steel pipe. A tube 60 is arranged. A buffer material 51 is installed on the axial force material end plate 40, and a buffer material 52 is installed on the axial force material contact plate 42.

したがって、軸力材10に、パルス波のような急激な荷重が作用した場合でも、緩衝材51が軸力材端板40と補剛管当接板21との衝突を吸収し、緩衝材52が軸力材当接板42と補剛管当接板21との衝突を吸収する。したがって、衝撃音の発生を抑えると共に、衝撃力による損傷を防止している。
なお、緩衝材51、52を補剛管当接板21に設置してもよい。また、緩衝材51、52の材質や形式は限定するものではなく、ゴムや合成樹脂の板材や、ばね、あるいは、液体や粘性弾性体を具備する公知のダンパーであってもよい。
Therefore, even when a sudden load such as a pulse wave is applied to the axial force member 10, the shock absorbing material 51 absorbs the collision between the axial force material end plate 40 and the stiffening tube abutting plate 21, and the shock absorbing material 52. Absorbs the collision between the axial force member contact plate 42 and the stiffening tube contact plate 21. Therefore, generation of impact sound is suppressed and damage due to impact force is prevented.
In addition, you may install the buffer materials 51 and 52 in the stiffening pipe contact board 21. FIG. The materials and types of the buffer materials 51 and 52 are not limited, and may be a known damper having a plate material of rubber or synthetic resin, a spring, or a liquid or viscous elastic body.

また、第二補剛管60には、軸力が伝達されない構造になっている。このとき、補剛管20は、軸力材10が間隙S2に相当する変形量(縮み量)を生じる軸力に対して、(i)軸力材10の全体座屈を拘束するために必要な断面に設計されればよく、一方、第二補剛管60は、補剛管20の全体座屈を拘束するために必要な断面に設計される。したがって、軸力材10が間隙S2に相当する変形量(縮み量)を生じる軸力を超える軸力に対しても、補剛管20の座屈の発生が抑えられている。
なお、制振耐震複合部材200は、緩衝材51、52と第二補剛管60との両方を有しているが、何れか一方を有するものであってもよい。
Further, the second stiffening tube 60 has a structure in which no axial force is transmitted. At this time, the stiffening tube 20 is necessary for restraining the overall buckling of the axial force member 10 against the axial force that causes the deformation (contraction amount) corresponding to the gap S2 of the axial force member 10. On the other hand, the second stiffening tube 60 is designed to have a cross section necessary for restraining the overall buckling of the stiffening tube 20. Therefore, the occurrence of buckling of the stiffening tube 20 is suppressed even when the axial force exceeds the axial force that causes the deformation (contraction amount) corresponding to the gap S2.
In addition, although the vibration-damping / seismic composite member 200 has both the buffer materials 51 and 52 and the second stiffening pipe 60, it may have either one.

(実施例2の2)
図2の(b)において、制振耐震複合部材201は、制振耐震複合部材200における内フランジ状の補剛管当接板21に代えて、補剛管20の他方の端部20bに外フランジ状の補剛管連結板22を固定し、補剛管連結板22に第二補剛管60の他方の端部60bを固定すると共に、連結棒70の一方の端部70aを補剛管連結板22に固定したものである。なお、第二補剛管60の他方の端部60aはいずれとも固定されていないため、第二補剛管60には軸力は伝達されない。
したがって、補剛管連結板22と軸力材当接板42との間に間隙S1が形成され、軸力材当接板42と連結棒ストッパー71との間に間隙S2が形成されている。そして、軸力材当接板42は連結棒70に案内された状態で、補剛管連結板22と軸力材当接板42との間を移動自在になっているから、制振耐震複合部材201は、制振耐震複合部材200と略同様の作用効果を奏する。なお、制振耐震複合部材200に準じて、補剛管連結板22に緩衝材51を、連結棒ストッパー71に緩衝材52を設置したり、軸力材当接板42に緩衝材51および緩衝材52を設置したりしてもよい。
(Example 2-2)
In FIG. 2B, the vibration-damping / seismic composite member 201 is attached to the other end 20 b of the stiffening tube 20 in place of the inner flange-shaped stiffening tube contact plate 21 in the vibration-damping / seismic composite member 200. The flange-shaped stiffening tube connecting plate 22 is fixed, the other end portion 60b of the second stiffening tube 60 is fixed to the stiffening tube connecting plate 22, and one end portion 70a of the connecting rod 70 is fixed to the stiffening tube. It is fixed to the connecting plate 22. In addition, since the other end portion 60 a of the second stiffening tube 60 is not fixed, the axial force is not transmitted to the second stiffening tube 60.
Therefore, a gap S1 is formed between the stiffening tube connecting plate 22 and the axial force material abutting plate 42, and a gap S2 is formed between the axial force material abutting plate 42 and the connecting rod stopper 71. The axial force member abutting plate 42 is movable between the stiffening tube connecting plate 22 and the axial force member abutting plate 42 while being guided by the connecting rod 70. The member 201 has substantially the same function and effect as the vibration-damping / seismic composite member 200. In addition, in accordance with the vibration-damping and earthquake-resistant composite member 200, the buffer material 51 is installed on the stiffening tube connecting plate 22, the buffer material 52 is installed on the connecting rod stopper 71, and the buffer material 51 and the buffer material are installed on the axial force material contact plate 42. The material 52 may be installed.

[実施の形態3]
図3は本発明の実施の形態3に係る制振耐震複合部材を説明する側面視の断面図であって、(a)は実施例3の1、(b)は実施例3の2、(c)は実施例3の3である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
[Embodiment 3]
FIG. 3 is a side sectional view for explaining a vibration-damping and earthquake-proof composite member according to Embodiment 3 of the present invention, where (a) is 1 in Example 3, (b) is 2 in Example 3, ( c) is 3 of Example 3. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 1, or an equivalent part, and one part description is abbreviate | omitted.

(実施例3の1)
図3の(a)において、制振耐震複合部材300は、軸力材10と、軸力材10を包囲する第二補剛管60と、第二補剛管60を包囲する補剛管20と、軸力材10の一方の端部10aと第二補剛管60の一方の端部60aとが接続された共通端板80と、軸力材10の他方の端部10bと軸力材当接板42とを連結する軸力材連結管43と、を具備している。
(1 of Example 3)
3A, the vibration-damping and earthquake-resistant composite member 300 includes an axial force member 10, a second stiffening tube 60 that surrounds the axial force member 10, and a stiffening tube 20 that surrounds the second stiffening tube 60. A common end plate 80 in which one end portion 10a of the axial force member 10 and one end portion 60a of the second stiffening tube 60 are connected, and the other end portion 10b of the axial force member 10 and the axial force member. And an axial force member connecting pipe 43 that connects the contact plate 42.

そして、補剛管20の他方の端部20bには、内面側に突出した内フランジ(円環状)である補剛管連結板22が形成されて、補剛管連結板22に第二補剛管60の他方の端部60bが固定されている。
また、補剛管20の一方の端部20aには補剛管端板37が固定され、補剛管端板37には、建物設置用孔38が設けられている建物設置用板39が固定されている。
The other end 20b of the stiffening tube 20 is formed with a stiffening tube connecting plate 22 that is an inner flange (annular) protruding toward the inner surface, and the stiffening tube connecting plate 22 has a second stiffening. The other end 60b of the tube 60 is fixed.
A stiffening tube end plate 37 is fixed to one end 20a of the stiffening tube 20, and a building installation plate 39 provided with a building installation hole 38 is fixed to the stiffening tube end plate 37. Has been.

さらに、軸力材連結管43には軸力材当接板42が固定され、軸力材当接板42には連結棒70が貫通する軸力材当接孔44が設けられている。
連結棒70は高張力鋼棒によって形成され、その一方の端部70aは補剛管連結板22に固定され、他方の端部70bの近くには、連結棒ストッパー71が設置され、補剛管連結板22と軸力材当接板42との間に間隙S3が形成され、軸力材当接板42と連結棒ストッパー71との間に間隙S4が形成されている。すなわち、軸力材当接板42は連結棒70に案内された状態で、補剛管連結板22と軸力材当接板42との間を移動自在になっている。
なお、共通端板80と補剛管端板37との間に形成された間隙S5は、間隙S3よりも十分大きくなっている。
Further, an axial force material contact plate 42 is fixed to the axial force material connection tube 43, and an axial force material contact hole 44 through which the connecting rod 70 passes is provided in the axial force material contact plate 42.
The connecting rod 70 is formed of a high-strength steel rod, one end portion 70a of the connecting rod 70 is fixed to the stiffening tube connecting plate 22, and a connecting rod stopper 71 is installed near the other end portion 70b. A gap S3 is formed between the connecting plate 22 and the axial force material abutting plate 42, and a gap S4 is formed between the axial force material abutting plate 42 and the connecting rod stopper 71. That is, the axial force member abutting plate 42 is movable between the stiffening tube connecting plate 22 and the axial force member abutting plate 42 while being guided by the connecting rod 70.
The gap S5 formed between the common end plate 80 and the stiffening tube end plate 37 is sufficiently larger than the gap S3.

次に、制振耐震複合部材300の作用効果について説明する。まず、制振耐震複合部材300に圧縮力が加わる場合について説明する。
制振耐震複合部材300に圧縮力が加わると、圧縮軸力が比較的小さい範囲では、軸力材10および補剛管20は軸方向に縮み、一方、第二補剛管60は軸方向に伸びる。
このとき、軸力材10、補剛管20、第二補剛管60は折り返して直列に接続されており、同じ大きさの軸力が加わることとなり、軸剛性が小さく、降伏点の低い軸力材10のみが塑性化して、地震エネルギーを吸収する。すなわち、引張力が作用する第二補剛管60を、弾性範囲内の変形に抑えるように設計しておくことで、公知の「座屈補剛ブレース」と同様に、軸力材10の全体座屈を拘束することが可能である。
Next, the function and effect of the vibration-damping / seismic composite member 300 will be described. First, a case where compressive force is applied to the vibration-damping / seismic composite member 300 will be described.
When a compressive force is applied to the vibration-damping and seismic composite member 300, the axial force member 10 and the stiffening tube 20 contract in the axial direction while the second stiffening tube 60 in the axial direction in a range where the compressive axial force is relatively small. extend.
At this time, the axial force member 10, the stiffening tube 20, and the second stiffening tube 60 are folded and connected in series, and the same axial force is applied, so that the shaft has low shaft rigidity and a low yield point. Only the force material 10 is plasticized and absorbs seismic energy. That is, by designing the second stiffening tube 60 on which the tensile force acts to suppress deformation within the elastic range, the entire axial force member 10 is similar to the known “buckling stiffening brace”. It is possible to constrain buckling.

さらに、圧縮軸力が増加して、軸方向の変形(縮み量)が増すと、軸力材当接板42が補剛管連結板22に当接(間隙S3が消滅)し、共通端板80と補剛管端板37とは、離れている(間隙S5は消滅しない)。
このため、これ以降の圧縮軸力は、補剛管連結板22を介して補剛管20のみに伝達されることになる。したがって、軸力材10および第二補剛管60はこれまでに生じた軸力を保持したまま、それ以上の変形をしない。一方、補剛管20は圧縮力の増加とともに、徐々に変形量が増加していく。
このとき、第二補剛管60は、(i)間隙S3に相当する圧縮変形量を生じる圧縮軸力に対して、軸力材10の全体座屈を拘束するために必要な断面に設計されるとともに、(ii)間隙S3に相当する圧縮変形量を生じる圧縮軸力を超える設計軸力に対しては、補剛管20の全体座屈を拘束するために必要な断面に設計される。
Further, when the compression axial force increases and the axial deformation (shrinkage amount) increases, the axial force material contact plate 42 contacts the stiffening tube connecting plate 22 (the gap S3 disappears), and the common end plate 80 and the stiffening tube end plate 37 are separated (the gap S5 does not disappear).
For this reason, the subsequent compression axial force is transmitted only to the stiffening tube 20 via the stiffening tube connecting plate 22. Therefore, the axial force member 10 and the second stiffening tube 60 are not further deformed while maintaining the axial force generated so far. On the other hand, the amount of deformation of the stiffening tube 20 gradually increases as the compression force increases.
At this time, the second stiffening tube 60 is (i) designed to have a cross section necessary for restraining the overall buckling of the axial force member 10 against the compression axial force that generates the amount of compressive deformation corresponding to the gap S3. (Ii) For a design axial force exceeding the compression axial force that generates the amount of compressive deformation corresponding to the gap S3, the cross section is designed to be necessary to constrain the overall buckling of the stiffening tube 20.

次に、制振耐震複合部材300に引張力が加わる場合について説明する。
制振耐震複合部材300に引張力が加わると、引張軸力が比較的小さい範囲では、軸力材10および補剛管20は軸方向に伸び、一方、第二補剛管60は軸方向に縮む。
このとき、第二補剛管60は補剛管20によって全体座屈の発生が抑えられ、軸剛性の小さい軸力材10のみが塑性化して、地震エネルギーを吸収する。このとき、補剛管20および第二補剛管60は、圧縮時(圧縮軸力が小さい場合)と同様に、弾性範囲内での変形に抑えられている。
Next, a case where a tensile force is applied to the vibration-damping / seismic composite member 300 will be described.
When a tensile force is applied to the vibration-damping / seismic composite member 300, the axial force member 10 and the stiffening tube 20 extend in the axial direction while the second stiffening tube 60 extends in the axial direction in a range where the tensile axial force is relatively small. Shrink.
At this time, the second stiffening tube 60 is prevented from buckling by the stiffening tube 20, and only the axial force member 10 having a small axial rigidity is plasticized to absorb the seismic energy. At this time, the stiffening tube 20 and the second stiffening tube 60 are restrained from being deformed within the elastic range, similarly to the case of compression (when the compression axial force is small).

さらに、引張軸力が増加して、軸方向の変形(伸び量)が増すと、軸力材当接板42が連結棒ストッパー71に当接(間隙S4が消滅)する。このため、これ以降の引張軸力は連結棒70を介して第二補剛管60のみに伝達されることになる。
したがって、軸力材10および第二補剛管60はこれまでに生じた軸力を保持したまま、それ以上の変形をしない。一方、補剛管20は引張変形を開始して、徐々に変形量が増加していく。
このとき、補剛管20は、(i)間隙S4に相当する引張変形量を生じる引張軸力(第二補剛管60に対しては圧縮軸力)に対して、第二補剛管60の全体座屈を拘束するために必要な断面に設計される。
Further, when the tensile axial force increases and the axial deformation (elongation amount) increases, the axial force material contact plate 42 contacts the connecting rod stopper 71 (the gap S4 disappears). Therefore, the subsequent tensile axial force is transmitted only to the second stiffening tube 60 via the connecting rod 70.
Therefore, the axial force member 10 and the second stiffening tube 60 are not further deformed while maintaining the axial force generated so far. On the other hand, the stiffening tube 20 starts tensile deformation, and the amount of deformation gradually increases.
At this time, the stiffening tube 20 has (i) a second stiffening tube 60 against a tensile axial force (compression axial force for the second stiffening tube 60) that generates a tensile deformation amount corresponding to the gap S4. It is designed to have a cross section necessary to constrain the overall buckling.

(実施例3の2)
図3の(b)において、制振耐震複合部材301は、制振耐震複合部材300の連結棒70を、高張力鋼鋼管である連結管90に変更したものである。すなわち、連結管90は軸力材当接板42を包囲した状態で、一方の端部90aが補剛管連結板22に固定され、他方の端部90bに連結管ストッパー91が設けられている。
このとき、軸力材当接板42と軸力材当接板42との間に間隙S3が形成され、軸力材当接板42と連結管ストッパー91との間に間隙S4が形成されているから、制振耐震複合部材301は、制振耐震複合部材300と同様の作用効果を奏する。
(Example 3-2)
In FIG. 3B, a vibration-damping and earthquake-resistant composite member 301 is obtained by changing the connecting rod 70 of the vibration-damping and earthquake-resistant composite member 300 to a connecting tube 90 that is a high-strength steel pipe. That is, in the state where the connecting tube 90 surrounds the axial force member abutting plate 42, one end 90a is fixed to the stiffening tube connecting plate 22, and the connecting tube stopper 91 is provided at the other end 90b. .
At this time, a gap S3 is formed between the axial force material contact plate 42 and the axial force material contact plate 42, and a gap S4 is formed between the axial force material contact plate 42 and the connecting pipe stopper 91. Therefore, the vibration-damping / seismic composite member 301 has the same effects as the vibration-damping / earthquake composite member 300.

(実施例3の3)
図3の(c)において、制振耐震複合部材302は、制振耐震複合部材300における部材の内外方向の配置を逆にしたものであって、最も内側に、補剛管20を、補剛管20の外側にこれを包囲するように第二補剛管60を、さらに、第二補剛管60の外側にこれを包囲するように軸力材10を配置したものである。
したがって、制振耐震複合部材302の各部材には、制振耐震複合部材300の各部材におけるものと同様に軸力(圧縮力または引張力)が伝達されるから、制振耐震複合部材302は、制振耐震複合部材300と同様の作用効果を奏する。
(Example 3-3)
In FIG. 3C, the vibration-damping and earthquake-resistant composite member 302 is obtained by reversing the arrangement of the members in the vibration-damping and earthquake-resistant composite member 300 in the inner and outer directions. The second stiffening tube 60 is disposed outside the tube 20 so as to surround it, and the axial force member 10 is disposed outside the second stiffening tube 60 so as to surround it.
Therefore, since the axial force (compressive force or tensile force) is transmitted to each member of the vibration-damping / seismic composite member 302 in the same manner as in each member of the vibration-damping / seismic composite member 300, The same effects as those of the vibration-damping / seismic composite member 300 are obtained.

(その他の形態)
以上、実施の形態1、2、3において説明したように、本発明は、所定の変形量に達するまでは、軸力材10によって地震エネルギーを吸収し、かつ、所定の変形量に達した後は、補剛管20に軸力が伝達されることを特徴とするものであるから、これを具現化する機構は、前記図示された形態に限定されるものではない。
(Other forms)
As described above in Embodiments 1, 2, and 3, the present invention absorbs seismic energy by the axial force member 10 and reaches the predetermined deformation amount until the predetermined deformation amount is reached. Is characterized in that the axial force is transmitted to the stiffening tube 20, and the mechanism for realizing this is not limited to the illustrated embodiment.

[実施の形態4]
図4は本発明の実施の形態4に係る建物を模式的に説明する側面視の断面図である。なお、実施の形態1〜3と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
図4において、建物400は、複数の柱1と、柱1同士を連結する梁2とから形成された主架構3とを有している。そして、主架構3の構面内に、一対の制振耐震複合部材100がハ字状(逆V字状)に設置されている。
したがって、制振耐震複合部材100が前記作用効果を奏し、大型化を抑え、また、製造コストおよび施工コストの上昇を抑えているから、建物400の施工部材コストおよび施工コストの上昇を抑えることができる。また、制振耐震複合部材100は、従来と同等の設置スペースで済むことから、建物400内の設置の自由が増し、建物400の外からの景観や内部の景観を阻害するおそれが減少する。
[Embodiment 4]
FIG. 4 is a sectional view in side view for schematically explaining a building according to Embodiment 4 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1-3, or the part corresponding, and one part description is abbreviate | omitted.
In FIG. 4, a building 400 has a main frame 3 formed of a plurality of pillars 1 and beams 2 that connect the pillars 1 to each other. A pair of vibration-damping / seismic composite members 100 are installed in a C-shape (inverted V-shape) in the surface of the main frame 3.
Therefore, since the vibration-damping / seismic composite member 100 has the above-described effects and suppresses an increase in size and an increase in manufacturing cost and construction cost, an increase in construction member cost and construction cost of the building 400 can be suppressed. it can. Moreover, since the vibration-damping / seismic composite member 100 only requires an installation space equivalent to the conventional one, the freedom of installation in the building 400 increases, and the risk of hindering the scenery from the outside of the building 400 and the scenery inside the building 400 decreases.

さらに、主架構3(柱1および梁2)を高強度部材によって構成し、耐震部分の「水平力分担率」を適切に設定することによって、巨大地震等の過大な地震荷重に対しても、主架構3を弾性範囲内にとどめつつ、建物400の過大な変形を抑えることが可能になる。
すなわち、主架構3の健全性が維持されることから、制振耐震複合部材100を新品に取り替えるだけで、制振性能および耐震性能は地震発生前と略同等までに回復し、建物400の継続使用が可能になる。
Furthermore, by configuring the main frame 3 (column 1 and beam 2) with high-strength members and appropriately setting the “horizontal force sharing ratio” of the earthquake-resistant part, even for an excessive earthquake load such as a huge earthquake, It is possible to suppress excessive deformation of the building 400 while keeping the main frame 3 within the elastic range.
In other words, since the soundness of the main frame 3 is maintained, simply by replacing the vibration-damping / seismic composite member 100 with a new one, the vibration-damping performance and earthquake-proof performance are restored to approximately the same as before the earthquake, and the building 400 continues. Can be used.

なお、制振耐震複合部材100の設置形態はハ字状に限定されるものではなく、主架構3の構面内にV字状あるいは斜めに設置してもよい。また、制振耐震複合部材100を設置する主架構3の構面は図示する形態に限定するものではなく、全ての構面に設置してもよいし、縦方向で、交互に設置するようにしてもよい。
また、制振耐震複合部材100に代えて、制振耐震複合部材101、200、201、300、301、302の何れを設置してもよい。
In addition, the installation form of the vibration-damping / seismic composite member 100 is not limited to the C-shape, and may be installed in the V-shape or obliquely in the surface of the main frame 3. Further, the construction surface of the main frame 3 on which the vibration-damping / seismic composite member 100 is installed is not limited to the form shown in the figure, and may be installed on all the construction surfaces or alternately in the vertical direction. May be.
Further, in place of the vibration-damping and earthquake-resistant composite member 100, any of the vibration-damping and earthquake-resistant composite members 101, 200, 201, 300, 301, and 302 may be installed.

本発明によれば、軸力材10が主に制振機能を発揮し、軸力材10と補剛管20とが協働して主に耐震機能を発揮するということができるから、軸力材10に生じる歪みを過剰に大きくすることなく、地震エネルギーを吸収した上、これに追加する形で、補剛管20がさらに地震エネルギーを吸収することができる。したがって、大型化を抑え、また、製造コストおよび施工コストの上昇を抑えた制振耐震部材として、また、これを用いた建物として広く利用することができる。   According to the present invention, it can be said that the axial force member 10 mainly exhibits a damping function, and the axial force member 10 and the stiffening tube 20 cooperate to mainly exert an earthquake resistance function. The seismic energy can be absorbed and the stiffening tube 20 can further absorb the seismic energy in addition to absorbing the seismic energy without excessively increasing the strain generated in the material 10. Therefore, it can be widely used as a vibration-damping and earthquake-resistant member that suppresses an increase in size, suppresses an increase in manufacturing cost and construction cost, and as a building using the same.

1 柱
2 梁
3 主架構
10 軸力材
10a 端部
10b 端部
20 補剛管
20a 端部
20b 端部
21 補剛管当接板
22 補剛管連結板
30 共通端板
37 補剛管端板
38 建物設置用孔
39 建物設置用板
40 軸力材端板
41 軸力材連結部
42 軸力材当接板
43 軸力材連結管
44 軸力材当接孔
48 建物設置用孔
49 建物設置用板
51 緩衝材
52 緩衝材
60 第二補剛管
60a 端部
60b 端部
70 連結棒
70a 端部
70b 端部
71 連結棒ストッパー
80 共通端板
90 連結管
90a 端部
90b 端部
91 連結管ストッパー
100 制振耐震複合部材(実施例1の1)
101 制振耐震複合部材(実施例1の2)
200 制振耐震複合部材(実施例2の1)
201 制振耐震複合部材(実施例2の2)
300 制振耐震複合部材(実施例3の1)
301 制振耐震複合部材(実施例3の2)
302 制振耐震複合部材(実施例3の3)
400 建物(実施の形態4)
1 pillar 2 beam 3 main frame 10 axial force member 10a end 10b end 20 stiffening tube 20a end 20b end 21 stiffening tube contact plate 22 stiffening tube connecting plate 30 common end plate 37 stiffening tube end plate 38 Building Installation Plate 39 Building Installation Plate 40 Axial Material End Plate 41 Axial Material Connecting Portion 42 Axial Material Contact Plate 43 Axial Material Connection Tube 44 Axial Material Contact Hole 48 Building Installation Hole 49 Building Installation Plate 51 Buffer material 52 Buffer material 60 Second stiffening tube 60a End portion 60b End portion 70 Connecting rod 70a End portion 70b End portion 71 Connecting rod stopper 80 Common end plate 90 Connecting tube 90a End portion 90b End portion 91 Connecting tube stopper 100 Damping and seismic composite material (1 of Example 1)
101 Damping and seismic composite material (Example 1-2)
200 Damping and seismic composite material (Example 2)
201 Damping / seismic composite material (Example 2-2)
300 Damping / seismic composite material (Example 3-1)
301 Damping / seismic composite material (Example 3-2)
302 Damping / seismic composite material (Example 3-3)
400 Building (Embodiment 4)

Claims (12)

軸力材と、
該軸力材を包囲する補剛管と、
前記軸力材の一方の端部と前記補剛管の一方の端部とが接続された共通端板と、
前記軸力材の他方の端部と前記補剛管の他方の端部との間に形成された間隙と、を有し、
前記間隙は、
前記軸力材の軸方向において前記軸力材の伸び方向及び縮み方向の両方に形成され、
前記軸力材が単独で軸方向に所定の変形量だけ変形したところで、前記間隙のうち一方が消滅し、前記間隙が消滅した後は、前記軸力材および前記補剛管の両方が軸方向にさらに変形することを特徴とする制振耐震複合部材。
Axial force material,
A stiffening tube surrounding the axial force member;
A common end plate in which one end of the axial force member and one end of the stiffening tube are connected;
A gap formed between the other end of the axial force member and the other end of the stiffening tube,
The gap is
Formed in both the extending direction and the shrinking direction of the axial force member in the axial direction of the axial force member,
When the axial force material is deformed by a predetermined deformation amount in the axial direction alone, one of the gaps disappears, and after the gap disappears, both the axial force material and the stiffening tube are axially A vibration-damping and earthquake-resistant composite member characterized by further deformation.
前記補剛管の他方の端部に設置された補剛管当接板と、
前記軸力材の他方の端部が接続された軸力材端板と、
該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、
前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記軸力材端板と前記補剛管当接板との間、および前記補剛管当接板と前記軸力材当接板との間に、それぞれ前記間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする請求項1記載の制振耐震複合部材。
A stiffening tube abutting plate installed at the other end of the stiffening tube;
An axial force member end plate to which the other end of the axial force member is connected;
An axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion;
Building installation means respectively fixed to the common end plate and the axial force member contact plate,
Wherein between the axial force member end plate and the stiffening tube abutment plate, and between the stiffening tube and the abutment plate and the axial force member abutment plate, the gap are formed respectively,
Wherein when the axial load is applied via the building installation for unit size varies in the gap, where the axial force member is deformed more than a predetermined amount of deformation, one of the of the gap The vibration-damping and earthquake-resistant composite member according to claim 1, wherein the gap disappears.
前記補剛管の他方の端部に一方の端部が固定された連結棒と、
該連結棒の他方の端部に設置された連結棒ストッパーと、
前記軸力材の他方の端部が接続された軸力材端板と、
該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、
前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記補剛管の他方の端部と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ前記間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする請求項1記載の制振耐震複合部材。
A connecting rod having one end fixed to the other end of the stiffening tube;
A connecting rod stopper installed at the other end of the connecting rod;
An axial force member end plate to which the other end of the axial force member is connected;
An axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion;
Building installation means respectively fixed to the common end plate and the axial force member contact plate,
Wherein each of the gap between the between the other end of the stiffening tube and the axial force member contact plate, and said axial force member abutment plate and the connecting rod stopper is formed,
Wherein when the axial load is applied via the building installation for unit size varies in the gap, where the axial force member is deformed more than a predetermined amount of deformation, one of the of the gap The vibration-damping and earthquake-resistant composite member according to claim 1, wherein the gap disappears.
軸力材と、  Axial force material,
該軸力材を包囲する補剛管と、  A stiffening tube surrounding the axial force member;
前記軸力材の一方の端部と前記補剛管の一方の端部とが接続された共通端板と、  A common end plate in which one end of the axial force member and one end of the stiffening tube are connected;
前記補剛管の他方の端部に設置された補剛管当接板と、  A stiffening tube abutting plate installed at the other end of the stiffening tube;
前記軸力材の他方の端部が接続された軸力材端板と、  An axial force member end plate to which the other end of the axial force member is connected;
該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、  An axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion;
前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、  Building installation means respectively fixed to the common end plate and the axial force member contact plate,
前記軸力材端板と前記補剛管当接板との間、および前記補剛管当接板と前記軸力材当接板との間に、それぞれ間隙が形成され、  A gap is formed between the axial force member end plate and the stiffening tube contact plate, and between the stiffening tube contact plate and the axial force material contact plate,
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の間隙が消滅することを特徴とする制振耐震複合部材。  When an axial load is applied via the building installation means, the size of the gap fluctuates, and when the axial force member is deformed to a predetermined deformation amount or more, one of the gaps is formed. Damping and earthquake-resistant composite material characterized by the disappearance of
軸力材と、  Axial force material,
該軸力材を包囲する補剛管と、  A stiffening tube surrounding the axial force member;
前記軸力材の一方の端部と前記補剛管の一方の端部とが接続された共通端板と、  A common end plate in which one end of the axial force member and one end of the stiffening tube are connected;
前記補剛管の他方の端部に一方の端部が固定された連結棒と、  A connecting rod having one end fixed to the other end of the stiffening tube;
該連結棒の他方の端部に設置された連結棒ストッパーと、  A connecting rod stopper installed at the other end of the connecting rod;
前記軸力材の他方の端部が接続された軸力材端板と、  An axial force member end plate to which the other end of the axial force member is connected;
該軸力材端板に軸力材連結部を介して接続された軸力材当接板と、  An axial force material abutting plate connected to the axial force material end plate via an axial force material connecting portion;
前記共通端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、  Building installation means respectively fixed to the common end plate and the axial force member contact plate,
前記補剛管の他方の端部と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ間隙が形成され、  A gap is formed between the other end of the stiffening tube and the axial force material contact plate, and between the axial force material contact plate and the connecting rod stopper,
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の間隙が消滅することを特徴とする制振耐震複合部材。  When an axial load is applied via the building installation means, the size of the gap fluctuates, and when the axial force member is deformed to a predetermined deformation amount or more, one of the gaps is formed. Damping and earthquake-resistant composite material characterized by the disappearance of
前記補剛管を包囲する第二補剛管を有することを特徴とする請求項1〜5の何れか1項に記載の制振耐震複合部材。 The vibration-damping and earthquake-resistant composite member according to any one of claims 1 to 5, further comprising a second stiffening tube that surrounds the stiffening tube. 軸力材と、
該軸力材を包囲する第二補剛管と、
該第二補剛管を包囲する補剛管と、
前記軸力材の一方の端部と前記第二補剛管の一方の端部とが接続された共通端板と、
前記第二補剛管の他方の端部と前記補剛管の他方の端部とが接続された補剛管連結板と、
前記軸力材の他方の端部と前記補剛管連結板との間に形成された間隙と、を有し、
前記軸力材、前記補剛管および前記第二補剛管が所定の変形量だけ、軸方向に変形したところで、前記間隙が消滅し、前記間隙が消滅した後は、前記補剛管が単独で軸方向にさらに変形することを特徴とする制振耐震複合部材。
Axial force material,
A second stiffening tube surrounding the axial force member;
A stiffening tube surrounding the second stiffening tube;
A common end plate in which one end of the axial force member and one end of the second stiffening tube are connected;
A stiffening tube coupling plate in which the other end of the second stiffening tube and the other end of the stiffening tube are connected;
A gap formed between the other end of the axial force member and the stiffening tube connecting plate,
When the axial force member, the stiffening tube, and the second stiffening tube are deformed in the axial direction by a predetermined deformation amount, the gap disappears, and after the gap disappears, the stiffening tube is independent. A vibration-damping and earthquake-resistant composite member that is further deformed in the axial direction.
前記補剛管の一方の端部に固定された補剛管端板と、
前記軸力材の他方の端部に軸力材連結管を介して接続された軸力材当接板と、
前記補剛管連結板の他方の端部に一方の端部が固定された連結棒と、
該連結棒の他方の端部に設置された連結棒ストッパーと、
前記補剛管端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記補剛管連結板と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量以上に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする請求項記載の制振耐震複合部材。
A stiffening tube end plate fixed to one end of the stiffening tube;
An axial force member abutting plate connected to the other end of the axial force member via an axial force member connecting pipe;
A connecting rod having one end fixed to the other end of the stiffening tube connecting plate;
A connecting rod stopper installed at the other end of the connecting rod;
Building installation means fixed respectively to the stiffening tube end plate and the axial force member contact plate,
A gap is formed between the stiffening tube connecting plate and the axial force material abutting plate and between the axial force material abutting plate and the connecting rod stopper,
Wherein when the axial load is applied via the building installation for unit size varies in the gap, where the axial force member is deformed more than a predetermined amount of deformation, one of the of the gap 8. The vibration and vibration-damping composite member according to claim 7, wherein the gap disappears.
軸力材と、
該軸力材に包囲された第二補剛管と、
該第二補剛管に包囲された補剛管と、
前記補剛管の一方の端部に固定された補剛管端板と、
前記補剛管の他方の端部と前記第二補剛管の他方の端部とを連結する補剛管連結板と、
前記第二補剛管の一方の端部と前記軸力材の一方の端部とを連結する共通端板と、
前記軸力材の他方の端部に固定された軸力材当接板と、
前記補剛管連結板と前記軸力材当接板との間に形成された間隙と、を有し、
前記軸力材、前記補剛管および前記第二補剛管が所定の変形量だけ、軸方向に変形したところで、前記間隙が消滅し、前記間隙が消滅した後は、前記補剛管が単独で軸方向にさらに変形することを特徴とする制振耐震複合部材。
Axial force material,
A second stiffening tube surrounded by the axial force member;
A stiffening tube surrounded by the second stiffening tube;
A stiffening tube end plate fixed to one end of the stiffening tube;
A stiffening tube connecting plate for connecting the other end of the stiffening tube and the other end of the second stiffening tube;
A common end plate connecting one end of the second stiffening tube and one end of the axial force member;
And axial force member abutment plate fixed to the other end of the axial force member,
A gap formed between the stiffening tube connecting plate and the axial force member abutting plate,
When the axial force member, the stiffening tube, and the second stiffening tube are deformed in the axial direction by a predetermined deformation amount, the gap disappears, and after the gap disappears, the stiffening tube is independent. A vibration-damping and earthquake-resistant composite member that is further deformed in the axial direction.
前記軸力材の他方の端部に軸力材連結管を介して接続された軸力材当接板と、
前記補剛管連結板の他方の端部に一方の端部が固定された連結棒と、
該連結棒の他方の端部に設置された連結棒ストッパーと、
前記補剛管端板および前記軸力材当接板にそれぞれ固定された建物設置用手段と、を有し、
前記補剛管連結板と前記軸力材当接板との間、および前記軸力材当接板と前記連結棒ストッパーとの間にそれぞれ間隙が形成され、
前記建物設置用手段を経由して軸方向の荷重が作用した際、前記間隙の大きさが変動し、前記軸力材が所定の変形量だけ軸方向に変形したところで、前記間隙のうちの一方の前記間隙が消滅することを特徴とする請求項記載の制振耐震複合部材。
An axial force member abutting plate connected to the other end of the axial force member via an axial force member connecting pipe;
A connecting rod having one end fixed to the other end of the stiffening tube connecting plate;
A connecting rod stopper installed at the other end of the connecting rod;
Building installation means fixed respectively to the stiffening tube end plate and the axial force member contact plate,
A gap is formed between the stiffening tube connecting plate and the axial force material abutting plate and between the axial force material abutting plate and the connecting rod stopper,
When an axial load is applied via the building installation means, the size of the gap fluctuates, and when the axial force member is deformed in the axial direction by a predetermined deformation amount, one of the gaps The vibration-damping and earthquake-resistant composite member according to claim 9 , wherein the gap is eliminated.
前記間隙に緩衝材が配置されていることを特徴とする請求項1〜10の何れか一項に記載の制振耐震複合部材。 Damping seismic composite member according to any one of claim 1 to 10, characterized in that cushioning member is disposed in the gap. 複数の柱と、柱同士を連結する梁とから形成された主架構と、該主架構の構面内に設置された請求項1〜11の何れか一項に記載の制振耐震複合部材と、を有する建物。 A main frame formed from a plurality of columns and a beam connecting the columns, and the vibration-damping and earthquake-resistant composite member according to any one of claims 1 to 11 installed in the surface of the main frame , Having a building.
JP2013154729A 2013-07-25 2013-07-25 Damping / seismic composite material and building using the same Active JP6184789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154729A JP6184789B2 (en) 2013-07-25 2013-07-25 Damping / seismic composite material and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154729A JP6184789B2 (en) 2013-07-25 2013-07-25 Damping / seismic composite material and building using the same

Publications (2)

Publication Number Publication Date
JP2015025272A JP2015025272A (en) 2015-02-05
JP6184789B2 true JP6184789B2 (en) 2017-08-23

Family

ID=52490141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154729A Active JP6184789B2 (en) 2013-07-25 2013-07-25 Damping / seismic composite material and building using the same

Country Status (1)

Country Link
JP (1) JP6184789B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978934B (en) * 2017-05-11 2019-04-09 张军涛 Metal damper
CN107023090B (en) * 2017-05-19 2019-11-29 兰州理工大学 A kind of buckling support device and preparation method thereof
CN108442797A (en) * 2018-05-22 2018-08-24 河南省金华夏建工集团股份有限公司 A kind of anti-buckling support of all steel of more kernels
JP7450468B2 (en) * 2020-06-23 2024-03-15 Bxカネシン株式会社 A seismic damper device for wooden buildings, and a wooden building using the seismic damper device for wooden buildings.
CN113958001B (en) * 2021-12-22 2022-03-04 北京市建筑设计研究院有限公司 Parallel multiple sleeve type double-yield-point buckling restrained brace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281487A (en) * 1979-08-06 1981-08-04 Koller Karl S Energy absorbing load carrying strut and method of providing such a strut capable of withstanding cyclical loads exceeding its yield strength
JP3246656B2 (en) * 1997-12-26 2002-01-15 川鉄建材株式会社 Double steel pipe type structural material

Also Published As

Publication number Publication date
JP2015025272A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6184789B2 (en) Damping / seismic composite material and building using the same
JP5948457B1 (en) Seismic isolation structure
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP2018091096A (en) Damping device for bridge
JP5886721B2 (en) Damping damper for structures
KR101319698B1 (en) Steel damper using cantilever behavior
JP5787534B2 (en) Seismic structure
KR102125691B1 (en) Buckling restrained brace with enhanced damping performance
JP4468212B2 (en) Fall bridge prevention device
JP2016142111A (en) Damping structure
KR102005041B1 (en) Vibro-impact energy absorbing device using composite crush tube and Vibration Damping Device for Building having the same
JP2007224575A (en) Triple pipe seismic control brace
JP4860938B2 (en) Vibration control structure
CN211735381U (en) Pressure type shock attenuation energy dissipation prestressed anchorage pole structure
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
JP7081745B2 (en) Seismic isolation structure
JP2011184983A (en) Bearing wall and building
JP6872359B2 (en) Shock absorber
JP7409950B2 (en) Vibration control device
CN200943270Y (en) Damping and energy-dissipating device
JP7266468B2 (en) Seismic isolation structure
JP6862057B2 (en) Building stigma displacement suppression structure
JP2008038374A (en) Bearing wall for house and earthquake-proof house provided with the same
JP6838877B2 (en) Buckling restraint brace damper
JP5214371B2 (en) Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170726

R150 Certificate of patent or registration of utility model

Ref document number: 6184789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250