JP2012197864A - Hysteresis damper - Google Patents
Hysteresis damper Download PDFInfo
- Publication number
- JP2012197864A JP2012197864A JP2011062337A JP2011062337A JP2012197864A JP 2012197864 A JP2012197864 A JP 2012197864A JP 2011062337 A JP2011062337 A JP 2011062337A JP 2011062337 A JP2011062337 A JP 2011062337A JP 2012197864 A JP2012197864 A JP 2012197864A
- Authority
- JP
- Japan
- Prior art keywords
- damper
- superelastic alloy
- superelastic
- tensile force
- force acts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Bridges Or Land Bridges (AREA)
- Vibration Prevention Devices (AREA)
- Vibration Dampers (AREA)
Abstract
Description
本発明は、超弾性合金の引張力により形状の自己復元能力を付与した履歴型ダンパーに関するものである。 The present invention relates to a hysteretic damper provided with a self-restoring ability of a shape by a tensile force of a superelastic alloy.
一般に、土木構造物に用いられるパッシブ型の制震装置は地震後に自動的に元位置へ復旧する自己復元能力は持ち合わせてはいない。そのため、制震装置はレベル1地震動(中程度の地震)に対しては機能しないように設計されている。さらにレベル2地震動(極大地震動)に対して制震装置として機能した後には、制震装置に発生した残留変形を取り除くための作業が必要であるとともに制震装置に用いられる履歴型金属ダンパーは地震時の繰り返し荷重下での塑性変形によりその性能が低下するため、ダンパー部材の交換も必要となる。 In general, passive vibration control devices used in civil engineering structures do not have the ability to self-restore automatically after an earthquake. For this reason, the vibration control device is designed not to function for level 1 ground motion (moderate earthquake). Furthermore, after functioning as a vibration control device for level 2 ground motion (maximum ground motion), work to remove the residual deformation that occurred in the vibration control device is necessary and the hysteretic metal damper used in the vibration control device is an earthquake. Since the performance deteriorates due to the plastic deformation under repeated load at the time, it is also necessary to replace the damper member.
そこで、地震後のメンテナンスフリーを目的とした制震技術がいくつか提案されている。
まず、非特許文献1は超弾性合金を対象に、超弾性効果をダンパー部材へ適用することについて検討しているが、超弾性挙動を利用すると自己復元能力は有するもののエネルギ吸収能が低くなってしまいダンパーとしては不適当であることを明らかにしている。一方、形状記憶能力を利用した場合には元位置への復旧には地震後の加熱作業が必要となり、高エネルギ吸収能を持つメンテナンスフリーな制震装置を実現するには至っていない。
非特許文献1での低いエネルギ吸収能を補う構造として、特許文献1ではダンパーのエネルギ吸収部材に超塑性合金を用い、超弾性合金と組み合わせてメンテナンスフリーを実現しようとした制震装置を提案している。この装置では超弾性合金に引張力および圧縮力が作用するが、一般に板厚が大きい超弾性合金や径の大きい超弾性合金の製作は難しく圧縮時に座屈が生じる危険性がある。
それを解決する機構として、非特許文献2、特許文献2の軸降伏型ブレースでは、ブレース全体が引張、圧縮時のいずれの場合にも、超弾性合金には引張力が作用する構造となっている。しかし、引張、圧縮時ともに同一の超弾性合金に引張力を作用させる機構が複雑であるため工夫を要し、また引張時と圧縮時での軸降伏型ブレースの特性を変化させることが難しい。
Therefore, several seismic control technologies aimed at maintenance-free after the earthquake have been proposed.
First, Non-Patent Document 1 examines the application of a superelastic effect to a damper member for a superelastic alloy. However, if superelastic behavior is used, the energy absorption capacity is lowered although it has a self-recovery ability. It is clarified that it is inappropriate as a damper. On the other hand, when the shape memory ability is used, the post-earthquake heating work is required to restore the original position, and a maintenance-free seismic control device having a high energy absorption capacity has not been realized.
As a structure that compensates for the low energy absorption capability of Non-Patent Document 1, Patent Document 1 proposes a vibration control device that uses a superplastic alloy for the energy absorbing member of the damper and realizes maintenance-free in combination with the superelastic alloy. ing. In this apparatus, a tensile force and a compressive force act on the superelastic alloy. However, it is generally difficult to produce a superelastic alloy having a large thickness or a superelastic alloy having a large diameter, and there is a risk of buckling during compression.
As a mechanism for solving this, the shaft yield type braces of Non-Patent Document 2 and Patent Document 2 have a structure in which a tensile force acts on the superelastic alloy in both cases where the entire brace is in tension or compression. Yes. However, since the mechanism for applying a tensile force to the same superelastic alloy during tension and compression is complicated, it is necessary to devise it, and it is difficult to change the characteristics of the axial yield brace during tension and compression.
a)超弾性合金を利用した自己復元能力を有した制震装置では、エネルギ吸収能が小さく本来の制震装置としての能力に乏しい。
b)超弾性合金に引張力および圧縮力を作用させる制震機構では、圧縮時に座屈が生じる可能性があり、自己復元能力を適切に発揮することが難しい。
c)引張、圧縮時ともに同一の超弾性合金に引張力を作用させる軸降伏型ブレースでは、超弾性合金への力の伝達機構が引張時および圧縮時ともに適切に機能する機構が必要である。超弾性合金は任意の形状の製作が難しく、加工性も劣ることから、機構がより簡便であることが汎用性を高める。
d) 引張、圧縮時ともに同一の超弾性合金に引張力を作用させる軸降伏型ブレースでは、同一の超弾性合金を用いるため引張時と圧縮時の特性を変化させることが難しい。
a) A vibration damping device having a self-restoring ability using a superelastic alloy has a small energy absorption capacity and a poor ability as an original vibration damping device.
b) In a vibration control mechanism that applies a tensile force and a compressive force to a superelastic alloy, buckling may occur during compression, and it is difficult to properly exhibit self-restoring ability.
c) A shaft yield type brace that applies a tensile force to the same superelastic alloy during both tension and compression requires a mechanism that allows the force transmission mechanism to the superelastic alloy to function properly both during tension and compression. A superelastic alloy is difficult to manufacture in an arbitrary shape and has poor workability. Therefore, a simpler mechanism increases versatility.
d) In the axial yield type brace that applies a tensile force to the same superelastic alloy both during tension and compression, it is difficult to change the characteristics during tension and compression because the same superelastic alloy is used.
本発明は上記点に鑑みて、超弾性合金の引張力により形状の自己復元能力を付与した履歴型ダンパーにおいて、引張時と圧縮時の特性を自由に設定可能にすることを目的とする。 In view of the above points, an object of the present invention is to make it possible to freely set characteristics during tension and compression in a hysteretic damper provided with a self-restoring ability of a shape by a tensile force of a superelastic alloy.
上記目的を達成するため、請求項1に記載の発明では、
引張時に引張力が作用する第1の超弾性合金部材(1)と、
圧縮時に引張力が作用する第2の超弾性合金部材(2)とを備え、
前記第1の超弾性合金部材(1)および前記第2の超弾性合金部材(2)によりダンパー形状の自己復元を行う構造になっていることを特徴とする。
これによると、引張時と圧縮時とで引張力が作用する超弾性合金部材が異なるので、引張時と圧縮時の特性を自由に設定することができる。
請求項2に記載の発明では、請求項1に記載の履歴型ダンパーにおいて、
前記第1の超弾性合金部材(1)および第2の超弾性合金部材(2)は、ダンパー軸方向に2段に設置されていることを特徴とする。
請求項3に記載の発明では、請求項1または2に記載の履歴型ダンパーにおいて、
引張時に引張力が作用し、圧縮時に圧縮力が作用するエネルギ吸収部材(3)と、
前記第1の超弾性合金部材(1)および前記第2の超弾性合金部材(2)を前記エネルギ吸収部材(3)に連結するための連結部材(4、5)とを備えることを特徴とする。
請求項4に記載の発明では、請求項3に記載の履歴型ダンパーにおいて、
前記エネルギ吸収部材(3)は、超塑性合金で構成されていることを特徴とする。
請求項5に記載の発明では、請求項3に記載の履歴型ダンパーにおいて、
前記エネルギ吸収部材は、軸降伏型履歴ダンパーで構成されていることを特徴とする。
In order to achieve the above object, in the invention described in claim 1,
A first superelastic alloy member (1) on which a tensile force acts during tension;
A second superelastic alloy member (2) on which a tensile force acts during compression,
The first superelastic alloy member (1) and the second superelastic alloy member (2) are configured to perform a self-restoration of a damper shape.
According to this, since the superelastic alloy member on which the tensile force acts is different between the tension and the compression, the characteristics during the tension and the compression can be freely set.
In the invention according to claim 2, in the hysteretic damper according to claim 1,
The first superelastic alloy member (1) and the second superelastic alloy member (2) are arranged in two stages in the damper axial direction.
In invention of Claim 3, in the hysteresis type damper of Claim 1 or 2,
An energy absorbing member (3) in which a tensile force acts during tension and a compressive force acts in compression;
And a connecting member (4, 5) for connecting the first superelastic alloy member (1) and the second superelastic alloy member (2) to the energy absorbing member (3). To do.
In invention of Claim 4, in the hysteresis type damper of Claim 3,
The energy absorbing member (3) is made of a superplastic alloy.
In the invention according to claim 5, in the hysteresis type damper according to claim 3,
The energy absorbing member is composed of a shaft yield type hysteresis damper.
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.
(第1実施形態)
まず、実施形態の概要を説明する。本実施形態の履歴型ダンパーは、自己復元能力を備えたメンテナンスフリーな履歴型ダンパーであり、中規模地震動でも機能する高効率な制震構造を実現する。また、従来ダンパーと同等の施工性を有し、新設および既設の構造物に容易に設置できる。
上記課題a)の欠点の改善のため、超弾性合金は自己復元能力を担うものとし、地震エネルギの吸収を担うエネルギ吸収部材をダンパー内に取り付ける。
上記課題b)の欠点の改善のため、超弾性合金をダンパーの軸方向に2段に設置し、1段目の超弾性合金はダンパー部材が引張時のみに作用し、2段目の超弾性合金はダンパー部材が圧縮時にのみ作用する。そして、両者の超弾性合金には引張力のみが作用する機構とする。
この機構では、超弾性合金の両端に取り付けたナット等を介して一方向の力のみを伝達する構造であり、力の伝達機構の簡便化が図られ、上記課題c)を解決することができる。
また、この機構では、ダンパーの引張時と圧縮時において機能する超弾性合金が異なるため、それぞれの断面積や長さを容易に変化させることができる。また、履歴型金属ダンパーの断面積や長さも自由に決定できる。これにより上記課題d)を解決し、引張時と圧縮時における制震装置の性能を自由に設定可能とし、高効率な制震構造を得ることが容易となる。
以下、第1実施形態を具体的に説明する。図1は第1実施形態の構造を模式的に示したものである。部材1、2が超弾性合金、部材3がエネルギ吸収を担う超塑性合金である。部材4、5は連結部材であり、部材4、5の端部4a、5aを構造物に固定し、超弾性合金部材1、2および超塑性合金3へ力を伝達する。
連結部材4、5での変形を抑制するため、連結部材4、5は超弾性合金1、2および超塑性合金3と比べ十分に大きな強度と剛性を持つ。連結部材4と連結部材5との接触部4b、4cのどちらかあるいはその両者は接触しており、接触している場合には摩擦が十分小さくなるよう表面加工あるいはテフロンシート等の摩擦低減材の取り付けを行う。
超弾性合金1(第1の超弾性合金部材)の両端にはナット6、7が取り付けられ、ナット6と連結部材4、ナット7と連結部材5は接触している。同様に、超弾性合金2(第2の超弾性合金部材)の両端にはナット8、9が取り付けられ、ナット8と連結部材5、ナット9と連結部材4は接触している。
また、エネルギ吸収部材である超塑性合金3の両端は連結部材4、5にそれぞれ連結される。超塑性合金3は圧縮時の座屈を防止するため、必要に応じて超塑性合金3の周囲に拘束部材10を取り付ける。なお、拘束部材10に軸方向(ダンパー軸方向)の力が作用しないよう拘束部材10と連結部材4、5との間には隙間が設けられる。
図2(a)は引張力が作用したときの第1実施形態の動作を模式的に示したものである。連結部材の両端4a、5aに引張力が作用すると、超弾性合金1にはナット6、7を介して引張力が作用する。一方、ナット8、9と連結部材5、4との間には離間が生じるため、超弾性合金2には力が作用しない。また、超塑性合金3には引張力が作用する。なお、連結部材4、5が接触部4b、4cで接触していることにより、軸直角方向への変位は抑制される。
図2(b)は圧縮力が作用したときの第1実施形態の動作を模式的に示したものである。連結部材の両端4a、5aに圧縮力が作用すると、超弾性合金2にはナット8、9を介して引張力が作用する。一方、ナット6、7と連結部材4、5との間には離間が生じるため、超弾性合金1には力が作用しない。また、超塑性合金3には圧縮力が作用する。この際、拘束部材10により超塑性合金3の軸直角方向への変形が拘束され座屈の発生が抑制される。なお、連結部材4、5が接触部4b、4cで接触していることにより、軸直角方向への変位は抑制される。
このように、地震時にダンパーに引張、圧縮力の繰り返し荷重が作用した際には、超弾性合金1、2のどちらかに引張力が作用して自己復元能力を担う。一方、超塑性合金3には引張力および圧縮力が繰り返し作用し地震エネルギの吸収が図られる。
(第2実施形態)
第1実施形態におけるエネルギ吸収部材である超塑性合金3および拘束材を他の軸降伏型履歴ダンパーに置き換えたものである。この部材には任意の耐劣化性を備えた軸降伏型履歴ダンパーを用いることができる。
(第3実施形態 )
第1実施形態のダンパー引張時に引張力が作用する超弾性合金1およびダンパー圧縮時に引張力が作用する超弾性合金2をそれぞれ1段ずつ配置したものである。第3実施形態では、図3に示すように超弾性合金1、2をそれぞれ2段ずつ設置したものである。このように、超弾性合金1、2を複数段にわたって設置することが可能である。
超弾性合金1、2と連結部材4、5との連結の仕方は第1実施形態と同様である。図3の例では超弾性合金1、2を交互に配置している。
(第4実施形態)
本ダンパー11を橋脚12と上部構造13との間に取り付けた実施形態を図4に示す。橋脚12と上部構造との相対変位によりダンパー11が動作する。
(第5実施形態)
本ダンパー11をアーチ橋14に取り付けた実施形態を図5に示す。
(他の実施形態)
なお、上述の実施形態は、超弾性合金1、2と他の部材との連結構造の一例を示したものに過ぎず、超弾性合金1、2と他の部材との連結構造を種々変更可能である。
(First embodiment)
First, an outline of the embodiment will be described. The hysteretic damper according to the present embodiment is a maintenance-free hysteretic damper having a self-restoring capability, and realizes a highly efficient seismic control structure that functions even in a medium-scale earthquake motion. In addition, it has the same workability as a conventional damper and can be easily installed in new and existing structures.
In order to remedy the drawbacks of the above problem a), the superelastic alloy is assumed to bear a self-restoring ability, and an energy absorbing member that absorbs seismic energy is mounted in the damper.
In order to improve the problem b), the superelastic alloy is installed in two stages in the axial direction of the damper. The first superelastic alloy acts only when the damper member is tensioned, and the second superelasticity. The alloy acts only when the damper member is compressed. A mechanism in which only a tensile force acts on both superelastic alloys is adopted.
This mechanism has a structure that transmits only a force in one direction via nuts or the like attached to both ends of the superelastic alloy. This simplifies the force transmission mechanism and can solve the problem c). .
Moreover, in this mechanism, since the superelastic alloys that function when the damper is tensioned and compressed are different, the respective cross-sectional areas and lengths can be easily changed. Also, the cross-sectional area and length of the hysteretic metal damper can be freely determined. As a result, the above-mentioned problem d) can be solved, the performance of the vibration control device can be set freely during tension and compression, and it becomes easy to obtain a highly efficient vibration control structure.
The first embodiment will be specifically described below. FIG. 1 schematically shows the structure of the first embodiment. The members 1 and 2 are superelastic alloys, and the member 3 is a superplastic alloy responsible for energy absorption. The members 4 and 5 are connecting members, which fix the end portions 4 a and 5 a of the members 4 and 5 to the structure, and transmit force to the superelastic alloy members 1 and 2 and the superplastic alloy 3.
In order to suppress deformation of the connecting members 4 and 5, the connecting members 4 and 5 have sufficiently large strength and rigidity as compared with the superelastic alloys 1 and 2 and the superplastic alloy 3. Either or both of the contact portions 4b and 4c between the connecting member 4 and the connecting member 5 are in contact with each other, and if they are in contact, a friction reducing material such as surface processing or a Teflon sheet is used so that the friction becomes sufficiently small. Install.
Nuts 6 and 7 are attached to both ends of the superelastic alloy 1 (first superelastic alloy member), and the nut 6 and the connecting member 4, and the nut 7 and the connecting member 5 are in contact with each other. Similarly, nuts 8 and 9 are attached to both ends of the superelastic alloy 2 (second superelastic alloy member), and the nut 8 and the connecting member 5, and the nut 9 and the connecting member 4 are in contact with each other.
Further, both ends of the superplastic alloy 3 which is an energy absorbing member are connected to connecting members 4 and 5, respectively. In order to prevent the superplastic alloy 3 from buckling during compression, a restraining member 10 is attached around the superplastic alloy 3 as necessary. A gap is provided between the restraining member 10 and the connecting members 4 and 5 so that axial force (damper axial direction) does not act on the restraining member 10.
FIG. 2 (a) schematically shows the operation of the first embodiment when a tensile force is applied. When a tensile force acts on both ends 4 a and 5 a of the connecting member, a tensile force acts on the superelastic alloy 1 via the nuts 6 and 7. On the other hand, since the nuts 8 and 9 and the connecting members 5 and 4 are separated from each other, no force acts on the superelastic alloy 2. Further, a tensile force acts on the superplastic alloy 3. In addition, the displacement to the direction orthogonal to an axis | shaft is suppressed because the connection members 4 and 5 are contacting in contact part 4b, 4c.
FIG. 2B schematically shows the operation of the first embodiment when a compressive force is applied. When a compressive force acts on both ends 4 a and 5 a of the connecting member, a tensile force acts on the superelastic alloy 2 via the nuts 8 and 9. On the other hand, there is a separation between the nuts 6 and 7 and the connecting members 4 and 5, so that no force acts on the superelastic alloy 1. A compressive force acts on the superplastic alloy 3. At this time, the restraining member 10 restrains the deformation of the superplastic alloy 3 in the direction perpendicular to the axis, thereby suppressing the occurrence of buckling. In addition, the displacement to the direction orthogonal to an axis | shaft is suppressed because the connection members 4 and 5 are contacting in contact part 4b, 4c.
Thus, when a repeated load of tensile and compressive force acts on the damper during an earthquake, the tensile force acts on either of the superelastic alloys 1 and 2 and bears the self-restoring ability. On the other hand, the superplastic alloy 3 is subjected to repeated tensile and compressive forces to absorb seismic energy.
(Second Embodiment)
The superplastic alloy 3 and the restraining material, which are energy absorbing members in the first embodiment, are replaced with other axial yield type hysteresis dampers. An axial yield type hysteresis damper having an arbitrary deterioration resistance can be used for this member.
(Third embodiment)
The superelastic alloy 1 in which a tensile force is applied when the damper is tensioned and the superelastic alloy 2 in which a tensile force is applied when the damper is compressed are arranged one by one. In the third embodiment, as shown in FIG. 3, two superelastic alloys 1 and 2 are provided. Thus, it is possible to install the superelastic alloys 1 and 2 over a plurality of stages.
The way of connecting the superelastic alloys 1 and 2 and the connecting members 4 and 5 is the same as in the first embodiment. In the example of FIG. 3, superelastic alloys 1 and 2 are alternately arranged.
(Fourth embodiment)
FIG. 4 shows an embodiment in which the damper 11 is attached between the pier 12 and the upper structure 13. The damper 11 is operated by the relative displacement between the bridge pier 12 and the superstructure.
(Fifth embodiment)
An embodiment in which the damper 11 is attached to the arch bridge 14 is shown in FIG.
(Other embodiments)
Note that the above-described embodiment is merely an example of the connection structure between the superelastic alloys 1 and 2 and other members, and the connection structure between the superelastic alloys 1 and 2 and other members can be variously changed. It is.
1 超弾性合金(第1の超弾性合金部材)
2 超弾性合金(第2の超弾性合金部材)
3 超塑性合金(エネルギ吸収部材)
4、5 連結部材
1 Superelastic alloy (first superelastic alloy member)
2 Superelastic alloy (second superelastic alloy member)
3 Superplastic alloy (energy absorbing member)
4, 5 connecting member
Claims (5)
圧縮時に引張力が作用する第2の超弾性合金部材(2)とを備え、
前記第1の超弾性合金部材(1)および前記第2の超弾性合金部材(2)によりダンパー形状の自己復元を行う構造になっていることを特徴とする履歴型ダンパー。 A first superelastic alloy member (1) on which a tensile force acts during tension;
A second superelastic alloy member (2) on which a tensile force acts during compression,
A hysteretic damper having a structure in which the first superelastic alloy member (1) and the second superelastic alloy member (2) perform self-restoration of a damper shape.
前記第1の超弾性合金部材(1)および前記第2の超弾性合金部材(2)を前記エネルギ吸収部材(3)に連結するための連結部材(4、5)とを備えることを特徴とする請求項1または2に記載の履歴型ダンパー。 An energy absorbing member (3) in which a tensile force acts during tension and a compressive force acts in compression;
And a connecting member (4, 5) for connecting the first superelastic alloy member (1) and the second superelastic alloy member (2) to the energy absorbing member (3). The hysteresis type damper according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011062337A JP5762780B2 (en) | 2011-03-22 | 2011-03-22 | Hysteretic damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011062337A JP5762780B2 (en) | 2011-03-22 | 2011-03-22 | Hysteretic damper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012197864A true JP2012197864A (en) | 2012-10-18 |
JP5762780B2 JP5762780B2 (en) | 2015-08-12 |
Family
ID=47180305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011062337A Active JP5762780B2 (en) | 2011-03-22 | 2011-03-22 | Hysteretic damper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5762780B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012255330A (en) * | 2011-05-18 | 2012-12-27 | Chubu Electric Power Co Inc | Damper to be rigid-frame in earthquake, earthquake resistance improving construction method of dam sluice gate piers and earthquake resistance improving construction method of bridge |
JP2016121477A (en) * | 2014-12-25 | 2016-07-07 | 首都高速道路株式会社 | Bridge fall prevention device |
JP2017503099A (en) * | 2014-01-02 | 2017-01-26 | ザ ユニヴァーシティ オブ ブリティッシュ コロンビア オカナガン | Piston-based self-centering brace device |
JP2017193825A (en) * | 2016-04-18 | 2017-10-26 | 株式会社ビービーエム | Buckling-restrained vibration control device |
JP2018096039A (en) * | 2016-12-08 | 2018-06-21 | 株式会社横河住金ブリッジ | Impact absorbing device |
US10119587B2 (en) | 2014-07-22 | 2018-11-06 | Wel Research Co., Ltd. | Shock absorbing device |
JP2019031827A (en) * | 2017-08-08 | 2019-02-28 | 株式会社横河住金ブリッジ | Function separation type shock absorber and bridge provided with function separation type shock absorber |
JP2019052532A (en) * | 2018-11-06 | 2019-04-04 | 首都高速道路株式会社 | Bridge fall prevention device with three-dimension bracket |
JP2021131140A (en) * | 2020-02-20 | 2021-09-09 | 大成建設株式会社 | Vibration controlling structure |
JP2022010556A (en) * | 2020-06-29 | 2022-01-17 | 積水ハウス株式会社 | Seismic control device |
KR102409229B1 (en) * | 2021-10-26 | 2022-06-15 | (주)제이원산업 | Restrained Buckling Brace with self centering characteristics |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102240482B1 (en) * | 2019-09-06 | 2021-04-14 | 인천대학교 산학협력단 | Auto restoration spring damper |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03239837A (en) * | 1990-02-16 | 1991-10-25 | Pioneer Electron Corp | Rubber damper |
JP2005120707A (en) * | 2003-10-16 | 2005-05-12 | Takenaka Komuten Co Ltd | Damper and damping device |
WO2010074229A1 (en) * | 2008-12-26 | 2010-07-01 | 国立大学法人名古屋工業大学 | Hysteretic damper |
-
2011
- 2011-03-22 JP JP2011062337A patent/JP5762780B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03239837A (en) * | 1990-02-16 | 1991-10-25 | Pioneer Electron Corp | Rubber damper |
JP2005120707A (en) * | 2003-10-16 | 2005-05-12 | Takenaka Komuten Co Ltd | Damper and damping device |
WO2010074229A1 (en) * | 2008-12-26 | 2010-07-01 | 国立大学法人名古屋工業大学 | Hysteretic damper |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012255330A (en) * | 2011-05-18 | 2012-12-27 | Chubu Electric Power Co Inc | Damper to be rigid-frame in earthquake, earthquake resistance improving construction method of dam sluice gate piers and earthquake resistance improving construction method of bridge |
JP2017503099A (en) * | 2014-01-02 | 2017-01-26 | ザ ユニヴァーシティ オブ ブリティッシュ コロンビア オカナガン | Piston-based self-centering brace device |
US10119587B2 (en) | 2014-07-22 | 2018-11-06 | Wel Research Co., Ltd. | Shock absorbing device |
JP2016121477A (en) * | 2014-12-25 | 2016-07-07 | 首都高速道路株式会社 | Bridge fall prevention device |
JP2017193825A (en) * | 2016-04-18 | 2017-10-26 | 株式会社ビービーエム | Buckling-restrained vibration control device |
JP2018096039A (en) * | 2016-12-08 | 2018-06-21 | 株式会社横河住金ブリッジ | Impact absorbing device |
JP2019031827A (en) * | 2017-08-08 | 2019-02-28 | 株式会社横河住金ブリッジ | Function separation type shock absorber and bridge provided with function separation type shock absorber |
JP7017879B2 (en) | 2017-08-08 | 2022-02-09 | 株式会社横河Nsエンジニアリング | A bridge equipped with a function-separated shock absorber and a function-separated shock absorber |
JP2019052532A (en) * | 2018-11-06 | 2019-04-04 | 首都高速道路株式会社 | Bridge fall prevention device with three-dimension bracket |
JP2021131140A (en) * | 2020-02-20 | 2021-09-09 | 大成建設株式会社 | Vibration controlling structure |
JP7277401B2 (en) | 2020-02-20 | 2023-05-18 | 大成建設株式会社 | Damping structure |
JP2022010556A (en) * | 2020-06-29 | 2022-01-17 | 積水ハウス株式会社 | Seismic control device |
JP7480605B2 (en) | 2020-06-29 | 2024-05-10 | 積水ハウス株式会社 | Vibration Control Device |
KR102409229B1 (en) * | 2021-10-26 | 2022-06-15 | (주)제이원산업 | Restrained Buckling Brace with self centering characteristics |
Also Published As
Publication number | Publication date |
---|---|
JP5762780B2 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5762780B2 (en) | Hysteretic damper | |
KR101146790B1 (en) | Hybrid vibration control devices consisting of viscoelastic damper and hysteretic damper | |
JP2020153106A (en) | Spring type seismic damper | |
CN108700152A (en) | The bilinearity energy dissipation and relief means of cable wire for bearing pulling force | |
JP2011099462A (en) | Base isolation device | |
JP6006194B2 (en) | Damper device for seismic reinforcement of structures | |
JP6211378B2 (en) | Bridge seismic control structure | |
KR101868877B1 (en) | Seismic retrofit of existing structure using spring damper and prestressed cable | |
JP2011233563A (en) | Piezoelectric power generation device and antivibration device | |
JP2010190409A (en) | Seismic isolation device and building | |
JP2015025272A (en) | Damping seismic composite member and building using the same | |
JP2018096513A (en) | Vibration-isolating mechanism | |
JP2018003558A (en) | Aseismatic structure, and method to improve aseismatic performance | |
KR100540372B1 (en) | Shape memory alloy rubber bearing | |
JP2002030830A (en) | Base isolation device for steel tower | |
CN112942610B (en) | Composite damper based on chiral structure | |
WO2010074229A1 (en) | Hysteretic damper | |
JP5235467B2 (en) | Energy absorption support device | |
JP2017160652A (en) | Buckling restraint type damper for bridge | |
JP2007239990A (en) | Seismic isolation device | |
JP5291609B2 (en) | Piping support structure | |
JP6872359B2 (en) | Shock absorber | |
JP2005325529A (en) | Vibration control structure | |
JP2011184950A (en) | Slide foundation structure | |
JP2019019656A (en) | Roof earthquake-resistant structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141209 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5762780 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |