JP5291609B2 - Piping support structure - Google Patents

Piping support structure Download PDF

Info

Publication number
JP5291609B2
JP5291609B2 JP2009283537A JP2009283537A JP5291609B2 JP 5291609 B2 JP5291609 B2 JP 5291609B2 JP 2009283537 A JP2009283537 A JP 2009283537A JP 2009283537 A JP2009283537 A JP 2009283537A JP 5291609 B2 JP5291609 B2 JP 5291609B2
Authority
JP
Japan
Prior art keywords
pipe
support structure
support
piping
control mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009283537A
Other languages
Japanese (ja)
Other versions
JP2011127618A (en
JP2011127618A5 (en
Inventor
基規 加藤
邦宏 森下
徹 峯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009283537A priority Critical patent/JP5291609B2/en
Priority to PCT/JP2010/005955 priority patent/WO2011074161A1/en
Priority to MX2012006514A priority patent/MX2012006514A/en
Priority to TW99134740A priority patent/TWI435019B/en
Publication of JP2011127618A publication Critical patent/JP2011127618A/en
Publication of JP2011127618A5 publication Critical patent/JP2011127618A5/ja
Application granted granted Critical
Publication of JP5291609B2 publication Critical patent/JP5291609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/024Laying or reclaiming pipes on land, e.g. above the ground
    • F16L1/0243Laying or reclaiming pipes on land, e.g. above the ground above ground
    • F16L1/0246Laying or reclaiming pipes on land, e.g. above the ground above ground at a certain height off the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/024Laying or reclaiming pipes on land, e.g. above the ground
    • F16L1/06Accessories therefor, e.g. anchors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/16Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe
    • F16L3/18Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe allowing movement in axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/16Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe
    • F16L3/20Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe allowing movement in transverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/26Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting the pipes all along their length, e.g. pipe channels or ducts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Supports For Pipes And Cables (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

A piping support structure which can improve the earthquake-proof performance of an existing piping system without modifying the system. A piping support structure (30) comprises a support frame which is provided with: supports (1) raised from the mounting surface and disposed at an interval in the radial direction of piping (20) and at an interval in the axial direction of the piping (20); beams (2) supported by the supports (1) in the radial direction; beams (3) supported by the supports (1) in the axial direction; first earthquake damping-mechanisms provided to first structural planes (4) each configured of a beam (2) and of supports (1) which are adjacent to each other in the radial direction; and second earthquake-damping mechanisms provided to second structural planes (5) each configured of a beam (3) and of supports (1) which are adjacent to each other in the axial direction. The piping support structure (30) also comprises the piping (20) which is supported at support points on the beams (2).

Description

本発明は、原子力発電プラント、火力発電プラント、化学プラント等の各種プラントに設置される配管を支持する構造物に関する。   The present invention relates to a structure that supports piping installed in various plants such as a nuclear power plant, a thermal power plant, and a chemical plant.

各種プラントに設置される配管は、図15に示すように、配管100の軸の直角方向(X方向)は支持架構101における支持点102の全てで動きが拘束(固定)されるが、軸方向(Y方向)は配管100の熱伸びを考慮して支持点102の一部では固定するものの、残りの支持点102では可動状態とされる。
また、配管100はプラント内に張り巡らされており、配管100が向きを変えて配置される場合には、図16に示すように、複数の支持架構101を用い、直線部分ごとに支持架構101で支持する。
As shown in FIG. 15, the pipes installed in various plants are restrained (fixed) at all the support points 102 in the support frame 101 in the direction perpendicular to the axis of the pipe 100 (X direction). (Y direction) is fixed at a part of the support point 102 in consideration of the thermal expansion of the pipe 100, but is movable at the remaining support points 102.
In addition, the piping 100 is stretched in the plant, and when the piping 100 is arranged in a different direction, a plurality of supporting frames 101 are used as shown in FIG. Support with.

以上の配管支持構造物は、大地震による大きな振動を受けると、支持架構101を含めた支持構造物全体の減衰性能が小さいため、配管固定部の破損や、配管本体の破損に対する備えが必要である。また、配管支持構造物全体に大変形が生じると、隣接するプラント建屋等に衝突するのを防ぐ手立てが必要である。さらに、複数の支持架構101を用いる場合には、隣接する支持架構101間に相対変位が生じることで、支持点102間で配管100が破損するのを防止することはもとより、支持点102自体の破損を防止する必要がある。例えば、図16のように相対変位△×が生じると、配管固定点間の(ア)の部分、配管固定点(イ)の部分で配管が損傷する恐れがある。   When the above pipe support structure is subjected to a large vibration due to a large earthquake, the damping performance of the entire support structure including the support frame 101 is small. Therefore, it is necessary to prepare for damage to the pipe fixing part and damage to the pipe body. is there. Further, when a large deformation occurs in the entire pipe support structure, a means for preventing collision with an adjacent plant building or the like is necessary. Further, when a plurality of support frames 101 are used, the relative displacement between adjacent support frames 101 prevents the piping 100 from being damaged between the support points 102, and the support points 102 themselves. It is necessary to prevent damage. For example, when the relative displacement Δx occurs as shown in FIG. 16, the pipe may be damaged at the part (a) between the pipe fixing points and the part at the pipe fixing point (A).

そこで、配管の耐震性能向上のために、特許文献1では、配管と支持架構の間に、積層ゴム体を挿入し、配管系の減衰性能を向上させることにより、地震時の配管の応答を低減させることを提案している。
また、特許文献2では、支持架構に固定した振動抑制装置と配管とをロッドで結ぶことにより、地震時の振動エネルギを振動抑制装置が吸収し、配管の応答を低減させることを提案している。
Therefore, in order to improve the seismic performance of piping, in Patent Document 1, a laminated rubber body is inserted between the piping and the supporting frame to improve the damping performance of the piping system, thereby reducing the response of the piping during an earthquake. Propose to let you.
Patent Document 2 proposes that the vibration suppression device absorbs vibration energy during an earthquake and reduces the response of the piping by connecting the vibration suppression device fixed to the support frame and the piping with a rod. .

特開昭63−312594号公報JP-A-63-312594 特開平1−188735公報JP-A-1-188735

ところが、図14、図15に示すような配管を支持架構で直接支持する構造物の場合、配管100と支持架構101の間に積層ゴム体等のデバイスを組み込むスペースがない場合がある。したがって、既設の支持架構の場合には、配管系に大幅な改修が必要となる。
本発明は、このような課題に基づいてなされたもので、既設のものであっても配管系の改修を行うことなく耐震性能を向上できる配管支持構造物を提供することを目的とする。
However, in the case of a structure that directly supports a pipe as shown in FIGS. 14 and 15 with a support frame, there may be no space for incorporating a device such as a laminated rubber body between the pipe 100 and the support frame 101. Therefore, in the case of an existing support frame, the pipe system needs to be greatly modified.
This invention is made | formed based on such a subject, and even if it is an existing thing, it aims at providing the piping support structure which can improve seismic performance, without performing piping system repair.

かかる目的のもとになされた本発明の配管支持構造物は、支柱と梁、又は支柱と桁で構成される構面内に制震機構を設けることで、配管系の改修を行うことなく、かつ耐震性能を向上できる配管支持構造物を提供することを要旨とする。すなわち本発明の配管支持構造物は、設置面から立設し、配管の径方向に間隔をあけて配置されるとともに、配管の軸方向に間隔をあけて繰返して配置される複数の支柱と、径方向に沿って支柱に支持される梁と、軸方向に沿って支柱に支持される桁とを備える支持架構と、梁上の支持点で支持される配管とから構成される。そして本発明の配管支持構造物は、径方向に隣接する支柱と梁とから構成される一又は二以上の第1構面に設けられる第1制震機構と、軸方向に隣接する支柱と桁とから構成される一又は二以上の第2構面に設けられる第2制震機構とを備える配管支持構造物であって、配管支持構造物が少なくとも2つ以上連続する場合に、それぞれの振動特性が同調されていることを特徴とする。 The pipe support structure of the present invention made for this purpose is provided with a vibration control mechanism in a structure composed of columns and beams, or columns and girders, without repairing the piping system, The gist of the invention is to provide a pipe support structure capable of improving seismic performance. That is, the pipe support structure of the present invention is erected from the installation surface, arranged with a gap in the radial direction of the pipe, and a plurality of struts repeatedly arranged with a gap in the axial direction of the pipe, It is comprised from the support frame provided with the beam supported by a support | pillar along radial direction, the girder supported by a support | pillar along an axial direction, and piping supported by the support point on a beam. The pipe support structure of the present invention includes a first seismic control mechanism provided on one or two or more first construction surfaces composed of struts and beams adjacent in the radial direction, struts and girders adjacent in the axial direction. And a second vibration control mechanism provided on one or two or more second structural surfaces , each of which includes at least two or more continuous pipe support structures. The characteristic is tuned .

本発明の配管支持構造物において、第1制震機構は、配管が径方向の動きを拘束される支持点(以下、拘束支持点ということがある)を有する梁を含む第1構面に設けられることが好ましい。また、本発明の配管支持構造物において、第2制震機構は、配管が軸方向の動きを拘束される支持点を有する梁に隣接する第2構面に設けられることが好ましい。拘束支持点には、配管支持構造物に大きな震動が加わった際に反力が大きく加わる。そこで、拘束支持点の回りの減衰性能を高くするために、拘束支持点を有する梁を含む第1構面、及び/又は拘束支持点を有する梁に隣接する第2構面に制震機構を設けることを推奨する。   In the pipe support structure of the present invention, the first vibration control mechanism is provided on the first structural surface including a beam having a support point at which the pipe is restrained from moving in the radial direction (hereinafter also referred to as a restraint support point). It is preferred that In the pipe support structure of the present invention, it is preferable that the second vibration control mechanism is provided on the second structural surface adjacent to the beam having a support point at which the pipe is restrained from moving in the axial direction. A reaction force is greatly applied to the restraint support point when a large vibration is applied to the pipe support structure. Therefore, in order to increase the damping performance around the restraint support point, a vibration control mechanism is provided on the first construction surface including the beam having the restraint support point and / or the second construction surface adjacent to the beam having the restraint support point. It is recommended to provide it.

本発明の第1制震機構又は第2制震機構として、ダンパ部材を用いることができる。ダンパ部材を構面内に設けることにより、当該構面の減衰性能を向上できる。ダンパ部材としては、軸降伏型ダンパ、せん断パネル型ダンパ、摩擦型ダンパ等の公知のものを用いることができる。
本発明の第1制震機構としては、ダンパ部材の他に、支持点を中心にして径方向の両側に配管鉛直荷重の影響を考慮して特性を設定された断面減少部を梁に設ける形態にできる。この形態は、震動により梁の両端に発生する曲げモーメントにより、断面減少部が曲げ降伏することにより、震動エネルギを吸収する。
A damper member can be used as the first damping mechanism or the second damping mechanism of the present invention. By providing the damper member in the composition surface, the damping performance of the composition surface can be improved. As the damper member, known members such as a shaft yield type damper, a shear panel type damper, and a friction type damper can be used.
As the first vibration control mechanism of the present invention, in addition to the damper member, a configuration in which the beam is provided with a cross-sectional reduction portion whose characteristics are set in consideration of the influence of the pipe vertical load on both sides in the radial direction with the support point as the center. Can be. In this configuration, the bending energy is generated by bending and yielding the cross-section reducing portion due to the bending moment generated at both ends of the beam by the vibration.

本発明の配管支持構造物において、支持架構の径方向及び軸方向のいずれか一方又は双方の変位を規制する変移制御機構を備えることが好ましい。支持架構の変位を規制することにより、配管支持構造物が隣接する構造物に衝突するのを防ぐ。また、支持点間における配管の破損、支持点における配管の破損防止効果を確実にする。   In the pipe support structure of the present invention, it is preferable to include a transition control mechanism that regulates the displacement of one or both of the radial direction and the axial direction of the support frame. By restricting the displacement of the support frame, the pipe support structure is prevented from colliding with an adjacent structure. Moreover, the damage of the piping between support points and the damage prevention effect of the piping at a support point are ensured.

本発明の配管支持構造物は、構面に制震機構を設けるものであるから、既設のものであっても配管系の改修を行うことなく耐震性能を向上できる。   Since the piping support structure of the present invention is provided with a vibration control mechanism on the construction surface, even if it is an existing structure, it is possible to improve the seismic performance without repairing the piping system.

第1実施形態における配管支持構造物の基本構成を示す図である。It is a figure which shows the basic composition of the piping support structure in 1st Embodiment. 第1実施形態における配管支持構造物に用いられる制震機構を示す図であり、(a)は軸降伏型ダンパの概略構成とその荷重−変位履歴曲線を示し、(b)はせん断パネル型ダンパの概略構成とその荷重−変位履歴曲線を示し、(c)は摩擦型ダンパの概略構成とその荷重−変位履歴曲線を示す。It is a figure which shows the damping mechanism used for the piping support structure in 1st Embodiment, (a) shows schematic structure of an axial yield type damper, and its load-displacement history curve, (b) is a shear panel type damper. The schematic structure and its load-displacement history curve are shown, (c) shows the schematic structure of the friction damper and its load-displacement history curve. 梁に切り欠きを設けて減衰性能を向上させた例を示す。An example is shown in which a notch is provided in the beam to improve the damping performance. 第2実施形態における配管支持構造物を示す。The piping support structure in 2nd Embodiment is shown. 図4の変移制御機構の詳細を説明する図である。It is a figure explaining the detail of the transition control mechanism of FIG. 振動方向の変位を制御する変移制御機構を示す図である。It is a figure which shows the transition control mechanism which controls the displacement of a vibration direction. 軸降伏型ダンパを適用した支持架構自体に変位制御機構を設けた例を示す図である。It is a figure which shows the example which provided the displacement control mechanism in the support frame itself to which the shaft yield type damper was applied. せん断型ダンパ(又は摩擦型ダンパ)を適用した支持架構自体に変位制御機構を設けた例を示す図である。It is a figure which shows the example which provided the displacement control mechanism in the support frame itself which applied the shear type damper (or friction type damper). 摩擦型ダンパを適用した支持架構自体に変位制御機構を設けた例を示す図である。It is a figure which shows the example which provided the displacement control mechanism in the support frame itself to which the friction type damper was applied. (a)は第3実施形態が適用される配管支持構造物の例を示し、(b)はその支持架構の構成を示す。(A) shows the example of the piping support structure to which 3rd Embodiment is applied, (b) shows the structure of the support frame. 図10(b)に示す支持架構のX方向の卓越モード(点線)を示す図である。It is a figure which shows the dominant mode (dotted line) of the X direction of the support frame shown in FIG.10 (b). 図10(b)に示す支持架構のY方向の卓越モード(点線)を示す図である。It is a figure which shows the dominant mode (dotted line) of the Y direction of the support frame shown in FIG.10 (b). 図10(a)に示す配管支持構造物の支持点にY方向の荷重P1〜P7が作用した状態を示す。The state where the loads P1-P7 of the Y direction acted on the support point of the piping support structure shown to Fig.10 (a) is shown. 図13の荷重状態のとき制震デバイスa、bで発生する荷重pa(Nay)、pb(Nby)を降伏荷重として設定することを示す図である。It is a figure which shows setting the load pa (Nay) and pb (Nby) which generate | occur | produce with the damping devices a and b in the load state of FIG. 13 as a yield load. 従来の配管支持構造物の基本構成を示す図である。It is a figure which shows the basic composition of the conventional piping support structure. 直交する配管を支持する従来の配管支持構造物を示す図である。It is a figure which shows the conventional piping support structure which supports orthogonal piping.

<第1実施形態>
以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1に示すように、第1実施形態に係る配管支持構造物30は、支持架構10と、支持架構10で支持される配管20から構成される。
<First Embodiment>
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
As shown in FIG. 1, the pipe support structure 30 according to the first embodiment includes a support frame 10 and a pipe 20 supported by the support frame 10.

支持架構10は以下のように構成される。
設置面Gから立設する複数の支柱1を備えている。支柱1は、配管20の径方向(図中、X方向)に間隔をあけて2列に配置されるとともに、配管20の軸方向(図中、Y方向)に均等間隔で5行に配置される。なお、配管支持構造物30は軸方向に延設されるものであるが、図1はその一部のみを示している。
The support frame 10 is configured as follows.
A plurality of support columns 1 standing from the installation surface G are provided. The struts 1 are arranged in two rows at intervals in the radial direction of the pipe 20 (X direction in the figure), and are arranged in five rows at equal intervals in the axial direction of the pipe 20 (Y direction in the figure). The In addition, although the piping support structure 30 is extended in an axial direction, FIG. 1 has shown only the part.

配管支持構造物30は、配管20の径方向に沿って支柱1に支持される梁2と、配管20の軸方向に沿って支柱1に支持される桁3を備えている。配管20の径方向に隣接する二つの支柱1と梁2からなる各ユニットにより第1構面4が構成される。また、配管20の軸方向に隣接する二つの支柱1と桁3から各ユニットにより第2構面5が構成される。
第1構面4、第2構面5の各々には、ブレース6が設けられる。ブレース6は、各第1構面4、各第2構面5に逆V字状に配設され、支持架構10の剛性を向上する。本実施の形態において、ブレース6は、各第1構面4、各第2構面5に設けられる制震機構の構成要素となる。
The pipe support structure 30 includes a beam 2 supported by the column 1 along the radial direction of the pipe 20 and a beam 3 supported by the column 1 along the axial direction of the pipe 20. The first structural surface 4 is constituted by each unit composed of two struts 1 and beams 2 adjacent to each other in the radial direction of the pipe 20. Further, the second structural surface 5 is configured by each unit from the two columns 1 and the girders 3 adjacent to each other in the axial direction of the pipe 20.
A brace 6 is provided on each of the first composition surface 4 and the second composition surface 5. The brace 6 is disposed in an inverted V shape on each first construction surface 4 and each second construction surface 5 to improve the rigidity of the support frame 10. In the present embodiment, the brace 6 is a constituent element of a vibration control mechanism provided on each first structural surface 4 and each second structural surface 5.

以上のように構成される支持架構10において、配管20は梁2上の支持点Pで鉛直方向に支持される。また、配管20は各支持点Pにおいてその径方向の動きが拘束されるように固定される。さらに、配管20は矢印の先端同士が突き合わされる支持点P(軸方向の真ん中の支持点P)においてその軸方向の動きが拘束されるように固定される。軸方向で拘束される支持点Pが少ないのは、熱伸びにより配管20に生じる熱応力の影響を抑えるためである。   In the support frame 10 configured as described above, the pipe 20 is supported in the vertical direction at the support point P on the beam 2. Further, the pipe 20 is fixed at each support point P so that its radial movement is restricted. Furthermore, the pipe 20 is fixed so that the movement in the axial direction is restrained at the support point P (the support point P in the middle in the axial direction) where the ends of the arrows abut each other. The reason why the number of support points P restrained in the axial direction is small is to suppress the influence of thermal stress generated in the pipe 20 due to thermal elongation.

配管20を直接支持する支持架構10において、例えば地震により大きな振動エネルギが生じると、支持点P及びその近傍に反力が大きく発生する。そこで、配管支持構造物30は、配管20がその径方向の動きが拘束される支持点Pを有する梁2を含む第1構面4に第1制震機構を設ける。また、配管支持構造物30は、配管20がその軸方向の動きが拘束される支持点Pを有する梁2に隣接する、つまり梁2を挟んで軸方向に連なる2つの第2構面5に第2制震機構を設ける。なお、図1において、太線で描かれているブレース6が第1構面4に第1制震機構が設けられていることを示している。   In the support frame 10 that directly supports the pipe 20, for example, when large vibration energy is generated due to an earthquake, a large reaction force is generated at the support point P and in the vicinity thereof. Therefore, the pipe support structure 30 is provided with a first vibration control mechanism on the first structural surface 4 including the beam 2 having the support point P at which the pipe 20 is restrained from moving in the radial direction. In addition, the pipe support structure 30 is adjacent to the beam 2 having the support point P where the axial movement of the pipe 20 is restricted, that is, on the two second structural surfaces 5 that are continuous in the axial direction across the beam 2. The second seismic control mechanism is provided. In FIG. 1, the brace 6 drawn by a thick line indicates that the first vibration control mechanism is provided on the first structural surface 4.

第1制震機構、第2制震機構としては、種々の制震デバイスを用いることができる。その例を図2に示すが、本発明は軸降伏型ダンパ11(図2(a))、せん断パネル型ダンパ12(図2(b))、摩擦型ダンパ13(図2(c))を第1制震機構、第2制震機構として適用できる。ただし、本発明はこれに限定されず、その他の減衰効果を発揮する制震デバイスを適用できる。配管20を支持する支持架構10は、負担する荷重が小さい場合が多いので、その場合には小荷重での非線形挙動を実現しやすい摩擦型ダンパ13の使用が適切である。軸降伏型ダンパ11、せん断パネル型ダンパ12及び摩擦型ダンパ13は当業者において公知であるため、ここでの説明は省略する。
軸降伏型ダンパ11等の制震デバイスは大地震等の大きな振動エネルギに伴う入力荷重により、荷重−変位関係が非線形領域(軸降伏型ダンパ、せん断パネル型ダンパの場合は鋼材の降伏、摩擦型ダンパの場合は滑り領域)に入るよう調整して設置する。そうすることで、大地震時において、制震デバイスの荷重−変位関係に入り、その履歴エネルギにより、地震エネルギを吸収する。
As the first damping mechanism and the second damping mechanism, various damping devices can be used. An example is shown in FIG. 2, and the present invention includes a shaft yield damper 11 (FIG. 2A), a shear panel damper 12 (FIG. 2B), and a friction damper 13 (FIG. 2C). It can be applied as a first vibration control mechanism and a second vibration control mechanism. However, the present invention is not limited to this, and other vibration control devices that exhibit a damping effect can be applied. Since the supporting frame 10 that supports the pipe 20 often bears a small load, it is appropriate to use the friction damper 13 that easily realizes non-linear behavior under a small load. Since the shaft yield type damper 11, the shear panel type damper 12, and the friction type damper 13 are known to those skilled in the art, the description thereof is omitted here.
The damping device such as the axial yield type damper 11 has a non-linear load-displacement relationship due to the input load accompanying large vibration energy such as a large earthquake (yield of the steel, friction type in the case of the axial yield type damper and the shear panel type damper). In the case of a damper, adjust it so that it enters the sliding area). By doing so, in the event of a large earthquake, the load-displacement relationship of the damping device is entered, and the seismic energy is absorbed by the history energy.

支持架構10の減衰性能を向上させることは、以上のように制震デバイスを設ける以外にも可能である。例えば、図3(a)に示すように、支持点Pを中心にして配管20(図3では省略)の径方向の両側の梁2上に切り欠き部(断面減少部)14を設けることで、当該構面の減衰性能を向上できる。この制震機構は、振動により梁2の両端に発生する曲げモーメント(矢印で示す)により、切り欠き部14が曲げ降伏させられ、その荷重−変位履歴エネルギ(図3(b))により、地震エネルギを吸収する。ただし、梁2は配管20による鉛直荷重を支持可能な強度を確保しておく必要がある。   It is possible to improve the damping performance of the support frame 10 in addition to providing the vibration control device as described above. For example, as shown in FIG. 3A, by providing notches (cross-sectionally reduced portions) 14 on the beams 2 on both sides in the radial direction of the pipe 20 (omitted in FIG. 3) with the support point P as the center. The damping performance of the structural surface can be improved. In this vibration control mechanism, the notch 14 is bent and yielded by a bending moment (indicated by arrows) generated at both ends of the beam 2 due to vibration, and the load-displacement history energy (FIG. 3B) Absorb energy. However, the beam 2 needs to secure a strength capable of supporting a vertical load by the pipe 20.

本実施の形態において、固定された支持点Pと関連性のない第1構面4、第2構面5については、本実施の形態ではブレース6を設けているが、強度に問題がなければ撤去してもよい。鉛直荷重のみを支持するブレース6であれば、水平方向の変形に影響がないように柱部材に変更してもよい。また、配管20の支持条件は従来と同様でよい。   In the present embodiment, the first structural surface 4 and the second structural surface 5 that are not related to the fixed support point P are provided with the braces 6 in the present embodiment. It may be removed. If it is the brace 6 that supports only the vertical load, it may be changed to a column member so as not to affect the deformation in the horizontal direction. Moreover, the support conditions of the piping 20 may be the same as the conventional one.

以上説明したように、本実施形態によれば、第1構面4、第2構面5に制震機構(第1制震機構,第2制震機構)を設けるものであるから、既設の配管支持構造物30においても、配管系の改修は不要である。また、配管20の固定支持点Pに関連する構面4、構面5に対してのみ、制震機構を組込むことにより、より効率的に支持架構10の減衰効果を向上できると同時に、配管固定点近傍以外の構面に対する改修(ブレースの撤去等)が不要であるからコストを抑えることができる。特に図3のように、梁2に切り欠き部を設ける場合には、第1構面4、第2構面5に設けられている既存のブレース6を耐震デバイスに取替える作業が不要であるのでコストの点で有利である。   As described above, according to the present embodiment, the first structural surface 4 and the second structural surface 5 are provided with the vibration control mechanisms (the first vibration control mechanism and the second vibration control mechanism). In the piping support structure 30 as well, it is not necessary to repair the piping system. Further, by incorporating a vibration control mechanism only on the structural surface 4 and the structural surface 5 related to the fixed support point P of the pipe 20, the damping effect of the support frame 10 can be improved more efficiently, and at the same time the pipe is fixed. Costs can be reduced because repairs to structures other than the vicinity of points (removal of braces, etc.) are unnecessary. In particular, as shown in FIG. 3, when notches are provided in the beam 2, there is no need to replace the existing braces 6 provided on the first structural surface 4 and the second structural surface 5 with seismic devices. This is advantageous in terms of cost.

<第2実施形態>
次に、第1実施形態の支持架構10の変位を制御する変位制御機構について図4〜図8を参照しながら説明する。
変位制御機構の一例目は、図4、図5に示すように、隣接構造物15を利用して支持架構10の変位を規制するものであり、支持架構10(桁3)と隣接構造物15の間にストッパ16を設ける。このストッパ16は、凹型のメス部材16aと凸型のオス部材16bとからなる。メス部材16aとオス部材16bはともに鋼製である。メス部材16aは変位を制御しようとする方向と平行な隣接構造物15に設置し、オス部材16bは支持架構10(桁3)に設置される。なお、オス部材16bを隣接構造物15に、メス部材16aを支持架構10に設けてもよいことは言うまでもない。
図5(b)に示すように、メス部材16aとオス部材16bと間のギャップ△は、支持架構10の最大変位量が許容変位量以内になるよう設定される。このストッパ16を設けることにより、図5(c)に示す架構(支持架構10)の特性とストッパ16の特性が加えられ、支持架構10は許容変位量に達するまでに図5(c)の右側の線図の挙動を示す。
Second Embodiment
Next, a displacement control mechanism for controlling the displacement of the support frame 10 of the first embodiment will be described with reference to FIGS.
As shown in FIGS. 4 and 5, the first example of the displacement control mechanism is to restrict the displacement of the support frame 10 using the adjacent structure 15, and the support frame 10 (girder 3) and the adjacent structure 15. A stopper 16 is provided between the two. The stopper 16 includes a concave female member 16a and a convex male member 16b. Both the female member 16a and the male member 16b are made of steel. The female member 16a is installed in the adjacent structure 15 parallel to the direction in which the displacement is to be controlled, and the male member 16b is installed in the support frame 10 (girder 3). In addition, it cannot be overemphasized that the male member 16b may be provided in the adjacent structure 15, and the female member 16a may be provided in the support frame 10. FIG.
As shown in FIG. 5B, the gap Δ between the female member 16a and the male member 16b is set so that the maximum displacement amount of the support frame 10 is within the allowable displacement amount. By providing this stopper 16, the characteristics of the frame (support frame 10) shown in FIG. 5C and the characteristics of the stopper 16 are added, and the support frame 10 is moved to the right side of FIG. 5C until the allowable displacement is reached. The behavior of the diagram is shown.

次に、二例目の変位制御機構は図6に示すように、ゴム等の弾性体を使用したストッパ17であり、変位を制御しようとする方向(振動方向)と直交する隣接構造物15の側面に弾性体からなるストッパ17を設置する。
ストッパ17は、支持架構10に接するか、もしくは支持架構10との間にギャップ量△(図6(b))を設けるよう設置する。なお、いずれの場合にも、支持架構10の最大変位量が許容変位量内に収まるようにストッパ17を設置する。このストッパ17を設けることにより、図6(c)に示す架構(支持架構10)の特性とストッパ17の特性が加えられ、支持架構10は許容変位量に達するまでに図6(c)の右側の線図の挙動を示す。
Next, as shown in FIG. 6, the displacement control mechanism of the second example is a stopper 17 using an elastic body such as rubber, and the adjacent structure 15 orthogonal to the direction (vibration direction) in which the displacement is to be controlled. A stopper 17 made of an elastic body is installed on the side surface.
The stopper 17 is installed so as to contact the support frame 10 or to provide a gap amount Δ (FIG. 6B) between the stopper 17 and the support frame 10. In any case, the stopper 17 is installed so that the maximum displacement amount of the support frame 10 is within the allowable displacement amount. By providing this stopper 17, the characteristics of the frame (support frame 10) and the characteristics of the stopper 17 shown in FIG. 6C are added, and the support frame 10 is moved to the right side of FIG. 6C until the allowable displacement is reached. The behavior of the diagram is shown.

変位制御機構は、隣接構造物15がなくても支持架構10自体に設置することもできる。この例を図7〜図9を参照して説明する。
図7は軸降伏型ダンパ11を適用した支持架構10を示す。この場合、第1構面4内であって、軸降伏型ダンパ10の支持点を挟んで両側に一対のストッパ18をハの字形に設ける。ストッパ18は、図7(a)に示すように、一端が梁2に固定され、他端が支柱1との間にギャップが設けられている。このギャップは支持架構10の許容変位量を規定する。
以上の支持架構10によれば、図7(b)に示すように、地震により白抜き矢印で示す右向きの荷重が梁2に加わると支持架構10は上端が右向きに最大の変位量となるように変形する。しかし、変位量が許容変位量に達すると、右側に位置するストッパ18の先端が支柱1に突き当たり、支持架構10の変位が制御される。
The displacement control mechanism can also be installed on the support frame 10 itself without the adjacent structure 15. This example will be described with reference to FIGS.
FIG. 7 shows a support frame 10 to which the axial yield type damper 11 is applied. In this case, a pair of stoppers 18 are provided in a C shape on both sides of the first structural surface 4 with the support point of the shaft yielding damper 10 interposed therebetween. As shown in FIG. 7A, the stopper 18 has one end fixed to the beam 2 and the other end provided with a gap between the column 1 and the stopper 18. This gap defines the allowable displacement amount of the support frame 10.
According to the support frame 10 described above, as shown in FIG. 7B, when a rightward load indicated by a white arrow is applied to the beam 2 due to an earthquake, the upper limit of the support frame 10 is set to the maximum amount of displacement rightward. Transforms into However, when the amount of displacement reaches the allowable amount of displacement, the tip of the stopper 18 located on the right side hits the column 1 and the displacement of the support frame 10 is controlled.

図8はせん断パネル型ダンパ12を適用した支持架構10を示す。この場合、第1構面4内であって、せん断パネル型ダンパ12を挟んで両側に一対のストッパ19を設ける。ストッパ19は、図8(a)に示すように、せん断パネル型ダンパ12との間にギャップが設けられるように、一端が梁2に固定されている。このギャップは支持架構10の許容変位量を規定する。
以上の支持架構10によれば、図8(b)に示すように、地震により白抜き矢印で示す右向きの荷重が梁2に加わると支持架構10は上端が右向きに最大の変位量となるように変形する。これに伴い、せん断パネル型ダンパ12は平行四辺形に変形する。しかし、支持架構10の変位量が許容変位量に達すると、せん断パネル型ダンパ12の左下側の角が左側に位置するストッパ19に突き当たり、支持架構10の変位が制御される。
なお、ここでは、せん断パネル型ダンパ12について説明したが、摩擦型ダンパ13についても同様に適用できる。
FIG. 8 shows a support frame 10 to which a shear panel type damper 12 is applied. In this case, a pair of stoppers 19 are provided on both sides of the shear plane type damper 12 in the first structural surface 4. As shown in FIG. 8A, the stopper 19 has one end fixed to the beam 2 so that a gap is provided between the stopper 19 and the shear panel type damper 12. This gap defines the allowable displacement amount of the support frame 10.
According to the above support frame 10, as shown in FIG. 8 (b), when a rightward load indicated by a hollow arrow is applied to the beam 2 due to an earthquake, the upper limit of the support frame 10 becomes the maximum amount of displacement rightward. Transforms into Along with this, the shear panel type damper 12 is deformed into a parallelogram. However, when the displacement amount of the support frame 10 reaches the allowable displacement amount, the lower left corner of the shear panel damper 12 hits the stopper 19 located on the left side, and the displacement of the support frame 10 is controlled.
Although the shear panel type damper 12 has been described here, the same applies to the friction type damper 13.

次に、摩擦型ダンパ13についてはストッパを用いることなく、変位制御機構を支持架構10自体に設けることができる。この三例目の形態は図9に示されている。
この摩擦型ダンパ13は、第1の摩擦体131と第2の摩擦体132とから構成される。摩擦型ダンパ13は、第1の摩擦体131と第2の摩擦体132の接触面の摩擦力により振動エネルギを吸収する。第2の摩擦体132にはブレース6の一端側が固定されており、第2の摩擦体132はブレース6と一体となって変位される。
第1の摩擦体131は、高μ部131aと低μ部131bとからなり、低μ部131bを中心にしてその両側に高μ部131aが配置される。高μ部131aは低μ部131bよりも摩擦係数が高い。もちろん、摩擦係数の高低は、第1の摩擦体131と第2の摩擦体132の接触面の摩擦係数のことである。また、第2の摩擦体132の当該接触面の摩擦係数は均等である。
Next, for the friction damper 13, a displacement control mechanism can be provided on the support frame 10 itself without using a stopper. This third example is shown in FIG.
The friction damper 13 includes a first friction body 131 and a second friction body 132. The friction damper 13 absorbs vibration energy by the frictional force of the contact surface between the first friction body 131 and the second friction body 132. One end side of the brace 6 is fixed to the second friction body 132, and the second friction body 132 is displaced integrally with the brace 6.
The first friction body 131 includes a high μ portion 131a and a low μ portion 131b, and the high μ portions 131a are disposed on both sides of the low μ portion 131b. The high μ portion 131a has a higher coefficient of friction than the low μ portion 131b. Of course, the level of the friction coefficient is the friction coefficient of the contact surface between the first friction body 131 and the second friction body 132. Further, the friction coefficient of the contact surface of the second friction body 132 is equal.

以上の摩擦型ダンパ13は、第1の摩擦体131の低μ部131bと第2の摩擦体132とが接触している範囲では、図10(c)に示すように低い摩擦力F1で第1の摩擦体131と第2の摩擦体132とが相対的に変位する。しかし、図9(b)に示すように第2の摩擦体132が第1の摩擦体131の高μ部131aと接触するようになると、図9(c)に示すように第1の摩擦体131と第2の摩擦体132の間には高い摩擦力F2が生じるので、第2の摩擦体132の変位が規制される。   In the range where the low μ portion 131b of the first friction body 131 and the second friction body 132 are in contact with each other, the friction damper 13 described above has a low friction force F1 as shown in FIG. The first friction body 131 and the second friction body 132 are relatively displaced. However, when the second friction body 132 comes into contact with the high μ portion 131a of the first friction body 131 as shown in FIG. 9B, the first friction body as shown in FIG. 9C. Since a high frictional force F2 is generated between 131 and the second friction body 132, the displacement of the second friction body 132 is restricted.

以上のように、第1実施形態に変位制御機構を設けることにより、効率的な地震エネルギの吸収を実現しながら、さらに支持架構10の変位を許容範囲内に収めることが可能になる。したがって、変位が大きくなって支持架構10又は配管20が破損するのを避けることができる。
一例目の鋼製のストッパ16の場合、地震時、支持架構10がメス部材16aとオス部材16b間のギャップ量△を超えて変位しようとすると、メス部材16aとオス部材16bが接触し、支持架構10の剛性にストッパ16の剛性が付加され、支持架構10の変位が許容変位を超えることを防止する。
二例目の弾性体からなるストッパ17の場合、地震時、支持架構10がストッパ17に接触すると、ストッパ17は、図6(c)に示すように、ある程度変形するとそれ以上変形が進まなくなるため、その性質を利用して、支持架構10の変位量を許容変位量以下に制御する。
三例目のように、支持架構10自体に変位制御機構を設置する場合、周囲の構造物に係らず支持架構10の変位を許容範囲内に制御できる利点がある。
As described above, by providing the displacement control mechanism in the first embodiment, it is possible to keep the displacement of the support frame 10 within an allowable range while realizing efficient seismic energy absorption. Therefore, it is possible to avoid the displacement and the support frame 10 or the pipe 20 from being damaged.
In the case of the steel stopper 16 of the first example, when the support frame 10 tries to displace beyond the gap amount Δ between the female member 16a and the male member 16b in the event of an earthquake, the female member 16a and the male member 16b come into contact with each other and are supported. The rigidity of the stopper 16 is added to the rigidity of the frame 10 to prevent the displacement of the support frame 10 from exceeding the allowable displacement.
In the case of the stopper 17 made of an elastic body of the second example, when the support frame 10 comes into contact with the stopper 17 at the time of an earthquake, the stopper 17 does not progress further when deformed to some extent as shown in FIG. The displacement amount of the support frame 10 is controlled to be equal to or less than the allowable displacement amount using the property.
As in the third example, when the displacement control mechanism is installed in the support frame 10 itself, there is an advantage that the displacement of the support frame 10 can be controlled within an allowable range regardless of surrounding structures.

<第3実施形態>
支持架構10の振動特性を全体で同調させることが、支持架構10の耐震性を確保する上で好ましい。そのために、使用される各制震機構(制震デバイス)の特性を調整することが必要である。第3実施形態では、その例を説明する。
<Third Embodiment>
It is preferable to synchronize the vibration characteristics of the support frame 10 as a whole in order to ensure the earthquake resistance of the support frame 10. Therefore, it is necessary to adjust the characteristics of each vibration control mechanism (vibration control device) used. In the third embodiment, an example will be described.

例えば、図10(a)に示す二つの架構A、Bに支持される配管20を備える配管支持構造物30について、制震デバイスの特性を調整する例を説明する。
<剛性の調整>
i)架構A、BともにX方向、Y方向の卓越モードが、架構が全体的に同方向に動くような振動モードとなるよう制震デバイスの剛性を調整する。
例えば、架構Aが図10(b)に示すような支持架構である場合、そのX方向およびY方向の卓越モードは、各々図11、図12に示すようになる。
ii)架構A、Bのそれぞれの方向の卓越モード振動数が一致するよう剛性を調整する。具体的には、架構AのX方向、Y方向の卓越モードの固有振動数をTax、Tay、架構BのX方向、Y方向の卓越モードの固有振動数をTbx、Tbyとすると、Tax=Tbx、Tay=Tbyとなるようにする。
For example, the example which adjusts the characteristic of a damping device about piping support structure 30 provided with piping 20 supported by two frames A and B shown in Drawing 10 (a) is explained.
<Rigidity adjustment>
i) The rigidity of the vibration control device is adjusted so that the dominant modes in the X direction and the Y direction in both the frames A and B become vibration modes in which the frame moves in the same direction as a whole.
For example, when the frame A is a support frame as shown in FIG. 10B, the dominant modes in the X direction and the Y direction are as shown in FIGS. 11 and 12, respectively.
ii) The rigidity is adjusted so that the dominant mode frequencies in the respective directions of the frames A and B coincide. Specifically, assuming that the natural frequencies of the dominant mode in the X direction and the Y direction of the frame A are Tax and Tay, and the natural frequencies of the X direction in the frame B and the dominant mode in the Y direction are Tbx and Tby, Tax = Tbx. , Tay = Tby.

<降伏荷重の調整>
地震時に配管20の支持点Pに作用する荷重は、慣性力のばらつきにより支持点Pごとに異なる。よって、制震デバイスに作用する荷重もばらつきがあるため、それらを考慮してそれぞれの制震デバイスの降伏荷重を設定し、制震デバイスが降伏した後も振動が同調するようにする。
例えば、図13に示すように、配管20がY方向に固定されている支持点に地震によりY方向の荷重P1〜P7が作用した場合、それらは慣性力のばらつきにより異なる。ここで、図13の荷重状態のとき降伏するよう制震デバイスの降伏軸力を調整する場合は、この状態での制震デバイスに発生する荷重を降伏軸力として設定する。つまり、制震デバイスa、bを例にすると、図13の状態で発生する荷重pa(Nay)、pb(Nby)を降伏荷重として設定する。この特性を視認して示すのが、図14である。つまり、制震デバイスa、bは同時に軸降伏する。
<Adjustment of yield load>
The load acting on the support point P of the pipe 20 at the time of an earthquake differs for each support point P due to variations in inertial force. Therefore, since the load acting on the vibration control device also varies, the yield load of each vibration control device is set in consideration of them, and the vibration is synchronized even after the vibration control device yields.
For example, as shown in FIG. 13, when loads P1 to P7 in the Y direction are applied to the support point where the pipe 20 is fixed in the Y direction due to an earthquake, they differ depending on variations in inertial force. Here, when adjusting the yield axial force of the vibration control device so as to yield in the load state of FIG. 13, the load generated in the vibration control device in this state is set as the yield axial force. That is, taking the vibration control devices a and b as examples, the loads pa (Nay) and pb (Nby) generated in the state of FIG. 13 are set as the yield loads. FIG. 14 visually shows this characteristic. That is, the vibration control devices a and b simultaneously yield at the shaft.

以上のように、支持架構10の振動特性を全体で同調させることで、配管支持構造物30全体として効率よく地震エネルギを吸収することが可能になる。
また、各支持架構10同士の振動特性を同調させるため、支持架構10は同位相で振動し、支持架構10同士の相対変位に伴う、固定点(支持点)P間の配管20の破損や、固定点(支持点)Pの破損などを防ぐことができる。
As described above, by synchronizing the vibration characteristics of the support frame 10 as a whole, the seismic energy can be efficiently absorbed by the pipe support structure 30 as a whole.
Further, in order to synchronize the vibration characteristics of the support frames 10, the support frame 10 vibrates in the same phase, and the pipe 20 between the fixed points (support points) P is damaged due to relative displacement between the support frames 10. It is possible to prevent the fixing point (support point) P from being damaged.

以上の説明は本発明の一実施形態にすぎず、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択し、他の構成に適宜変更することが可能である。   The above description is only one embodiment of the present invention, and the configuration described in the above embodiment can be selected and changed to other configurations as appropriate without departing from the gist of the present invention.

10…支持架構
1…支柱、2…梁、3…桁、4…第1構面、5…第2構面
6…ブレース(第1制震機構、第2制震機構)
11…軸降伏型ダンパ、12…せん断パネル型ダンパ、13…摩擦型ダンパ
14…切り欠き部、15…隣接構造物、16,17,18,19…ストッパ
20…配管
30…配管支持構造物
DESCRIPTION OF SYMBOLS 10 ... Supporting frame 1 ... Post, 2 ... Beam, 3 ... Girder, 4 ... 1st structural surface, 5 ... 2nd structural surface 6 ... Brace (1st damping mechanism, 2nd damping mechanism)
DESCRIPTION OF SYMBOLS 11 ... Shaft yield type damper, 12 ... Shear panel type damper, 13 ... Friction type damper 14 ... Notch part, 15 ... Adjacent structure, 16, 17, 18, 19 ... Stopper 20 ... Pipe 30 ... Pipe support structure

Claims (6)

設置面から立設し、配管の径方向に間隔をあけて配置されるとともに、前記配管の軸方向に間隔をあけて繰返して配置される複数の支柱と、
前記径方向に沿って前記支柱に支持される梁と、
前記軸方向に沿って前記支柱に支持される桁と、
前記径方向に隣接する前記支柱と前記梁とから構成される一又は二以上の第1構面に設けられる第1制震機構と、
前記軸方向に隣接する前記支柱と前記桁とから構成される一又は二以上の第2構面に設けられる第2制震機構と、を備える支持架構と、
前記梁上の支持点で支持される前記配管と、
を備える配管支持構造物であって、
前記配管支持構造物が少なくとも2つ以上連続する場合に、それぞれの振動特性が同調されていることを特徴とする配管支持構造物。
Standing up from the installation surface, arranged with an interval in the radial direction of the pipe, and a plurality of struts repeatedly arranged with an interval in the axial direction of the pipe,
A beam supported by the column along the radial direction;
A girder supported by the column along the axial direction;
A first seismic control mechanism provided on one or two or more first structural surfaces composed of the struts and the beams adjacent in the radial direction;
A support structure comprising: a second vibration control mechanism provided on one or two or more second structural surfaces composed of the struts adjacent to the axial direction and the girders;
The pipe supported at a support point on the beam;
A pipe support structure comprising:
When at least two or more of the pipe support structures are continuous, their vibration characteristics are tuned .
前記第1制震機構は、
前記配管の前記径方向の動きが拘束される前記支持点を有する前記梁を含む前記第1構面に設けられる請求項1に記載の配管支持構造物。
The first vibration control mechanism is
The pipe support structure according to claim 1, wherein the pipe support structure is provided on the first structural surface including the beam having the support point where the radial movement of the pipe is restricted.
前記第2制震機構は、
前記配管が前記軸方向の動きを拘束される前記支持点を有する前記梁に隣接する前記第2構面に設けられる請求項1又は2に記載の配管支持構造物。
The second vibration control mechanism is
The pipe support structure according to claim 1 or 2, wherein the pipe is provided on the second structural surface adjacent to the beam having the support point where the axial movement is restricted.
前記第1制震機構又は前記第2制震機構は、ダンパ部材である請求項1〜3のいずれか一項に記載の配管支持構造物。   The piping support structure according to any one of claims 1 to 3, wherein the first damping mechanism or the second damping mechanism is a damper member. 前記第1制震機構は、前記支持点を中心にして前記径方向の両側の前記梁上に設けられる配管鉛直荷重の影響を考慮して特性を設定された断面減少部である請求項1〜3のいずれか一項に記載の配管支持構造物。 The first seismic control mechanism is a cross-section decreasing portion whose characteristics are set in consideration of the influence of a vertical pipe load provided on the beam on both sides in the radial direction around the support point. The piping support structure according to any one of 3. 前記支持架構の前記径方向及び前記軸方向のいずれか一方又は双方の変位を規制する変移制御機構を備える請求項1〜5のいずれか一項に記載の配管支持構造物。   The piping support structure according to any one of claims 1 to 5, further comprising a transition control mechanism that regulates displacement of one or both of the radial direction and the axial direction of the support frame.
JP2009283537A 2009-12-15 2009-12-15 Piping support structure Active JP5291609B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009283537A JP5291609B2 (en) 2009-12-15 2009-12-15 Piping support structure
PCT/JP2010/005955 WO2011074161A1 (en) 2009-12-15 2010-10-05 Piping support structure
MX2012006514A MX2012006514A (en) 2009-12-15 2010-10-05 Piping support structure.
TW99134740A TWI435019B (en) 2009-12-15 2010-10-12 Piping support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283537A JP5291609B2 (en) 2009-12-15 2009-12-15 Piping support structure

Publications (3)

Publication Number Publication Date
JP2011127618A JP2011127618A (en) 2011-06-30
JP2011127618A5 JP2011127618A5 (en) 2012-04-05
JP5291609B2 true JP5291609B2 (en) 2013-09-18

Family

ID=44166936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283537A Active JP5291609B2 (en) 2009-12-15 2009-12-15 Piping support structure

Country Status (4)

Country Link
JP (1) JP5291609B2 (en)
MX (1) MX2012006514A (en)
TW (1) TWI435019B (en)
WO (1) WO2011074161A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631355B1 (en) 2016-05-11 2017-04-25 Stanley Taraszkiewicz Septic drainage system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312594A (en) * 1987-06-16 1988-12-21 株式会社東芝 Piping supporter
JP2989026B2 (en) * 1991-04-11 1999-12-13 大成建設株式会社 Variable stiffness structure for braced frames
JPH08282966A (en) * 1995-04-18 1996-10-29 Mitsubishi Heavy Ind Ltd Leg structure for cargo handling carrier machine
JP2000220212A (en) * 1999-02-02 2000-08-08 Ishikawajima Harima Heavy Ind Co Ltd Steel structure of earthquake-resistant design
JP4007726B2 (en) * 1999-08-05 2007-11-14 株式会社奥村組 Ramen structure
JP2004360812A (en) * 2003-06-05 2004-12-24 Ishikawajima Harima Heavy Ind Co Ltd Pipe guide supporting device

Also Published As

Publication number Publication date
JP2011127618A (en) 2011-06-30
TWI435019B (en) 2014-04-21
TW201135111A (en) 2011-10-16
MX2012006514A (en) 2012-07-17
WO2011074161A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP6842626B2 (en) Elastoplastic history type damper
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP2017150179A (en) Column beam structure having vibration damping structure
JP2005207111A (en) Seismic response controlled bridge pier
JP2009047193A (en) Damper device and structure
KR101487134B1 (en) Cantilever Type Vibration Control Device Using Bearings
JP2010216611A (en) Seismic response control metallic plate
JP6211378B2 (en) Bridge seismic control structure
JP5291609B2 (en) Piping support structure
JP2004300782A (en) Earthquake shaking damping device
JP5404679B2 (en) Shear damper
JP2010100990A (en) Earthquake-resisting wall
JP4395419B2 (en) Vibration control pillar
KR20200065414A (en) Joint damper structure and joint structure for beam to column connection
JP4959636B2 (en) Damping member
JP6862057B2 (en) Building stigma displacement suppression structure
JP2009281074A (en) Connecting vibration control structure of building
JP6831623B2 (en) Seismic / damping structure
JP6397192B2 (en) Supplemental forced vibration device
JP2014145417A (en) Vibration-proof structure of structure
JP6298402B2 (en) Partial seismic isolation structure
JP2014015729A (en) Vibration control structure for construction
JP2019019656A (en) Roof earthquake-resistant structure
JP2010242381A (en) Vibration control structure of building and building equipped therewith
JP5053554B2 (en) Vibration control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R151 Written notification of patent or utility model registration

Ref document number: 5291609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250