JP2017150179A - Column beam structure having vibration damping structure - Google Patents

Column beam structure having vibration damping structure Download PDF

Info

Publication number
JP2017150179A
JP2017150179A JP2016031773A JP2016031773A JP2017150179A JP 2017150179 A JP2017150179 A JP 2017150179A JP 2016031773 A JP2016031773 A JP 2016031773A JP 2016031773 A JP2016031773 A JP 2016031773A JP 2017150179 A JP2017150179 A JP 2017150179A
Authority
JP
Japan
Prior art keywords
column
plastic hinge
vibration damping
joint
damping structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016031773A
Other languages
Japanese (ja)
Other versions
JP6786224B2 (en
Inventor
平石 久廣
Hisahiro Hiraishi
久廣 平石
冨田 祐介
Yusuke Tomita
祐介 冨田
克朗 前島
Katsuro Maejima
克朗 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2016031773A priority Critical patent/JP6786224B2/en
Publication of JP2017150179A publication Critical patent/JP2017150179A/en
Application granted granted Critical
Publication of JP6786224B2 publication Critical patent/JP6786224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a column beam structure having a vibration damping structure, which has no disadvantage in cost when being compared to a conventional aseismic structure, which has less restriction in requirements for design and site when being compared to a conventional damping structure or seismic isolation structure, and which may absorb big energy from small deformation level so as to efficiently exert vibration damping effect.SOLUTION: In the column beam structure having a vibration damping structure, a plastic hinge part 15 is arranged on a beam end part and/or a column end part of a building, a vibration damping structure is realized by constructing the beam end part and/or the column end part in a manner where rigidity and/or yield resistance of the plastic hinge part is smaller than that of a member other than the plastic hinge part, and the plastic hinge part is configured in a manner where yield of the plastic hinge part starts from at least 1/150 in deformation angle of the building.SELECTED DRAWING: Figure 1

Description

本発明は、地震動に対する減振構造を有する柱梁構造に関する。   The present invention relates to a column beam structure having a vibration damping structure against earthquake motion.

近年、大地震動に対しても、建築物には一定の機能維持や損傷の抑制が要求され、最大応答時の建物変形角を1/100程度に抑制することが課題となってきた。このため、制振構造や免震構造が普及しつつあるが、コスト、制振・免震装置の設置のための意匠上・敷地上の制約、および、想定以上の外乱に対する制振・免震装置の性能に起因する安全性の問題など、配慮すべき課題が多い。また、これらの装置を用いずに鉄筋コンクリート造、鉄骨造の建物に対して通常の耐震設計を行う場合、最大応答時の建物変形角を1/100程度に抑制するためには、経済的および建築計画的に大きな支障が生じ得るかなり大きな建物強度を確保する必要がある。これは、通常の構造では降伏変形角が1/150〜1/100程度であるため、それ以前に大きなエネルギー吸収を期待できず、効率的に制振効果を発揮できないことによる。   In recent years, buildings have been required to maintain certain functions and suppress damage even against large earthquake motions, and it has become a challenge to suppress the building deformation angle at the maximum response to about 1/100. For this reason, vibration control structures and seismic isolation structures are spreading, but costs, design and site restrictions for installation of vibration suppression and seismic isolation devices, and vibration suppression and seismic isolation for unforeseen disturbances There are many issues to consider, such as safety issues due to the performance of the equipment. In addition, when ordinary seismic design is performed on reinforced concrete and steel buildings without using these devices, it is economical and architectural to suppress the building deformation angle at the maximum response to about 1/100. It is necessary to secure a fairly large building strength that can cause serious problems. This is because the normal structure has a yield deformation angle of about 1/150 to 1/100, so that large energy absorption cannot be expected before that, and the damping effect cannot be exhibited efficiently.

既存建物の構造部材に改良を加えて制振効果を得ようとする技術については、例えば特許文献1,2が挙げられる。特許文献1は、鉄骨構造物における柱梁接合部で溶接部の延性不足を解消し、延性を平均で5倍程度向上させ、耐震性能を高める鉄骨構造物の柱梁接合部構造として図10に示す構造を提案する。特許文献2は、大地震時における鉄骨構造物の過大な変形の抑制およびエネルギー吸収能力の向上を期待できる制振構造として図11に示す構造を提案する。   For example, Patent Documents 1 and 2 are cited as techniques for improving the structural members of an existing building to obtain a damping effect. Patent Document 1 discloses a steel beam structure with a beam-to-column joint in a steel structure that eliminates the lack of ductility of the welded portion, improves the ductility by an average of about five times, and improves seismic performance. The structure shown is proposed. Patent Document 2 proposes a structure shown in FIG. 11 as a vibration control structure that can be expected to suppress excessive deformation of a steel structure during a large earthquake and to improve energy absorption capability.

特開平8-4112号公報Japanese Patent Laid-Open No. 8-4112 特開2003-129565号公報Japanese Patent Laid-Open No. 2003-129565

特許文献1の構造では、図10のように、溶接(91)およびボルト(94)によりボックスコラム(96)に接合されたH型鋼の梁(97)において、その上下1対のフランジプレート(81、82)を切り欠いて切欠き(80)を設け、この切欠き(80)の範囲は2D以下である(D:梁背)。この切欠き(80)を設けた区間(98)ではフランジが均等に降伏し、塑性ヒンジ長が長くなるため、柱梁接合部の延性および建物の耐震性の向上を期待することができる。しかし、本構造は溶接部の延性不足を解消するために考案された技術であり、梁端部から離れた部分の断面を切り欠いているため、梁部材自体の曲げ耐力は切り欠きを設けない場合の耐力と比べ1〜2割程度しか小さくならず、降伏変形角もその程度しか小さくならない。このため、建物変形角が1/100〜1/75程度に達するまでには大きなエネルギー吸収を期待できず、効率的に制振効果を発揮できないという課題があった。   In the structure of Patent Document 1, as shown in FIG. 10, a pair of upper and lower flange plates (81) in an H-shaped steel beam (97) joined to a box column (96) by welding (91) and bolts (94). , 82) is provided to provide a notch (80), and the range of the notch (80) is 2D or less (D: beam back). In the section (98) provided with the notches (80), the flange yields evenly and the plastic hinge length becomes long, so that it can be expected that the ductility of the column beam joint and the earthquake resistance of the building are improved. However, this structure is a technique devised to solve the lack of ductility of the welded part, and the cross section of the part away from the beam end is cut out, so the bending strength of the beam member itself is not provided with a cutout. The yield strength is only about 10 to 20% smaller than the yield strength, and the yield deformation angle is only reduced to that extent. For this reason, there has been a problem that large energy absorption cannot be expected until the building deformation angle reaches about 1/100 to 1/75, and the vibration damping effect cannot be exhibited efficiently.

特許文献2の制振構造では、図11のように、柱(101)の近くの梁部分に板状の補強材(104)が備えられ、この補強材(104)の一端(4a)が柱に固定連結され、他端(4b)が柱から離れたところで梁(103)に固定連結されている。梁(103)はH形鋼からなり、水平な2つのフランジ(3a,3b)とこれらのフランジ間に位置する垂直なウェブプレート(3b)を有する。(102)はシェアプレートである。また、補強材(104)の両端の間の中間範囲は、梁の材軸方向には拘束されないように、梁材軸の直交方向には拘束されるように、梁(103)によって支持されている。地震時に梁に曲げ応力が生じると、梁の柱側端部が先行して降伏し、塑性変形が増大してエネルギー吸収を行う。このとき、補強材の中間範囲は梁と相対的に梁の材軸方向に移動可能であるためほとんど変形しない。そして、梁の塑性変形がさらに増大すると、補強材の中間範囲が抵抗し、梁のそれ以上の変形を防止する。よって、建物の過大な変形が抑制されると同時に大きなエネルギー吸収を期待できる。しかし、これら効果のメカニズムは複雑であり、効果を検証するためには多くのデータを要すると考えられるため、実用化の点において課題があった。また、補強材の両端の間の中間範囲には、梁材軸方向に多数のルーズホールが形成され、これらのルーズホールに挿入された座屈補剛ボルト(105)により梁と補強材が接合されているため、梁フランジには断面欠損が生じるとともに、構造詳細が煩雑となっている。このため、梁の曲げ耐力の低下やコストの増大等の課題があった。また、梁の塑性変形がある程度増大しないと補強材の中間範囲が抵抗しないため、効率的に制振効果を発揮できないという課題があった。   In the vibration damping structure of Patent Document 2, as shown in FIG. 11, a plate-like reinforcing material (104) is provided in a beam portion near the column (101), and one end (4a) of the reinforcing material (104) is provided as a column. The other end (4b) is fixedly connected to the beam (103) at a position away from the column. The beam (103) is made of H-shaped steel and has two horizontal flanges (3a, 3b) and a vertical web plate (3b) located between these flanges. (102) is a share plate. The intermediate range between both ends of the reinforcing material (104) is supported by the beam (103) so that it is constrained in the direction orthogonal to the beam axis so as not to be constrained in the beam axis direction of the beam. Yes. When bending stress is generated in the beam during an earthquake, the column side end of the beam yields first, and plastic deformation increases to absorb energy. At this time, the intermediate range of the reinforcing member is hardly deformed because it can move in the direction of the beam axis of the beam relative to the beam. When the plastic deformation of the beam further increases, the intermediate range of the reinforcing material resists and prevents further deformation of the beam. Therefore, excessive energy deformation can be expected while suppressing excessive deformation of the building. However, since the mechanism of these effects is complicated and it is considered that a lot of data is required to verify the effects, there is a problem in practical use. In addition, a number of loose holes are formed in the intermediate range between both ends of the reinforcing material in the axial direction of the beam material, and the beam and the reinforcing material are joined by buckling stiffening bolts (105) inserted into these loose holes. Therefore, a cross-sectional defect occurs in the beam flange, and the structural details are complicated. For this reason, there existed problems, such as the fall of the bending yield strength of a beam, and the increase in cost. In addition, if the plastic deformation of the beam does not increase to some extent, the intermediate range of the reinforcing material does not resist, so there is a problem that the vibration damping effect cannot be exhibited efficiently.

本発明は、上述のような従来技術の問題に鑑み、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されず、また、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮可能な減振構造を有する柱梁構造を提供することを目的とする。   In view of the problems of the prior art as described above, the present invention is not inferior in cost compared to conventional seismic structures, and is limited by design and site conditions compared to conventional vibration control structures and seismic isolation structures. Moreover, it aims at providing the column beam structure which has a vibration damping structure which can absorb a big energy from a small deformation level and can exhibit the vibration damping effect efficiently.

上記目的を達成するための減振構造を有する柱梁構造は、建物の梁端部および/または柱端部に塑性ヒンジ部を設け、前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成されることを特徴とする。   A column beam structure having a vibration damping structure for achieving the above object is provided with a plastic hinge portion at a beam end and / or a column end of a building, and the rigidity and / or yield strength of the plastic hinge portion is the plastic hinge. A vibration damping structure is provided by configuring the beam end portion and / or the column end portion so as to be smaller than the rigidity and / or the yield strength other than the portion, and the plastic hinge portion is a yield at the plastic hinge portion. Is configured such that the deformation angle of the building starts at least 1/150.

この減振構造を有する柱梁構造によれば、塑性ヒンジ部における降伏は建物の変形角が少なくとも1/150で始まり、従来よりも小さい降伏変形角となるので、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮することができる。このように、従来の設計法と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。また、減振構造は、構造部材の断面形状や配筋等に工夫を加えるだけで実現できるので、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されない。   According to the column beam structure with this vibration-damping structure, the yield at the plastic hinge begins with a deformation angle of the building of at least 1/150 and a smaller yield deformation angle than before, so it absorbs a large amount of energy from a small deformation level. In addition, the vibration damping effect can be exhibited efficiently. In this way, energy absorption performance superior to that of the conventional design method can be exhibited, and the building deformation angle (response) during a large earthquake can be significantly reduced. In addition, the vibration-damping structure can be realized simply by adding ingenuity to the cross-sectional shape and bar arrangement of the structural members. But it is not constrained by design and site conditions.

上記目的を達成するためのもう1つの減振構造を有する柱梁構造は、建物の梁端部および/または柱端部に塑性ヒンジ部を設け、前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、前記塑性ヒンジ部の長さを梁端から梁成の1/2以下および/または柱端から柱成もしくは柱幅の1/2以下とすることを特徴とする。   In order to achieve the above object, a column beam structure having another vibration damping structure is provided with a plastic hinge portion at the beam end and / or column end of a building, and the rigidity and / or yield strength of the plastic hinge portion is increased. A vibration-damping structure is provided by configuring the beam end and / or the column end so as to be smaller than the rigidity and / or yield strength other than the plastic hinge, and the length of the plastic hinge is set to the beam It is characterized by being 1/2 or less of the beam formation from the end and / or 1/2 or less of the column formation or the column width from the column end.

この減振構造を有する柱梁構造によれば、塑性ヒンジ部の長さを梁端から梁成および/または柱端から柱成もしくは柱幅の1/2以下とすることで、建物の降伏変形角が従来よりも小さくなり、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮することができる。このように、従来の設計法と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。また、減振構造は、構造部材の断面形状や配筋等に工夫を加えるだけで実現できるので、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されない。   According to the column-beam structure having this vibration-damping structure, the length of the plastic hinge is reduced from the beam end to the beam formation and / or from the column end to the column formation or half the column width or less. The angle becomes smaller than the conventional one, and a large amount of energy can be absorbed from a small deformation level to effectively exhibit a vibration damping effect. In this way, energy absorption performance superior to that of the conventional design method can be exhibited, and the building deformation angle (response) during a large earthquake can be significantly reduced. In addition, the vibration-damping structure can be realized simply by adding ingenuity to the cross-sectional shape and bar arrangement of the structural members. But it is not constrained by design and site conditions.

上記減振構造を有する柱梁構造において、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記塑性ヒンジ部における主筋の断面積を塑性ヒンジが生じない部分の主筋の断面積と比べ相対的に小さくすることで、塑性ヒンジ部を構成できる。   In the column beam structure having the above-described vibration-damping structure, the column and the beam are reinforced concrete, and are joined at a column beam joint, and the cross section of the main reinforcement in the plastic hinge portion is the main reinforcement of the portion where the plastic hinge does not occur. By making it relatively smaller than the cross-sectional area, a plastic hinge part can be configured.

また、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記梁および/または前記柱の一部の主筋のみが前記柱梁接合部に定着するようにすることで、塑性ヒンジ部を構成できる。   Further, the column and the beam are made of reinforced concrete, and are joined at a column beam joint, so that only the main bars of the beam and / or the column are fixed to the column beam joint. A plastic hinge part can be constructed.

また、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記梁端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保したうえで梁幅の中央近傍に曲げひび割れ誘発目地を設けることで、塑性ひずみを梁端部に集中させ、地震時におけるエネルギー吸収性能の向上および梁端部以外の損傷の制御を図ることができる。   In addition, the column and the beam are reinforced concrete, and are joined at a column beam joint, and a beam having a predetermined cover thickness of the reinforcing bar is secured at the boundary between the beam end and the column beam joint. By providing a bending crack-inducing joint in the vicinity of the center of the width, it is possible to concentrate plastic strain on the beam end, improve the energy absorption performance during an earthquake, and control damage other than the beam end.

また、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記柱端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保したうえで柱幅および/または柱成の中央近傍に曲げひび割れ誘発目地を設けることで、塑性ひずみを柱端部に集中させ、地震時におけるエネルギー吸収性能の向上および柱端部以外の損傷の制御を図ることができる。   In addition, the column and the beam are reinforced concrete, and are joined at a column beam joint, and a predetermined cover thickness of the reinforcing bar is secured at the boundary between the column end and the column beam joint. By providing a bending crack-inducing joint near the center of the width and / or column, it is possible to concentrate plastic strain on the column end, improve energy absorption performance during earthquakes, and control damage other than the column end. it can.

また、前記梁と前記柱とが鉄骨造であり、前記塑性ヒンジ部における梁部材および/または柱部材の断面積を塑性ヒンジが生じない部分と比べ相対的に小さくすることで、塑性ヒンジ部を構成できる。   Further, the beam and the column are steel structures, and the cross-sectional area of the beam member and / or the column member in the plastic hinge portion is made relatively smaller than a portion where the plastic hinge does not occur, so that the plastic hinge portion is Can be configured.

また、前記梁と前記柱とが鉄骨造であり、前記塑性ヒンジ部以外で梁部材および/または柱部材を鋼板で補強することで、塑性ヒンジ部を構成できる。   Further, the beam and the column are steel structures, and the plastic hinge portion can be configured by reinforcing the beam member and / or the column member with a steel plate other than the plastic hinge portion.

本発明の減振構造を有する柱梁構造によれば、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されず、また、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮することができる。   According to the column beam structure having the vibration-damping structure of the present invention, the cost is not inferior to that of the conventional earthquake-resistant structure, and the design and site conditions are limited compared to the conventional vibration-damping structure and the seismic isolation structure. In addition, a large amount of energy can be absorbed from a small deformation level, and a vibration damping effect can be efficiently exhibited.

第1実施形態による鉄筋コンクリート造の柱梁構造における梁の梁成方向の断面図(a)およびB-B線方向の柱梁接合部近傍の要部断面図(b)である。It is sectional drawing (a) of the beam forming direction of the beam in the reinforced concrete column beam structure by 1st Embodiment, and principal part sectional drawing (b) of the column beam junction vicinity of a BB line direction. 第1実施形態による減振構造を有する柱梁構造および従来の一般的な設計法による柱梁構造における地震力と建物変形角との履歴曲線を概略的に示すグラフである。It is a graph which shows roughly the hysteresis curve of the seismic force and building deformation angle in the column beam structure which has a vibration damping structure by a 1st embodiment, and the column beam structure by the conventional general design method. 図2の建物変形角を説明するための概略図である。It is the schematic for demonstrating the building deformation angle of FIG. 第1実施形態の第1変形例を説明するための図1(b)と同様の断面図である。It is sectional drawing similar to FIG.1 (b) for demonstrating the 1st modification of 1st Embodiment. 第1実施形態の第2変形例を説明するための図1(b)と同様の断面図(a)、第3変形例を説明するための図1(b)と同様の断面図(b)、さらに別の変形例を説明するための柱と梁との柱梁接合部を示す要部断面図(c)およびd-d線方向の梁断面図(d)である。Sectional view (a) similar to FIG. 1 (b) for explaining the second modification of the first embodiment, and sectional view (b) similar to FIG. 1 (b) for explaining the third modification. FIG. 10 is a sectional view (c) of a main part showing a column-beam joint between a column and a beam and a beam sectional view (d) in the dd line direction for explaining still another modified example. 第1実施形態の第4変形例を説明するための柱と梁の要部側面図(a)およびb-b線方向の柱断面図(b)である。It is the principal part side view (a) of the pillar and beam for demonstrating the 4th modification of 1st Embodiment, and the pillar sectional view (b) of the bb line direction. 第2実施形態を説明するための図1(b)と同様の断面図である。It is sectional drawing similar to FIG.1 (b) for demonstrating 2nd Embodiment. 第3実施形態による鉄骨造の柱梁構造における梁の梁成方向の断面図(a)およびBB-BB線方向の柱梁接合部近傍の要部断面図(b)である。It is sectional drawing (a) of the beam forming direction of the beam in the steel-structured column beam structure by 3rd Embodiment, and principal part sectional drawing (b) of the column beam junction vicinity of a BB-BB line direction. 第3実施形態の変形例を説明するための図8(a)と同様の梁の断面図(a)、同じく図8(b)と同様のbb-bb線方向の断面図(b)およびcc-cc線方向の断面図(c)である。Cross-sectional view (a) of the same beam as FIG. 8 (a), a cross-sectional view (b) in the bb-bb line direction similar to FIG. 8 (b), and cc for explaining a modification of the third embodiment It is sectional drawing (c) of the -cc line direction. 特許文献1による鉄骨構造物の柱梁接合部構造を示す図である。It is a figure which shows the column beam junction part structure of the steel frame structure by patent document 1. FIG. 特許文献2による鉄骨構造物の制振構造を示す図である。It is a figure which shows the damping structure of the steel structure by patent document 2. FIG.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1実施形態〉
図1は、第1実施形態による鉄筋コンクリート造の梁の梁成方向の断面図(a)およびB-B線方向の柱梁接合部近傍の要部断面図(b)である。
<First Embodiment>
FIG. 1 is a cross-sectional view (a) in the beam forming direction of a reinforced concrete beam according to the first embodiment and a main-portion cross-sectional view (b) in the vicinity of a column beam joint in the BB line direction.

図1(a)(b)の柱梁構造は、梁10が、梁コンクリート内に、梁上面10a側および梁下面10b側に複数本の主筋11が梁長手方向に配置された鉄筋コンクリート造からなるものである。各主筋11は柱梁接合部12まで延びて定着している。   The column beam structure of FIGS. 1 (a) and 1 (b) is made of a reinforced concrete structure in which a beam 10 is arranged in the beam concrete and a plurality of main bars 11 are arranged in the beam longitudinal direction on the beam upper surface 10a side and beam lower surface 10b side. Is. Each main reinforcement 11 extends to the column beam joint 12 and is fixed.

図1(b)のように、各主筋11は、梁端部19において主筋断面積を縮小した主筋縮小部15を有し、この主筋縮小部15が塑性ヒンジ部を構成する。主筋縮小部15は、梁10と柱梁接合部12との境界13から所定長さLを有し、この所定長さLが塑性ヒンジ長Lである。   As shown in FIG. 1B, each main bar 11 has a main bar reducing part 15 whose main bar cross-sectional area is reduced at the beam end part 19, and this main bar reducing part 15 constitutes a plastic hinge part. The main bar reducing portion 15 has a predetermined length L from the boundary 13 between the beam 10 and the column beam joint portion 12, and the predetermined length L is the plastic hinge length L.

図1(a)(b)では、梁10の梁端部19における塑性ヒンジ部15の主筋11の断面積は、ヒンジを生じない部分と比べ相対的に小さく、また、塑性ヒンジ長Lは部材長に比べかなり短くなっている。   1A and 1B, the cross-sectional area of the main bar 11 of the plastic hinge portion 15 at the beam end portion 19 of the beam 10 is relatively small compared to the portion where no hinge is formed, and the plastic hinge length L is a member. It is considerably shorter than the length.

図1(a)(b)における塑性ヒンジ長Lは、梁成をHとすると、H×1/2以下であることが好ましい。塑性ヒンジ長LがH×1/2以下の範囲内であることで、降伏領域を構造的に問題のない範囲で短くして降伏に至るまでの部材剛性はほとんど変化させずに降伏時の建物変形角を小さくすることができる。すなわち、塑性ヒンジ部15が少なくとも1/150の建物変形角で確実に降伏する。   The plastic hinge length L in FIGS. 1 (a) and 1 (b) is preferably H × 1/2 or less, where H is the beam formation. Because the plastic hinge length L is within the range of H × 1/2 or less, the yield strength is shortened in a range where there is no structural problem, and the member rigidity until yielding is hardly changed, and the building at the time of yielding The deformation angle can be reduced. That is, the plastic hinge portion 15 surely yields at a building deformation angle of at least 1/150.

また、H×1/2以下でかつ構造的に問題のない範囲内で塑性ヒンジ長Lを徐々に小さくした場合、降伏変形角の減少に伴いエネルギーの吸収能力および大地震時における建物変形角(応答)の低減効果は増大し、例えば、塑性ヒンジ部以外の部材において中地震時と同等の応力状態を容易に再現することが可能である。   In addition, when the plastic hinge length L is gradually reduced within a range of H × 1/2 or less and no structural problem, the energy absorption capacity and the building deformation angle during a large earthquake ( For example, it is possible to easily reproduce a stress state equivalent to that during a middle earthquake in members other than the plastic hinge portion.

本実施形態では、塑性ヒンジ部15の断面積を相対的に小さくしない場合と比べ、降伏に至るまでの部材剛性はほとんど変わらず、降伏変形角が小さくなることから、小さい変形の段階から優れたエネルギー吸収性能を示す。すなわち、効率的に減振効果を発揮することができる。このため、本性能を有する建築構造を減振構造と称する。減振構造では、構造部材の断面形状や配筋に工夫を加えるだけで効率的な制振効果が得られるため、通常の耐震構造と比べコスト的に遜色がなく、制振構造や免震構造と比べても意匠・敷地的な条件に制約されない。   In this embodiment, compared to the case where the cross-sectional area of the plastic hinge portion 15 is not relatively small, the member rigidity until yielding is almost unchanged and the yield deformation angle is small, which is excellent from the stage of small deformation. Energy absorption performance is shown. That is, the vibration damping effect can be exhibited efficiently. For this reason, the building structure having this performance is referred to as a vibration damping structure. With a vibration-damping structure, an efficient vibration control effect can be obtained simply by modifying the cross-sectional shape and bar arrangement of the structural member. Compared to the design and site conditions are not limited.

なお、一般的に制振構造は、建物がある程度変形しないとダンパー等による減衰効果が発揮されないため、大地震時における建物の揺れは通常の建物(耐震構造)と比べてそれほど変わらないが、柱梁等の構造部材への損傷は低減されるものである。これに対し、本実施形態のような減振構造は、柱梁等の構造部材に工夫を加えることにより、建物の降伏変形角を制御できるため、通常の建物(耐震構造)と比べ大地震時における建物の揺れを大幅に低減できるとともに、柱梁等の構造部材への損傷も低減されるものである。   In general, the damping structure does not exhibit the damping effect of a damper or the like unless the building is deformed to some extent, so the shaking of the building during a large earthquake is not much different from that of a normal building (seismic structure). Damage to structural members such as beams is reduced. On the other hand, the vibration-damping structure like this embodiment can control the yield deformation angle of buildings by adding ingenuity to structural members such as columns and beams. In addition to greatly reducing the shaking of the building, damage to structural members such as column beams is also reduced.

図2は、本実施形態による減振構造を有する柱梁構造および従来の一般的な設計法による柱梁構造における地震力と建物変形角との履歴曲線を概略的に示すグラフである。従来の一般的な設計による柱梁構造とは、図1のような塑性ヒンジ部15を設けない構造である。図3は図2の建物変形角を説明するための概略図である。   FIG. 2 is a graph schematically showing hysteresis curves of seismic force and building deformation angle in a column beam structure having a vibration damping structure according to the present embodiment and a column beam structure according to a conventional general design method. A conventional column beam structure by a general design is a structure in which the plastic hinge portion 15 is not provided as shown in FIG. FIG. 3 is a schematic diagram for explaining the building deformation angle of FIG.

図2に示すように、大地震時に建物に繰り返し荷重が加わった場合、本実施形態の減振構造を有する梁は、梁端部に設けた塑性ヒンジ部において、塑性ヒンジ部のない場合の降伏耐力Qyに対し、降伏耐力2/3Qyで降伏し、履歴曲線aを描きながら変形する。一方、従来の一般的な設計法による梁は、降伏耐力Qyで降伏し、履歴曲線bを描く。本実施形態の柱梁構造は、従来の梁と比べて、図2のcに示すように、部材の降伏に至るまでの剛性はほとんど変わらないため、降伏変形角が小さくなる。ここで、従来の一般的な設計法と対応する降伏変形角を1/150〜1/120とし、このときの降伏耐力Qyに対して本実施形態のように降伏耐力を2/3Qyとすると、その降伏変形角は1/200程度である。すなわち、本実施形態の柱梁構造における塑性ヒンジ部は、降伏変形角が少なくとも1/150となるように構成される。なお、建物変形角θnは、図3のように、建物のn階部分の高さをhn、地震時のn階部分の水平方向変位をδnとすると、次式(1)で表される。
θn=δn/hn (n=1,2,3,・・・) (1)
As shown in FIG. 2, when a load is repeatedly applied to a building during a large earthquake, the beam having the vibration-damping structure of this embodiment is a yield when the plastic hinge portion provided at the end of the beam has no plastic hinge portion. Yield with yield strength 2 / 3Qy against yield strength Qy and deform while drawing history curve a. On the other hand, the beam by the conventional general design method yields with the yield strength Qy, and draws the hysteresis curve b. In the column beam structure of the present embodiment, as shown in FIG. 2c, the rigidity until the yield of the member is hardly changed as compared with the conventional beam, and the yield deformation angle becomes small. Here, assuming that the yield deformation angle corresponding to the conventional general design method is 1/150 to 1/120, and the yield strength at this time is 2 / 3Qy as in this embodiment with respect to the yield strength Qy, Its yield deformation angle is about 1/200. That is, the plastic hinge portion in the column beam structure of the present embodiment is configured so that the yield deformation angle is at least 1/150. As shown in FIG. 3, the building deformation angle θn is expressed by the following equation (1), where hn is the height of the n-th floor part of the building and δn is the horizontal displacement of the n-th floor part at the time of the earthquake.
θn = δn / hn (n = 1, 2, 3,...) (1)

また、エネルギー吸収能力を表す指標としての等価減衰定数heqに関し、図2から両者の等価減衰定数heqを算定すると、本実施形態の柱梁構造に対応するheq´は、従来の一般的な設計法による梁のheqと比べて約1.7倍となる。なお、図2において等価減衰定数heq、heq´は次のようにして求めることができる。
本実施形態のheq´=履歴曲線aで囲まれる実線の面積/点oeiで囲まれる三角形の面積
従来のheq=履歴曲線bで囲まれる破線の面積/点ogiで囲まれる三角形の面積
Also relates to the equivalent damping constant h eq as an index representing the energy absorption capacity, when calculating the equivalent damping constant h eq of both Figures 2, h eq 'corresponding to Column structure of this embodiment, a conventional general It is about 1.7 times that of the beam h eq by a simple design method. In FIG. 2, the equivalent attenuation constants h eq and h eq ′ can be obtained as follows.
H eq ′ = area of solid line surrounded by history curve a / area of triangle surrounded by point oei in the present embodiment conventional h eq = area of broken line surrounded by history curve b / area of triangle surrounded by point ogi

以上のように、本実施形態によれば、梁端部に塑性ヒンジ部を設け、その降伏変形角を少なくとも1/150と小さくすることにより、従来の一般的な設計法の梁と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。   As described above, according to the present embodiment, the plastic hinge portion is provided at the beam end, and the yield deformation angle is reduced to at least 1/150, which is superior to the conventional general design beam. Energy absorption performance can be exhibited, and by extension, the building deformation angle (response) during a large earthquake can be significantly reduced.

本実施形態では、主筋11の降伏が断面積の縮小部15において生じるため、降伏時の曲げ耐力は、塑性ヒンジ部の断面積を相対的に小さくしない場合と比べ小さい。しかし、本実施形態による柱梁構造では、建物変形角が少なくとも1/150の小さな変形より降伏が始まるため、優れたエネルギー吸収性能を示す。このため、図2で説明したように、従来の柱梁構造と比べ大地震時における建物変形角(応答)を著しく低減できるとともに、大きなエネルギー吸収性能を得ることができる。したがって、構造部材の損傷の修復や性能の維持管理を含めたコスト面においても、高い品質を有している。   In the present embodiment, yielding of the main reinforcement 11 occurs in the reduced cross-sectional area 15, so the bending strength at yield is smaller than when the cross-sectional area of the plastic hinge portion is not relatively reduced. However, in the column beam structure according to the present embodiment, since the yield starts from a small deformation having a building deformation angle of at least 1/150, excellent energy absorption performance is exhibited. Therefore, as described with reference to FIG. 2, the building deformation angle (response) at the time of a large earthquake can be remarkably reduced and a large energy absorption performance can be obtained as compared with the conventional column beam structure. Therefore, it has high quality in terms of cost including repair of damage to structural members and maintenance of performance.

次に、図4〜図6を参照して第1実施形態の第1〜第4変形例を説明する。図4は第1実施形態の第1変形例を説明するための図1(b)と同様の断面図である。   Next, first to fourth modifications of the first embodiment will be described with reference to FIGS. FIG. 4 is a cross-sectional view similar to FIG. 1B for explaining a first modification of the first embodiment.

図4の例は、異径継手を用いて塑性ヒンジ部の主筋断面積を縮小したものである。鉄筋コンクリート造の梁10の主筋11に、梁端部19の近傍において、異径継手部16が設けられている。異径継手部16の図の左端から、梁10と柱梁接合部12との境界13までの主筋11(径が細くなった)の長さが塑性ヒンジ長Lである。本例によれば、建物変形角が少なくとも1/150という小さい変形レベルから優れたエネルギー吸収を図ることができる。   The example of FIG. 4 is obtained by reducing the main bar cross-sectional area of the plastic hinge using a different diameter joint. The main reinforcing bar 11 of the reinforced concrete beam 10 is provided with a different-diameter joint 16 in the vicinity of the beam end 19. The length of the main reinforcing bar 11 (having a reduced diameter) from the left end of the different diameter joint portion 16 to the boundary 13 between the beam 10 and the column beam joint portion 12 is the plastic hinge length L. According to this example, excellent energy absorption can be achieved from a small deformation level where the building deformation angle is at least 1/150.

図5は、第1実施形態の第2変形例を説明するための図1(b)と同様の断面図(a)、第3変形例を説明するための図1(b)と同様の断面図(b)、さらに別の変形例を説明するための柱と梁との柱梁接合部を示す要部断面図(c)およびd-d線方向の梁断面図(d)である。   FIG. 5 is a cross-sectional view similar to FIG. 1B for explaining a second modification of the first embodiment, and a cross-section similar to FIG. 1B for explaining a third modification. FIG. 4B is a cross-sectional view of the main part showing a column-beam joint between a column and a beam for explaining still another modified example, and a beam cross-sectional view in the dd line direction (d).

図5(a)の例は、図1の構造において、梁10と柱梁接合部12との境界13に曲げひび割れ誘発目地としてスリット17を設けたものである。図5(b)の例は、図4の構造において、梁10と柱梁接合部12との境界13に曲げひび割れ誘発目地としてスリット17を設けたものである。図5(c)(d)は梁10と柱梁接合部12との両境界13に複数のスリット17を設けたものである。図5(a)(b)の例によれば、コンクリートの損傷低減による更なるエネルギー吸収性能の向上を図ることができる。また、スリット17は、例えば、図5(c)(d)のように、鉄筋の所定のかぶり厚を確保したうえで梁10の矩形断面の上端・下端の中央近傍に設けた、長方形状または台形状の複数のスリットとすることができる。   In the example of FIG. 5A, a slit 17 is provided as a bending crack-inducing joint at the boundary 13 between the beam 10 and the column beam joint 12 in the structure of FIG. In the example of FIG. 5B, a slit 17 is provided as a bending crack-inducing joint at the boundary 13 between the beam 10 and the column beam joint 12 in the structure of FIG. 5C and 5D show a case where a plurality of slits 17 are provided at both boundaries 13 between the beam 10 and the column beam joint 12. According to the examples of FIGS. 5A and 5B, it is possible to further improve energy absorption performance by reducing damage to concrete. In addition, the slit 17 is, for example, as shown in FIGS. 5 (c) and 5 (d), provided with a predetermined cover thickness of the reinforcing bar and provided in the vicinity of the center of the upper and lower ends of the rectangular cross section of the beam 10. A plurality of trapezoidal slits can be formed.

図6は、第1実施形態の第4変形例を説明するための柱と梁の要部側面図(a)およびb-b線方向の柱断面図(b)である。図6(a)(b)の例は、柱端部の境界33においても曲げひび割れ誘発目地としてスリット37を設けたものである。すなわち、柱30と柱梁接合部12との境界33に、鉄筋の所定のかぶり厚を確保したうえで柱30の矩形断面の各辺の中央近傍に長方形状または台形状の複数のスリット37が設けられている。柱のコンクリートの損傷低減による更なるエネルギー吸収性能の向上を図ることができる。   FIGS. 6A and 6B are a side view of a main part of a column and a beam for explaining a fourth modification of the first embodiment (a) and a cross-sectional view of the column in the bb line direction (b). In the example of FIGS. 6A and 6B, a slit 37 is provided as a bending crack-inducing joint at the boundary 33 of the column end. That is, a plurality of rectangular or trapezoidal slits 37 are formed in the vicinity of the center of each side of the rectangular cross section of the column 30 after securing a predetermined cover thickness of the reinforcing bar at the boundary 33 between the column 30 and the column beam joint 12. Is provided. It is possible to further improve energy absorption performance by reducing damage to the concrete of the pillar.

〈第2実施形態〉
図7は第2実施形態を説明するための図1(b)と同様の断面図である。第2実施形態は、図7のように、鉄筋コンクリート造の梁10において主筋の一部を非定着としたものである。すなわち、鉄筋コンクリート造の梁10の複数本の主筋11,11a,11のうちの中央の主筋11aを、梁10と柱梁接合部12との境界13まで配置し、柱梁接合部12に定着させず、主筋11,11を柱梁接合部12に定着させたものである。この境界13における主筋11、11による定着部18が塑性ヒンジ部を構成する。本実施形態によれば、建物変形角が少なくとも1/150という小さい変形レベルから優れたエネルギー吸収を図ることができる。
Second Embodiment
FIG. 7 is a cross-sectional view similar to FIG. 1B for explaining the second embodiment. In the second embodiment, as shown in FIG. 7, a part of the main reinforcement is not fixed in the reinforced concrete beam 10. That is, the central main bar 11a of the plurality of main bars 11, 11a, 11 of the reinforced concrete beam 10 is arranged up to the boundary 13 between the beam 10 and the column beam joint 12 and fixed to the column beam joint 12. The main bars 11 and 11 are fixed to the column beam joint 12. The fixing portion 18 formed by the main bars 11 and 11 at the boundary 13 constitutes a plastic hinge portion. According to this embodiment, it is possible to achieve excellent energy absorption from a small deformation level where the building deformation angle is at least 1/150.

上述の第1,第2の実施形態では、鉄筋コンクリート造の柱梁構造において梁端部に塑性ヒンジ部を設けた例を説明したが、同様の塑性ヒンジ部の構成を柱端部に設けることができ、同様の効果を得ることができる。さらに、梁端部および柱端部の双方に塑性ヒンジ部を設けてもよい。   In the first and second embodiments described above, the example in which the plastic hinge portion is provided at the beam end in the reinforced concrete column beam structure has been described. However, a similar plastic hinge configuration may be provided at the column end. And similar effects can be obtained. Furthermore, you may provide a plastic hinge part in both a beam end part and a column end part.

〈第3実施形態〉
図8は、第3実施形態による鉄骨造の梁の梁成方向の断面図(a)およびBB-BB線方向の柱梁接合部近傍の要部断面図(b)である。
<Third Embodiment>
FIG. 8: is sectional drawing (a) of the beam forming direction of the steel-frame beam by 3rd Embodiment, and principal part sectional drawing (b) of the column beam junction vicinity of a BB-BB line direction.

図8(a)(b)の柱梁構造は、梁20がH形鋼からなる鉄骨造であり、梁上面20a側および梁下面20b側に水平方向に位置する上下一対のフランジ21,21と、一対のフランジ21,21を結合する垂直方向に位置するウェブ22とから構成される。   The column beam structure of FIGS. 8A and 8B is a steel structure in which the beam 20 is made of H-shaped steel, and a pair of upper and lower flanges 21 and 21 positioned in the horizontal direction on the beam upper surface 20a side and the beam lower surface 20b side. , And a web 22 positioned in the vertical direction that couples the pair of flanges 21 and 21.

図8(b)のように、梁20の上下のフランジ21,21は、梁端部において断面積を縮小した断面縮小部25を有し、この断面縮小部25が塑性ヒンジ部を構成する。断面縮小部25は、梁20と柱梁接合部23との境界24から所定長さL2を有し、この所定長さが塑性ヒンジ長Lである。なお、梁20と柱梁接合部23とは、例えば、溶接により接合される。   As shown in FIG. 8B, the upper and lower flanges 21 and 21 of the beam 20 have a cross-sectional reduced portion 25 whose cross-sectional area is reduced at the end of the beam, and this cross-sectional reduced portion 25 constitutes a plastic hinge portion. The cross-sectional reduction portion 25 has a predetermined length L2 from the boundary 24 between the beam 20 and the column beam joint portion 23, and this predetermined length is the plastic hinge length L. In addition, the beam 20 and the column beam junction part 23 are joined by welding, for example.

また、図8(a)(b)では、梁20の梁端部における塑性ヒンジ部25のフランジ21の断面積は、ヒンジを生じない部分と比べ相対的に小さく、また、塑性ヒンジ長Lは部材長に比べかなり短くなっている。   8A and 8B, the cross-sectional area of the flange 21 of the plastic hinge portion 25 at the beam end portion of the beam 20 is relatively small as compared with the portion where no hinge is generated, and the plastic hinge length L is It is considerably shorter than the member length.

図8(a)(b)における塑性ヒンジ長Lは、図1(a)(b)の場合と同様に、梁成をHとすると、H×1/2以下であることが好ましい。塑性ヒンジ長LがH×1/2以下の範囲内であることで、降伏領域を構造的に問題のない範囲で短くして降伏に至るまでの部材剛性はほとんど変化させずに降伏時の建物変形角を小さくすることができる。すなわち、塑性ヒンジ部25が少なくとも1/150の建物変形角で確実に降伏する。   The plastic hinge length L in FIGS. 8 (a) and 8 (b) is preferably H × 1/2 or less, assuming that the beam formation is H, as in FIGS. 1 (a) and 1 (b). Because the plastic hinge length L is within the range of H × 1/2 or less, the yield strength is shortened in a range where there is no structural problem, and the member rigidity until yielding is hardly changed, and the building at the time of yielding The deformation angle can be reduced. That is, the plastic hinge portion 25 surely yields at a building deformation angle of at least 1/150.

本実施形態では、塑性ヒンジ部25の断面積を相対的に小さくしない場合と比べ、降伏に至るまでの部材剛性はほとんど変わらず、降伏変形角が小さくなることから、小さい変形の段階から優れたエネルギー吸収性能を示す。すなわち、効率的に減振効果を発揮することができる。このため、図1(a)(b)の場合と同様の減振構造を有する柱梁構造とすることができる。   In this embodiment, compared with the case where the cross-sectional area of the plastic hinge portion 25 is not relatively small, the member rigidity until yielding is hardly changed and the yield deformation angle is small, which is excellent from the small deformation stage. Energy absorption performance is shown. That is, the vibration damping effect can be exhibited efficiently. For this reason, it can be set as the column beam structure which has the same vibration damping structure as the case of Fig.1 (a) (b).

また、本実施形態でも、大地震時に建物に繰り返し荷重が加わった場合、図2の履歴曲線aを描きながら変形し、同様のエネルギー吸収能力を示す。すなわち、梁端部に塑性ヒンジ部を設け、その降伏変形角を少なくとも1/150と小さくすることにより、従来の一般的な設計法の梁(鉄骨造)と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。   Also in the present embodiment, when a load is repeatedly applied to a building during a large earthquake, the building is deformed while drawing a history curve a in FIG. In other words, by providing a plastic hinge at the end of the beam and reducing its yield deformation angle to at least 1/150, it exhibits superior energy absorption performance compared to the conventional general design method (steel structure) As a result, the building deformation angle (response) at the time of a large earthquake can be significantly reduced.

本実施形態では、フランジ21の降伏が断面積の縮小部25において生じるため、降伏時の曲げ耐力は、塑性ヒンジ部の断面積を相対的に小さくしない場合と比べ小さい。しかし、本実施形態による柱梁構造では、建物変形角が少なくとも1/150の小さな変形より降伏が始まるため、優れたエネルギー吸収性能を示す。このため、図2で説明したように、従来の柱梁構造(鉄骨造)と比べ大地震時における建物変形角(応答)を著しく低減できるとともに、大きなエネルギー吸収性能を得ることができる。したがって、構造部材の損傷の修復や性能の維持管理を含めたコスト面においても、高い品質を有している。   In this embodiment, since the yield of the flange 21 occurs in the reduced section 25 of the cross-sectional area, the bending strength at the time of yield is small compared to the case where the cross-sectional area of the plastic hinge portion is not relatively reduced. However, in the column beam structure according to the present embodiment, since the yield starts from a small deformation having a building deformation angle of at least 1/150, excellent energy absorption performance is exhibited. Therefore, as described with reference to FIG. 2, the building deformation angle (response) at the time of a large earthquake can be remarkably reduced and a large energy absorption performance can be obtained as compared with the conventional column beam structure (steel structure). Therefore, it has high quality in terms of cost including repair of damage to structural members and maintenance of performance.

図9は第3実施形態の変形例を説明するための図8(a)と同様の梁の断面図(a)、同じく図8(b)と同様のbb-bb線方向の断面図(b)およびcc-cc線方向の断面図(c)である。図9(a)〜(c)のように、本例はH形鋼からなる鉄骨造の梁20において、梁端部より塑性ヒンジ部27を除いてフランジ21,21を鋼板26,26で補強したものである。すなわち、H形鋼からなる梁20のフランジ21,21の上面および下面に補強鋼板26,26を配置し、溶接やボルトナット等で取り付ける。このとき、柱梁接合部23と梁20との境界24から所定長さLだけ鋼板26,26を短くする。この所定長さLの部分が塑性ヒンジ部27を構成し、所定長さLが塑性ヒンジ長Lである。本実施形態によれば、補強鋼板26とフランジ21との板厚合計と同厚のフランジ厚を有する梁と比べて、建物変形角が少なくとも1/150という小さい変形レベルから優れたエネルギー吸収を図ることができる。   FIG. 9 is a cross-sectional view (a) of a beam similar to FIG. 8 (a) for explaining a modification of the third embodiment, and a cross-sectional view in the bb-bb line direction similar to FIG. 8 (b) (b). ) And cc-cc line direction sectional view (c). 9A to 9C, in this example, in the steel beam 20 made of H-shaped steel, the flanges 21 and 21 are reinforced by the steel plates 26 and 26 by removing the plastic hinge portion 27 from the beam end portion. It is a thing. That is, the reinforcing steel plates 26 and 26 are disposed on the upper and lower surfaces of the flanges 21 and 21 of the beam 20 made of H-shaped steel, and are attached by welding or bolts and nuts. At this time, the steel plates 26 and 26 are shortened by a predetermined length L from the boundary 24 between the column beam joint 23 and the beam 20. The portion having the predetermined length L constitutes the plastic hinge portion 27, and the predetermined length L is the plastic hinge length L. According to this embodiment, compared with a beam having a flange thickness that is the same as the total thickness of the reinforcing steel plate 26 and the flange 21, excellent energy absorption is achieved from a small deformation level where the building deformation angle is at least 1/150. be able to.

なお、上述の第3の実施形態では、鉄骨造の柱梁構造において梁端部に塑性ヒンジ部を設けた例を説明したが、同様の塑性ヒンジ部の構成を柱端部に設けることができ、同様の効果を得ることができる。さらに、梁端部および柱端部の双方に塑性ヒンジ部を設けてもよい。   In the third embodiment described above, an example in which the plastic hinge portion is provided at the beam end in the steel column beam structure has been described. However, a similar plastic hinge configuration can be provided at the column end. The same effect can be obtained. Furthermore, you may provide a plastic hinge part in both a beam end part and a column end part.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図1,図4〜図7の鉄筋コンクリート造による梁の構成は、図示のものに限定されず、たとえば、主筋の本数等は適宜変更可能であることはもちろんである。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the configuration of the reinforced concrete beam shown in FIGS. 1 and 4 to 7 is not limited to the illustrated one, and for example, the number of main bars can be changed as appropriate.

本発明の減振構造を有する柱梁構造によれば、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されず、また、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮可能な減振構造を有するとともにコスト的に有利な建物構造を実現することができる。   According to the column beam structure having the vibration-damping structure of the present invention, the cost is not inferior to that of the conventional earthquake-resistant structure, and the design and site conditions are limited compared to the conventional vibration-damping structure and the seismic isolation structure. In addition, it is possible to realize a building structure that has a vibration damping structure that can absorb a large amount of energy from a small deformation level and that can effectively exhibit a vibration damping effect, and that is advantageous in terms of cost.

10 梁
11,11a 主筋
12 梁接合部
13 境界
15 主筋縮小部、塑性ヒンジ部
16 異径継手部
17 スリット
18 定着部、塑性ヒンジ部
19 梁端部
30 柱
37 スリット
20 梁
21 フランジ
22 ウェブ
23 柱梁接合部
24 境界
25 断面縮小部、塑性ヒンジ部
26 補強鋼板
27 塑性ヒンジ部
L 塑性ヒンジ長
H 梁成
DESCRIPTION OF SYMBOLS 10 Beam 11, 11a Main reinforcement 12 Beam connection part 13 Boundary 15 Main reinforcement reduction | decrease part, Plastic hinge part 16 Different diameter joint part 17 Slit 18 Fixing part, Plastic hinge part 19 Beam end part 30 Column 37 Slit 20 Beam 21 Flange 22 Web 23 Column Beam joint portion 24 Boundary 25 Cross-section reduced portion, plastic hinge portion 26 reinforced steel plate 27 plastic hinge portion L plastic hinge length H

Claims (8)

建物の梁端部および/または柱端部に塑性ヒンジ部を設け、
前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、
前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成されることを特徴とする減振構造を有する柱梁構造。
Provide plastic hinges at the beam end and / or column end of the building,
The vibration damping structure is configured by configuring the beam end portion and / or the column end portion so that rigidity and / or yield strength in the plastic hinge portion is smaller than rigidity and / or yield strength other than the plastic hinge portion. Provided,
The column beam structure having a vibration damping structure, wherein the plastic hinge part is configured such that the yield at the plastic hinge part starts at a deformation angle of at least 1/150 of the building.
建物の梁端部および/または柱端部に塑性ヒンジ部を設け、
前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、
前記塑性ヒンジ部の長さを梁端から梁成の1/2以下および/または柱端から柱成もしくは柱幅の1/2以下とすることを特徴とする減振構造を有する柱梁構造。
Provide plastic hinges at the beam end and / or column end of the building,
The vibration damping structure is configured by configuring the beam end portion and / or the column end portion so that rigidity and / or yield strength in the plastic hinge portion is smaller than rigidity and / or yield strength other than the plastic hinge portion. Provided,
A column beam structure having a vibration damping structure, characterized in that the length of the plastic hinge portion is 1/2 or less of the beam formation from the beam end and / or 1/2 or less of the column formation or column width from the column end.
前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、
前記塑性ヒンジ部における主筋の断面積を塑性ヒンジが生じない部分の主筋の断面積と比べ相対的に小さくする請求項1または2に記載の減振構造を有する柱梁構造。
The column and the beam are reinforced concrete, and are joined at a column beam joint,
The column beam structure having a vibration-damping structure according to claim 1 or 2, wherein a cross-sectional area of the main bar in the plastic hinge portion is relatively smaller than a cross-sectional area of the main bar in a portion where the plastic hinge does not occur.
前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、
前記梁および/または柱の一部の主筋のみが前記柱梁接合部に定着する請求項1乃至3のいずれか1項に記載の減振構造を有する柱梁構造。
The column and the beam are reinforced concrete, and are joined at a column beam joint,
The column beam structure having a vibration-damping structure according to any one of claims 1 to 3, wherein only some main bars of the beam and / or the column are fixed to the column beam joint.
前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、
前記梁端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保したうえで梁幅の中央近傍に曲げひび割れ誘発目地を設ける請求項1乃至4のいずれか1項に記載の減振構造を有する柱梁構造。
The column and the beam are reinforced concrete, and are joined at a column beam joint,
5. The bending crack-inducing joint is provided in the vicinity of the center of the beam width at a boundary between the beam end and the beam-column joint, while ensuring a predetermined cover thickness of the reinforcing bar. Column beam structure with a vibration damping structure.
前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、
前記柱端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保したうえで柱幅および/または柱成の中央近傍に曲げひび割れ誘発目地を設ける請求項1乃至5のいずれか1項に記載の減振構造を有する柱梁構造。
The column and the beam are reinforced concrete, and are joined at a column beam joint,
6. The bending crack-inducing joint is provided in the vicinity of the column width and / or the center of the column formation after securing a predetermined cover thickness of the reinforcing bar at the boundary between the column end and the column beam joint. A column beam structure having the vibration damping structure according to claim 1.
前記梁と前記柱とが鉄骨造であり、
前記塑性ヒンジ部における梁部材および/または柱部材の断面積を塑性ヒンジが生じない部分と比べ相対的に小さくする請求項1または2に記載の減振構造を有する柱梁構造。
The beam and the pillar are steel structures,
The column beam structure having a vibration damping structure according to claim 1 or 2, wherein a cross-sectional area of the beam member and / or the column member in the plastic hinge portion is made relatively smaller than a portion where the plastic hinge is not generated.
前記梁と前記柱とが鉄骨造であり、
前記塑性ヒンジ部以外で梁部材および/または柱部材を鋼板で補強する請求項1または2に記載の減振構造を有する柱梁構造。
The beam and the pillar are steel structures,
The column beam structure having a vibration-damping structure according to claim 1 or 2, wherein the beam member and / or the column member is reinforced with a steel plate other than the plastic hinge portion.
JP2016031773A 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure Active JP6786224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031773A JP6786224B2 (en) 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031773A JP6786224B2 (en) 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure

Publications (2)

Publication Number Publication Date
JP2017150179A true JP2017150179A (en) 2017-08-31
JP6786224B2 JP6786224B2 (en) 2020-11-18

Family

ID=59738817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031773A Active JP6786224B2 (en) 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure

Country Status (1)

Country Link
JP (1) JP6786224B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469203A (en) * 2018-12-25 2019-03-15 中国电建集团成都勘测设计研究院有限公司 Highlight lines area frame structure node of column and beam overall structure
JP2019085836A (en) * 2017-11-10 2019-06-06 Jfeシビル株式会社 Reinforcing bar member, reinforced concrete structure using reinforcing bar member
CN110374370A (en) * 2019-08-05 2019-10-25 湖南大学 A kind of high-level stereo garage energy-dissipating and shock-absorbing load-carrying members
CN111236424A (en) * 2020-01-14 2020-06-05 长安大学 Intelligent damping structure of assembled frame
CN111236425A (en) * 2020-01-14 2020-06-05 长安大学 Intelligent damping structure of assembled frame shear wall
CN112095811A (en) * 2020-09-30 2020-12-18 福建工程学院 Adopt bolted connection's assembled concrete frame roof beam post trunk formula connected node
CN112832371A (en) * 2021-01-12 2021-05-25 江南大学 Assembled beam column energy dissipation node unit that contains tenon fourth of twelve earthly branches structure
WO2023197829A1 (en) * 2022-04-14 2023-10-19 华南理工大学 Two-stage seismic design method for replaceable energy dissipation steel frame node
CN110374370B (en) * 2019-08-05 2024-06-07 湖南大学 High-rise stereo garage energy consumption shock attenuation bearing structure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012500B2 (en) * 1976-09-14 1985-04-02 株式会社大林組 Construction method of reinforced concrete frame frame
JPH084112A (en) * 1994-06-17 1996-01-09 Natl Sci Council Column beam connecting section of steel structure
US5675943A (en) * 1995-11-20 1997-10-14 Southworth; George L. Lateral load-resisting structure having self-righting feature
JPH11140974A (en) * 1997-11-12 1999-05-25 Kajima Corp Contact-bonding joining section of precast pc member
JP2002004417A (en) * 2000-06-19 2002-01-09 Takenaka Komuten Co Ltd Pc compression joint structure for precast concrete beam and column
JP2002021197A (en) * 2000-07-10 2002-01-23 Shimizu Corp Connection end part and building frame structure of rc structural body
JP2002327499A (en) * 2001-05-02 2002-11-15 Ohbayashi Corp Beam member
JP2003138658A (en) * 2001-11-07 2003-05-14 Hisahiro Hiraishi End fixed structure of constituent in reinforced concrete construction structure
JP2004346641A (en) * 2003-05-23 2004-12-09 Hisahiro Hiraishi Joint structure of concrete member
JP2008280786A (en) * 2007-05-11 2008-11-20 Sumisho & Mitsuibussan Kenzai Co Ltd Joint structure of wooden building member
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP2009299325A (en) * 2008-06-12 2009-12-24 Kajima Corp Plastic hinge structure of concrete-based member, and concrete-based member
JP2011102512A (en) * 2009-11-12 2011-05-26 Jfe Steel Corp Welding joint structure of column and beam
JP2012207414A (en) * 2011-03-29 2012-10-25 Takenaka Komuten Co Ltd Joint structure for reinforced concrete beam

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012500B2 (en) * 1976-09-14 1985-04-02 株式会社大林組 Construction method of reinforced concrete frame frame
JPH084112A (en) * 1994-06-17 1996-01-09 Natl Sci Council Column beam connecting section of steel structure
US5675943A (en) * 1995-11-20 1997-10-14 Southworth; George L. Lateral load-resisting structure having self-righting feature
JPH11140974A (en) * 1997-11-12 1999-05-25 Kajima Corp Contact-bonding joining section of precast pc member
JP2002004417A (en) * 2000-06-19 2002-01-09 Takenaka Komuten Co Ltd Pc compression joint structure for precast concrete beam and column
JP2002021197A (en) * 2000-07-10 2002-01-23 Shimizu Corp Connection end part and building frame structure of rc structural body
JP2002327499A (en) * 2001-05-02 2002-11-15 Ohbayashi Corp Beam member
JP2003138658A (en) * 2001-11-07 2003-05-14 Hisahiro Hiraishi End fixed structure of constituent in reinforced concrete construction structure
JP2004346641A (en) * 2003-05-23 2004-12-09 Hisahiro Hiraishi Joint structure of concrete member
JP2008280786A (en) * 2007-05-11 2008-11-20 Sumisho & Mitsuibussan Kenzai Co Ltd Joint structure of wooden building member
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP2009299325A (en) * 2008-06-12 2009-12-24 Kajima Corp Plastic hinge structure of concrete-based member, and concrete-based member
JP2011102512A (en) * 2009-11-12 2011-05-26 Jfe Steel Corp Welding joint structure of column and beam
JP2012207414A (en) * 2011-03-29 2012-10-25 Takenaka Komuten Co Ltd Joint structure for reinforced concrete beam

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092488B2 (en) 2017-11-10 2022-06-28 Jfeシビル株式会社 Reinforcing bar members and reinforced concrete structures using reinforcing bar members
JP2019085836A (en) * 2017-11-10 2019-06-06 Jfeシビル株式会社 Reinforcing bar member, reinforced concrete structure using reinforcing bar member
CN109469203A (en) * 2018-12-25 2019-03-15 中国电建集团成都勘测设计研究院有限公司 Highlight lines area frame structure node of column and beam overall structure
CN109469203B (en) * 2018-12-25 2023-09-19 中国电建集团成都勘测设计研究院有限公司 High intensity area frame construction post beam node overall structure
CN110374370A (en) * 2019-08-05 2019-10-25 湖南大学 A kind of high-level stereo garage energy-dissipating and shock-absorbing load-carrying members
CN110374370B (en) * 2019-08-05 2024-06-07 湖南大学 High-rise stereo garage energy consumption shock attenuation bearing structure
CN111236424A (en) * 2020-01-14 2020-06-05 长安大学 Intelligent damping structure of assembled frame
CN111236425B (en) * 2020-01-14 2021-05-18 长安大学 Intelligent damping structure of assembled frame shear wall
CN111236425A (en) * 2020-01-14 2020-06-05 长安大学 Intelligent damping structure of assembled frame shear wall
CN112095811A (en) * 2020-09-30 2020-12-18 福建工程学院 Adopt bolted connection's assembled concrete frame roof beam post trunk formula connected node
CN112832371A (en) * 2021-01-12 2021-05-25 江南大学 Assembled beam column energy dissipation node unit that contains tenon fourth of twelve earthly branches structure
CN112832371B (en) * 2021-01-12 2021-12-28 江南大学 Assembled beam column energy dissipation node unit that contains tenon fourth of twelve earthly branches structure
WO2023197829A1 (en) * 2022-04-14 2023-10-19 华南理工大学 Two-stage seismic design method for replaceable energy dissipation steel frame node

Also Published As

Publication number Publication date
JP6786224B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP2017150179A (en) Column beam structure having vibration damping structure
JP5575838B2 (en) Beam support structure of building
CN105358865A (en) Damping device
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP5491256B2 (en) Bending deformation control structure
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP4414833B2 (en) Seismic walls using corrugated steel
JP6275314B1 (en) Seismic reinforcement structure for bridges
KR102083066B1 (en) Frame-type Damping Device and Reinforcing Method Using The Same
JP5654060B2 (en) Damper brace and damping structure
JP2733917B2 (en) Damping device
JP5059687B2 (en) Building seismic control structure
JP5627846B2 (en) Boundary beam, boundary beam design method, boundary beam construction method, and building
JP4282003B2 (en) Vibration control structure
JP6862057B2 (en) Building stigma displacement suppression structure
JP2017040102A (en) Vibration control structure of building
JP6265422B2 (en) Reinforcement structure and building
JP2002227127A (en) Bridge and aseismatic strength reinforcing method for bridge pier
JP2012207389A (en) Seismic strengthening construction method for existing building
JPH10280725A (en) Damping skeleton construction
JP5503200B2 (en) Unit building
JP2010242381A (en) Vibration control structure of building and building equipped therewith
KR102074040B1 (en) Steel Damper and Frame-type Damping Device usig the Damper and Reinforcing Method thereof
JP6364225B2 (en) Connected vibration control structure
JP5060842B2 (en) Damping structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150