JP6786224B2 - Column-beam structure with anti-vibration structure - Google Patents

Column-beam structure with anti-vibration structure Download PDF

Info

Publication number
JP6786224B2
JP6786224B2 JP2016031773A JP2016031773A JP6786224B2 JP 6786224 B2 JP6786224 B2 JP 6786224B2 JP 2016031773 A JP2016031773 A JP 2016031773A JP 2016031773 A JP2016031773 A JP 2016031773A JP 6786224 B2 JP6786224 B2 JP 6786224B2
Authority
JP
Japan
Prior art keywords
column
plastic hinge
hinge portion
vibration
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031773A
Other languages
Japanese (ja)
Other versions
JP2017150179A (en
Inventor
平石 久廣
久廣 平石
冨田 祐介
祐介 冨田
克朗 前島
克朗 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2016031773A priority Critical patent/JP6786224B2/en
Publication of JP2017150179A publication Critical patent/JP2017150179A/en
Application granted granted Critical
Publication of JP6786224B2 publication Critical patent/JP6786224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、地震動に対する減振構造を有する柱梁構造に関する。 The present invention relates to a column-beam structure having a vibration-reducing structure against earthquake motion.

近年、大地震動に対しても、建築物には一定の機能維持や損傷の抑制が要求され、最大応答時の建物変形角を1/100程度に抑制することが課題となってきた。このため、制振構造や免震構造が普及しつつあるが、コスト、制振・免震装置の設置のための意匠上・敷地上の制約、および、想定以上の外乱に対する制振・免震装置の性能に起因する安全性の問題など、配慮すべき課題が多い。また、これらの装置を用いずに鉄筋コンクリート造、鉄骨造の建物に対して通常の耐震設計を行う場合、最大応答時の建物変形角を1/100程度に抑制するためには、経済的および建築計画的に大きな支障が生じ得るかなり大きな建物強度を確保する必要がある。これは、通常の構造では降伏変形角が1/150〜1/100程度であるため、それ以前に大きなエネルギー吸収を期待できず、効率的に制振効果を発揮できないことによる。 In recent years, buildings have been required to maintain a certain function and suppress damage even in the event of a large earthquake motion, and it has become an issue to suppress the building deformation angle at the time of maximum response to about 1/100. For this reason, vibration control structures and seismic isolation structures are becoming widespread, but costs, design and site restrictions for the installation of vibration control and seismic isolation devices, and vibration control and seismic isolation against unexpected disturbances. There are many issues to consider, such as safety issues due to device performance. In addition, when performing ordinary seismic design for reinforced concrete and steel-framed buildings without using these devices, it is economical and architectural to suppress the building deformation angle at the maximum response to about 1/100. It is necessary to secure a fairly large building strength that can cause major obstacles in a planned manner. This is because the yield deformation angle is about 1/150 to 1/100 in a normal structure, so that large energy absorption cannot be expected before that, and the damping effect cannot be exerted efficiently.

既存建物の構造部材に改良を加えて制振効果を得ようとする技術については、例えば特許文献1,2が挙げられる。特許文献1は、鉄骨構造物における柱梁接合部で溶接部の延性不足を解消し、延性を平均で5倍程度向上させ、耐震性能を高める鉄骨構造物の柱梁接合部構造として図10に示す構造を提案する。特許文献2は、大地震時における鉄骨構造物の過大な変形の抑制およびエネルギー吸収能力の向上を期待できる制振構造として図11に示す構造を提案する。 Patent Documents 1 and 2 are examples of techniques for obtaining a vibration damping effect by improving the structural members of an existing building. Patent Document 1 shows FIG. 10 as a beam-column joint structure of a steel structure that solves the lack of ductility of a welded portion at a beam-column joint in a steel structure, improves ductility by about 5 times on average, and enhances seismic performance. We propose the structure shown. Patent Document 2 proposes the structure shown in FIG. 11 as a vibration damping structure that can be expected to suppress excessive deformation of the steel frame structure and improve the energy absorption capacity at the time of a large earthquake.

特開平8-4112号公報Japanese Unexamined Patent Publication No. 8-4112 特開2003-129565号公報Japanese Unexamined Patent Publication No. 2003-129565

特許文献1の構造では、図10のように、溶接(91)およびボルト(94)によりボックスコラム(96)に接合されたH型鋼の梁(97)において、その上下1対のフランジプレート(81、82)を切り欠いて切欠き(80)を設け、この切欠き(80)の範囲は2D以下である(D:梁背)。この切欠き(80)を設けた区間(98)ではフランジが均等に降伏し、塑性ヒンジ長が長くなるため、柱梁接合部の延性および建物の耐震性の向上を期待することができる。しかし、本構造は溶接部の延性不足を解消するために考案された技術であり、梁端部から離れた部分の断面を切り欠いているため、梁部材自体の曲げ耐力は切り欠きを設けない場合の耐力と比べ1〜2割程度しか小さくならず、降伏変形角もその程度しか小さくならない。このため、建物変形角が1/100〜1/75程度に達するまでには大きなエネルギー吸収を期待できず、効率的に制振効果を発揮できないという課題があった。 In the structure of Patent Document 1, as shown in FIG. 10, in the H-shaped steel beam (97) joined to the box column (96) by welding (91) and bolt (94), a pair of upper and lower flange plates (81) are formed. , 82) is cut out to provide a notch (80), and the range of this notch (80) is 2D or less (D: beam back). In the section (98) where the notch (80) is provided, the flange yields evenly and the plastic hinge length becomes long, so it can be expected that the ductility of the beam-column joint and the seismic resistance of the building will be improved. However, this structure is a technology devised to solve the lack of ductility of the welded part, and since the cross section of the part away from the beam end is cut out, the bending strength of the beam member itself does not have a notch. Compared to the yield strength in the case, it is only about 10 to 20% smaller, and the yield deformation angle is also smaller by that amount. For this reason, there is a problem that a large amount of energy cannot be expected to be absorbed by the time the building deformation angle reaches about 1/100 to 1/75, and the damping effect cannot be efficiently exerted.

特許文献2の制振構造では、図11のように、柱(101)の近くの梁部分に板状の補強材(104)が備えられ、この補強材(104)の一端(4a)が柱に固定連結され、他端(4b)が柱から離れたところで梁(103)に固定連結されている。梁(103)はH形鋼からなり、水平な2つのフランジ(3a,3b)とこれらのフランジ間に位置する垂直なウェブプレート(3b)を有する。(102)はシェアプレートである。また、補強材(104)の両端の間の中間範囲は、梁の材軸方向には拘束されないように、梁材軸の直交方向には拘束されるように、梁(103)によって支持されている。地震時に梁に曲げ応力が生じると、梁の柱側端部が先行して降伏し、塑性変形が増大してエネルギー吸収を行う。このとき、補強材の中間範囲は梁と相対的に梁の材軸方向に移動可能であるためほとんど変形しない。そして、梁の塑性変形がさらに増大すると、補強材の中間範囲が抵抗し、梁のそれ以上の変形を防止する。よって、建物の過大な変形が抑制されると同時に大きなエネルギー吸収を期待できる。しかし、これら効果のメカニズムは複雑であり、効果を検証するためには多くのデータを要すると考えられるため、実用化の点において課題があった。また、補強材の両端の間の中間範囲には、梁材軸方向に多数のルーズホールが形成され、これらのルーズホールに挿入された座屈補剛ボルト(105)により梁と補強材が接合されているため、梁フランジには断面欠損が生じるとともに、構造詳細が煩雑となっている。このため、梁の曲げ耐力の低下やコストの増大等の課題があった。また、梁の塑性変形がある程度増大しないと補強材の中間範囲が抵抗しないため、効率的に制振効果を発揮できないという課題があった。 In the vibration damping structure of Patent Document 2, as shown in FIG. 11, a plate-shaped reinforcing material (104) is provided on the beam portion near the column (101), and one end (4a) of the reinforcing material (104) is a column. The other end (4b) is fixedly connected to the beam (103) at a distance from the column. The beam (103) is made of H-section steel and has two horizontal flanges (3a, 3b) and a vertical web plate (3b) located between these flanges. (102) is a share plate. Further, the intermediate range between both ends of the reinforcing member (104) is supported by the beam (103) so as not to be constrained in the beam axial direction and to be constrained in the orthogonal direction of the beam axis. There is. When bending stress is generated in the beam during an earthquake, the column side end of the beam yields in advance, plastic deformation increases, and energy is absorbed. At this time, since the intermediate range of the reinforcing material can move in the material axial direction of the beam relative to the beam, it hardly deforms. Then, when the plastic deformation of the beam further increases, the intermediate range of the reinforcing material resists and prevents further deformation of the beam. Therefore, excessive deformation of the building can be suppressed, and at the same time, large energy absorption can be expected. However, the mechanism of these effects is complicated, and it is considered that a large amount of data is required to verify the effects, so that there is a problem in terms of practical use. In addition, a large number of loose holes are formed in the intermediate range between both ends of the reinforcing material in the axial direction of the beam material, and the beam and the reinforcing material are joined by buckling stiffening bolts (105) inserted into these loose holes. As a result, the beam flange has a cross-sectional defect and the structural details are complicated. For this reason, there are problems such as a decrease in the bending strength of the beam and an increase in cost. Further, there is a problem that the damping effect cannot be efficiently exhibited because the intermediate range of the reinforcing material does not resist unless the plastic deformation of the beam increases to some extent.

本発明は、上述のような従来技術の問題に鑑み、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されず、また、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮可能な減振構造を有する柱梁構造を提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention is not inferior in cost to the conventional seismic structure, and is restricted by the design and site conditions as compared with the conventional vibration control structure and seismic isolation structure. It is also an object of the present invention to provide a column-beam structure having a vibration-damping structure capable of absorbing a large amount of energy from a small deformation level and efficiently exerting a vibration-damping effect.

上記目的を達成するための減振構造を有する柱梁構造は、建物の梁端部および/または柱端部に塑性ヒンジ部を設け、前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成され、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記梁端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保できるように、梁幅の中央近傍に曲げひび割れ誘発目地を設けたことを特徴とする。
上記目的を達成するためのもう1つの減振構造を有する柱梁構造は、建物の梁端部および/または柱端部に塑性ヒンジ部を設け、前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成され、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記柱端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保できるように、柱幅および/または柱成の中央近傍に曲げひび割れ誘発目地を設けたことを特徴とする
上記目的を達成するためのもう1つの減振構造を有する柱梁構造は、建物の梁端部および/または柱端部に塑性ヒンジ部を設け、前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成され、前記梁と前記柱とが鉄骨造であり、前記塑性ヒンジ部に対応する領域を除いて梁部材および/または柱部材を鋼板で補強することで前記塑性ヒンジ部を構成する。
In a beam-column structure having a vibration-reducing structure for achieving the above object, a plastic hinge portion is provided at a beam end portion and / or a column end portion of a building, and the rigidity and / or yield resistance of the plastic hinge portion is the plastic hinge. A vibration-reducing structure is provided by configuring the beam end and / or the column end so as to be smaller than the rigidity and / or yield resistance other than the portion, and the plastic hinge portion yields at the plastic hinge portion. Is configured such that the deformation angle of the building starts at at least 1/150, the column and the beam are made of reinforced concrete, and are joined at a beam- column joint, and the beam end and the beam-beam joint are joined. It is characterized in that a bending crack-inducing joint is provided near the center of the beam width so that a predetermined cover thickness of the reinforcing bar can be secured at the boundary of the beam .
A beam-column structure having another vibration-reducing structure for achieving the above object is provided with a plastic hinge portion at the beam end portion and / or the column end portion of the building, and the rigidity and / or yield resistance of the plastic hinge portion is increased. A vibration-reducing structure is provided by configuring the beam end and / or the column end so as to be smaller than the rigidity and / or yield resistance other than the plastic hinge portion, and the plastic hinge portion is the plastic hinge. The yield in the section is configured so that the deformation angle of the building starts at at least 1/150, the column and the beam are made of reinforced concrete and are joined at the column-beam joint, and the column end and the beam are joined. It is characterized in that a bending crack-inducing joint is provided near the center of the column width and / or column formation so that a predetermined cover thickness of the reinforcing bar can be secured at the boundary with the joint .
A beam-column structure having another vibration-reducing structure for achieving the above object is provided with a plastic hinge portion at the beam end portion and / or the column end portion of the building, and the rigidity and / or yield resistance of the plastic hinge portion is increased. A vibration-reducing structure is provided by forming the beam end and / or the column end so as to be smaller than the rigidity and / or yield resistance other than the plastic hinge portion, and the plastic hinge portion is the plastic hinge. Yield in the section is configured such that the deformation angle of the building begins at least 1/150, the beam and the column are of steel construction, and the beam member and / or column except for the region corresponding to the plastic hinge portion. The plastic beam portion is formed by reinforcing the member with a steel plate.

この減振構造を有する柱梁構造によれば、塑性ヒンジ部における降伏は建物の変形角が少なくとも1/150で始まり、従来よりも小さい降伏変形角となるので、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮することができる。このように、従来の設計法と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。また、減振構造は、構造部材の断面形状や配筋等に工夫を加えるだけで実現できるので、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されない。 According to the column-beam structure having this vibration-reducing structure, the yield at the plastic hinge portion starts at a deformation angle of at least 1/150 of the building, and the yield deformation angle is smaller than before, so that a large energy is absorbed from a small deformation level. It is possible to efficiently exert the vibration damping effect. In this way, it is possible to exhibit excellent energy absorption performance as compared with the conventional design method, and it is possible to significantly reduce the building deformation angle (response) at the time of a large earthquake. In addition, the vibration-reducing structure can be realized simply by devising the cross-sectional shape and reinforcement arrangement of the structural members, so it is comparable in cost to the conventional seismic-resistant structure and compared to the conventional vibration-damping structure and seismic isolation structure. However, it is not restricted by the design and site conditions.

上記目的を達成するためのさらにもう1つの減振構造を有する柱梁構造は、建物の梁端部および/または柱端部に塑性ヒンジ部を設け、前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、前記塑性ヒンジ部の長さを梁端から梁成の1/2以下および/または柱端から柱成もしくは柱幅の1/2以下とし、前記梁と前記柱とが鉄骨造であり、前記塑性ヒンジ部に対応する領域を除いて梁部材および/または柱部材を鋼板で補強することで前記塑性ヒンジ部を構成する

In the beam-column structure having yet another vibration-reducing structure for achieving the above object, a plastic hinge portion is provided at the beam end portion and / or the column end portion of the building, and the rigidity and / or yield resistance of the plastic hinge portion is provided. A vibration-reducing structure is provided by configuring the beam end and / or the column end so that is smaller than the rigidity and / or yield resistance other than the plastic hinge portion, and the length of the plastic hinge portion is increased. The area from the beam end to 1/2 or less of the beam and / or from the column end to the column or the column width is 1/2 or less , the beam and the column are made of steel, and the area corresponding to the plastic hinge portion is defined. Except for this, the beam member and / or the column member is reinforced with a steel plate to form the plastic hinge portion .

この減振構造を有する柱梁構造によれば、塑性ヒンジ部の長さを梁端から梁成および/または柱端から柱成もしくは柱幅の1/2以下とすることで、建物の降伏変形角が従来よりも小さくなり、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮することができる。このように、従来の設計法と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。また、減振構造は、構造部材の断面形状や配筋等に工夫を加えるだけで実現できるので、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されない。 According to the column-beam structure having this vibration-reducing structure, the length of the plastic hinge portion is reduced from the beam end to the beam formation and / or from the column end to the column formation or the column width to 1/2 or less of the yield deformation of the building. The angle becomes smaller than before, and a large amount of energy can be absorbed from a small deformation level to efficiently exert the vibration damping effect. In this way, it is possible to exhibit excellent energy absorption performance as compared with the conventional design method, and it is possible to significantly reduce the building deformation angle (response) at the time of a large earthquake. In addition, the vibration-reducing structure can be realized simply by devising the cross-sectional shape and reinforcement arrangement of the structural members, so it is comparable in cost to the conventional seismic-resistant structure and compared to the conventional vibration-damping structure and seismic isolation structure. However, it is not restricted by the design and site conditions.

上記減振構造を有する柱梁構造において、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記塑性ヒンジ部における主筋の断面積を塑性ヒンジが生じない部分の主筋の断面積と比べ相対的に小さくすることで、塑性ヒンジ部を構成できる。 In the column-beam structure having the vibration-reducing structure, the column and the beam are made of reinforced concrete and are joined at a column-beam joint, and the cross-sectional area of the main bar at the plastic hinge portion is the main bar of the portion where the plastic hinge does not occur. The plastic beam portion can be constructed by making it relatively small compared to the cross-sectional area of.

また、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記梁および/または前記柱の一部の主筋のみが前記柱梁接合部に定着するようにすることで、塑性ヒンジ部を構成できる。 Further, the column and the beam are made of reinforced concrete and are joined at the beam-column joint so that only the beam and / or a part of the main bar of the column is fixed to the beam-column joint. , A plastic beam can be constructed.

また、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記梁端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保できるように、梁幅の中央近傍に曲げひび割れ誘発目地を設けることで、塑性ひずみを梁端部に集中させ、地震時におけるエネルギー吸収性能の向上および梁端部以外の損傷の制御を図ることができる。
Further, the column and the beam are made of reinforced concrete and are joined at a column-beam joint so that a predetermined cover thickness of the reinforcing bar can be secured at the boundary between the beam end and the beam-column joint . By providing a bending crack-inducing joint near the center of the beam width, it is possible to concentrate the plastic strain on the beam end, improve the energy absorption performance at the time of an earthquake, and control damage other than the beam end.

また、前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、前記柱端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保できるように、柱幅および/または柱成の中央近傍に曲げひび割れ誘発目地を設けることで、塑性ひずみを柱端部に集中させ、地震時におけるエネルギー吸収性能の向上および柱端部以外の損傷の制御を図ることができる。
Further, the column and the beam are made of reinforced concrete and are joined at a column-beam joint so that a predetermined cover thickness of the reinforcing bar can be secured at the boundary between the column end and the column-beam joint . By providing bending crack-inducing joints near the center of the column width and / or column formation, plastic strain is concentrated on the column ends, improving energy absorption performance during an earthquake and controlling damage other than the column ends. Can be done.

また、前記梁と前記柱とが鉄骨造であり、前記塑性ヒンジ部における梁部材および/または柱部材の断面積を塑性ヒンジが生じない部分と比べ相対的に小さくすることで、塑性ヒンジ部を構成できる。 Further, the beam and the column are made of steel, and the cross-sectional area of the beam member and / or the column member in the plastic hinge portion is made relatively smaller than the portion where the plastic hinge does not occur, so that the plastic hinge portion can be made. Can be configured.

また、前記梁と前記柱とが鉄骨造であり、前記塑性ヒンジ部以外で梁部材および/または柱部材を鋼板で補強することで、塑性ヒンジ部を構成できる。 Further, the beam and the column are made of steel, and the plastic hinge portion can be formed by reinforcing the beam member and / or the column member with a steel plate other than the plastic hinge portion.

本発明の減振構造を有する柱梁構造によれば、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されず、また、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮することができる。 According to the column-beam structure having the vibration-reducing structure of the present invention, the cost is comparable to the conventional seismic structure, and the design and site conditions are restricted as compared with the conventional vibration-damping structure and seismic isolation structure. In addition, it can absorb a large amount of energy from a small deformation level and efficiently exert a vibration damping effect.

第1実施形態による鉄筋コンクリート造の柱梁構造における梁の梁成方向の断面図(a)およびB-B線方向の柱梁接合部近傍の要部断面図(b)である。It is a cross-sectional view (a) of a beam in the beam formation direction and the cross-sectional view (b) of a main part in the vicinity of a column-beam joint in the direction of BB in the reinforced concrete column-beam structure according to the first embodiment. 第1実施形態による減振構造を有する柱梁構造および従来の一般的な設計法による柱梁構造における地震力と建物変形角との履歴曲線を概略的に示すグラフである。It is a graph which shows roughly the history curve of the seismic force and the building deformation angle in the column-beam structure which has the vibration-reducing structure by 1st Embodiment, and the column-beam structure by the conventional general design method. 図2の建物変形角を説明するための概略図である。It is the schematic for demonstrating the building deformation angle of FIG. 第1実施形態の第1変形例を説明するための図1(b)と同様の断面図である。It is the same cross-sectional view as FIG. 1 (b) for explaining the 1st modification of 1st Embodiment. 第1実施形態の第2変形例を説明するための図1(b)と同様の断面図(a)、第3変形例を説明するための図1(b)と同様の断面図(b)、さらに別の変形例を説明するための柱と梁との柱梁接合部を示す要部断面図(c)およびd-d線方向の梁断面図(d)である。A cross-sectional view (a) similar to FIG. 1 (b) for explaining a second modification of the first embodiment, and a cross-sectional view (b) similar to FIG. 1 (b) for explaining a third modification. It is a cross-sectional view (c) of a main part showing a column-beam joint portion between a column and a beam and a beam cross-sectional view (d) in the dd line direction for explaining still another modification. 第1実施形態の第4変形例を説明するための柱と梁の要部側面図(a)およびb-b線方向の柱断面図(b)である。It is a side view (a) of the main part of a column and a beam for explaining the 4th modification of 1st Embodiment, and the cross-sectional view (b) of the column in the direction of line bb. 第2実施形態を説明するための図1(b)と同様の断面図である。It is the same cross-sectional view as FIG. 1 (b) for explaining the 2nd Embodiment. 第3実施形態による鉄骨造の柱梁構造における梁の梁成方向の断面図(a)およびBB-BB線方向の柱梁接合部近傍の要部断面図(b)である。It is a cross-sectional view (a) of a beam formation direction and a cross-sectional view (b) of a main part in the vicinity of a column-beam joint in the BB-BB line direction in a steel-framed column-beam structure according to a third embodiment. 第3実施形態の変形例を説明するための図8(a)と同様の梁の断面図(a)、同じく図8(b)と同様のbb-bb線方向の断面図(b)およびcc-cc線方向の断面図(c)である。A cross-sectional view (a) of a beam similar to FIG. 8 (a) for explaining a modified example of the third embodiment, a cross-sectional view (b) in the bb-bb line direction similar to FIG. 8 (b), and cc. It is sectional drawing (c) in the -cc line direction. 特許文献1による鉄骨構造物の柱梁接合部構造を示す図である。It is a figure which shows the column-beam joint structure of the steel frame structure by patent document 1. FIG. 特許文献2による鉄骨構造物の制振構造を示す図である。It is a figure which shows the vibration damping structure of the steel frame structure by patent document 2.

以下、本発明を実施するための形態について図面を用いて説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1実施形態〉
図1は、第1実施形態による鉄筋コンクリート造の梁の梁成方向の断面図(a)およびB-B線方向の柱梁接合部近傍の要部断面図(b)である。
<First Embodiment>
FIG. 1 is a cross-sectional view (a) of a reinforced concrete beam according to the first embodiment in the beam forming direction and a cross-sectional view (b) of a main part in the vicinity of a column-beam joint in the BB line direction.

図1(a)(b)の柱梁構造は、梁10が、梁コンクリート内に、梁上面10a側および梁下面10b側に複数本の主筋11が梁長手方向に配置された鉄筋コンクリート造からなるものである。各主筋11は柱梁接合部12まで延びて定着している。 In the beam-column structure of FIGS. 1A and 1B, the beam 10 is made of reinforced concrete in which a plurality of main bars 11 are arranged in the beam concrete on the beam upper surface 10a side and the beam lower surface 10b side in the beam longitudinal direction. It is a thing. Each main bar 11 extends to the beam-column joint 12 and is fixed.

図1(b)のように、各主筋11は、梁端部19において主筋断面積を縮小した主筋縮小部15を有し、この主筋縮小部15が塑性ヒンジ部を構成する。主筋縮小部15は、梁10と柱梁接合部12との境界13から所定長さLを有し、この所定長さLが塑性ヒンジ長Lである。 As shown in FIG. 1B, each main bar 11 has a main bar reduction portion 15 in which the cross-sectional area of the main bar is reduced at the beam end portion 19, and the main bar reduction portion 15 constitutes a plastic hinge portion. The main bar reduction portion 15 has a predetermined length L from the boundary 13 between the beam 10 and the column-beam joint portion 12, and this predetermined length L is the plastic hinge length L.

図1(a)(b)では、梁10の梁端部19における塑性ヒンジ部15の主筋11の断面積は、ヒンジを生じない部分と比べ相対的に小さく、また、塑性ヒンジ長Lは部材長に比べかなり短くなっている。 In FIGS. 1A and 1B, the cross-sectional area of the main bar 11 of the plastic hinge portion 15 at the beam end portion 19 of the beam 10 is relatively small as compared with the portion where the hinge is not generated, and the plastic hinge length L is a member. It is considerably shorter than the length.

図1(a)(b)における塑性ヒンジ長Lは、梁成をHとすると、H×1/2以下であることが好ましい。塑性ヒンジ長LがH×1/2以下の範囲内であることで、降伏領域を構造的に問題のない範囲で短くして降伏に至るまでの部材剛性はほとんど変化させずに降伏時の建物変形角を小さくすることができる。すなわち、塑性ヒンジ部15が少なくとも1/150の建物変形角で確実に降伏する。 The plastic hinge length L in FIGS. 1A and 1B is preferably H × 1/2 or less, where H is the beam formation. Since the plastic hinge length L is within the range of H × 1/2 or less, the yield area is shortened within a range where there is no structural problem, and the member rigidity up to the yield is hardly changed. The deformation angle can be reduced. That is, the plastic hinge portion 15 reliably yields at a building deformation angle of at least 1/150.

また、H×1/2以下でかつ構造的に問題のない範囲内で塑性ヒンジ長Lを徐々に小さくした場合、降伏変形角の減少に伴いエネルギーの吸収能力および大地震時における建物変形角(応答)の低減効果は増大し、例えば、塑性ヒンジ部以外の部材において中地震時と同等の応力状態を容易に再現することが可能である。 In addition, when the plastic hinge length L is gradually reduced within the range of H × 1/2 or less and there is no structural problem, the energy absorption capacity and the building deformation angle at the time of a large earthquake (as the yield deformation angle decreases) The effect of reducing the response) is increased, and for example, it is possible to easily reproduce the same stress state as during a medium earthquake in members other than the plastic hinge portion.

本実施形態では、塑性ヒンジ部15の断面積を相対的に小さくしない場合と比べ、降伏に至るまでの部材剛性はほとんど変わらず、降伏変形角が小さくなることから、小さい変形の段階から優れたエネルギー吸収性能を示す。すなわち、効率的に減振効果を発揮することができる。このため、本性能を有する建築構造を減振構造と称する。減振構造では、構造部材の断面形状や配筋に工夫を加えるだけで効率的な制振効果が得られるため、通常の耐震構造と比べコスト的に遜色がなく、制振構造や免震構造と比べても意匠・敷地的な条件に制約されない。 In the present embodiment, as compared with the case where the cross-sectional area of the plastic hinge portion 15 is not relatively small, the member rigidity up to the yield is almost the same and the yield deformation angle is small, so that it is excellent from the stage of small deformation. Shows energy absorption performance. That is, the vibration damping effect can be efficiently exhibited. Therefore, a building structure having this performance is called a vibration-reducing structure. In the vibration-damping structure, an efficient vibration-damping effect can be obtained simply by devising the cross-sectional shape and reinforcement arrangement of the structural members, so the cost is comparable to that of a normal seismic structure, and the vibration-damping structure and seismic isolation structure Compared to, it is not restricted by the design and site conditions.

なお、一般的に制振構造は、建物がある程度変形しないとダンパー等による減衰効果が発揮されないため、大地震時における建物の揺れは通常の建物(耐震構造)と比べてそれほど変わらないが、柱梁等の構造部材への損傷は低減されるものである。これに対し、本実施形態のような減振構造は、柱梁等の構造部材に工夫を加えることにより、建物の降伏変形角を制御できるため、通常の建物(耐震構造)と比べ大地震時における建物の揺れを大幅に低減できるとともに、柱梁等の構造部材への損傷も低減されるものである。 In general, the damping structure does not exert the damping effect by dampers unless the building is deformed to some extent, so the shaking of the building during a large earthquake is not so different from that of a normal building (seismic structure), but the pillars. Damage to structural members such as beams is reduced. On the other hand, in a vibration-reducing structure like this embodiment, the yield deformation angle of a building can be controlled by devising structural members such as columns and beams, so that in the event of a large earthquake, compared to a normal building (seismic structure). In addition to being able to significantly reduce the shaking of buildings in the above, damage to structural members such as columns and beams is also reduced.

図2は、本実施形態による減振構造を有する柱梁構造および従来の一般的な設計法による柱梁構造における地震力と建物変形角との履歴曲線を概略的に示すグラフである。従来の一般的な設計による柱梁構造とは、図1のような塑性ヒンジ部15を設けない構造である。図3は図2の建物変形角を説明するための概略図である。 FIG. 2 is a graph schematically showing the history curves of the seismic force and the building deformation angle in the column-beam structure having the vibration-reducing structure according to the present embodiment and the column-beam structure according to the conventional general design method. The column-beam structure according to the conventional general design is a structure in which the plastic hinge portion 15 as shown in FIG. 1 is not provided. FIG. 3 is a schematic view for explaining the building deformation angle of FIG.

図2に示すように、大地震時に建物に繰り返し荷重が加わった場合、本実施形態の減振構造を有する梁は、梁端部に設けた塑性ヒンジ部において、塑性ヒンジ部のない場合の降伏耐力Qyに対し、降伏耐力2/3Qyで降伏し、履歴曲線aを描きながら変形する。一方、従来の一般的な設計法による梁は、降伏耐力Qyで降伏し、履歴曲線bを描く。本実施形態の柱梁構造は、従来の梁と比べて、図2のcに示すように、部材の降伏に至るまでの剛性はほとんど変わらないため、降伏変形角が小さくなる。ここで、従来の一般的な設計法と対応する降伏変形角を1/150〜1/120とし、このときの降伏耐力Qyに対して本実施形態のように降伏耐力を2/3Qyとすると、その降伏変形角は1/200程度である。すなわち、本実施形態の柱梁構造における塑性ヒンジ部は、降伏変形角が少なくとも1/150となるように構成される。なお、建物変形角θnは、図3のように、建物のn階部分の高さをhn、地震時のn階部分の水平方向変位をδnとすると、次式(1)で表される。
θn=δn/hn (n=1,2,3,・・・) (1)
As shown in FIG. 2, when a load is repeatedly applied to the building during a large earthquake, the beam having the vibration-reducing structure of the present embodiment yields at the plastic hinge portion provided at the beam end when there is no plastic hinge portion. It yields with a yield strength of 2/3 Qy with respect to the yield strength Qy, and deforms while drawing a history curve a. On the other hand, a beam according to a conventional general design method yields with a yield strength Qy and draws a history curve b. In the beam-column structure of the present embodiment, as shown in c of FIG. 2, the rigidity up to the yield of the member is almost the same as that of the conventional beam, so that the yield deformation angle is small. Here, assuming that the yield deformation angle corresponding to the conventional general design method is 1/150 to 1/120 and the yield strength Qy at this time is 2/3 Qy as in the present embodiment. The yield deformation angle is about 1/200. That is, the plastic hinge portion in the column-beam structure of the present embodiment is configured so that the yield deformation angle is at least 1/150. The building deformation angle θn is expressed by the following equation (1), where the height of the nth floor portion of the building is hn and the horizontal displacement of the nth floor portion during an earthquake is δn, as shown in FIG.
θn = δn / hn (n = 1, 2, 3, ...) (1)

また、エネルギー吸収能力を表す指標としての等価減衰定数heqに関し、図2から両者の等価減衰定数heqを算定すると、本実施形態の柱梁構造に対応するheq´は、従来の一般的な設計法による梁のheqと比べて約1.7倍となる。なお、図2において等価減衰定数heq、heq´は次のようにして求めることができる。
本実施形態のheq´=履歴曲線aで囲まれる実線の面積/点oeiで囲まれる三角形の面積
従来のheq=履歴曲線bで囲まれる破線の面積/点ogiで囲まれる三角形の面積
Also relates to the equivalent damping constant h eq as an index representing the energy absorption capacity, when calculating the equivalent damping constant h eq of both Figures 2, h eq 'corresponding to Column structure of this embodiment, a conventional general It is about 1.7 times larger than the h eq of the beam according to the design method. In FIG. 2, the equivalent attenuation constants h eq and h eq ′ can be obtained as follows.
H eq ´ of the present embodiment = Area of solid line surrounded by history curve a / Area of triangle surrounded by point oei Conventional h eq = Area of broken line surrounded by history curve b / Area of triangle surrounded by point ogi

以上のように、本実施形態によれば、梁端部に塑性ヒンジ部を設け、その降伏変形角を少なくとも1/150と小さくすることにより、従来の一般的な設計法の梁と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。 As described above, according to the present embodiment, by providing the plastic hinge portion at the beam end portion and reducing the yield deformation angle to at least 1/150, it is superior to the beam of the conventional general design method. It is possible to exhibit the energy absorption performance, and by extension, the building deformation angle (response) at the time of a large earthquake can be significantly reduced.

本実施形態では、主筋11の降伏が断面積の縮小部15において生じるため、降伏時の曲げ耐力は、塑性ヒンジ部の断面積を相対的に小さくしない場合と比べ小さい。しかし、本実施形態による柱梁構造では、建物変形角が少なくとも1/150の小さな変形より降伏が始まるため、優れたエネルギー吸収性能を示す。このため、図2で説明したように、従来の柱梁構造と比べ大地震時における建物変形角(応答)を著しく低減できるとともに、大きなエネルギー吸収性能を得ることができる。したがって、構造部材の損傷の修復や性能の維持管理を含めたコスト面においても、高い品質を有している。 In the present embodiment, since the yield of the main bar 11 occurs in the reduced cross-sectional area 15, the bending strength at the time of yielding is smaller than that in the case where the cross-sectional area of the plastic hinge portion is not relatively small. However, in the column-beam structure according to the present embodiment, since the yield starts from a small deformation with a building deformation angle of at least 1/150, excellent energy absorption performance is exhibited. Therefore, as described with reference to FIG. 2, the building deformation angle (response) at the time of a large earthquake can be remarkably reduced as compared with the conventional column-beam structure, and a large energy absorption performance can be obtained. Therefore, it has high quality in terms of cost including repair of damage to structural members and maintenance of performance.

次に、図4〜図6を参照して第1実施形態の第1〜第4変形例を説明する。図4は第1実施形態の第1変形例を説明するための図1(b)と同様の断面図である。 Next, first to fourth modifications of the first embodiment will be described with reference to FIGS. 4 to 6. FIG. 4 is a cross-sectional view similar to FIG. 1 (b) for explaining the first modification of the first embodiment.

図4の例は、異径継手を用いて塑性ヒンジ部の主筋断面積を縮小したものである。鉄筋コンクリート造の梁10の主筋11に、梁端部19の近傍において、異径継手部16が設けられている。異径継手部16の図の左端から、梁10と柱梁接合部12との境界13までの主筋11(径が細くなった)の長さが塑性ヒンジ長Lである。本例によれば、建物変形角が少なくとも1/150という小さい変形レベルから優れたエネルギー吸収を図ることができる。 In the example of FIG. 4, the cross-sectional area of the main bar of the plastic hinge portion is reduced by using a different diameter joint. A different diameter joint portion 16 is provided in the vicinity of the beam end portion 19 on the main bar 11 of the reinforced concrete beam 10. The length of the main bar 11 (the diameter is reduced) from the left end of the figure of the different diameter joint portion 16 to the boundary 13 between the beam 10 and the column-beam joint portion 12 is the plastic hinge length L. According to this example, excellent energy absorption can be achieved from a small deformation level where the building deformation angle is at least 1/150.

図5は、第1実施形態の第2変形例を説明するための図1(b)と同様の断面図(a)、第3変形例を説明するための図1(b)と同様の断面図(b)、さらに別の変形例を説明するための柱と梁との柱梁接合部を示す要部断面図(c)およびd-d線方向の梁断面図(d)である。 FIG. 5 is a cross-sectional view (a) similar to FIG. 1 (b) for explaining a second modification of the first embodiment, and a cross section similar to FIG. 1 (b) for explaining a third modification. FIG. (B) is a cross-sectional view (c) of a main part showing a column-beam joint portion between a column and a beam for explaining still another modified example, and a beam cross-sectional view (d) in the dd line direction.

図5(a)の例は、図1の構造において、梁10と柱梁接合部12との境界13に曲げひび割れ誘発目地としてスリット17を設けたものである。図5(b)の例は、図4の構造において、梁10と柱梁接合部12との境界13に曲げひび割れ誘発目地としてスリット17を設けたものである。図5(c)(d)は梁10と柱梁接合部12との両境界13に複数のスリット17を設けたものである。図5(a)(b)の例によれば、コンクリートの損傷低減による更なるエネルギー吸収性能の向上を図ることができる。また、スリット17は、例えば、図5(c)(d)のように、鉄筋の所定のかぶり厚を確保したうえで梁10の矩形断面の上端・下端の中央近傍に設けた、長方形状または台形状の複数のスリットとすることができる。 In the example of FIG. 5A, in the structure of FIG. 1, a slit 17 is provided as a bending crack induction joint at the boundary 13 between the beam 10 and the beam-column joint 12. In the example of FIG. 5B, in the structure of FIG. 4, a slit 17 is provided as a bending crack induction joint at the boundary 13 between the beam 10 and the beam-column joint 12. 5 (c) and 5 (d) show a plurality of slits 17 provided at both boundaries 13 between the beam 10 and the beam-column joint 12. According to the examples of FIGS. 5A and 5B, it is possible to further improve the energy absorption performance by reducing the damage of the concrete. Further, as shown in FIGS. 5C and 5D, the slit 17 is provided in a rectangular shape or near the center of the upper and lower ends of the rectangular cross section of the beam 10 after ensuring a predetermined cover thickness of the reinforcing bar. It can be a plurality of trapezoidal slits.

図6は、第1実施形態の第4変形例を説明するための柱と梁の要部側面図(a)およびb-b線方向の柱断面図(b)である。図6(a)(b)の例は、柱端部の境界33においても曲げひび割れ誘発目地としてスリット37を設けたものである。すなわち、柱30と柱梁接合部12との境界33に、鉄筋の所定のかぶり厚を確保したうえで柱30の矩形断面の各辺の中央近傍に長方形状または台形状の複数のスリット37が設けられている。柱のコンクリートの損傷低減による更なるエネルギー吸収性能の向上を図ることができる。 FIG. 6 is a side view (a) of a main part of a column and a beam and a cross-sectional view (b) of the column in the b-b line direction for explaining a fourth modification of the first embodiment. In the example of FIGS. 6A and 6B, a slit 37 is provided as a bending crack induction joint also at the boundary 33 of the column end portion. That is, at the boundary 33 between the column 30 and the column-beam joint portion 12, a plurality of rectangular or trapezoidal slits 37 are formed near the center of each side of the rectangular cross section of the column 30 after ensuring a predetermined cover thickness of the reinforcing bar. It is provided. It is possible to further improve the energy absorption performance by reducing the damage to the concrete of the columns.

〈第2実施形態〉
図7は第2実施形態を説明するための図1(b)と同様の断面図である。第2実施形態は、図7のように、鉄筋コンクリート造の梁10において主筋の一部を非定着としたものである。すなわち、鉄筋コンクリート造の梁10の複数本の主筋11,11a,11のうちの中央の主筋11aを、梁10と柱梁接合部12との境界13まで配置し、柱梁接合部12に定着させず、主筋11,11を柱梁接合部12に定着させたものである。この境界13における主筋11、11による定着部18が塑性ヒンジ部を構成する。本実施形態によれば、建物変形角が少なくとも1/150という小さい変形レベルから優れたエネルギー吸収を図ることができる。
<Second Embodiment>
FIG. 7 is a cross-sectional view similar to FIG. 1 (b) for explaining the second embodiment. In the second embodiment, as shown in FIG. 7, a part of the main bar is non-fixed in the reinforced concrete beam 10. That is, the central main bar 11a of the plurality of main bars 11, 11a, 11 of the reinforced concrete beam 10 is arranged up to the boundary 13 between the beam 10 and the column-beam joint 12 and fixed to the column-beam joint 12. Instead, the main bars 11 and 11 are fixed to the beam-column joint 12. The fixing portion 18 formed by the main bars 11 and 11 at the boundary 13 constitutes the plastic hinge portion. According to this embodiment, excellent energy absorption can be achieved from a small deformation level in which the building deformation angle is at least 1/150.

上述の第1,第2の実施形態では、鉄筋コンクリート造の柱梁構造において梁端部に塑性ヒンジ部を設けた例を説明したが、同様の塑性ヒンジ部の構成を柱端部に設けることができ、同様の効果を得ることができる。さらに、梁端部および柱端部の双方に塑性ヒンジ部を設けてもよい。 In the first and second embodiments described above, an example in which a plastic hinge portion is provided at the beam end portion in a reinforced concrete column-beam structure has been described, but a similar plastic hinge portion configuration may be provided at the column end portion. And the same effect can be obtained. Further, plastic hinges may be provided on both the beam end and the column end.

〈第3実施形態〉
図8は、第3実施形態による鉄骨造の梁の梁成方向の断面図(a)およびBB-BB線方向の柱梁接合部近傍の要部断面図(b)である。
<Third Embodiment>
FIG. 8 is a cross-sectional view (a) of the steel-framed beam in the beam formation direction and a cross-sectional view (b) of a main part in the vicinity of the column-beam joint in the BB-BB line direction according to the third embodiment.

図8(a)(b)の柱梁構造は、梁20がH形鋼からなる鉄骨造であり、梁上面20a側および梁下面20b側に水平方向に位置する上下一対のフランジ21,21と、一対のフランジ21,21を結合する垂直方向に位置するウェブ22とから構成される。 In the beam-column structure of FIGS. 8A and 8B, the beam 20 is a steel structure made of H-shaped steel, and a pair of upper and lower flanges 21 and 21 located in the horizontal direction on the beam upper surface 20a side and the beam lower surface 20b side. , A web 22 located in the vertical direction connecting the pair of flanges 21 and 21.

図8(b)のように、梁20の上下のフランジ21,21は、梁端部において断面積を縮小した断面縮小部25を有し、この断面縮小部25が塑性ヒンジ部を構成する。断面縮小部25は、梁20と柱梁接合部23との境界24から所定長さL2を有し、この所定長さが塑性ヒンジ長Lである。なお、梁20と柱梁接合部23とは、例えば、溶接により接合される。 As shown in FIG. 8B, the upper and lower flanges 21 and 21 of the beam 20 have a cross-section reduction portion 25 whose cross-sectional area is reduced at the beam end portion, and this cross-section reduction portion 25 constitutes a plastic hinge portion. The cross-section reduction portion 25 has a predetermined length L2 from the boundary 24 between the beam 20 and the column-beam joint portion 23, and this predetermined length is the plastic hinge length L. The beam 20 and the beam-column joint 23 are joined by welding, for example.

また、図8(a)(b)では、梁20の梁端部における塑性ヒンジ部25のフランジ21の断面積は、ヒンジを生じない部分と比べ相対的に小さく、また、塑性ヒンジ長Lは部材長に比べかなり短くなっている。 Further, in FIGS. 8A and 8B, the cross-sectional area of the flange 21 of the plastic hinge portion 25 at the beam end portion of the beam 20 is relatively small as compared with the portion where the hinge is not generated, and the plastic hinge length L is It is considerably shorter than the member length.

図8(a)(b)における塑性ヒンジ長Lは、図1(a)(b)の場合と同様に、梁成をHとすると、H×1/2以下であることが好ましい。塑性ヒンジ長LがH×1/2以下の範囲内であることで、降伏領域を構造的に問題のない範囲で短くして降伏に至るまでの部材剛性はほとんど変化させずに降伏時の建物変形角を小さくすることができる。すなわち、塑性ヒンジ部25が少なくとも1/150の建物変形角で確実に降伏する。 The plastic hinge length L in FIGS. 8A and 8B is preferably H × 1/2 or less, where H is the beam formation, as in the case of FIGS. 1A and 1B. Since the plastic hinge length L is within the range of H × 1/2 or less, the yield area is shortened within a range where there is no structural problem, and the member rigidity up to the yield is hardly changed. The deformation angle can be reduced. That is, the plastic hinge portion 25 reliably yields at a building deformation angle of at least 1/150.

本実施形態では、塑性ヒンジ部25の断面積を相対的に小さくしない場合と比べ、降伏に至るまでの部材剛性はほとんど変わらず、降伏変形角が小さくなることから、小さい変形の段階から優れたエネルギー吸収性能を示す。すなわち、効率的に減振効果を発揮することができる。このため、図1(a)(b)の場合と同様の減振構造を有する柱梁構造とすることができる。 In the present embodiment, as compared with the case where the cross-sectional area of the plastic hinge portion 25 is not relatively small, the member rigidity up to the yield is almost the same and the yield deformation angle is small, so that it is excellent from the stage of small deformation. Shows energy absorption performance. That is, the vibration damping effect can be efficiently exhibited. Therefore, a column-beam structure having the same vibration-reducing structure as in the cases of FIGS. 1 (a) and 1 (b) can be obtained.

また、本実施形態でも、大地震時に建物に繰り返し荷重が加わった場合、図2の履歴曲線aを描きながら変形し、同様のエネルギー吸収能力を示す。すなわち、梁端部に塑性ヒンジ部を設け、その降伏変形角を少なくとも1/150と小さくすることにより、従来の一般的な設計法の梁(鉄骨造)と比べて優れたエネルギー吸収性能を発揮することができ、延いては大地震時における建物変形角(応答)を著しく低減することができる。 Further, also in the present embodiment, when a load is repeatedly applied to the building during a large earthquake, the building is deformed while drawing the history curve a in FIG. 2 to show the same energy absorption capacity. That is, by providing a plastic hinge portion at the beam end and reducing the yield deformation angle to at least 1/150, excellent energy absorption performance is exhibited as compared with the beam (steel structure) of the conventional general design method. As a result, the building deformation angle (response) at the time of a large earthquake can be significantly reduced.

本実施形態では、フランジ21の降伏が断面積の縮小部25において生じるため、降伏時の曲げ耐力は、塑性ヒンジ部の断面積を相対的に小さくしない場合と比べ小さい。しかし、本実施形態による柱梁構造では、建物変形角が少なくとも1/150の小さな変形より降伏が始まるため、優れたエネルギー吸収性能を示す。このため、図2で説明したように、従来の柱梁構造(鉄骨造)と比べ大地震時における建物変形角(応答)を著しく低減できるとともに、大きなエネルギー吸収性能を得ることができる。したがって、構造部材の損傷の修復や性能の維持管理を含めたコスト面においても、高い品質を有している。 In the present embodiment, since the yield of the flange 21 occurs in the reduced cross-sectional area 25, the bending strength at the time of yielding is smaller than that in the case where the cross-sectional area of the plastic hinge portion is not relatively small. However, in the column-beam structure according to the present embodiment, since the yield starts from a small deformation with a building deformation angle of at least 1/150, excellent energy absorption performance is exhibited. Therefore, as described with reference to FIG. 2, the building deformation angle (response) at the time of a large earthquake can be remarkably reduced as compared with the conventional beam-column structure (steel structure), and a large energy absorption performance can be obtained. Therefore, it has high quality in terms of cost including repair of damage to structural members and maintenance of performance.

図9は第3実施形態の変形例を説明するための図8(a)と同様の梁の断面図(a)、同じく図8(b)と同様のbb-bb線方向の断面図(b)およびcc-cc線方向の断面図(c)である。図9(a)〜(c)のように、本例はH形鋼からなる鉄骨造の梁20において、梁端部より塑性ヒンジ部27を除いてフランジ21,21を鋼板26,26で補強したものである。すなわち、H形鋼からなる梁20のフランジ21,21の上面および下面に補強鋼板26,26を配置し、溶接やボルトナット等で取り付ける。このとき、柱梁接合部23と梁20との境界24から所定長さLだけ鋼板26,26を短くする。この所定長さLの部分が塑性ヒンジ部27を構成し、所定長さLが塑性ヒンジ長Lである。本実施形態によれば、補強鋼板26とフランジ21との板厚合計と同厚のフランジ厚を有する梁と比べて、建物変形角が少なくとも1/150という小さい変形レベルから優れたエネルギー吸収を図ることができる。 FIG. 9 is a cross-sectional view (a) of a beam similar to FIG. 8 (a) for explaining a modified example of the third embodiment, and a cross-sectional view (b) in the bb-bb line direction similar to FIG. 8 (b). ) And cc-cc line direction cross-sectional view (c). As shown in FIGS. 9A to 9C, in this example, in a steel beam 20 made of H-section steel, flanges 21 and 21 are reinforced with steel plates 26 and 26 except for a plastic hinge portion 27 from the beam end portion. It was done. That is, the reinforcing steel plates 26 and 26 are arranged on the upper and lower surfaces of the flanges 21 and 21 of the beam 20 made of H-shaped steel, and are attached by welding, bolts and nuts or the like. At this time, the steel plates 26 and 26 are shortened by a predetermined length L from the boundary 24 between the beam-column joint 23 and the beam 20. The portion having the predetermined length L constitutes the plastic hinge portion 27, and the predetermined length L is the plastic hinge length L. According to the present embodiment, excellent energy absorption is achieved from a small deformation level of at least 1/150 of the building deformation angle as compared with a beam having a flange thickness equal to the total plate thickness of the reinforcing steel plate 26 and the flange 21. be able to.

なお、上述の第3の実施形態では、鉄骨造の柱梁構造において梁端部に塑性ヒンジ部を設けた例を説明したが、同様の塑性ヒンジ部の構成を柱端部に設けることができ、同様の効果を得ることができる。さらに、梁端部および柱端部の双方に塑性ヒンジ部を設けてもよい。 In the third embodiment described above, an example in which a plastic hinge portion is provided at the beam end portion in the steel-framed column-beam structure has been described, but a similar structure of the plastic hinge portion can be provided at the column end portion. , The same effect can be obtained. Further, plastic hinges may be provided on both the beam end and the column end.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図1,図4〜図7の鉄筋コンクリート造による梁の構成は、図示のものに限定されず、たとえば、主筋の本数等は適宜変更可能であることはもちろんである。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the configuration of the beam made of reinforced concrete in FIGS. 1 and 4 to 7 is not limited to the one shown in the drawing, and it goes without saying that the number of main bars and the like can be changed as appropriate.

本発明の減振構造を有する柱梁構造によれば、従来の耐震構造と比べコスト的に遜色がなく、従来の制振構造や免震構造と比べても意匠・敷地的な条件に制約されず、また、小さな変形レベルから大きなエネルギーを吸収し効率的に減振効果を発揮可能な減振構造を有するとともにコスト的に有利な建物構造を実現することができる。 According to the column-beam structure having the vibration-reducing structure of the present invention, the cost is comparable to the conventional seismic structure, and the design and site conditions are restricted as compared with the conventional vibration-damping structure and seismic isolation structure. In addition, it has a vibration-damping structure that can absorb a large amount of energy from a small deformation level and efficiently exert a vibration-damping effect, and can realize a cost-effective building structure.

10 梁
11,11a 主筋
12 梁接合部
13 境界
15 主筋縮小部、塑性ヒンジ部
16 異径継手部
17 スリット
18 定着部、塑性ヒンジ部
19 梁端部
30 柱
37 スリット
20 梁
21 フランジ
22 ウェブ
23 柱梁接合部
24 境界
25 断面縮小部、塑性ヒンジ部
26 補強鋼板
27 塑性ヒンジ部
L 塑性ヒンジ長
H 梁成
10 Beams 11, 11a Main bar 12 Beam joint 13 Boundary 15 Main bar reduction part, plastic hinge part 16 Different diameter joint part 17 Slit 18 Fixing part, plastic hinge part 19 Beam end 30 Pillar 37 Slit 20 Beam 21 Flange 22 Web 23 Pillar Beam joint 24 Boundary 25 Section reduction, plastic flange 26 Reinforcing steel plate 27 Plastic flange L Plastic flange length H Beam formation

Claims (4)

建物の梁端部および/または柱端部に塑性ヒンジ部を設け、
前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、
前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成され、
前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し
前記梁端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保できるように、梁幅の中央近傍に曲げひび割れ誘発目地を設けた減振構造を有する柱梁構造。
Plastic hinges are provided at the beam ends and / or column ends of the building.
The vibration-reducing structure is formed by configuring the beam end and / or the column end so that the rigidity and / or yield strength of the plastic hinge portion is smaller than the rigidity and / or yield strength other than the plastic hinge portion. Provided
The plastic hinge portion is configured such that the yield at the plastic hinge portion begins at a deformation angle of at least 1/150 of the building.
The column and the beam are made of reinforced concrete and are joined at a column-beam joint .
A column-beam structure having a vibration-reducing structure in which a bending crack-inducing joint is provided near the center of the beam width so that a predetermined cover thickness of the reinforcing bar can be secured at the boundary between the beam end portion and the column-beam joint portion .
建物の梁端部および/または柱端部に塑性ヒンジ部を設け、
前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、
前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成され、
前記柱と前記梁とが、鉄筋コンクリート造であり、柱梁接合部で接合し、
前記柱端部と前記柱梁接合部との境界において、鉄筋の所定のかぶり厚を確保できるように、柱幅および/または柱成の中央近傍に曲げひび割れ誘発目地を設けた減振構造を有する柱梁構造。
Plastic hinges are provided at the beam ends and / or column ends of the building.
The vibration-reducing structure is formed by configuring the beam end and / or the column end so that the rigidity and / or yield strength of the plastic hinge portion is smaller than the rigidity and / or yield strength other than the plastic hinge portion. Provided
The plastic hinge portion is configured such that the yield at the plastic hinge portion begins at a deformation angle of at least 1/150 of the building.
The column and the beam are made of reinforced concrete and are joined at a column-beam joint.
At the boundary between the column end and the column-beam joint , it has a vibration-reducing structure in which a bending crack-inducing joint is provided near the column width and / or the center of the column formation so that a predetermined cover thickness of the reinforcing bar can be secured. Column beam structure.
建物の梁端部および/または柱端部に塑性ヒンジ部を設け、
前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、
前記塑性ヒンジ部は、前記塑性ヒンジ部における降伏が前記建物の変形角が少なくとも1/150で始まるように構成され、
前記梁と前記柱とが鉄骨造であり、
前記塑性ヒンジ部に対応する領域を除いて梁部材および/または柱部材を鋼板で補強することで前記塑性ヒンジ部を構成する、減振構造を有する柱梁構造。
Plastic hinges are provided at the beam ends and / or column ends of the building.
The vibration-reducing structure is formed by configuring the beam end and / or the column end so that the rigidity and / or yield strength of the plastic hinge portion is smaller than the rigidity and / or yield strength other than the plastic hinge portion. Provided
The plastic hinge portion is configured such that the yield at the plastic hinge portion begins at a deformation angle of at least 1/150 of the building.
The beam and the column are made of steel.
A column-beam structure having a vibration-reducing structure, which constitutes the plastic hinge portion by reinforcing the beam member and / or the column member with a steel plate except for a region corresponding to the plastic hinge portion.
建物の梁端部および/または柱端部に塑性ヒンジ部を設け、
前記塑性ヒンジ部における剛性および/または降伏耐力が前記塑性ヒンジ部以外の剛性および/または降伏耐力と比べて小さくなるように前記梁端部および/または前記柱端部を構成することで減振構造を設け、
前記塑性ヒンジ部の長さを梁端から梁成の1/2以下および/または柱端から柱成もしくは柱幅の1/2以下とし、
前記梁と前記柱とが鉄骨造であり、
前記塑性ヒンジ部に対応する領域を除いて梁部材および/または柱部材を鋼板で補強することで前記塑性ヒンジ部を構成する、減振構造を有する柱梁構造。
Plastic hinges are provided at the beam ends and / or column ends of the building.
The vibration-reducing structure is formed by configuring the beam end and / or the column end so that the rigidity and / or yield strength of the plastic hinge portion is smaller than the rigidity and / or yield strength other than the plastic hinge portion. Provided
The length of the plastic hinge portion shall be 1/2 or less from the beam end to the beam formation and / or 1/2 or less from the column end to the column formation or column width.
The beam and the column are made of steel.
A column-beam structure having a vibration-reducing structure, which constitutes the plastic hinge portion by reinforcing the beam member and / or the column member with a steel plate except for a region corresponding to the plastic hinge portion.
JP2016031773A 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure Active JP6786224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031773A JP6786224B2 (en) 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031773A JP6786224B2 (en) 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure

Publications (2)

Publication Number Publication Date
JP2017150179A JP2017150179A (en) 2017-08-31
JP6786224B2 true JP6786224B2 (en) 2020-11-18

Family

ID=59738817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031773A Active JP6786224B2 (en) 2016-02-23 2016-02-23 Column-beam structure with anti-vibration structure

Country Status (1)

Country Link
JP (1) JP6786224B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092488B2 (en) * 2017-11-10 2022-06-28 Jfeシビル株式会社 Reinforcing bar members and reinforced concrete structures using reinforcing bar members
CN109469203B (en) * 2018-12-25 2023-09-19 中国电建集团成都勘测设计研究院有限公司 High intensity area frame construction post beam node overall structure
CN110374370B (en) * 2019-08-05 2024-06-07 湖南大学 High-rise stereo garage energy consumption shock attenuation bearing structure
CN111236424B (en) * 2020-01-14 2021-05-18 长安大学 Intelligent damping structure of assembled frame
CN111236425B (en) * 2020-01-14 2021-05-18 长安大学 Intelligent damping structure of assembled frame shear wall
CN112095811A (en) * 2020-09-30 2020-12-18 福建工程学院 Adopt bolted connection's assembled concrete frame roof beam post trunk formula connected node
CN112832371B (en) * 2021-01-12 2021-12-28 江南大学 Assembled beam column energy dissipation node unit that contains tenon fourth of twelve earthly branches structure
CN115408741A (en) * 2022-04-14 2022-11-29 华南理工大学 Two-stage anti-seismic design method capable of replacing energy-consuming steel frame nodes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012500B2 (en) * 1976-09-14 1985-04-02 株式会社大林組 Construction method of reinforced concrete frame frame
JP3126093B2 (en) * 1994-06-17 2001-01-22 ナショナル・サイエンス・カウンシル Beam-column joints of steel structures
US5675943A (en) * 1995-11-20 1997-10-14 Southworth; George L. Lateral load-resisting structure having self-righting feature
JPH11140974A (en) * 1997-11-12 1999-05-25 Kajima Corp Contact-bonding joining section of precast pc member
JP4546617B2 (en) * 2000-06-19 2010-09-15 株式会社竹中工務店 Pre-cast concrete beam and column PC pressure bonding structure
JP2002021197A (en) * 2000-07-10 2002-01-23 Shimizu Corp Connection end part and building frame structure of rc structural body
JP2002327499A (en) * 2001-05-02 2002-11-15 Ohbayashi Corp Beam member
JP2003138658A (en) * 2001-11-07 2003-05-14 Hisahiro Hiraishi End fixed structure of constituent in reinforced concrete construction structure
JP3872769B2 (en) * 2003-05-23 2007-01-24 久廣 平石 Concrete member joint structure
JP4377927B2 (en) * 2007-05-11 2009-12-02 三井住商建材株式会社 Joint structure of wooden building components
JP5338050B2 (en) * 2007-08-24 2013-11-13 株式会社大林組 Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP5279356B2 (en) * 2008-06-12 2013-09-04 鹿島建設株式会社 Plastic hinge structure of concrete member and concrete member
JP5577676B2 (en) * 2009-11-12 2014-08-27 Jfeスチール株式会社 Column and beam welded joint structure
JP5714378B2 (en) * 2011-03-29 2015-05-07 株式会社竹中工務店 Connection structure of reinforced concrete beams

Also Published As

Publication number Publication date
JP2017150179A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6786224B2 (en) Column-beam structure with anti-vibration structure
KR20100105726A (en) Connection metal fitting and building with the same
JP5575838B2 (en) Beam support structure of building
JP3451328B2 (en) Beam-to-column connection with energy absorption mechanism
CN105358865A (en) Damping device
JP2011208434A (en) Beam-column joint structure
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP4414833B2 (en) Seismic walls using corrugated steel
JP5654060B2 (en) Damper brace and damping structure
JP5405062B2 (en) Vibration-damping studs using viscoelastic dampers and buckling-restrained braces
JP2006037585A (en) Earthquake-resisting wall using corrugated steel plate with opening
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP7154328B2 (en) damping building
JP2009185469A (en) Beam flexual yielding preceding type frame
JP5059687B2 (en) Building seismic control structure
JP6265422B2 (en) Reinforcement structure and building
KR102074040B1 (en) Steel Damper and Frame-type Damping Device usig the Damper and Reinforcing Method thereof
JP4049120B2 (en) Building seismic control structure
KR102209624B1 (en) Seismic reinforcing structure
JP6979283B2 (en) Steel column beam frame of steel pipe column and H-shaped steel beam
JP2010242381A (en) Vibration control structure of building and building equipped therewith
JP2017040102A (en) Vibration control structure of building
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP6924867B1 (en) Vibration control building
JP5060842B2 (en) Damping structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150