JP5438790B2 - Vibration control panel - Google Patents

Vibration control panel Download PDF

Info

Publication number
JP5438790B2
JP5438790B2 JP2012041746A JP2012041746A JP5438790B2 JP 5438790 B2 JP5438790 B2 JP 5438790B2 JP 2012041746 A JP2012041746 A JP 2012041746A JP 2012041746 A JP2012041746 A JP 2012041746A JP 5438790 B2 JP5438790 B2 JP 5438790B2
Authority
JP
Japan
Prior art keywords
vibration control
viscoelastic body
deformation
yield point
functions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012041746A
Other languages
Japanese (ja)
Other versions
JP2012112240A (en
Inventor
貴士 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2012041746A priority Critical patent/JP5438790B2/en
Publication of JP2012112240A publication Critical patent/JP2012112240A/en
Application granted granted Critical
Publication of JP5438790B2 publication Critical patent/JP5438790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、建物の制震構造に関する。   The present invention relates to a vibration control structure for a building.

建物に地震などの外力が加わった場合に、建物が地震に耐えられるだけの頑丈な構造とする耐震構造に対して、建物の安全性をより図るため建物の中にエネルギーを吸収する制震材を配置し建物の震動を低減する制震構造が提案されている。   A seismic control material that absorbs energy in the building to improve the safety of the building against the earthquake-resistant structure that is strong enough to withstand the earthquake when an external force such as an earthquake is applied to the building A seismic control structure has been proposed to reduce building vibration.

制震構造では、オイルダンパーや部材間に粘弾性体を介装した制震材を建物に組み込んで制震構造物を建設している。   In the seismic control structure, a seismic control structure is constructed by incorporating seismic control materials with viscoelastic bodies between oil dampers and members into the building.

特開2006−207144号公報JP 2006-207144 A 特開2003−286774号公報JP 2003-286774 A

しかし、制震構造においては、部材間に粘弾性体が介装された制震材が限界変形に達したときは、制震構造としての機能を発揮できない。   However, in the vibration control structure, when the vibration control material in which the viscoelastic body is interposed between the members reaches the limit deformation, the function as the vibration control structure cannot be exhibited.

特に、住宅など制震パネルを複数枚配置し建物全体として制震構造とする建物では、局所的に制震パネルに大きな力がかかることがあり、1枚の制震パネルが大きく変形し、制震パネルの限界変形に達してしまうことがある。   In particular, in buildings that have multiple damping panels, such as houses, where the entire building has a damping structure, a large force may be applied locally to the damping panel. Limit deformation of the seismic panel may be reached.

本発明は以上のような問題に鑑み、制震構造において制震材が限界変形に達したときも、耐震構造もしくは制震構造として機能する制震構造を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a seismic structure that functions as a seismic structure or a seismic structure even when the seismic control material reaches a limit deformation in the seismic structure.

上記の課題は、部材間に粘弾性体が介装された制震材を用いた制震構造であって、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられ、前記部材どうしの相対変形を規制することにより該制震構造の限界変形以降は耐震構造として機能することを特徴とする制震構造により解決される。   The above problem is a vibration control structure using a vibration control material in which a viscoelastic body is interposed between members, and the relative deformation of the members is restricted when the vibration control structure reaches a limit deformation. Means are provided, and by solving the limit deformation of the vibration control structure by restricting the relative deformation of the members, the vibration control structure functions as an earthquake resistant structure.

この制震構造によれば、部材間に粘弾性体が介装された制震材を用いた制震構造で、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられているので、限界変形以上に部材どうしが相対変形することが規制され、粘弾性体の限界変形を超えて制震構造が変形することなく耐震構造として機能し、制震構造が限界変形を超えて機能しなくなる前に耐震構造として機能し大きな変形にも対応することができる。   According to this vibration control structure, a vibration control structure using a vibration control material in which a viscoelastic body is interposed between members, and the relative deformation of the members is restricted when the vibration control structure reaches a limit deformation. Therefore, the relative deformation of the members relative to the limit deformation is restricted, and the vibration control structure functions without being deformed beyond the limit deformation of the viscoelastic body. It can function as a seismic structure before it stops functioning beyond the limit deformation and can handle large deformations.

なお、限界変形とは制震材に介装された粘弾性体が機能する変形量の限界を意味する。また、制震構造が限界変形に達するときとは、制震構造が限界変形したときだけでなく限界変形に達する前の段階も含むものとする。   In addition, the limit deformation means the limit of the deformation amount at which the viscoelastic body interposed in the damping material functions. The term “when the damping structure reaches critical deformation” includes not only the critical deformation of the damping structure but also the stage before reaching the critical deformation.

また上記の課題は、低降伏点鋼からなる部材間に粘弾性体が介装された制震材からなる制震構造であって、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられ、前記部材どうしの相対変形を規制することにより、前記低降伏点鋼よりなる部材が制震部材として機能し、粘弾性体による制震構造と低降伏点鋼による制震構造を併せ持つことを特徴とする制震構造によっても解決される。   In addition, the above problem is a vibration control structure made of a vibration control material in which a viscoelastic body is interposed between members made of low yield point steel, and when the vibration control structure reaches a limit deformation, the members are Means for regulating the relative deformation of the member, and by regulating the relative deformation of the members, the member made of the low yield point steel functions as a damping member, and the damping structure and the low yield point by the viscoelastic body It can also be solved by a seismic control structure characterized by having a steel structure.

この制震構造によれば、低降伏点鋼からなる部材間に粘弾性体が介装された制震材からなる制震構造で、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられているので、限界変形以上に部材どうしが相対変形することが規制され、前記部材どうしの相対変形を規制することにより、粘弾性体の限界変形を超えて制震構造が変形することなく低降伏点鋼よりなる部材が制震部材として機能し、粘弾性体による制震構造が限界変形を超えて機能しなくなる前に粘弾性体による制震構造と低降伏点鋼による制震構造を併せ持つ制震構造として機能し大きな変形にも対応することができる。   According to this vibration control structure, the vibration control structure is made of a vibration control material in which a viscoelastic body is interposed between members made of low yield point steel. Since the means for restricting relative deformation of the member is provided, it is restricted that the members are relatively deformed beyond the limit deformation, and by restricting the relative deformation of the members, the limit deformation of the viscoelastic body is exceeded. A member made of low yield point steel functions as the damping member without deformation of the damping structure, and the damping structure with the viscoelastic body is less It functions as a seismic control structure that also has a seismic control structure with yield point steel and can cope with large deformations.

さらに上記の課題は、部材間に粘弾性体が介装された制震材を用いた制震構造であって、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられ、前記部材どうしの相対変形を規制することにより該制震構造の限界変形以降は耐震構造として機能することを特徴とする制震構造、若しくは、低降伏点鋼からなる部材間に粘弾性体が介装された制震材からなる制震構造であって、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられ、前記部材どうしの相対変形を規制することにより、前記低降伏点鋼よりなる部材が制震部材として機能し、粘弾性体による制震構造と低降伏点鋼による制震構造を併せ持つことを特徴とする制震構造を用いた制震パネルにより解決される。   Further, the above problem is a vibration control structure using a vibration control material in which a viscoelastic body is interposed between members, and the relative deformation of the members is restricted when the vibration control structure reaches a limit deformation. Between the members composed of a low-yield point steel, or a damping structure characterized by functioning as an earthquake-resistant structure after limiting deformation of the damping structure by restricting relative deformation between the members. A damping structure comprising a damping material with a viscoelastic body interposed therebetween, and means for restricting relative deformation of the members when the damping structure reaches a limit deformation is provided between the members. By controlling the relative deformation of the steel, the member made of the low yield point steel functions as a vibration control member, and has a vibration control structure made of a viscoelastic body and a vibration control structure made of a low yield point steel. Solved by structural damping panels

本発明は以上のとおりであるから、この制震構造によれば、部材間に粘弾性体が介装された制震材を用いた制震構造で、該制震構造が限界変形に達したときに前記部材どうしの相対変形を規制する手段が設けられているので、限界変形以上に部材どうしが相対変形することが規制され、粘弾性体の限界変形を超えて制震構造が変形することなく耐震構造若しくは粘弾性体と低降伏点鋼による制震構造として機能するため、粘弾性体による制震構造が限界変形を超えて機能しなくなる前に粘弾性体による制震構造と低降伏点鋼による制震構造を併せ持つ制震構造として機能し大きな変形にも対応することができる。   Since the present invention is as described above, according to this vibration control structure, the vibration control structure using the vibration control material in which the viscoelastic body is interposed between the members has reached the limit deformation. Since means for restricting the relative deformation of the members is sometimes provided, it is restricted that the members are relatively deformed beyond the limit deformation, and the damping structure is deformed beyond the limit deformation of the viscoelastic body. Because it functions as a seismic structure or a damping structure with a viscoelastic body and low yield point steel, the damping structure with a viscoelastic body and a low yield point before the damping structure with a viscoelastic body stops functioning beyond the limit deformation It functions as a seismic control structure that also has a steel seismic control structure and can handle large deformations.

本発明の参考となる実施形態である制震構造を示す図であって、(イ)はその断面平面図、(ロ)は(イ)のA−A´線断面図、(ハ)〜(ホ)は変形したときの動作状況を表す断面平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the damping structure which is embodiment which becomes reference of this invention, Comprising: (A) is the cross-sectional top view, (B) is the AA 'sectional view taken on (A), (C)-( (E) is a cross-sectional plan view showing an operation state when deformed. 本発明の参考となる実施形態である制震構造を示す斜視図である。It is a perspective view which shows the damping structure which is embodiment which becomes reference of this invention. (イ)は本発明の参考となる実施形態である制震構造をブレースに適用したパネルを示す平面図であり、(ロ)及び(ハ)はそのパネルが変形した状況を示す平面図である。(A) is a top view which shows the panel which applied the damping structure which is embodiment which becomes reference of this invention to the brace, (b) and (c) are the top views which show the condition which the panel deform | transformed. . 本発明の施形態である制震構造を示す図であって、(イ)はその断面平面図、(ロ)は(イ)のA−A´線断面図、(ハ)〜(ホ)は変形したときの動作状況を表す断面平面図である。A diagram showing a vibration control structure is the implementation of the invention, (a) is a sectional plan view, (b) the A-A'line cross-sectional view of (b), (c) to (e) FIG. 5 is a cross-sectional plan view showing an operation state when deformed.

次に、本発明の参考となる実施形態を図面に基づいて説明する。 Next, a reference embodiment of the present invention will be described with reference to the drawings.

図1及び図2に示す制震構造1において、2は第一構造体、3は第二構造体、4は粘弾性体である。第一構造体2は、本体部5、中央軸体部6、外周中空軸体部7、係止部8からなり、第二構造体3は、突起部10を有する鋼管からなる。   In the damping structure 1 shown in FIGS. 1 and 2, 2 is a first structure, 3 is a second structure, and 4 is a viscoelastic body. The first structure 2 is composed of a main body portion 5, a central shaft body portion 6, an outer peripheral hollow shaft body portion 7, and a locking portion 8, and the second structure 3 is composed of a steel pipe having a protruding portion 10.

制震構造は図3(イ)に示すように、フレームにより組まれた方形状のパネル11の対角に取り付けられるブレース12、13として使用され、一枚のパネルに対してそれぞれの対角に1本づつ合計2本取り付けられる。   As shown in Fig. 3 (a), the vibration control structure is used as braces 12, 13 attached to the diagonal of a rectangular panel 11 assembled by a frame. A total of two can be attached one by one.

第一構造体2は密実の丸鋼からなる本体部5の一方の端部の中央に中央軸体部6が突出して形成されているとともにその周囲を中央軸体部6と間隔をあけて丸鋼からなる外周中空軸体部7が形成されており、外周中空軸体部7の先端は内側に突出した係止部8が形成されている。   The first structural body 2 is formed with a central shaft body portion 6 projecting from the center of one end of a main body portion 5 made of solid round steel, and the periphery thereof is spaced apart from the central shaft body portion 6. An outer peripheral hollow shaft body portion 7 made of round steel is formed, and a distal end of the outer peripheral hollow shaft body portion 7 is formed with a locking portion 8 protruding inward.

第二構造体3は中空の丸型鋼管からなり、第一構造体2の中央軸体部6が第二構造体3の中空部分に挿入され、中央軸体部6と第二構造体3の間に粘弾性体4が介装されている。制震構造1に外力が加わったときに第一構造体2と第二構造体3が軸芯方向に相対変形することにより粘弾性体4によりエネルギーを吸収するようになっている。   The second structure 3 is made of a hollow round steel pipe, and the central shaft body portion 6 of the first structure 2 is inserted into the hollow portion of the second structure 3. A viscoelastic body 4 is interposed therebetween. When an external force is applied to the vibration control structure 1, the first structure 2 and the second structure 3 are relatively deformed in the axial direction so that energy is absorbed by the viscoelastic body 4.

第二構造体3の外周部には、第一構造体2と第二構造体3が相対変形をしたときに、粘弾性体が機能する変形量の限界を超えて相対変形しないように、第一構造体2と第二構造体3の相対変形を規制する突起部10が設けられており、第一構造体2の係止部8との協動により、第一構造体2と第二構造体3の相対変形を規制するようになされている。   In the outer peripheral portion of the second structure 3, when the first structure 2 and the second structure 3 are relatively deformed, the first structure 2 and the second structure 3 do not relatively deform beyond the limit of the deformation amount at which the viscoelastic body functions. A protrusion 10 that restricts relative deformation of the one structural body 2 and the second structural body 3 is provided, and the first structural body 2 and the second structural body 2 cooperate with the locking portion 8 of the first structural body 2. The relative deformation of the body 3 is restricted.

制震構造1を含むパネルに外力が加わった場合、図3(ロ)に示すようにパネル11には水平力が働き、パネル11の一方のブレース12は伸び、もう一方のブレース13は縮む。外力による制震構造1の許容範囲内であれば、2本のブレース12,13が交互の伸び縮みを繰り返すことで、制震構造1は図1(ハ)、(ニ)に示すように粘弾性体4がエネルギーを吸収し、外力からの建物の揺れを抑える。   When an external force is applied to the panel including the vibration control structure 1, a horizontal force acts on the panel 11 as shown in FIG. 3B, and one brace 12 of the panel 11 extends and the other brace 13 contracts. If it is within the allowable range of the damping structure 1 due to external force, the two braces 12 and 13 are alternately expanded and contracted, so that the damping structure 1 becomes viscous as shown in FIGS. The elastic body 4 absorbs energy and suppresses shaking of the building from external force.

しかし、制震構造1を含むパネルに制震構造1で許容する以上の外力が加わった場合には、図3(ハ)に示すようにパネル11には大きな水平力が働き、パネル11の一方のブレース12は大きく伸び、もう一方のブレース13は大きく縮む。このとき、制震構造1は第一構造体1の係止部8と第二構造体3の突起部10の協動によりブレース12の伸び方向の変形が規制され、粘弾性体4の限界変形以上に変形せず長さが規制され、制震構造1は図1(ホ)に示すように制震構造ではなく、耐震構造として機能するようになる。   However, when an external force exceeding that permitted by the vibration control structure 1 is applied to the panel including the vibration control structure 1, a large horizontal force acts on the panel 11 as shown in FIG. One of the braces 12 greatly expands, and the other brace 13 contracts greatly. At this time, in the damping structure 1, the deformation in the extending direction of the brace 12 is restricted by the cooperation of the locking portion 8 of the first structure 1 and the protrusion 10 of the second structure 3, and the limit deformation of the viscoelastic body 4. The length is regulated without being deformed as described above, and the seismic control structure 1 functions not as a seismic control structure but as a seismic structure as shown in FIG.

つまり、粘弾性体が機能を発揮する変形量までは粘弾性体の作用で制震構造として機能するが、それ以上の粘弾性体が機能は発揮できない変形量ではブレースの変形を抑制する耐震構造として機能し、粘弾性体の破断を防止し、大きな変形にも対応することができる。   In other words, up to the amount of deformation that the viscoelastic body exerts its function, it functions as a vibration control structure due to the action of the viscoelastic body, but the earthquake resistant structure that suppresses the deformation of the brace at a deformation amount beyond which the viscoelastic body cannot perform its function It can function as, prevents breakage of the viscoelastic body, and can cope with large deformation.

次に、本発明の実施最良形態を図面に基づいて説明する。 Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図4に示す制震構造15において、第一構造体2の外周中空軸体部7の一部が低降伏点鋼13により形成されている。その他の構成については、第一の実施形態と同じであり、記号の説明は省略する。   In the vibration control structure 15 shown in FIG. About another structure, it is the same as 1st embodiment, and description of a symbol is abbreviate | omitted.

第二構造体3の外周部には、第一構造体2と第二構造体3が相対変形をしたときに、粘弾性体が機能する変形量の限界を超えて相対変形しないように、第一構造体2と第二構造体3の相対変形を規制する突起部10が設けられており、第一構造体2の係止部8との協動により、第一構造体2と第二構造体3の相対変形を規制するようになされている。   In the outer peripheral portion of the second structure 3, when the first structure 2 and the second structure 3 are relatively deformed, the first structure 2 and the second structure 3 do not relatively deform beyond the limit of the deformation amount that the viscoelastic body functions. A protrusion 10 that restricts relative deformation of the one structural body 2 and the second structural body 3 is provided, and the first structural body 2 and the second structural body 2 cooperate with the locking portion 8 of the first structural body 2. The relative deformation of the body 3 is restricted.

制震構造15を含むパネルに外力が加わった場合、図3(ロ)に示すようにパネル11には水平力が働き、パネル11の一方のブレース12は伸び、もう一方のブレース13は縮む。外力による制震構造1の許容範囲内であれば、2本のブレースが交互の伸び縮みを繰り返すことで、制震構造15は図4(ハ)、(ニ)に示すように粘弾性体4がエネルギーを吸収し、外力からの建物の揺れを抑える。   When an external force is applied to the panel including the vibration control structure 15, a horizontal force acts on the panel 11 as shown in FIG. 3B, and one brace 12 of the panel 11 extends and the other brace 13 contracts. If the vibration control structure 1 by the external force is within the allowable range, the two braces repeat alternate expansion and contraction, so that the vibration control structure 15 has a viscoelastic body 4 as shown in FIGS. Absorbs energy and suppresses shaking of the building from external forces.

しかし、制震構造15を含むパネルに制震構造1で許容する以上の外力が加わった場合には、図3(ハ)に示すようにパネル11には大きな水平力が働き、パネル11の一方のブレース12は大きく伸び、もう一方のブレース13は大きく縮む。このとき、制震構造1は第一構造体1の係止部8と第二構造体3の突起部10の協動によりブレース12の伸び方向の変形が規制され、粘弾性体4の限界変形以上に変形せず長さが規制され、制震構造15は図4(ホ)に示すように、粘弾性体4と第一構造体2の低降伏点刻鋼13との複合による制震構造として機能することになる。   However, when an external force exceeding that allowed by the vibration control structure 1 is applied to the panel including the vibration control structure 15, a large horizontal force acts on the panel 11 as shown in FIG. One of the braces 12 greatly expands, and the other brace 13 contracts greatly. At this time, in the damping structure 1, the deformation in the extending direction of the brace 12 is restricted by the cooperation of the locking portion 8 of the first structure 1 and the protrusion 10 of the second structure 3, and the limit deformation of the viscoelastic body 4. As shown in FIG. 4 (e), the length of the damping structure 15 is not deformed as described above, and the damping structure 15 is composed of a composite of the viscoelastic body 4 and the low yield point steel 13 of the first structure 2. Will function as.

つまり、粘弾性体が機能を発揮する変形量までは粘弾性体の作用で制震構造として機能するが、それ以上の粘弾性体が機能を発揮できない変形量ではブレースの変形を抑制し粘弾性体と低降伏点鋼の複合による制震構造として機能し、粘弾性体の破断を防止し、大きな変形にも対応することができる。   In other words, the viscoelastic body functions as a vibration control structure up to the amount of deformation at which the viscoelastic body performs its function, but the deformation of the brace that suppresses the function of the viscoelastic body beyond that function suppresses the deformation of the brace. It functions as a vibration control structure with a composite of the body and low yield point steel, prevents breakage of the viscoelastic body, and can cope with large deformations.

以上に、本発明の実施形態を示したが、本発明はこれに限られるものではなく、発明思想を逸脱しない範囲で各種の変更が可能である。例えば、上記の実施形態では第一構造体の一部に低降伏点鋼が形成されている場合について示したが、第一構造体のすべてが低降伏点鋼で形成されていてもよいし、第二構造体が低降伏点鋼で形成されていてもよいことはいうまでもない。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, in the above embodiment, the case where the low yield point steel is formed in a part of the first structure is shown, but all of the first structure may be formed of low yield point steel, Needless to say, the second structure may be made of low yield point steel.

1・・・制震構造
2・・・第一構造体
3・・・第二構造体
4・・・粘弾性体
5・・・本体部
6・・・中央軸体部
7・・・外周中空軸体部
8・・・係止部
10・・・突起部
11・・・パネル
12・・・ブレース
13・・・低降伏点鋼
DESCRIPTION OF SYMBOLS 1 ... Damping structure 2 ... 1st structure 3 ... 2nd structure 4 ... Viscoelastic body 5 ... Main-body part 6 ... Center shaft body part 7 ... Hollow outer periphery Shaft body part 8 ... Locking part 10 ... Projection part 11 ... Panel 12 ... Brace 13 ... Low yield point steel

Claims (1)

第一構造体と第二構造体と粘弾性体からなる制震材において、
第一構造体は、
密実の丸鋼からなる本体部と、
本体部の一方の端部の中央から突出する中央軸体部と、
中央軸体部の周囲に間隔をあけ、丸鋼でその先端部に内側に突出した係止部が形成された一部が低降伏点鋼からなる外周中空軸体部とからなり、
第二構造体は、外周部に突起部が設けられた中空の丸型鋼管からなり、
第一構造体の中央軸体部と第二構造体の間には粘弾性体が介装され、
制震材に外力が加わったときに第一構造体と第二構造体が軸芯方向に相対変形することにより粘弾性体によりエネルギーを吸収するようになされるとともに、粘弾性体が機能する変形量の限界を超えて相対変形しないように、第一構造体の突起部と第二構造体の係止部との協働により、第一構造体と第二構造体の相対変形を規制することにより、前記低降伏点鋼よりなる第1構造体が制震部材として機能し、粘弾性体による制震構造と低降伏点鋼による制震構造を併せ持つ制震構造として機能することを特徴とする制震材を用いた建物の制震パネル。
In the damping material consisting of the first structure, the second structure and the viscoelastic body,
The first structure is
A main body made of solid round steel;
A central shaft body projecting from the center of one end of the main body,
It consists of an outer peripheral hollow shaft body part made of low yield point steel, with a space around the central shaft body part, and a part formed with a round steel with a locking part protruding inward at the tip part.
The second structure consists of a hollow round steel pipe provided with a protrusion on the outer periphery,
A viscoelastic body is interposed between the central shaft body portion of the first structure and the second structure,
When external force is applied to the damping material, the first structure and the second structure are relatively deformed in the axial direction so that the viscoelastic body absorbs energy and the viscoelastic body functions. Restricting relative deformation of the first structure and the second structure by the cooperation of the protrusion of the first structure and the locking portion of the second structure so as not to cause relative deformation beyond the amount limit. Thus, the first structure made of the low yield point steel functions as a vibration control member, and functions as a vibration control structure having both a vibration control structure using a viscoelastic body and a vibration control structure using a low yield point steel. Seismic control panel for buildings using seismic control materials.
JP2012041746A 2012-02-28 2012-02-28 Vibration control panel Expired - Fee Related JP5438790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041746A JP5438790B2 (en) 2012-02-28 2012-02-28 Vibration control panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041746A JP5438790B2 (en) 2012-02-28 2012-02-28 Vibration control panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006314382A Division JP5144919B2 (en) 2006-11-21 2006-11-21 Vibration control panel

Publications (2)

Publication Number Publication Date
JP2012112240A JP2012112240A (en) 2012-06-14
JP5438790B2 true JP5438790B2 (en) 2014-03-12

Family

ID=46496735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041746A Expired - Fee Related JP5438790B2 (en) 2012-02-28 2012-02-28 Vibration control panel

Country Status (1)

Country Link
JP (1) JP5438790B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358838B2 (en) * 2014-04-14 2018-07-18 株式会社ビービーエム Damping damper for structures
WO2021019633A1 (en) * 2019-07-29 2021-02-04 株式会社ティ・カトウ Vibration control device and building material comprising same

Also Published As

Publication number Publication date
JP2012112240A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
TWI529284B (en) Composite damping connector
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP2006241934A (en) Damper device
JP2009249973A (en) Vibration control structure
JP5438790B2 (en) Vibration control panel
JP5144919B2 (en) Vibration control panel
JP5270959B2 (en) Vibration control frame with composite damper
JP2007040063A (en) Bracing structure
JP5318483B2 (en) Vibration control device
JP6838877B2 (en) Buckling restraint brace damper
JP2012219553A (en) Vibration control structure
JP2009114701A (en) Bending control type vibration control structure
JP2012036601A (en) Vibration control damper
JP2006037581A (en) Earthquake resisting stud
JP4553631B2 (en) Vibration control device
JP6447227B2 (en) Damper structure
JP4573709B2 (en) Passive damper
JP2005314917A (en) Vibration control stud
JP6067513B2 (en) Seismic isolation structure
JP6239814B2 (en) Building damping structure and shock absorber
JP2018193730A (en) Building and wooden reinforcement
JP6379608B2 (en) Damping building and building damping method
JP4176620B2 (en) Seismic control structure of RC building
JP6809955B2 (en) Seismic control structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Ref document number: 5438790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees