JP6696754B2 - Composite vibration damper for structures - Google Patents

Composite vibration damper for structures Download PDF

Info

Publication number
JP6696754B2
JP6696754B2 JP2015217228A JP2015217228A JP6696754B2 JP 6696754 B2 JP6696754 B2 JP 6696754B2 JP 2015217228 A JP2015217228 A JP 2015217228A JP 2015217228 A JP2015217228 A JP 2015217228A JP 6696754 B2 JP6696754 B2 JP 6696754B2
Authority
JP
Japan
Prior art keywords
vibration damper
damper
elastic rubber
peripheral surface
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217228A
Other languages
Japanese (ja)
Other versions
JP2017089146A (en
Inventor
合田 裕一
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRIDGE BEARING MANUFACTURE CO., LTD.
Kaimon KK
Miwa Tech Co Ltd
Original Assignee
BRIDGE BEARING MANUFACTURE CO., LTD.
Kaimon KK
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRIDGE BEARING MANUFACTURE CO., LTD., Kaimon KK, Miwa Tech Co Ltd filed Critical BRIDGE BEARING MANUFACTURE CO., LTD.
Priority to JP2015217228A priority Critical patent/JP6696754B2/en
Publication of JP2017089146A publication Critical patent/JP2017089146A/en
Application granted granted Critical
Publication of JP6696754B2 publication Critical patent/JP6696754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建築物、橋梁等の構造物の制振装置として用いられる構造物用複合制振ダンパーに関する。   TECHNICAL FIELD The present invention relates to a composite vibration damper for structures used as a vibration control device for structures such as buildings and bridges.

建築物、橋梁等の構造物用の制振ダンパーとして、減衰定数が大きな低降伏点鋼を用いた座屈拘束型の構造物用ダンパーが実用化されている。このような、構造物用制振ダンパーは、低降伏点鋼が弾塑性変形する際の履歴エネルギーが大きく減衰定数が大きいことを利用し、大きな地震動であっても揺れを低減することができ、構造物が破損する等の被害を免れることができる。   As a damping damper for structures such as buildings and bridges, a buckling-restraint type structural damper using low yield point steel with a large damping constant has been put into practical use. Such a structure vibration damper utilizes the fact that the hysteresis energy when the low yield point steel is elastically plastically deformed is large and the damping constant is large, and it is possible to reduce the shaking even in a large earthquake motion, It is possible to avoid damage such as structural damage.

実開平5−57110号公報Japanese Utility Model Publication No. 5-57110 特開2015−45366号公報JP, 2015-45366, A

しかしながら、低降伏点鋼を用いた座屈断拘束型の構造物用制振ダンパーは、強風による振動や温度変化による変形ギーを吸収させるのには不向きであるという問題を有している。また、低降伏点鋼を用いた座屈拘束型の構造物用制振ダンパーにおいては、低降伏点鋼が地震時に作用する低サイクル疲労領域での耐久性に問題がある。さらに、低降伏点鋼を用いた座屈拘束型の構造物用制振ダンパーは、相対変位する2つの構造部間に配置されるが、構造物用制振ダンパーの軸方向以外の変位に対応するために、構造物用制振ダンパーを相対変位する構造部間に高価なユニバーサルジョイントで連結する必要があるという問題を有している。   However, the buckling-restraint type vibration damper for structures using low yield point steel has a problem that it is not suitable for absorbing vibration due to strong wind and deformation ghee due to temperature change. Further, in the buckling restraint type vibration damper for structures using the low yield point steel, there is a problem in durability in the low cycle fatigue region where the low yield point steel acts during an earthquake. Further, the buckling restraint type structural damping damper using low yield point steel is arranged between two structural parts that are displaced relative to each other, but it is compatible with displacements of the structural damping damper other than the axial direction. In order to do so, there is a problem that it is necessary to connect the structural vibration damper with the expensive universal joint between the structural parts that are relatively displaced.

本発明は、従来技術の持つ課題を解決する構造が簡単で強風による振動や温度変化による変位に対しても対応可能で、地震時の低サイクル疲労領域においても耐久性を有し、構造物用制振ダンパーの軸方向以外の変位に対してユニバーサルジョイントを用いることなく対応が可能な構造物用複合制振ダンパーを提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention has a simple structure that solves the problems of the prior art and can cope with vibrations caused by strong winds and displacements caused by temperature changes, and has durability even in the low cycle fatigue region at the time of an earthquake. An object of the present invention is to provide a composite vibration damper for a structure capable of coping with displacement of the vibration damper other than in the axial direction without using a universal joint.

本発明の構造物用複合制振ダンパーは、前記課題を解決するために、相対変位する一方の構造部に連結され地震時のエネルギーを弾塑性変形して吸収する軸力部材を座屈拘束部材により補剛した第一の制振ダンパーと、相対変位する他方の構造部に連結される筒状部材と筒状部材に相対変位可能に挿入されるロッド部材と前記筒状部材の内周面に固定され前記ロッド部材を挿通する孔を形成したリング状の弾性ゴムと、前記筒状部材内周面に外周面が固定されたリング状の弾性ゴムの内周面に外周面が固定され、前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプと、前記筒状部材と前記ロッド部材の相対変位を前記弾性ゴムに伝達し前記弾性ゴムの弾性変形により吸収する第二の制振ダンパーと、を備え、前記第一の制振ダンパーと前記第二の制振ダンパーを直列に連結することを特徴とする。
MEANS TO SOLVE THE PROBLEM In order to solve the above-mentioned subject, the compound damping damper for structures of the present invention buckles an axial force member which is connected to one structure part which carries out relative displacement, and which elastically and plastically absorbs energy at the time of an earthquake. A first damping damper that is stiffened by a cylindrical member connected to the other structural portion that is relatively displaced, a rod member that is relatively displaceably inserted into the cylindrical member, and an inner peripheral surface of the cylindrical member. An outer peripheral surface is fixed to an inner peripheral surface of a ring-shaped elastic rubber that is fixed and has a hole through which the rod member is inserted, and an outer peripheral surface of the ring-shaped elastic rubber that is fixed to the inner peripheral surface of the tubular member. A hollow pipe through which a rod member can be inserted and which transmits relative displacement at the time of an earthquake to elastic rubber; and a relative displacement between the tubular member and the rod member which is transmitted to the elastic rubber and which is absorbed by elastic deformation of the elastic rubber. A second damping damper, wherein the first damping damper and the second damping damper are connected in series.

また、本発明の構造物用複合制振ダンパーは、前記第一の制振ダンパーと前記第二の制振ダンパーを一方の構造部と他方の構造部にクレビス継手で連結することを特徴とする。   Further, the structure composite vibration damper of the present invention is characterized in that the first vibration damper and the second vibration damper are connected to one structure portion and the other structure portion by a clevis joint. ..

また、本発明の構造物用複合制振ダンパーは、前記第一の制振ダンパーの軸力部材の端部と前記第二の制振ダンパーのロッド部材の端部を連結することを特徴とする。   Further, the structure composite vibration damper of the present invention is characterized in that the end portion of the axial force member of the first vibration damper and the end portion of the rod member of the second vibration damper are connected. ..

また、本発明の構造物用複合制振ダンパーは、前記筒状部材を複数の単位筒状体で構成し、前記単位筒状体毎にその内周面にリング状の弾性ゴムの外周面を固定し、前記リング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定し、前記複数の単位筒状体を一体に連結して筒状部材とすることを特徴とする。   In the structure composite vibration damper of the present invention, the tubular member is composed of a plurality of unit tubular bodies, and an outer peripheral surface of a ring-shaped elastic rubber is provided on an inner peripheral surface of each of the unit tubular bodies. Fixed, the rod member can be inserted into the inner peripheral surface of the ring-shaped elastic rubber, the outer peripheral surface of the hollow pipe that transmits the relative displacement at the time of an earthquake to the elastic rubber is fixed, and the plurality of unit tubular bodies are fixed. It is characterized in that it is integrally connected to form a tubular member.

また、本発明の構造物用複合制振ダンパーは、前記軸力部材をFe−Mn−Si合金で形成することを特徴とする。   Further, the composite vibration damper for structures according to the present invention is characterized in that the axial force member is formed of an Fe-Mn-Si alloy.

また、本発明の構造物用複合制振ダンパーは、 第一の制振ダンパーの座屈拘束部材にピン孔と長孔を軸方向に所定間隔をおいて形成し、軸力部材に座屈拘束部材に形成したピン孔と長孔に係合するピンを固定することを特徴とする。   Further, the composite vibration damper for structures according to the present invention is such that the pin hole and the long hole are formed in the buckling restraint member of the first vibration damper at predetermined intervals in the axial direction, and the buckling restraint member is held in the axial force member. The pin hole formed in the member and the pin engaging with the long hole are fixed.

また、本発明の構造物用複合制振ダンパーは、第二の制振ダンパーの筒状部材の端部にストッパーを固定し、ロッド部材にストッパーと係止し弾性ゴムの弾性変形を拘束する係止リングを固定することを特徴とする。   Further, the structure composite vibration damper of the present invention has a stopper fixed to the end of the tubular member of the second vibration damper and locked to the stopper on the rod member to restrain the elastic deformation of the elastic rubber. It is characterized by fixing the stop ring.

また、本発明の構造物用複合制振ダンパーは、前記第一の制振ダンパーと前記第二の制振ダンパーとの間を軸方向及び軸方向以外の方向の変位を許容する脱落防止部材で連結することを特徴とする。   Further, the structure composite vibration damper of the present invention is a fall prevention member that allows displacement in the axial direction and a direction other than the axial direction between the first vibration damper and the second vibration damper. It is characterized by connecting.

相対変位する一方の構造部に連結され地震時のエネルギーを弾塑性変形して吸収する軸力部材を座屈拘束部材により補剛した第一の制振ダンパーと、相対変位する他方の構造部に連結される筒状部材と筒状部材に相対変位可能に挿入されるロッド部材と前記筒状部材の内周面に固定され前記ロッド部材を挿通する孔を形成したリング状の弾性ゴムと、前記筒状部材内周面に外周面が固定されたリング状の弾性ゴムの内周面に外周面が固定され、前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプと、前記筒状部材と前記ロッド部材の相対変位を前記弾性ゴムに伝達し前記弾性ゴムの弾性変形により吸収する第二の制振ダンパーと、を備え、前記第一の制振ダンパーと前記第二の制振ダンパーを直列に連結することで、強風による振動や温度変化による変形程度の振動エネルギーに対しては、第二の制振ダンパーの弾性ゴムの弾性変形により吸収し、地震時に繰り返される大きな変位に対しては第一の制振ダンパーの軸力部材が弾塑性変形して吸収する耐久性のある構造物用複合制振ダンパーとすることが可能となり、ロッド部材の筒状部材に対する相対移動が確保され、確実に地震時の相対変位を地震エネルギー吸収材に伝達することが可能となる。
第一の制振ダンパーと第二の制振ダンパーを一方の構造部と他方の構造部にクレビス継手で連結することで、軸方向以外の変位に対して第二の制振ダンパーの弾性ゴムが弾性変形して吸収することが可能なので、高価なユニバーサルジョイントを用いなくても対応が可能となる。
第一の制振ダンパーの軸力部材の端部と第二の制振ダンパーのロッド部材の端部を連結することで、第二のダンパーの筒状部材の変位に対して軸力部材とロッド部材が直線的に相対変位することが可能となる。
筒状部材を複数の単位筒状体で構成し、前記単位筒状体毎にその内周面にリング状の弾性ゴムの外周面を固定し、前記リング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定し、前記複数の単位筒状体を一体に連結して筒状部材とすることで、長さの短い単位筒状体を専用金型で製作することができ安価で品質のばらつきの少ないダンパーを製造することが可能となる。
また、短い単位筒状体への弾性ゴムの配置が長い筒状部材に比較し極めて容易とすることが可能となる。弾性ゴムを配置した単位筒状体がユニット化されているので必要に応じたバリエーションのダンパーを安価に且つ容易に製作することが可能となる。
軸力部材をFe−Mn−Si合金で形成することで、低温特性に優れ、地震エネルギー減衰効率が高く、且つ、大地震時に軸力部材に作用する低サイクル疲労領域で耐久性を有するダンパーとすることが可能となる。
第一の制振ダンパーの座屈拘束部材にピン孔と長孔を軸方向に所定間隔をおいて形成し、軸力部材に座屈拘束部材に形成したピン孔と長孔に係合するピンを固定することで、軸力部材と座屈拘束部材間の所定範囲の変位を許容し、大きな変位による軸力部材破断後は、変位をピンを介して座屈拘束部材に伝達可能とし第一の制振ダンパーの脱落を防止することが可能となる。
第二の制振ダンパーの筒状部材の端部にストッパーを固定し、ロッド部材にストッパーと係止し弾性ゴムの弾性変形を拘束する係止リングを固定することで、大きな変位による弾性ゴムの破断を防止することが可能となる。
第一の制振ダンパーと第二の制振ダンパーとの間を軸方向及び軸方向以外の方向の変位を許容する脱落防止部材で連結することで、地震時の極めて大きな応力の付加により軸力部材又は弾性ゴムが破断した場合でも第一の制振ダンパーと第二の制振ダンパーの脱落を防止することが可能となる。
The first damping damper, which is stiffened by a buckling restraint member for the axial force member that is connected to one of the structural parts that are relatively displaced and absorbs the energy during an earthquake by elastically deforming, and the other structural part that is relatively displaced. a ring-shaped elastic rubber which is fixed to the inner peripheral surface of the rod member and the tubular member to form a hole for inserting the rod member inserted displaceable relative to the tubular member and the tubular member connected, the Hollow pipe that has an outer peripheral surface fixed to the inner peripheral surface of a ring-shaped elastic rubber whose outer peripheral surface is fixed to the inner peripheral surface of the tubular member, allows the rod member to be inserted therethrough, and transmits relative displacement to the elastic rubber during an earthquake And a second vibration damper that transmits relative displacement between the tubular member and the rod member to the elastic rubber and absorbs it by elastic deformation of the elastic rubber, the first vibration damper and the first vibration damper. By connecting the two damping dampers in series, the vibration energy of the degree of deformation caused by strong wind and temperature change is absorbed by the elastic deformation of the elastic rubber of the second damping damper, which is repeated during an earthquake. becomes possible to structure composite vibration dampers which axial force member of the first vibration dampers durable to absorb by elastic-plastic deformation for large displacements, relative with respect to the cylindrical member of the rod member Movement is secured, and relative displacement during an earthquake can be reliably transmitted to the seismic energy absorber.
By connecting the first damping damper and the second damping damper to one structural part and the other structural part with a clevis joint, the elastic rubber of the second damping damper can be operated against displacements other than the axial direction. Since it can be elastically deformed and absorbed, it is possible to cope without using an expensive universal joint.
By connecting the end portion of the axial force member of the first vibration damper and the end portion of the rod member of the second vibration damper, the axial force member and the rod against the displacement of the tubular member of the second damper. The members can be linearly displaced relative to each other.
The tubular member is composed of a plurality of unit tubular bodies, the outer peripheral surface of the ring-shaped elastic rubber is fixed to the inner peripheral surface of each of the unit tubular bodies, and the inner peripheral surface of the ring-shaped elastic rubber is By fixing the outer peripheral surface of the hollow pipe that can insert the rod member and transmitting the relative displacement at the time of earthquake to the elastic rubber, and connecting the plurality of unit cylindrical bodies integrally to form a cylindrical member, It is possible to manufacture a unit tubular body having a short length by a dedicated mold, and it is possible to manufacture an inexpensive damper with little variation in quality.
Further, it becomes possible to arrange the elastic rubber in the short unit tubular body extremely easily as compared with the long tubular member. Since the unit tubular body in which the elastic rubber is arranged is unitized, it is possible to easily and inexpensively manufacture a damper having a variety of variations as needed.
By forming the axial force member from a Fe-Mn-Si alloy, a damper having excellent low-temperature characteristics, high seismic energy damping efficiency, and durability in the low cycle fatigue region that acts on the axial force member during a large earthquake. It becomes possible to do.
A pin hole and a long hole are formed in the buckling restraint member of the first vibration damper at predetermined intervals in the axial direction, and a pin hole formed in the buckling restraint member and the long hole are engaged with the axial force member. By fixing the, the displacement within a predetermined range between the axial force member and the buckling restraint member is allowed, and after the axial force member is broken due to a large displacement, the displacement can be transmitted to the buckling restraint member via the pin. It is possible to prevent the damping damper from falling off.
By fixing a stopper to the end of the tubular member of the second vibration damper and fixing a locking ring that locks the stopper to the rod member and restrains elastic deformation of the elastic rubber, It becomes possible to prevent breakage.
By connecting the first damping damper and the second damping damper with a fall-prevention member that allows displacement in the axial direction and directions other than the axial direction, the axial force can be increased by the addition of extremely large stress during an earthquake. Even if the member or the elastic rubber is broken, it is possible to prevent the first vibration damper and the second vibration damper from falling off.

本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows the embodiment of this invention.

本発明の構造物用複合制振ダンパーの実施の形態を図により説明する。図1は、本発明の構造物用複合制振ダンパーの概略図で、図2は、図1のA−A線断面図であり、図3は、図1のB−B線断面図である。   An embodiment of the composite vibration damper for structures of the present invention will be described with reference to the drawings. 1 is a schematic view of a composite vibration damper for structures according to the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. 3 is a sectional view taken along the line BB of FIG. ..

本発明の構造物用複合制振ダンパー1は、相対変位する一方の構造部に連結される第一の制振ダンパー2と他方の構造部に連結される第二の制振ダンパー3を直列に連結して構成される。   A composite vibration damper 1 for a structure of the present invention comprises a first vibration damper 2 connected to one structural portion that is relatively displaced and a second vibration damper 3 connected to the other structural portion in series. It is composed by connecting.

第一の制振ダンパー2は、軸力部材4が座屈拘束部材5内に配置され、地震時に軸方向の力が作用すると軸力部材4が弾塑性変形して地震エネルギーを吸収する座屈拘束型の構造物用制振ダンパーである。   In the first damping damper 2, the axial force member 4 is arranged inside the buckling restraint member 5, and when axial force acts during an earthquake, the axial force member 4 elastically-plastically deforms to absorb the seismic energy. It is a restraint type vibration damper for structures.

通常、軸力部材4の弾塑性変形により地震エネルギーを吸収するタイプのダンパーにおいては、軸力部材4を低降伏点鋼で形成していた。しかし、低降伏点鋼は地震時に作用する低サイクル疲労領域での耐久性に問題がある。   Usually, in a damper of a type that absorbs seismic energy by elastic-plastic deformation of the axial force member 4, the axial force member 4 is formed of low yield point steel. However, low yield point steel has a problem in durability in the low cycle fatigue region that acts during an earthquake.

そこで、本発明の構造物用複合制振ダンパー1の座屈拘束型制振ダンパーである第一の制振ダンパー2の軸力部材4をFe−Mn−Si合金で形成する。Fe−Mn−Si合金は、形状記憶合金であり、地震エネルギー減衰効率が高く、且つ、大地震時に軸力部材4に作用する低サイクル疲労領域で耐久性を有するため、低降伏点鋼を用いた座屈拘束型制振ダンパーより優れている。   Therefore, the axial force member 4 of the first damping damper 2 which is the buckling restrained type damping damper of the structure composite damping damper 1 of the present invention is formed of an Fe-Mn-Si alloy. The Fe-Mn-Si alloy is a shape memory alloy, has high seismic energy damping efficiency, and has durability in a low cycle fatigue region that acts on the axial force member 4 at the time of a large earthquake. Therefore, a low yield point steel is used. It is superior to the buckling-restraint type damping damper.

図2に示される実施形態では、軸力部材4を断面十字状、座屈拘束部材5を断面矩形中空状で示しているが、軸力部材4の断面形状はどのような形状であっても良い。また、座屈拘束部材5の断面形状もどのような形状であっても良い。   In the embodiment shown in FIG. 2, the axial force member 4 is shown in a cross shape and the buckling restraint member 5 is shown in a hollow rectangular shape in cross section, but the axial force member 4 may have any cross-sectional shape. good. Further, the buckling restraint member 5 may have any cross-sectional shape.

第一の制振ダンパー2の一方の端部には、相対変位する一方の構造部に連結するための第一制振ダンパー用継手6が固定される。第一制振ダンパー用継手6は、通常のクレビス継手を用いる。第一の制振ダンパー2の他方の端部には、第二の制振ダンパー3を直列に連結するための連結部材7が固定される。連結部材7には雌ねじ孔が形成される。第一の制振ダンパー2と第二の制振ダンパー3の連結方式は他の連結方式を用いても良い。   A first damping damper joint 6 is fixed to one end of the first damping damper 2 for connecting to one of the structural portions that are relatively displaced. As the first damping damper joint 6, an ordinary clevis joint is used. A connecting member 7 for connecting the second vibration damper 3 in series is fixed to the other end of the first vibration damper 2. A female screw hole is formed in the connecting member 7. The first damping damper 2 and the second damping damper 3 may be connected by any other connecting method.

第一の制振ダンパー2に直列に連結される第二の制振ダンパー3は、相対変位する他方の構造部に連結するための第二制振ダンパー用継手8を一方の端部に固定した筒状部材9を有する。筒状部材9内には、ロッド部材12を挿通可能な中空パイプ11が配置され、筒状部材5の内壁と中空パイプ11の外周との間にリング状の弾性ゴム10が加硫成形により筒状部材9の内壁と中空パイプ11の外周に一体に固定される。リング状の弾性ゴム10の第二制振ダンパー用継手8側には一定の空間を設ける。   The second vibration damper 3 connected in series to the first vibration damper 2 has a second vibration damper joint 8 fixed to one end for connecting to the other structural portion that is relatively displaced. It has a tubular member 9. A hollow pipe 11 into which the rod member 12 can be inserted is arranged in the tubular member 9, and a ring-shaped elastic rubber 10 is vulcanized and formed between the inner wall of the tubular member 5 and the outer circumference of the hollow pipe 11. The inner wall of the cylindrical member 9 and the outer circumference of the hollow pipe 11 are integrally fixed. A fixed space is provided on the second vibration damper joint 8 side of the ring-shaped elastic rubber 10.

中空パイプ11には、両端に雄ねじ部12a,12bを形成したロッド部材12が、その両端の雄ねじ部12a、12bが中空パイプ11の外側に突き出すように挿通される。ロッド部材12の中空パイプ11から突き出した雄ねじ部12a、12bには、雌ねじ孔13a、14aを有する変位伝達リング13、14が螺着される。変位伝達リング13、14は、中空パイプ11の両端面に密着するように螺着される。   The rod member 12 having male screw portions 12a and 12b formed at both ends is inserted into the hollow pipe 11 so that the male screw portions 12a and 12b at both ends thereof are projected to the outside of the hollow pipe 11. Displacement transmission rings 13 and 14 having female screw holes 13a and 14a are screwed into the male screw portions 12a and 12b protruding from the hollow pipe 11 of the rod member 12. The displacement transmission rings 13 and 14 are screwed so as to be in close contact with both end surfaces of the hollow pipe 11.

ロッド部材12端部の雄ねじ部12bが第一の制振ダンパー2の端部に固定された連結部材7に形成した雌ねじ孔に螺着される。このようにして、第一の制振ダンパー2と第二の制振ダンパー3が直列に連結される。図に示される実施形態で筒状部材9は断面円形であるが、筒状部材9の断面形状を多角形としても良い。   The male screw portion 12b at the end of the rod member 12 is screwed into the female screw hole formed in the connecting member 7 fixed to the end of the first vibration damper 2. In this way, the first damping damper 2 and the second damping damper 3 are connected in series. Although the tubular member 9 has a circular cross section in the illustrated embodiment, the tubular member 9 may have a polygonal cross section.

相対変位する一方の構造部に第一の制振ダンパー2の端部に固定した第一制振ダンパー用継手6をピン連結し、他方の構造部に第二の制振ダンパー3の端部に固定した第二制振ダンパー用継手8をピン連結する。第一制振ダンパー用継手6と第二制振ダンパー用継手8は通常のクレビス継ぎ手とする。相対変位する構造部間に配置される制振ダンパーは、軸方向以外の応力に対応するためにユニバーサルジョイントで連結するが、本発明の構造物用複合制振ダンパーにおいては、第二の制振ダンパー3の弾性ゴム10が、軸方向以外の応力を弾性変形して吸収するので高価なユニバーサルジョイントを用いることなく、安価なクレビス継手で対応することが可能となる。   The first vibration damper joint 6 fixed to the end of the first vibration damper 2 is pin-connected to one of the structural parts that are relatively displaced, and the other structure is connected to the end of the second vibration damper 3. The fixed second damping damper joint 8 is pin-connected. The first damping damper joint 6 and the second damping damper joint 8 are ordinary clevis joints. The vibration dampers arranged between the structural parts that are displaced relative to each other are connected by a universal joint in order to cope with the stress other than the axial direction, but in the composite vibration damper for a structure of the present invention, the second vibration damper is used. Since the elastic rubber 10 of the damper 3 elastically deforms and absorbs stress other than the axial direction, an inexpensive clevis joint can be used without using an expensive universal joint.

図1に示すように、第一の制振ダンパー2の座屈拘束部材5の外周と第二の制振ダンパー3の筒状部材9の外周に脱落防止部材取付部材16、16を固定し、脱落防止部材取付部材16、16間を脱落防止部材17で連結する。脱落防止部材17は、軸方向の変位を許容する一定の遊びを設けて連結される。さらに、脱落防止部材17を一定の柔軟性を有するワイヤロープ等で形成することにより軸方向以外の方向の変位も許容する。脱落防止部材17は、構造物用複合制振ダンパー1に地震時極めて大きな応力が付加され、軸力部材4又は弾性ゴム10が破断した場合でも第一の制振ダンパーと第二の制振ダンパーの脱落を防止する。   As shown in FIG. 1, the fall prevention member mounting members 16 and 16 are fixed to the outer circumference of the buckling restraint member 5 of the first vibration damper 2 and the outer circumference of the tubular member 9 of the second vibration damper 3, The fall prevention member attachment members 16, 16 are connected by a fall prevention member 17. The captive prevention member 17 is connected with a certain play that allows displacement in the axial direction. Further, the fall prevention member 17 is formed of a wire rope or the like having a certain flexibility to allow displacement in directions other than the axial direction. The fall-off prevention member 17 applies the extremely large stress to the structure composite vibration damper 1 at the time of an earthquake, and even if the axial force member 4 or the elastic rubber 10 is broken, the first vibration damper and the second vibration damper. To prevent the falling off.

このように構成された構造物用複合制振ダンパー1の作用について説明する。強風による振動や温度変化による変形等は、第二の制振ダンパー3の弾性ゴム10が弾性変形して対応する。地震時の大きな変位の繰り返しに対しては、第一の制振ダンパー2の軸力部材4の弾塑性変形により減衰する。軸力部材4が、Fe−Mn−Si合金で形成されており、低温特性に優れ、地震エネルギー減衰効率が高く、且つ、大地震時に作用する低サイクル疲労領域で耐久性を有する複合制振ダンパーとすることが可能となる。   The operation of the composite vibration damping damper 1 for a structure thus configured will be described. The elastic rubber 10 of the second vibration damper 3 elastically deforms to respond to vibrations due to strong winds, deformation due to temperature changes, and the like. Repeated large displacements during an earthquake are damped by the elastic-plastic deformation of the axial force member 4 of the first vibration damper 2. The axial force member 4 is formed of an Fe-Mn-Si alloy, has excellent low temperature characteristics, high seismic energy damping efficiency, and has durability in a low cycle fatigue region that acts during a large earthquake. It becomes possible.

図4(a)(b)、図5は、第二の制振ダンパー3の他の実施形態を示す図である。この実施形態では、筒状部材9を複数の単位筒状体9aに分割して構成し、単位筒状体9a毎にリング状の弾性ゴム10とロッド部材12が挿通可能な中空パイプ12を配置し、弾性ゴムと単位筒状体9aと弾性ゴム10及び中空パイプ11を加硫成形により一体化する。長さの短い単位筒状体9aを専用金型で製作することができ安価で品質のばらつきの少ないダンパーを製造することが可能となる。また、短い単位筒状体9aへの弾性ゴム10の配置が長い筒状部材9に比較し極めて容易とすることが可能となる。弾性ゴム10を配置した単位筒状体9aがユニット化されているので必要に応じたバリエーションのダンパーを安価に且つ容易に製作することが可能となる。   FIG. 4A, FIG. 4B, and FIG. 5 are views showing another embodiment of the second vibration damper 3. In this embodiment, the tubular member 9 is divided into a plurality of unit tubular bodies 9a, and a ring-shaped elastic rubber 10 and a hollow pipe 12 through which a rod member 12 can be inserted are arranged for each unit tubular body 9a. Then, the elastic rubber, the unit tubular body 9a, the elastic rubber 10, and the hollow pipe 11 are integrated by vulcanization molding. Since the unit tubular body 9a having a short length can be manufactured by a dedicated mold, it is possible to manufacture an inexpensive damper having a small variation in quality. Further, it becomes possible to make the arrangement of the elastic rubber 10 on the short unit tubular body 9a extremely easy as compared with the long tubular member 9. Since the unit tubular body 9a in which the elastic rubber 10 is arranged is unitized, it is possible to easily and inexpensively manufacture a damper having a variation as necessary.

複数の単位筒状体9aを連結リング15で連結し、中空パイプ11にロッド部材12を挿通し、ロッド部材12の両端の雄ねじ部12a、12bに変位伝達リング13、14を中空パイプ12の端面に密着するように螺着する。   A plurality of unit tubular bodies 9a are connected by a connecting ring 15, the rod member 12 is inserted into the hollow pipe 11, and the displacement transmitting rings 13 and 14 are attached to the male screw portions 12a and 12b at both ends of the rod member 12 on the end surface of the hollow pipe 12. Screw it so that it sticks closely to.

図6、図7、図8、図9は、構造物用複合制振ダンパーの他の実施形態を示す図である。図6は、セット時の状態を示す図である。   FIG. 6, FIG. 7, FIG. 8 and FIG. 9 are diagrams showing other embodiments of the composite vibration damper for structures. FIG. 6 is a diagram showing a state at the time of setting.

第一の制振ダンパー2の座屈拘束部材5にピン孔5aと長孔5bを軸方向に所定間隔をおいて形成する。軸力部材4に座屈拘束部材5に形成したピン孔5aと長孔5bに係合するピン4aとピン4bを固定し、軸力部材4ト座屈拘束部材5との一定範囲の相対変位を確保する。   A pin hole 5a and an elongated hole 5b are formed in the buckling restraint member 5 of the first vibration damper 2 at a predetermined interval in the axial direction. The pin hole 5a formed in the buckling restraint member 5 and the pin 4a and the pin 4b engaging with the elongated hole 5b are fixed to the axial force member 4, and the axial displacement of the axial force member 4 and the buckling restraint member 5 within a certain range. Secure.

第二の制振ダンパー3の筒状部材9の端部にロッド部材12を挿通する孔を形成したストッパー9aを固定する。ロッド部材12に係止リング12cを固定する。係止リング12cとストッパー9aの係止により弾性ゴム10の所定以上の変形を拘束し、弾性ゴム10の破断を防止する。   A stopper 9a having a hole through which the rod member 12 is inserted is fixed to the end of the tubular member 9 of the second vibration damper 3. The locking ring 12c is fixed to the rod member 12. By locking the locking ring 12c and the stopper 9a, the elastic rubber 10 is restrained from being deformed more than a predetermined amount, and the elastic rubber 10 is prevented from breaking.

図6は、セット時の状態を示す図で、軸力部材4に固定したピン4bは、座屈拘束部材5に形成した長孔5bの中間位置に位置する。図7に示すように常時の温度変化、クリープ等による変位に対しては、弾性ゴム10の弾性変形で吸収し、軸力部材4は変形しない。   FIG. 6 is a view showing a state at the time of setting, and the pin 4b fixed to the axial force member 4 is located at an intermediate position of the long hole 5b formed in the buckling restraint member 5. As shown in FIG. 7, the elastic deformation of the elastic rubber 10 absorbs the constant temperature change, the displacement caused by the creep, and the axial force member 4 is not deformed.

図8は、地震時の状態を示す図である。地震時、第二の制振ダンパー3の弾性ゴム10の弾性変形により地震エネルギーを吸収する。また、第一の制振ダンパー2の軸力部材4が塑性変形して地震エネルギーを吸収する。   FIG. 8 is a diagram showing a state at the time of an earthquake. During an earthquake, seismic energy is absorbed by elastic deformation of the elastic rubber 10 of the second damping damper 3. Further, the axial force member 4 of the first vibration damper 2 plastically deforms to absorb the seismic energy.

図8は、地震時に大きな変位により第一の制振ダンパー2の軸力部材4が破断した状態を示す。軸力部材4が破断した状態で軸力部材4の軸方向に間隔をおいて固定したピン4a、4bが、座屈拘束部材5に形成したピン孔5aと長孔5bに係合し、地震時の変位はピン4a、4bを介して座屈拘束部材5に伝達され、第一の制振ダンパー2の脱落を防止する。   FIG. 8 shows a state in which the axial force member 4 of the first vibration damper 2 is broken due to a large displacement during an earthquake. Pins 4a and 4b fixed at intervals in the axial direction of the axial force member 4 in a state where the axial force member 4 is broken engage with the pin holes 5a and the long holes 5b formed in the buckling restraint member 5 to cause an earthquake. The displacement at that time is transmitted to the buckling restraint member 5 via the pins 4a and 4b, and prevents the first vibration damper 2 from falling off.

地震時の大きな変位に対して、第二の制振ダンパー3のロッド部材12に固定した係止リング12cが、筒状部材9の端部に固定したストッパー9aに係止し、弾性ゴム10が破断するような変位を拘束する。   The locking ring 12c fixed to the rod member 12 of the second vibration damper 3 is locked to the stopper 9a fixed to the end of the tubular member 9 against the large displacement during an earthquake, and the elastic rubber 10 is Constrain the displacement that causes breakage.

以上のように、本発明の構造物用複合制振ダンパーによれば、強風による振動や温度変化による変形等に対しては、第二の制振ダンパーの弾性ゴムの弾性変形により吸収し、地震時に繰り返される大きな変位に対しては第一の制振ダンパーの軸力部材が弾塑性変形して吸収する耐久性のある構造物用複合制振ダンパーとすることが可能となり、軸方向以外の変位に対して弾性ゴムが弾性変形して吸収するので高価なユニバーサルジョイントを用いなくても対応が可能となり、軸力部材をFe−Mn−Si合金で形成することで、低温特性に優れ、地震エネルギー減衰効率が高く、且つ、大地震時に軸力部材に作用する低サイクル疲労領域で耐久性を有するダンパーとすることが可能となる。   As described above, according to the composite vibration damper for a structure of the present invention, the vibration due to the strong wind, the deformation due to the temperature change, etc. are absorbed by the elastic deformation of the elastic rubber of the second vibration damper, and the earthquake is absorbed. It becomes possible to provide a durable composite vibration damper for structures in which the axial force member of the first vibration damper absorbs elastically-plastically deformed against repeated large displacements. Since elastic rubber absorbs elastically by deforming, it can be supported without using an expensive universal joint. By forming the axial force member with Fe-Mn-Si alloy, it has excellent low temperature characteristics and seismic energy. It is possible to obtain a damper having high damping efficiency and having durability in a low cycle fatigue region that acts on the axial force member during a large earthquake.

1:構造物用複合制振ダンパー、2:第一の制振ダンパー、3:第二の制振ダンパー、4:軸力部材、4a、4b:ピン、5:座屈拘束部材、5a:ピン孔、5b:長孔、6:第一制振ダンパー用継手、7:連結部材、8:第二制振ダンパー用継手、9:筒状部材、9a:ストッパー、10:弾性ゴム、11:中空パイプ、12:ロッド部材、12a,12b:雄ねじ部、12c:係止リング、13:変位伝達リング、14:変位伝達リング、15:連結リング、16:脱落防止部材取付部材、17:脱落防止部材   1: Composite vibration damper for structures, 2: First vibration damper, 3: Second vibration damper, 4: Axial force member, 4a, 4b: Pin, 5: Buckling restraint member, 5a: Pin Holes, 5b: long holes, 6: first damping damper joint, 7: connecting member, 8: second damping damper joint, 9: tubular member, 9a: stopper, 10: elastic rubber, 11: hollow Pipe, 12: Rod member, 12a, 12b: Male screw part, 12c: Locking ring, 13: Displacement transmission ring, 14: Displacement transmission ring, 15: Connection ring, 16: Fall prevention member attachment member, 17: Fall prevention member

Claims (8)

相対変位する一方の構造部に連結され地震時のエネルギーを弾塑性変形して吸収する軸力部材を座屈拘束部材により補剛した第一の制振ダンパーと、
相対変位する他方の構造部に連結される筒状部材と筒状部材に相対変位可能に挿入されるロッド部材と前記筒状部材の内周面に固定され前記ロッド部材を挿通する孔を形成したリング状の弾性ゴムと、
前記筒状部材内周面に外周面が固定されたリング状の弾性ゴムの内周面に外周面が固定され、前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプと、
前記筒状部材と前記ロッド部材の相対変位を前記弾性ゴムに伝達し前記弾性ゴムの弾性変形により吸収する第二の制振ダンパーと、
を備え、
前記第一の制振ダンパーと前記第二の制振ダンパーを直列に連結することを特徴とする構造物用複合制振ダンパー。
A first damping damper, which is connected to one of the structural parts that are relatively displaced and which stiffens an axial force member that elastically deforms and absorbs energy during an earthquake by a buckling restraint member,
A tubular member connected to the other structural portion that is relatively displaced, a rod member that is relatively displaceably inserted into the tubular member, and a hole that is fixed to the inner peripheral surface of the tubular member and that inserts the rod member are formed. Ring-shaped elastic rubber,
A hollow member that has an outer peripheral surface fixed to the inner peripheral surface of a ring-shaped elastic rubber whose outer peripheral surface is fixed to the inner peripheral surface of the tubular member, allows the rod member to be inserted, and transmits relative displacement to the elastic rubber during an earthquake. A pipe,
A second vibration damper that transmits relative displacement between the tubular member and the rod member to the elastic rubber and absorbs it by elastic deformation of the elastic rubber,
Equipped with
A composite vibration damper for a structure, wherein the first vibration damper and the second vibration damper are connected in series.
前記第一の制振ダンパーと前記第二の制振ダンパーを一方の構造部と他方の構造部にクレビス継手で連結することを特徴とする請求項1に記載の構造物用複合制振ダンパー。   The composite vibration damper for structures according to claim 1, wherein the first vibration damper and the second vibration damper are connected to one structural portion and the other structural portion by a clevis joint. 前記第一の制振ダンパーの軸力部材の端部と前記第二の制振ダンパーのロッド部材の端部を連結することを特徴とする請求項1又は2に記載の構造物用複合制振ダンパー。  The composite vibration damper for structures according to claim 1 or 2, wherein an end portion of the axial force member of the first vibration damper and an end portion of the rod member of the second vibration damper are connected to each other. Damper. 前記筒状部材を複数の単位筒状体で構成し、前記単位筒状体毎にその内周面にリング状の弾性ゴムの外周面を固定し、前記リング状の弾性ゴムの内周面に前記ロッド部材が挿通可能で、地震時の相対変位を弾性ゴムに伝達する中空パイプの外周面を固定し、前記複数の単位筒状体を一体に連結して筒状部材とすることを特徴とする請求項1ないし3のいずれか1項に記載の構造物用複合制振ダンパ―。   The tubular member is composed of a plurality of unit tubular bodies, the outer peripheral surface of a ring-shaped elastic rubber is fixed to the inner peripheral surface of each of the unit tubular bodies, and the inner peripheral surface of the ring-shaped elastic rubber is fixed. The rod member is insertable, the outer peripheral surface of a hollow pipe that transmits relative displacement at the time of an earthquake to elastic rubber is fixed, and the plurality of unit tubular bodies are integrally connected to form a tubular member. The composite vibration damper for structures according to any one of claims 1 to 3. 前記軸力部材をFe−Mn−Si合金で形成することを特徴とする請求項1ないしのいずれか1項に記載の構造物用複合制振ダンパー。
The composite vibration damper for a structure according to any one of claims 1 to 4 , wherein the axial force member is formed of a Fe-Mn-Si alloy.
第一の制振ダンパーの座屈拘束部材にピン孔と長孔を軸方向に所定間隔をおいて形成し、軸力部材に座屈拘束部材に形成したピン孔と長孔に係合するピンを固定することを特徴とする請求項1ないし5のいずれか1項に記載の構造物用制振ダンパー。   A pin hole and a long hole are formed in the buckling restraint member of the first vibration damper at a predetermined interval in the axial direction, and a pin hole formed in the buckling restraint member and the long hole are engaged with the axial force member. The vibration damping damper for a structure according to claim 1, wherein the vibration damping damper is fixed. 第二の制振ダンパーの筒状部材の端部にストッパーを固定し、ロッド部材にストッパーと係止し弾性ゴムの弾性変形を拘束する係止リングを固定することを特徴とする請求項1ないし5のいずれか1項に記載の構造物用制振ダンパー。   A stopper is fixed to the end of the tubular member of the second vibration damper, and a locking ring that locks with the stopper and restrains elastic deformation of the elastic rubber is fixed to the rod member. The vibration damper for structures according to any one of 5 above. 前記第一の制振ダンパーと前記第二の制振ダンパーの間を軸方向及び軸方向以外の方向の変位を許容する脱落防止部材で連結することを特徴とする請求項1ないし7のいずれか1項に記載の構造物用制振ダンパー。 8. The fall prevention member that allows displacement in the axial direction and in a direction other than the axial direction, connects the first vibration damper and the second vibration damper to each other. The vibration damper for structures according to item 1.
JP2015217228A 2015-11-05 2015-11-05 Composite vibration damper for structures Active JP6696754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217228A JP6696754B2 (en) 2015-11-05 2015-11-05 Composite vibration damper for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217228A JP6696754B2 (en) 2015-11-05 2015-11-05 Composite vibration damper for structures

Publications (2)

Publication Number Publication Date
JP2017089146A JP2017089146A (en) 2017-05-25
JP6696754B2 true JP6696754B2 (en) 2020-05-20

Family

ID=58768880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217228A Active JP6696754B2 (en) 2015-11-05 2015-11-05 Composite vibration damper for structures

Country Status (1)

Country Link
JP (1) JP6696754B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017879B2 (en) * 2017-08-08 2022-02-09 株式会社横河Nsエンジニアリング A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
CN110175426B (en) * 2019-05-31 2022-06-14 中铁二院工程集团有限责任公司 Design method of railway bridge elastic-plastic metal limiting, damping and energy-consuming device
CN110374222A (en) * 2019-08-06 2019-10-25 广州大学 A kind of re-centring damper
JP7330122B2 (en) 2020-03-16 2023-08-21 株式会社フジタ Support structure for superstructure
KR102207863B1 (en) * 2020-08-07 2021-01-25 이채성 Routine vibration absorber and long-lived vibration control system
CN112482196B (en) * 2020-12-03 2022-04-05 中国地震局工程力学研究所 Self-reaction type anti-falling beam structure
CN113502734B (en) * 2021-07-21 2022-07-26 河北工业大学 Can realize from speed locking type third-order yield damper of restoring to throne
CN116180583B (en) * 2023-04-24 2023-07-14 湖南省潇振工程科技有限公司 Ball screw type eddy current damping stay cable vibration damper

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370731B2 (en) * 2001-04-16 2009-11-25 大成建設株式会社 Composite vibration brace
JP4669321B2 (en) * 2005-05-24 2011-04-13 住金関西工業株式会社 Buckling-restrained axial force bearing member
US8590258B2 (en) * 2011-12-19 2013-11-26 Andrew Hinchman Buckling-restrained brace
JP5886721B2 (en) * 2012-09-26 2016-03-16 株式会社美和テック Damping damper for structures
JP6182725B2 (en) * 2012-12-28 2017-08-23 国立研究開発法人物質・材料研究機構 Damping alloy

Also Published As

Publication number Publication date
JP2017089146A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6696754B2 (en) Composite vibration damper for structures
US4731966A (en) Vibration energy absorber device
JP6419449B2 (en) Seismic isolation device
JP4288370B2 (en) Damper device
KR20170045255A (en) Vibration damping device for structure
JP5886721B2 (en) Damping damper for structures
CN103590320A (en) Stay cable vibration damper of cable-stayed bridge
RU2370685C1 (en) Spring equal-frequency element
JP2012246998A (en) Vibration damping device
JP2008545901A (en) Fixing devices for substrates, especially glass substrates
JP5062752B2 (en) Friction damper
JP2005337403A (en) Pipe fitting
CN203584997U (en) Novel connecting structure
CN206397239U (en) A kind of damper displacement qualifier
JP6618760B2 (en) Structure for enhancing performance of rubber bearing device or seismic isolation device using damping damper for structure
JP5438790B2 (en) Vibration control panel
JP4896759B2 (en) Joints for bearing walls and damping structures
JP5144919B2 (en) Vibration control panel
KR102055005B1 (en) Axial member connection structure and connection method
KR20160122956A (en) Multiaction-type Plate Steel Damper
JP2010255850A (en) Damper device
JP2016160952A (en) Damper
JP2023030727A (en) Displacement restriction device
JP2014145417A (en) Vibration-proof structure of structure
JP6440976B2 (en) Structural member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6696754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250