JP2010255850A - Damper device - Google Patents

Damper device Download PDF

Info

Publication number
JP2010255850A
JP2010255850A JP2010075134A JP2010075134A JP2010255850A JP 2010255850 A JP2010255850 A JP 2010255850A JP 2010075134 A JP2010075134 A JP 2010075134A JP 2010075134 A JP2010075134 A JP 2010075134A JP 2010255850 A JP2010255850 A JP 2010255850A
Authority
JP
Japan
Prior art keywords
damper device
rigid member
cylindrical rigid
plug
energy absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010075134A
Other languages
Japanese (ja)
Inventor
Tomomoto Furuta
智基 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2010075134A priority Critical patent/JP2010255850A/en
Publication of JP2010255850A publication Critical patent/JP2010255850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damper device, which can improve the rigidity and strength of a frame for building structure and for wooden structure with easy construction operation, has high flexibility in design for rigidity, durability, damping amount, deformation capability or the like with high equivalent damping constant and high energy absorbing effect, and is maintenance-free from the aspects of material and function. <P>SOLUTION: The damper device 1 includes an outer cylindrical rigid member 12 concentrically disposed on the outer circumferential side of an inner cylindrical rigid member 13 so as to surround the rigid member 13, and an energy absorber 14 formed of a viscoelastic member or elastic member, which is interposed between the inner and outer rigid members 12 and 13 and integrally coupled thereto so as to be relatively deformable. Each of the inner and outer rigid member 12 and 13 includes a stopper 210 for limiting the relative displacement thereof in the axial direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主として建築構造物および土木構造物の振動低減用にたとえば骨組み状態で使用するほか、産業用機械、建造物などの設置状態における振動の吸収緩和部材ならびに自動車、家電製品などの振動の吸収部品としても適用可能なダンパー装置に関するものである。   The present invention is mainly used for reducing vibration of building structures and civil engineering structures, for example, in a framed state, as well as a vibration absorbing and mitigating member in an installed state of industrial machines, buildings, etc., and vibrations of automobiles, home appliances, etc. The present invention relates to a damper device that can also be used as an absorbing component.

上記構造物用骨組みの振動低減には、従来、主として、骨組みの部材間にブレースや方杖を取り付けることによって、上記骨組みの剛性や強度を高めて、振動の低減を図っていた。しかし、従来のブレースや方杖は強度抵抗型の部材で、剛性や強度を向上する機能は備えているが、エネルギーを吸収する機能には乏しく、たとえば地震、強風による揺れや振動、および走行する車両の近傍で生じる家屋や建造物などの振動を低減する等価減衰定数(Heq)についてはブレースの場合で10%程度であり、地震などで発生する振動エネルギーを十分に吸収しきれない。また、ブレースに対し圧縮力が作用すると、図13に示すように、座屈が生じるおそれがある。   In order to reduce the vibration of the structural framework, conventionally, braces and a cane are attached between the members of the framework to increase the rigidity and strength of the framework and reduce the vibration. However, conventional braces and wands are strength resistance type members and have a function to improve rigidity and strength, but have a poor function of absorbing energy, such as earthquakes, strong winds, vibrations, and running. The equivalent damping constant (Heq) for reducing the vibrations of houses and buildings generated in the vicinity of the vehicle is about 10% in the case of braces, and the vibration energy generated by earthquakes and the like cannot be sufficiently absorbed. Further, when a compressive force acts on the brace, as shown in FIG.

さらに、従来より、車両自体や機械設備自体の振動低減やその他の振動エネルギー吸収にオイルダンパーが用いられているが、このオイルダンパーはオイルダンパーが介設される部材両端間の振動速度がゼロ、つまり停止状態の場合には、耐力が発生しないという問題がある。しかも、オイルダンパーは図14に示すような構造が一般的であるため、エネルギーを吸収するためには十分に長いストロークを確保する必要があるため、コンパクトな製品が製造し難く、適用範囲が制限される。また、オイルダンパーは速度や温度に対して影響を受け易いうえに、油圧の調整や油漏れのほか、ごみや埃の侵入防止のための対策およびメンテナンスが必要であり、さらに製作には精密な加工が要求される。   Furthermore, conventionally, oil dampers have been used to reduce vibrations and absorb other vibration energy of the vehicle itself and the machine equipment itself, but this oil damper has zero vibration speed between both ends of the member where the oil damper is interposed, That is, there is a problem that the proof stress is not generated in the stop state. In addition, since the oil damper generally has a structure as shown in FIG. 14, it is necessary to secure a sufficiently long stroke to absorb energy, so that it is difficult to manufacture a compact product and the application range is limited. Is done. Oil dampers are sensitive to speed and temperature, and require adjustment and maintenance to prevent intrusion of dust and dirt, as well as adjustment of oil pressure and oil leakage. Processing is required.

また、摩擦ダンパーについても、摩擦面の摩耗・腐食やごみ・埃の侵入防止対策が必要なうえ、摩擦面の種類によっては、振動数依存性をもつものや比較的早期に焼き付きが生じるものがある。そして、従来の一般的なオイルダンパー、摩擦ダンパーおよび鋼材ダンパーなどのダンパーは、等価減衰定数(Heq)は約20〜25%であり、地震発生時などに振動エネルギーを十分に吸収できないおそれがある。   In addition, friction dampers require measures to prevent friction surfaces from wearing, corroding, dust and dust, and depending on the type of friction surface, there are those that are frequency dependent and those that seize relatively quickly. is there. Further, dampers such as conventional general oil dampers, friction dampers, and steel dampers have an equivalent damping constant (Heq) of about 20 to 25%, and may not sufficiently absorb vibration energy when an earthquake occurs. .

上述したようなブレースや方杖などの部材は、地震時に骨組みに作用するエネルギーを吸収する振動減衰性能を持っていないか、持っていても低いため、設計強度を越えるような大地震の発生時には筋かい等の部材が最初に降伏し、破断あるいは損傷に至る。そして前記部材が一旦破断あるいは損傷した後は同部材による住宅全体としての本来の強度増大効果は望めなくなり、住宅全体が崩壊に至ってしまう。したがって、設計強度を越えるような大地震に対して十分な耐震性能を確保することができないだけでなく、たとえ住宅全体が崩壊しなかったとしても、破断あるいは損傷した補強用部材を交換しない限り、住宅全体を元の強度に復元させることができない。   Members such as braces and wands as described above do not have vibration damping performance that absorbs energy acting on the framework during an earthquake, or are low even if they have, so when a large earthquake that exceeds the design strength occurs A member such as a brace yields first, leading to breakage or damage. Then, once the member is broken or damaged, the original strength increasing effect as a whole house by the member cannot be expected, and the whole house is collapsed. Therefore, not only can not ensure sufficient seismic performance against large earthquakes exceeding design strength, even if the whole house does not collapse, unless the reinforcing member that has been broken or damaged is replaced, The entire house cannot be restored to its original strength.

そこで、復元機能を有し、地震時などにおいて振動減衰性能を発揮させられる制振ダンパーや仕口ダンパーが提案されている(たとえば、特許文献1,2参照)。しかしながら、特許文献1,2に記載のものにおいても、等価減衰定数が比較的小さく、地震発生時などに振動エネルギーを十分に吸収できないおそれがあること、構造が複雑で、製作に手間がかかることなど、それぞれ改良の余地がある。   Therefore, damping dampers and joint dampers that have a restoration function and can exhibit vibration damping performance during an earthquake have been proposed (for example, see Patent Documents 1 and 2). However, even those described in Patent Documents 1 and 2 have a relatively small equivalent attenuation constant, and may not be able to absorb vibration energy sufficiently in the event of an earthquake, etc., and the structure is complicated and time-consuming to manufacture. Each has room for improvement.

これらの課題を解決する技術に、出願人によるダンパー装置がある(特許文献3)。このダンパー装置は、内外の筒状剛性部材と、それらの間に介在させる粘弾性エネルギー吸収体との三部材で最小限構成され、骨組みの強度を高めるとともに、内外の剛性部材間で相対的な圧縮力と引っ張り力が作用したときにエネルギー吸収体が吸収緩和して振動等を減衰させることが可能である。   As a technique for solving these problems, there is a damper device by the applicant (Patent Document 3). This damper device is composed of a minimum of three members: an inner and outer cylindrical rigid member and a viscoelastic energy absorber interposed between them, and increases the strength of the framework and is relatively relative between the inner and outer rigid members. When a compressive force and a tensile force are applied, the energy absorber can absorb and relax to attenuate vibrations and the like.

特開2000−110399号公報(段落0011〜0015及び図1〜図3)JP 2000-110399 A (paragraphs 0011 to 0015 and FIGS. 1 to 3) 特開2003−247269号公報(段落0016〜0025及び図1〜図3)JP 2003-247269 A (paragraphs 0016 to 0025 and FIGS. 1 to 3) 特開2007−278411号公報(段落0030〜0034及び図1〜図3)JP 2007-278411 A (paragraphs 0030 to 0034 and FIGS. 1 to 3)

特許文献3のダンパー装置は、以下の点で課題があった。   The damper device of Patent Document 3 has problems in the following points.

・過変位(過剰変位)に対するストッパー(制止機能)を有していない。   -Does not have a stopper (restraint function) against excessive displacement (excessive displacement).

・ダンパーの回転(ねじれ)方向に対する制御(防止)機構を有していない。   -It does not have a control (prevention) mechanism for the rotation (twist) direction of the damper.

・減衰材としてのプラグ(鉛他)の取替え機構を有していない。   -It does not have a replacement mechanism for plugs (such as lead) as damping materials.

・減衰材としてのプラグ(鉛他)の設置方法が不明。   ・ The installation method of plugs (lead etc.) as damping material is unknown.

・減衰材としてのプラグ(鉛他)の拘束機構を有していない。   -It does not have a restraint mechanism for plugs (lead etc.) as a damping material.

・減衰材としてのプラグ(鉛他)が有効に機能する充填率が不明。   ・ Filling rate at which plugs (such as lead) as damping materials function effectively is unknown.

・トリガー機能の条件(トリガー機能の定義、設計条件等)が不明。   -The trigger function conditions (definition of trigger function, design conditions, etc.) are unknown.

・粘弾性体(ゴム)と内筒及び外筒との定着条件が不明。   ・ Fixing conditions between viscoelastic body (rubber) and inner and outer cylinders are unknown.

・粘弾性エネルギー吸収体の特性範囲が不明。   ・ The characteristic range of the viscoelastic energy absorber is unknown.

・一体成型とした場合のゴム収縮に対する接着面への影響が懸念。   ・ I am concerned about the impact on the adhesive surface against rubber shrinkage when integrally molded.

・耐久性向上のための粘弾性体小口部分のシール(密閉)が必要。   ・ It is necessary to seal (close) the viscoelastic body edge to improve durability.

この発明は上述の点に鑑みなされたもので、建築構造用および木造構造用骨組みの剛性や強度を向上でき、施工が容易であり、等価減衰定数が大きく、エネルギー吸収効果が高く、剛性・耐力・減衰量・変形能力などに関する設計の自由度が高く、また材料および機能面からメンテナンスがフリーなダンパー装置を提供することを目的とする。   The present invention has been made in view of the above points, and can improve the rigidity and strength of a framework for a building structure and a wooden structure, is easy to construct, has a large equivalent damping constant, has a high energy absorption effect, and has a high rigidity and proof strength. The purpose is to provide a damper device that has a high degree of freedom in design with respect to the amount of attenuation and deformation capacity, and that is free from maintenance in terms of materials and functions.

上記の目的を達成するために本発明に係るダンパー装置は、内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合してなるダンパー装置であって、
内外の前記剛性部材が、軸方向に相対変位するのを制限するストッパーを備えていることを特徴とする。
In order to achieve the above object, a damper device according to the present invention has an outer cylindrical rigid member concentrically disposed on the outer peripheral side of an inner cylindrical rigid member so as to surround the inner cylindrical rigid member, A damper device in which an energy absorber composed of a viscoelastic member or an elastic member is interposed between the rigid members and integrally coupled so as to be relatively displaceable,
The inner and outer rigid members are provided with a stopper for restricting relative displacement in the axial direction.

上記の構成を有する本発明のダンパー装置によれば、内外の筒状剛性部材とエネルギー吸収体との三部材で最小限構成され、軸状物であり、長さを用途に応じて任意に調整できる。そして、内筒状剛性部材と外筒状剛性部材とを建築構造物用骨組みの地震時などに相対変位の生じそうな部材間に取り付けることにより骨組みの強度を高めるとともに、内外の剛性部材間で相対的な圧縮力と引っ張り力が作用したときにエネルギー吸収体が吸収緩和して振動等を減衰させる。特に、エネルギー吸収体の粘弾性度または弾性度を調整することが可能なため、使用する建築物の骨組みや壁部の強度に容易に応じさせられる。また、たとえば柱と土台および基礎との間で外筒状剛性部材の側面を柱の側面に固定する一方、内筒状剛性部材内を貫通するボルトにより頭部を内筒状剛性部材の上端に係止させ、ボルトの下端側を土台に螺着し、さらにその下端を貫通して基礎に固着することにより、ホールドダウン金物の一部として使用する場合には、地震時に土台からの柱の抜けを阻止するとともに、柱の抜け動作の繰り返しによる振動に対しエネルギー吸収体が伸縮して吸収緩和する。   According to the damper device of the present invention having the above-described configuration, it is composed of a minimum of three members, an inner and outer cylindrical rigid member and an energy absorber, and is a shaft-like object, and the length is arbitrarily adjusted according to the application. it can. And, by attaching the inner cylindrical rigid member and the outer cylindrical rigid member between the members that are likely to cause relative displacement at the time of earthquake of the framework for building structures, etc., the strength of the framework is increased, and between the inner and outer rigid members When a relative compressive force and tensile force are applied, the energy absorber absorbs and relaxes to attenuate vibrations and the like. In particular, since it is possible to adjust the viscoelasticity or elasticity of the energy absorber, it is possible to easily adjust the strength of the framework or wall of the building to be used. Further, for example, the side surface of the outer cylindrical rigid member is fixed to the side surface of the column between the column and the base and the foundation, while the head is secured to the upper end of the inner cylindrical rigid member by a bolt penetrating the inner cylindrical rigid member. Lock and screw the lower end of the bolt to the base, and then pass through the lower end and fix it to the foundation. In addition, the energy absorber expands and contracts and relieves absorption due to vibrations caused by repeated column pull-out operations.

さらに、このダンパー装置によれば、地震等による大きな振動を受けても、ストッパーにより内外の剛性部材が軸方向に過剰に相対変位するのを制限できるので、エネルギー吸収体が破断したり、内外の剛性部材から剥離したりするのを防止できる。   Furthermore, according to this damper device, even if it receives a large vibration due to an earthquake or the like, the stopper can restrict the relative displacement of the internal and external rigid members in the axial direction, so that the energy absorber breaks or It can prevent peeling from the rigid member.

本発明の請求項2に係るダンパー装置は、前記ストッパーが、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のいずれか一方に、軸方向に所定の間隔をあけて設けられる(一体に形成された)第1突起部と第2突起部と、他方に、前記第1突起部と第2突起部の間であって当該第1突起部および第2突起部とに当接可能に設けられる(接触可能な位置に一体に形成された)第3突起部とからなることを特徴とする。   In the damper device according to claim 2 of the present invention, the stopper has a predetermined interval in the axial direction on either the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member. A first protrusion and a second protrusion that are provided (integrally formed), and, on the other hand, between the first protrusion and the second protrusion, and the first protrusion and the second protrusion And a third protrusion (integrally formed at a position where contact is possible).

このようなダンパー装置によれば、簡単な構成で、内外の剛性部材の相対的な軸方向変位を制限することが可能である。各突起部は、相互に当接する際の衝撃に耐えるよう、溶接などの方法で内外の剛性部材に対して一体に形成することが望ましい。   According to such a damper device, it is possible to limit the relative axial displacement of the inner and outer rigid members with a simple configuration. It is desirable that the protrusions be formed integrally with the internal and external rigid members by a method such as welding so as to withstand an impact when they come into contact with each other.

請求項3に係るダンパー装置のように、内外の前記剛性部材が軸方向に相対変位していない状態で、前記第1突起部と第3突起部との間隔、および前記第2突起部と第3突起部との間隔が、前記エネルギー吸収体の厚さの2〜4倍であることが好ましい。2倍以下の間隔では、振動を吸収緩和する能力が低く、4倍以上の間隔では、エネルギー吸収体が内外の剛性部材から剥離する恐れがあるからである。   As in the damper device according to claim 3, in a state where the inner and outer rigid members are not relatively displaced in the axial direction, the distance between the first protrusion and the third protrusion, and the second protrusion and the second It is preferable that the distance between the three protrusions is 2 to 4 times the thickness of the energy absorber. This is because the ability to absorb and relax vibration is low at intervals of 2 times or less, and the energy absorber may peel off from the inner and outer rigid members at intervals of 4 times or more.

請求項4に係るダンパー装置は、内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合してなるダンパー装置であって、
内外の前記剛性部材が、周方向に相対回転するのを制限する回転ストッパーを備えていることを特徴とする。
In the damper device according to claim 4, the outer cylindrical rigid member is concentrically disposed on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and the inner and outer rigid members are bonded to each other. A damper device that is integrally coupled so as to be relatively displaceable with an elastic member or an energy absorber made of an elastic member interposed therebetween,
The inner and outer rigid members include a rotation stopper that restricts relative rotation in the circumferential direction.

上記の構成を有するダンパー装置によれば、内外の剛性部材間に相対的な回転・ねじれが作用したときに、回転ストッパーによりその回転・ねじれを防止できる。さらに、回転ストッパーは、上記した軸方向の相対変位を制限するストッパーと併用して同一のダンパー装置に設けることも可能である。   According to the damper device having the above configuration, when a relative rotation / twist acts between the inner and outer rigid members, the rotation stopper can prevent the rotation / twist. Further, the rotation stopper can be provided in the same damper device in combination with the stopper for limiting the relative displacement in the axial direction described above.

請求項5に係るダンパー装置は、前記回転ストッパーが、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のいずれか一方に、軸方向に沿って形成された凸条部と、他方に形成され前記凸条部が摺動可能に嵌入される長溝部とからなることを特徴とする。   The damper device according to claim 5 is characterized in that the rotation stopper is formed on the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member along the axial direction. And a long groove portion formed on the other side into which the protruding portion is slidably fitted.

このようなダンパー装置によれば、簡単な構成で回転・ねじれを制止できるうえ、凸条部と長溝部との接触抵抗により、ダンパー装置の減衰能力が向上するという利点も有する。   According to such a damper device, rotation and torsion can be restrained with a simple configuration, and there is also an advantage that the damping capability of the damper device is improved by the contact resistance between the protruding strip portion and the long groove portion.

請求項6に係るダンパー装置は、前記エネルギー吸収体のせん断弾性係数が、G=0.2〜1.4N/mm2の範囲にあり、等価減衰乗数が、Heq=15〜30%の範囲にあることを特徴とする。粘弾性部材または弾性部材からなるエネルギー吸収体としては、この範囲のせん断弾性係数が最も実用性がある。また、等価減衰乗数については、15%以下では内外の剛性部材間で相対的な圧縮力と引っ張り力が作用したときにエネルギー吸収体が吸収緩和して振動等を減衰させることができず、また、30%以上では粘弾性部材または弾性部材の適用範囲を超えてしまうため、この範囲が望ましい。 In the damper device according to claim 6, the shear elastic modulus of the energy absorber is in the range of G = 0.2 to 1.4 N / mm 2 , and the equivalent attenuation multiplier is in the range of Heq = 15 to 30%. It is characterized by being. As an energy absorber composed of a viscoelastic member or an elastic member, a shear elastic modulus in this range is most practical. Also, if the equivalent damping multiplier is 15% or less, the energy absorber cannot absorb and attenuate vibrations and the like when the relative compressive force and tensile force are applied between the internal and external rigid members, and the vibration or the like cannot be attenuated. If it is 30% or more, the range of application of the viscoelastic member or elastic member is exceeded, so this range is desirable.

請求項7に係るダンパー装置は、内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合し、前記エネルギー吸収体よりも高剛性の延伸性プラグを、前記内筒状剛性部材と前記外筒状剛性部材との内外の筒状壁間に跨り、かつ前記エネルギー吸収体に対し軸方向に直交する方向に貫通させて設けたダンパー装置であって、
前記延伸性プラグが、前記エネルギー吸収体の剛性に対して、少なくとも5〜10倍の剛性を有することを特徴とする。
According to a seventh aspect of the present invention, in the damper device, the outer cylindrical rigid member is concentrically disposed on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and between the inner and outer rigid members. An elastic member or an energy absorber made of an elastic member is interposed so as to be relatively displaceable, and an extensible plug having higher rigidity than the energy absorber is connected to the inner cylindrical rigid member and the outer cylindrical rigidity. A damper device provided between the inner and outer cylindrical walls with the member and penetrating in a direction perpendicular to the axial direction with respect to the energy absorber,
The stretchable plug has a rigidity of at least 5 to 10 times the rigidity of the energy absorber.

上記の構成を有するダンパー装置であれば、エネルギー吸収体と延伸性プラグとを組み合わせることにより、建築物構造や木造構造に適合した強度とエネルギー吸収力の両方をダンパー装置に持たせることができ、また延伸性プラグは、通常、エネルギー吸収体に対し必要な個数を挿入して取付けるので、強度とエネルギー吸収力の調整が容易に行える。さらに、延伸性プラグの剛性を、エネルギー吸収体の剛性に対して少なくとも5〜10倍としているので、延伸性プラグにトリガーとしての機能を持たせることができる。すなわち、たとえば風や輸送機関などから発生する微小な振動に対しては、延伸性プラグの剛性により内外の剛性部材間に軸方向の変位が生じることがなく、ダンパー装置は剛体としての強度を有することができる。一方、振動が大きい場合、延伸性プラグが変形して内外の剛性部材間に変位が生じ、エネルギー吸収体が作用して振動を吸収・緩和することができる。   If it is a damper device having the above configuration, by combining an energy absorber and a stretchable plug, it is possible to give the damper device both strength and energy absorption capacity suitable for a building structure and a wooden structure, In addition, since a necessary number of extensible plugs are usually inserted and attached to the energy absorber, the strength and energy absorbing power can be easily adjusted. Furthermore, since the rigidity of the extensible plug is at least 5 to 10 times that of the energy absorber, the extensible plug can have a function as a trigger. That is, for example, for minute vibrations generated by wind or transportation, the rigidity of the extensible plug does not cause axial displacement between the inner and outer rigid members, and the damper device has strength as a rigid body. be able to. On the other hand, when the vibration is large, the extensible plug is deformed to cause displacement between the inner and outer rigid members, and the energy absorber can act to absorb and mitigate the vibration.

請求項8に記載のように、前記延伸性プラグは、取替え可能に設けられていることが好ましい。大振動により延伸性プラグに残留変形が残った場合でも、エネルギー吸収体は粘弾性体または弾性体からなるため復元力があるので、プラグのみを取替えてダンパー装置の機能を維持することができる。したがって、このようなダンパー装置によれば、低コストで長期間の使用が可能になる。   Preferably, the extensible plug is provided so as to be replaceable. Even when residual deformation remains in the extensible plug due to a large vibration, the energy absorber is made of a viscoelastic body or an elastic body and thus has a restoring force. Therefore, the function of the damper device can be maintained by replacing only the plug. Therefore, such a damper device can be used for a long time at low cost.

請求項9に記載のように、前記延伸性プラグの両端部にネジ部を設けるとともに、内外の前記剛性部材の筒状壁にネジ穴をそれぞれ設け、前記延伸性プラグの一端を前記内筒状剛性部材に、他端を前記外筒状剛性部材に対してそれぞれネジ止め可能にすることが好ましい。 According to a ninth aspect of the present invention, screw portions are provided at both ends of the extensible plug, screw holes are provided in the cylindrical walls of the inner and outer rigid members, and one end of the extensible plug is connected to the inner cylindrical shape. It is preferable that the other end of the rigid member can be screwed to the outer cylindrical rigid member.

このように構成すれば、プラグの交換を容易に行え、メンテナンスにかかる手間や費用を抑制することができる。   If comprised in this way, replacement | exchange of a plug can be performed easily and the effort and expense concerning a maintenance can be suppressed.

請求項10に係るダンパー装置は、前記延伸性プラグの拘束機構を設けたことを特徴とする。   A damper device according to a tenth aspect is characterized in that a restraining mechanism for the stretchable plug is provided.

上記の構成を有するダンパー装置によれば、延伸性プラグがエネルギー吸収体の変形とともに変形するので、ダンパー装置の減衰性能が向上する。   According to the damper device having the above configuration, the extensible plug is deformed along with the deformation of the energy absorber, so that the damping performance of the damper device is improved.

請求項11に記載のように、前記拘束機構が、前記延伸性プラグの貫通口を有し、前記内筒状剛性部材に対して同心状に間隔をあけて配置される複数枚の鋼板からなることが考えられる。   As defined in claim 11, the restraining mechanism comprises a plurality of steel plates having a through hole of the extensible plug and arranged concentrically with respect to the inner cylindrical rigid member. It is possible.

このように構成することにより、エネルギー吸収体の変形を、複数枚の鋼板を介して延伸性プラグに伝えられるので、プラグが単に曲がるのを防ぎ、減衰性を向上させることができる。   By configuring in this way, the deformation of the energy absorber can be transmitted to the extensible plug via a plurality of steel plates, so that the plug can be prevented from being simply bent and the attenuation can be improved.

請求項12に記載のように、前記拘束機構が、前記延伸性プラグの貫通口を有し、前記内筒状剛性部材に対して同心状に間隔をあけて配置され、前記エネルギー吸収体と積層構造をなす複数の鋼管であってもよい。   The constraining mechanism has a through-hole of the extensible plug, is disposed concentrically with respect to the inner cylindrical rigid member, and is laminated with the energy absorber. A plurality of steel pipes forming a structure may be used.

このように構成することにより、鋼管同士の相対位置がエネルギー吸収体の内部で安定するので、エネルギー吸収体の変形が、鋼管を介してより均等に、確実に延伸性プラグに伝わる。   By comprising in this way, since the relative position of steel pipes is stabilized inside an energy absorber, a deformation | transformation of an energy absorber is more reliably transmitted to an extensible plug via a steel pipe.

また、請求項13に記載のように、前記拘束機構が、前記延伸性プラグを囲むスプリングであってもよい。   In addition, as described in claim 13, the restraining mechanism may be a spring surrounding the extensible plug.

このように構成することにより、スプリングの復元力によるプラグの復元効果も期待できる。   By comprising in this way, the restoration effect of the plug by the restoring force of a spring can also be expected.

請求項14に係るダンパー装置は、前記エネルギー吸収体を内外の前記剛性部材間に配置して加硫したのち、前記エネルギー吸収体に、前記延伸性プラグを前記外筒状剛性部材のネジ穴から前記内筒状剛性部材のネジ穴まで挿入可能な空洞部を設け、前記延伸性プラグの一端を当該内筒状剛性部材に、他端を当該外筒状剛性部材に、それぞれネジ止めすることにより形成したことを特徴とする。   In the damper device according to claim 14, after the energy absorber is placed between the inner and outer rigid members and vulcanized, the extensible plug is inserted into the energy absorber from the screw hole of the outer cylindrical rigid member. By providing a cavity that can be inserted up to the screw hole of the inner cylindrical rigid member, and screwing one end of the extensible plug to the inner cylindrical rigid member and the other end to the outer cylindrical rigid member, respectively. It is formed.

このように形成されたダンパー装置によれば、延伸性プラグを後付けできるため、プラグの個数や配置を自由に選択でき、使用する建築物の骨組みや壁部の強度に容易に応じさせられるという利点がある。   According to the damper device formed in this way, since the extensible plug can be retrofitted, the number and arrangement of the plugs can be freely selected, and the advantage that it can be easily adapted to the strength of the building framework and wall part to be used. There is.

請求項15に記載のように、発明に係るダンパー装置は、前記延伸性プラグの表面に非接着処理を施し、当該延伸性プラグの一端を前記内筒状剛性部材のネジ穴に、他端を前記外筒状剛性部材のネジ穴にそれぞれネジ止めしたのち、前記エネルギー吸収体を内外の当該剛性部材間に介在させて加硫することにより形成することもできる。   According to a fifteenth aspect of the present invention, in the damper device according to the invention, the surface of the extensible plug is subjected to non-adhesion treatment, and one end of the extensible plug is inserted into the screw hole of the inner cylindrical rigid member. It can also be formed by screwing into the screw holes of the outer cylindrical rigid member and then vulcanizing the energy absorber between the inner and outer rigid members.

このように形成されたダンパー装置によれば、加硫前に延伸性プラグを内外の剛性部材に固定するので、位置決めされた加硫が可能である。また、延伸性プラグとエネルギー吸収体の接着を防止しているので、プラグの取替えも容易に行える。   According to the damper device formed in this way, the extensible plug is fixed to the inner and outer rigid members before vulcanization, so that positioned vulcanization is possible. Further, since the adhesion between the stretchable plug and the energy absorber is prevented, the plug can be easily replaced.

請求項16に係るダンパー装置は、前記空洞部の容積に対する前記延伸性プラグの充填率(容積率)が、前記エネルギー吸収体の常温状態(24℃)において、90%〜120%の範囲であることを特徴とする。ここで充填率90%というのは、エネルギー吸収体と延伸性プラグとの間に10%の隙間があることをいい、120%というのは、空洞部の容積を20%広げて(エネルギー吸収体を圧縮して)プラグを挿入する状態をいう。   In the damper device according to claim 16, a filling ratio (volume ratio) of the stretchable plug with respect to a volume of the cavity portion is in a range of 90% to 120% in a normal temperature state (24 ° C.) of the energy absorber. It is characterized by that. Here, the filling rate of 90% means that there is a 10% gap between the energy absorber and the stretchable plug, and 120% means that the volume of the cavity is increased by 20% (energy absorber). The state where the plug is inserted.

ダンパー装置を使用する環境の温度範囲を−20〜60℃と想定した場合、延伸性プラグの充填率がこの範囲にあれば、エネルギー吸収体のせん断変形によるプラグの強制変形が生じ、上記した拘束機構のみの場合よりさらに高い減衰効果が得られる。90%以下の充填率では、エネルギー吸収体の変形がプラグに伝わりにくく、強制変形の効果が得られにくい。また、120%程度の充填率があれば、低温でエネルギー吸収体が収縮した場合でもプラグとの密着性が保たれ、エネルギー吸収体の変形が十分にプラグに伝わる。充填率が高くなるとプラグの挿入に困難が伴うので、これ以上の高い充填率にする必要はない。   Assuming that the temperature range of the environment in which the damper device is used is -20 to 60 ° C, if the filling rate of the extensible plug is within this range, forced deformation of the plug due to shear deformation of the energy absorber occurs, and the above-described constraint A higher damping effect can be obtained than with the mechanism alone. When the filling rate is 90% or less, the deformation of the energy absorber is not easily transmitted to the plug, and the effect of forced deformation is difficult to obtain. Further, if the filling rate is about 120%, even when the energy absorber contracts at a low temperature, the adhesiveness with the plug is maintained, and the deformation of the energy absorber is sufficiently transmitted to the plug. When the filling rate is high, it is difficult to insert the plug, so it is not necessary to set a higher filling rate.

請求項17に係るダンパー装置は、内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合し、高減衰性の延伸性プラグを、前記内筒状剛性部材と前記外筒状剛性部材との内外の筒状壁間に跨り、かつ前記エネルギー吸収体に対し軸方向に直交する方向に貫通させて設けたダンパー装置であって、
前記延伸性プラグが、当該エネルギー吸収体の剛性に対して、少なくとも5〜10倍の剛性を有することを特徴とする。
According to a seventeenth aspect of the present invention, in the damper device, the outer cylindrical rigid member is concentrically disposed on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and the inner and outer rigid members are bonded to each other. An elastic member or an energy absorber made of an elastic member is integrally connected so as to be relatively displaceable, and a highly-damping extensible plug is connected between the inner cylindrical rigid member and the outer cylindrical rigid member. A damper device provided between the cylindrical walls and penetrating in a direction perpendicular to the axial direction with respect to the energy absorber,
The stretchable plug has a rigidity of at least 5 to 10 times the rigidity of the energy absorber.

このように構成したダンパー装置によれば、延伸性プラグで振動を吸収・緩和できるため、復元力の高い天然ゴムのような弾性体をエネルギー吸収体として使用できる。   According to the damper device configured as described above, vibration can be absorbed and alleviated by the extensible plug, so that an elastic body such as natural rubber having a high restoring force can be used as the energy absorber.

請求項18に記載のように、前記延伸性プラグの頭部側が、前記外筒状剛性部材のネジ穴に挿入されたキャップで覆われていると好ましい。このように構成したダンパー装置によれば、内部への雨水の浸入を防ぐことができ、延伸性プラグの劣化を抑制できる。   As described in claim 18, it is preferable that the head side of the extensible plug is covered with a cap inserted into a screw hole of the outer cylindrical rigid member. According to the damper device configured in this way, it is possible to prevent rainwater from entering the inside and to suppress deterioration of the extensible plug.

さらに請求項19に記載のように、前記内筒状剛性部材および前記外筒状剛性部材が、前記エネルギー吸収体と接する面において、凹凸形状を有することが好ましい。   Furthermore, as described in claim 19, it is preferable that the inner cylindrical rigid member and the outer cylindrical rigid member have a concavo-convex shape on a surface in contact with the energy absorber.

エネルギー吸収体と内外の剛性部材との接着は、一般的な加硫接着とするが、このように構成したダンパー装置によれば、接着面の表面積が大きくなり、定着力が強化されるので、地震等の大振動による大変形が生じても接着面が剥離するのを防止できる。   Adhesion between the energy absorber and the inner and outer rigid members is a general vulcanization adhesion, but according to the damper device configured in this way, the surface area of the adhesion surface is increased, and the fixing force is enhanced. Even if a large deformation due to a large vibration such as an earthquake occurs, the adhesion surface can be prevented from peeling off.

請求項20に係るダンパー装置は、内外の前記剛性部材間に、前記エネルギー吸収体のシール機構を備えたことを特徴とする。このように構成したダンパー装置によれば、シール機構により、内外の剛性部材間に介在させたエネルギー吸収体に雨水等が浸入するのを防止できる。   A damper device according to a twentieth aspect is characterized in that a seal mechanism for the energy absorber is provided between the inner and outer rigid members. According to the damper device configured in this manner, rainwater or the like can be prevented from entering the energy absorber interposed between the inner and outer rigid members by the sealing mechanism.

請求項21に係るダンパー装置は、前記シール機構が、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のうちいずれか一方に全周にわたって形成された環状溝部と、他方に取付けられ前記環状溝部に嵌入される環状パッキンとからなることを特徴とする。   The damper device according to claim 21 is characterized in that the sealing mechanism has an annular groove formed over the entire circumference of either the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member; It comprises an annular packing that is attached to the other and is fitted into the annular groove.

パッキンのような耐久性の高い弾性体は、大変形による変位量に追従できるので、このように構成したダンパー装置によれば、シール機構が地震等の大振動でも損なわれることがなく、エネルギー吸収体への雨水等の浸入を防止できる。   Since a highly durable elastic body such as packing can follow the amount of displacement due to large deformations, the damper device configured in this way absorbs energy without being damaged by large vibrations such as earthquakes. Infiltration of rainwater etc. into the body can be prevented.

請求項22に記載のように、前記シール機構が、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のうち、いずれか一方の周面に全周にわたって一体に形成された環状シール部からなり、該環状シール部の先端周面が、他方の周面に摺動可能に当接することも考えられる。   23. The seal mechanism according to claim 22, wherein the sealing mechanism is integrally formed on the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member over the entire circumference. It is also conceivable that the tip peripheral surface of the annular seal portion is slidably brought into contact with the other peripheral surface.

このように構成したダンパー装置によれば、内外の剛性部材の相対変位量がいかなる大きさであっても、シール機構が機能してエネルギー吸収体への雨水等の浸入を防止する。さらに、内外の剛性部材が相対変位して環状シール部が他方の周面に対して摺動する際、互いに当接する面に摩擦抵抗が生じるため、ダンパー装置の減衰性能が向上するという利点もある。防水性能を高めるため、環状シール部の先端周面はメタルタッチ仕上げにすることが望ましい。さらにグリスを塗布してもよい。   According to the damper device configured as described above, the sealing mechanism functions to prevent the infiltration of rainwater or the like into the energy absorber regardless of the relative displacement amount of the inner and outer rigid members. In addition, when the inner and outer rigid members are displaced relative to each other and the annular seal portion slides on the other peripheral surface, friction resistance is generated on the surfaces in contact with each other, so that the damping performance of the damper device is improved. . In order to enhance the waterproof performance, it is desirable that the tip peripheral surface of the annular seal portion be a metal touch finish. Further, grease may be applied.

請求項23に係るダンパー装置は、粘弾性部材または弾性部材を同心状に配置された内筒部材と外筒部材との間に介在させて加硫接着してエネルギー吸収リング部材を形成し、内筒状剛性部材とその外周側に同内筒状剛性部材を囲繞するように同心状に配置された外筒状剛性部材とを前記エネルギー吸収リング部材を介して一体的に結合してなることを特徴とする。   A damper device according to a twenty-third aspect is characterized in that an energy absorbing ring member is formed by interposing a viscoelastic member or an elastic member between an inner cylinder member and an outer cylinder member arranged concentrically and vulcanizing and bonding them. A cylindrical rigid member and an outer cylindrical rigid member arranged concentrically so as to surround the inner cylindrical rigid member on the outer peripheral side thereof are integrally coupled via the energy absorbing ring member. Features.

このように構成したダンパー装置によれば、エネルギー吸収リング部材を部品としてあらかじめ所定の寸法に形成したのち内外の剛性部材間に一体的に結合することができるので、加硫によってエネルギー吸収体が収縮して内外の剛性部材への密着性が低下するのを避けることが可能である。   According to the damper device configured as described above, the energy absorbing ring member can be integrally formed between the inner and outer rigid members after forming the energy absorbing ring member as a part in advance to a predetermined size. Thus, it is possible to avoid a decrease in adhesion to the inner and outer rigid members.

エネルギー吸収リング部材を内外の剛性部材に結合するには、請求項24に記載のように、前記エネルギー吸収リング部材の内筒部材を前記内筒状剛性部材に、前記エネルギー吸収リング部材の外筒部材を前記外筒状剛性部材にそれぞれネジ止めにより固定することが考えられる。ネジ止めによれば、エネルギー吸収リング部材を内外の剛性部材間に確実に一体的に結合することができ、かつ、取替えることも容易に行える。   In order to couple the energy absorbing ring member to the inner and outer rigid members, the inner cylindrical member of the energy absorbing ring member is used as the inner cylindrical rigid member, and the outer cylinder of the energy absorbing ring member as described in claim 24. It is conceivable to fix the members to the outer cylindrical rigid member by screwing. According to the screwing, the energy absorbing ring member can be reliably coupled integrally between the inner and outer rigid members and can be easily replaced.

本発明のダンパー装置は、簡単な構成で軸方向の過変位や回転方向の変位に対する制止機能を有するとともに、減衰材としてのプラグが取替え可能であり、減衰効果が向上し、エネルギー吸収体と内外の筒状剛性部材との接着性が良好で、プラグやエネルギー吸収体への雨水等の浸入が防止できることなどにより、大振動をより確実に、安定して吸収・緩和できるという効果のほか、メンテナンスが容易で、低コストで建築物に耐震対策を施すことができるという効果がある。   The damper device of the present invention has a simple structure and has a function of preventing axial over-displacement and rotational displacement, and the plug as a damping material can be replaced. In addition to being able to absorb and alleviate large vibrations more reliably and stably by maintaining good adhesion to cylindrical rigid members and preventing rainwater from entering the plug and energy absorber, etc. Is easy, and has the effect of being able to take earthquake-proof measures on buildings at low cost.

本発明の一実施形態としてのダンパー装置1を示す、中央断面図である。It is a center sectional view showing damper device 1 as one embodiment of the present invention. 図1のダンパー装置1の断面図で、図2(a)は、図1のA−A線における断面図、同(b)はB−B線における断面図、同(c)はC−C線における断面図、同(d)はD−D線における断面図をそれぞれ示す。2A and 2B are cross-sectional views of the damper device 1 shown in FIG. 1, in which FIG. 2A is a cross-sectional view taken along the line AA in FIG. 1, FIG. 2B is a cross-sectional view taken along the line BB, and FIG. Sectional drawing in the line, (d) shows the sectional view in the DD line, respectively. 延伸性プラグ35の取り付け状態を説明する拡大図である。It is an enlarged view explaining the attachment state of the extensible plug. 別の拘束機構230を示す斜視図である。It is a perspective view which shows another restraint mechanism 230. FIG. ダンパー装置1に拘束機構230を設けた状態を示す図で、図5(a)は、延伸性プラグ35付近の中央断面図、同(b)は、同(a)におけるV−V線断面図である。FIGS. 5A and 5B are views showing a state in which the restraining mechanism 230 is provided in the damper device 1, FIG. 5A is a central sectional view in the vicinity of the extensible plug 35, and FIG. It is. さらに別の拘束機構240をダンパー装置1に設けた状態を示す図で、図6(a)は、延伸性プラグ35付近の中央断面図、同(b)は、同(a)におけるVI−VI線断面図である。FIG. 6A is a diagram showing a state in which another restraining mechanism 240 is provided in the damper device 1. FIG. 6A is a central sectional view in the vicinity of the extensible plug 35, and FIG. 6B is a cross-sectional view taken along line VI-VI in FIG. It is line sectional drawing. 図7(a)は延伸性プラグ35の一例を示す正面図、図7(b)〜(d)は、延伸性プラグ35の設置方法を説明する図である。FIG. 7A is a front view showing an example of the extensible plug 35, and FIGS. 7B to 7D are views for explaining a method for installing the extensible plug 35. 図8(a)・(b)は、もう一つの設置方法を説明する図である。8A and 8B are diagrams for explaining another installation method. 回転ストッパー320を設けたダンパー装置31を示し、図9(a)は、回転ストッパー320の断面図、同(b)は、外筒部材312の斜視図、同(c)は、内筒部材313の斜視図である。FIG. 9A is a cross-sectional view of the rotation stopper 320, FIG. 9B is a perspective view of the outer cylinder member 312, and FIG. 9C is an inner cylinder member 313. FIG. シール機構420を設けたダンパー装置41を示し、図10(a)は、シール機構420の中央断面図、同(b)は、外筒部材412の斜視図、同(c)は、内筒部材413の斜視図である。10 shows a damper device 41 provided with a seal mechanism 420. FIG. 10A is a central sectional view of the seal mechanism 420, FIG. 10B is a perspective view of an outer cylinder member 412, and FIG. 10C is an inner cylinder member. FIG. 413 is a perspective view of FIG. エネルギー吸収リング510を設けたダンパー装置51を示し、図11(a)は、エネルギー吸収リング510の断面図、同(b)は、ダンパー装置51の中央断面図である。FIG. 11A is a cross-sectional view of the energy absorption ring 510, and FIG. 11B is a central cross-sectional view of the damper device 51. 図12(a)は建物の過大変形を制御している状態を示す説明図、同(b)は建物の応答変位を示すグラフである。FIG. 12A is an explanatory diagram showing a state in which excessive deformation of the building is controlled, and FIG. 12B is a graph showing response displacement of the building. 従来の一般的なブレースに対して圧縮力と引っ張り力を作用させた時の変形を示す線図である。It is a diagram which shows a deformation | transformation when compressive force and tensile force are made to act on the conventional common brace. 従来の一般的なオイルダンパー機構を概念的に示す断面図である。It is sectional drawing which shows notionally the conventional common oil damper mechanism. ダンパー装置追力試験の試験装置の斜視図である。It is a perspective view of the testing apparatus of a damper apparatus follow-up test. エネルギー吸収体14のせん断弾性係数Gを変化させた場合のダンパー装置1の荷重と変位を示すダンパー荷重−履歴曲線図である。It is a damper load-history curve figure which shows the load and displacement of the damper apparatus 1 at the time of changing the shear elastic modulus G of the energy absorber 14. FIG. 図17(a)はプラグ追力試験に用いた試験装置の上面図である。同(b)は同側面図である。同(c)は一部拡大斜視図である。FIG. 17A is a top view of the test apparatus used for the plug follow-up test. (B) is a side view of the same. (C) is a partially enlarged perspective view. 延伸性プラグ35と従来の円筒形プラグとを比較した、荷重と変形量との関係を示すプラグ荷重−履歴曲線図である。It is a plug load-history curve figure which shows the relationship between a load and a deformation | transformation amount compared with the extensible plug 35 and the conventional cylindrical plug.

以下、本発明に係るダンパー装置について実施の形態を図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a damper device according to the present invention will be described with reference to the drawings.

図1は実施例1に係るダンパー装置1の軸方向の断面図であり、図2(a)〜図2(d)はそれぞれ図1のA−A線における断面図、B−B線における断面図、C−C線における断面図、D−D線における断面図、図3は、延伸性プラグ35の拡大図である。
図1および図2に示すように、ダンパー装置1は、外側に位置する円筒形状の外筒剛性部材(以下、外筒部材という)12と、この外筒部材12の内側に同心状に位置する円筒状の内筒剛性部材(以下、内筒部材という)13とが、それらの間に同心状に位置する円筒形状のエネルギー吸収体14を介して相対変位可能に一体的に結合されてなる。また、外筒部材12と内筒部材13とに跨る円柱体状の延伸性プラグ35の一対を、図2(a)に示すように、エネルギー吸収体14に対し軸方向に直交する方向に貫通させて相対向して設けている。さらに、外筒部材12と内筒部材13との軸方向の相対変位を制限するストッパー210と、ダンパー装置1のリング状開口部分1aにおけるシール機構としての環状シール部215を備えている。なお、このダンパー装置1は、たとえば小規模な戸建て木造住宅の骨組み(構造物)を構成する2つの要素(図示せず)に跨るように外筒部材12および内筒部材13の各端部をそれぞれ結合して用いられる。
FIG. 1 is a cross-sectional view in the axial direction of a damper device 1 according to the first embodiment. FIGS. 2A to 2D are cross-sectional views taken along lines AA and BB in FIG. FIG. 3 is a cross-sectional view taken along line CC, a cross-sectional view taken along line DD, and FIG.
As shown in FIGS. 1 and 2, the damper device 1 is positioned concentrically inside a cylindrical outer cylinder rigid member (hereinafter referred to as an outer cylinder member) 12 positioned on the outer side and the outer cylinder member 12. A cylindrical inner cylinder rigid member (hereinafter referred to as an inner cylinder member) 13 is integrally coupled so as to be relatively displaceable via a cylindrical energy absorber 14 positioned concentrically therebetween. Further, a pair of columnar extensible plugs 35 straddling the outer cylinder member 12 and the inner cylinder member 13 are penetrated in a direction orthogonal to the axial direction with respect to the energy absorber 14 as shown in FIG. And are provided opposite to each other. Furthermore, a stopper 210 that limits the relative displacement in the axial direction between the outer cylinder member 12 and the inner cylinder member 13 and an annular seal portion 215 as a seal mechanism in the ring-shaped opening portion 1a of the damper device 1 are provided. In addition, this damper apparatus 1 has each edge part of the outer cylinder member 12 and the inner cylinder member 13 straddling two elements (not shown) which comprise the framework (structure) of a small-sized detached wooden house, for example. They are used in combination.

エネルギー吸収体14は、せん断弾性係数G=0.2〜1.4N/mmで高減衰性能(等価減衰定数Heq=15〜30%)を発揮する粘弾性体が使用される。延伸性プラグ35にはトリガー特性が必要なため、エネルギー吸収体14よりも5〜10倍程度高剛性の鉛が使用される。 As the energy absorber 14, a viscoelastic body that exhibits high damping performance (equivalent damping constant Heq = 15 to 30%) with a shear elastic modulus G = 0.2 to 1.4 N / mm 2 is used. Since the extensible plug 35 requires trigger characteristics, lead having a rigidity about 5 to 10 times higher than that of the energy absorber 14 is used.

なお、図15の試験装置を用いて、せん断弾性係数G=0.7、1.0、1.2、1.4N/mmのエネルギー吸収体14をそれぞれ適用したダンパー装置1に、軸方向荷重をかけ、その時のダンパー装置1の変位を測定するダンパー追力試験を行った。その測定結果である荷重−履歴曲線を図16に示す。図16より、せん断弾性係数G=0.7の時、ダンパー装置1の剛性が最も低く、せん断弾性係数G=1.4の時、ダンパー装置1の剛性が最も高くなることがわかった。 In addition, the axial direction was applied to the damper device 1 to which the energy absorbers 14 having the shear elastic modulus G = 0.7, 1.0, 1.2, and 1.4 N / mm 2 were applied using the test device of FIG. A damper force test was performed to apply a load and measure the displacement of the damper device 1 at that time. The load-history curve which is the measurement result is shown in FIG. FIG. 16 indicates that the rigidity of the damper device 1 is the lowest when the shear modulus G = 0.7, and the stiffness of the damper device 1 is the highest when the shear modulus G = 1.4.

ストッパー210は、軸方向に並ぶリング状の突起部212・213・214からなる。突起部212は、図1・図2(c)に示すように、外筒部材12の内周面に、軸方向に直交する方向に設けている。また、突起部213および突起部214は、図1・図2(b)に示すように、内筒部材13の外周面に、突起部212の両側に所定の間隔Lをあけてそれぞれ設けている。突起部212・213・214は、内外の筒部材12・13が軸方向に相対変位したときに互いに当接し、内外の筒部材12・13の相対変位を制限することができる寸法を有する。突起部212・213・214の設置は、外筒部材12の内周面および内筒部材13の外周面にネジ切りを施すとともに、各突起部212・213・214の外周面にもネジ切りを施し、突起部213・212・214の順に、内外の筒部材12・13に回転させながら設置している。   The stopper 210 includes ring-shaped protrusions 212, 213, and 214 arranged in the axial direction. As shown in FIG. 1 and FIG. 2C, the protrusion 212 is provided on the inner peripheral surface of the outer cylinder member 12 in a direction orthogonal to the axial direction. Further, as shown in FIGS. 1 and 2B, the protruding portion 213 and the protruding portion 214 are respectively provided on the outer peripheral surface of the inner cylinder member 13 with a predetermined interval L on both sides of the protruding portion 212. . The protrusions 212, 213, and 214 have dimensions that can abut against each other when the inner and outer cylindrical members 12 and 13 are relatively displaced in the axial direction and limit the relative displacement of the inner and outer cylindrical members 12 and 13. The protrusions 212, 213, and 214 are threaded on the inner peripheral surface of the outer cylindrical member 12 and the outer peripheral surface of the inner cylindrical member 13, and are also threaded on the outer peripheral surfaces of the respective protrusions 212, 213, and 214. The projections 213, 212, and 214 are installed in the order of the protrusions 213, 212, and 214 while being rotated around the inner and outer cylindrical members 12 and 13.

また、突起部212と、その両側の突起部213・214との間隔Lは、エネルギー吸収体14の厚さTの2〜4倍としている。したがって、外筒部材12と内筒部材13とは、突起部212が、突起部213または突起部214と当接する範囲内(±Lの範囲内)で相対変位可能である。突起部の設置をネジ切りとしているので、間隔L(クリアランス)の調整が自由にできるため、ダンパー装置の剛性のバラツキにより振幅(揺れ幅)の調整が可能となる。なお、すべてをネジ切りで固定せず、突起部213は内筒部材13に、突起部212は外筒部材12にそれぞれ溶接により固定し、突起部214のみを内筒部材13にネジ切りで設置することも可能である。   The distance L between the protrusion 212 and the protrusions 213 and 214 on both sides thereof is set to 2 to 4 times the thickness T of the energy absorber 14. Therefore, the outer cylinder member 12 and the inner cylinder member 13 can be relatively displaced within a range where the protrusion 212 is in contact with the protrusion 213 or the protrusion 214 (within ± L). Since the protrusions are threaded, the interval L (clearance) can be adjusted freely, and therefore the amplitude (swing width) can be adjusted due to the rigidity variation of the damper device. Not all are fixed by threading, the protruding portion 213 is fixed to the inner cylindrical member 13 and the protruding portion 212 is fixed to the outer cylindrical member 12 by welding, and only the protruding portion 214 is fixed to the inner cylindrical member 13 by threading. It is also possible to do.

環状シール部215は、ダンパー装置1のリング状開口部分1aを塞ぐように、内筒部材13の外周面に、全周にわたり一体に形成している。エネルギー吸収体14の防水作用をもたせるため、先端周面が外筒部材12の内周面に当接するよう形成し、先端周面をメタルタッチ仕上げにしている。先端周面に、グリスを塗布してもよい。   The annular seal portion 215 is integrally formed on the outer peripheral surface of the inner cylinder member 13 over the entire circumference so as to close the ring-shaped opening portion 1 a of the damper device 1. In order to give the energy absorber 14 a waterproof action, the tip peripheral surface is formed so as to abut on the inner peripheral surface of the outer cylinder member 12, and the tip peripheral surface has a metal touch finish. You may apply | coat grease to a front-end | tip peripheral surface.

延伸性プラグ35は、ダンパー装置の変形により塑性変形してもスムーズに取り替えられるように、図3(a)に示すように、両端にネジ部35a・35bを設け、外筒部材12と内筒部材13とにそれぞれ設けたネジ穴12a・13aにネジ止めして固定している。この固定方法により、プラグ35塑性変形して残留変形が残っても強制的にプラグ35が離脱できる。プラグ35の頭部に、回転できるように、図3(b)に示す、十文字の凹部35dを設けている。プラグ本体部分35c(ネジ部35a・b以外の部分)は、ネジ穴12aを通過するため、ネジ部35a外径より小さくする。さらに、ネジ定着部近傍の応力集中を避けるため、すなわちプラグ本体部分35cが全面にわたって塑性化するように、本体部分35cの中央に向かうにつれて径を小さくする。(範囲を絞らなくてはならない場合:この時のネジ部35a外径に対するプラグ中央部の外径は、50〜99%の範囲とする。)また、外筒部材12のネジ穴12aを利用して、延伸性プラグ35が外部に接する部分(頭部)に円柱状のキャップ37を嵌め込み、ネジ穴12aを塞いで雨水等の浸入を防いでいる。   As shown in FIG. 3 (a), the extensible plug 35 is provided with screw portions 35a and 35b at both ends so that it can be smoothly replaced even when plastically deformed due to the deformation of the damper device. The screw holes 12a and 13a provided in the member 13 are fixed with screws. By this fixing method, even if the plug 35 is plastically deformed and residual deformation remains, the plug 35 can be forcibly detached. The head of the plug 35 is provided with a cross-shaped recess 35d shown in FIG. The plug main body portion 35c (portion other than the screw portions 35a and b) passes through the screw hole 12a and is therefore made smaller than the outer diameter of the screw portion 35a. Further, in order to avoid stress concentration near the screw fixing portion, that is, so that the plug main body portion 35c is plasticized over the entire surface, the diameter is reduced toward the center of the main body portion 35c. (When the range has to be narrowed: The outer diameter of the plug central portion with respect to the outer diameter of the screw portion 35a at this time is in the range of 50 to 99%.) Further, the screw hole 12a of the outer cylinder member 12 is used. Thus, a cylindrical cap 37 is fitted into a portion (head) where the extensible plug 35 is in contact with the outside, and the screw hole 12a is blocked to prevent intrusion of rainwater or the like.

なお、ここで本発明の延伸性プラグ35と、従来の円筒形のプラグとを用いて、これらに荷重をかけた場合の荷重変形を測定する追力試験を行った。試験装置は図17に示すように、土台にずれ防止ブラケットとプラグ固定ブラケットとを、せん断プレートを挟み込むように固定して、プラグ固定ブラケットとせん断プレートとを貫通するようにプラグを挿通し、これらに固定する。そして、せん断プレートに軸方向荷重をかけ、その時のせん断プレートの変位量をプラグの変形量として測定した。その結果を図18に示す。
図18において、縦軸に荷重、横軸にプラグの変形量をとったグラフであり、波線が本発明の延伸性プラグ35であり、実線が従来の円筒形プラグの結果である。図18に示すとおり、プラグ形状を延伸性プラグ35のようにすることで、荷重履歴曲線が滑らかに連続し、中央部が膨らみ、エネルギー吸収性能が向上したことがわかる。
Here, using the stretchable plug 35 of the present invention and a conventional cylindrical plug, a force test was performed to measure load deformation when a load was applied to them. As shown in FIG. 17, the test apparatus fixes the slip prevention bracket and the plug fixing bracket to the base so as to sandwich the shear plate, and inserts the plug so as to penetrate the plug fixing bracket and the shear plate. To fix. Then, an axial load was applied to the shear plate, and the displacement amount of the shear plate at that time was measured as the deformation amount of the plug. The result is shown in FIG.
In FIG. 18, the vertical axis represents the load and the horizontal axis represents the amount of deformation of the plug. The wavy line represents the stretchable plug 35 of the present invention, and the solid line represents the result of the conventional cylindrical plug. As shown in FIG. 18, it can be seen that by making the plug shape like the stretchable plug 35, the load history curve is smoothly continued, the central portion is swollen, and the energy absorption performance is improved.

上記したとおり、図3に示すプラグ35の固定構造により、プラグ35はダンパー装置1の変形とともに塑性変形に至るが、この変形を効率的に行わせるために、つまり減衰性能を向上させるために.図4・図5のようにダンパー装置1のエネルギー吸収体14のゴム層を拘束機構230を介して円周方向全体に積層している。このようにエネルギー吸収体14において複数のゴム層を積層することにより、ダンパー装置1の変形に伴いエネルギー吸収体14、つまりゴム層全体(各ゴム層)が均一に変形し、プラグ35が全断面にわたって有効に塑性変形する。   As described above, due to the fixing structure of the plug 35 shown in FIG. 3, the plug 35 is plastically deformed along with the deformation of the damper device 1. In order to perform this deformation efficiently, that is, to improve the damping performance. As shown in FIGS. 4 and 5, the rubber layer of the energy absorber 14 of the damper device 1 is laminated over the entire circumferential direction via the restraining mechanism 230. By laminating a plurality of rubber layers in the energy absorber 14 as described above, the energy absorber 14, that is, the entire rubber layer (each rubber layer) is uniformly deformed with the deformation of the damper device 1, and the plug 35 has a full cross section. Effective plastic deformation over the entire area.

拘束機構230は、図4に示すように、外径の異なる円筒状の鋼管231に延伸性プラグの貫通孔232を設けたものの複数本(図では5本)を同心状に組み合わせた構造からなる。そして、図5(a)・(b)に示すように、外筒部材12と内筒部材13との間に間隔をあけて、同心状に配置している。鋼管231を、エネルギー吸収体14の全長にわたって設けて積層体に形成することにより、さらに効果的にエネルギー吸収体14の変形を延伸性プラグ35に伝達できる。   As shown in FIG. 4, the restraining mechanism 230 has a structure in which a plurality of (5 in the figure) concentric combinations of cylindrical steel pipes 231 having different outer diameters provided with through holes 232 of extensible plugs. . Then, as shown in FIGS. 5A and 5B, the outer cylinder member 12 and the inner cylinder member 13 are arranged concentrically with a space therebetween. By forming the steel pipe 231 over the entire length of the energy absorber 14 and forming it in a laminate, the deformation of the energy absorber 14 can be transmitted to the extensible plug 35 more effectively.

図6(a)・(b)は、さらに別の拘束機構240として、延伸性プラグ35の周囲にコイルスプリング241を配置した例を示す。コイルスプリング241は復元力も有するので、エネルギー吸収体14の変形を延伸性プラグ35に伝達するだけでなく、延伸性プラグ35に残留変位が生じにくくなり、さらにエネルギー吸収性能が向上する。   6A and 6B show an example in which a coil spring 241 is arranged around the extensible plug 35 as another restraining mechanism 240. FIG. Since the coil spring 241 also has a restoring force, not only the deformation of the energy absorber 14 is transmitted to the stretchable plug 35, but also residual displacement is less likely to occur in the stretchable plug 35, and the energy absorption performance is further improved.

外筒部材12および内筒部材13には、本例では骨組みを構成する木材よりも剛性の高い鋼管が使用され、エネルギー吸収体14によってダンパー装置1の全体剛性が木造骨組みの強度に近くなるよう調整される。なお、内筒部材13内には、ボルトナット等の留め具を嵌挿したり、内筒部材13内の中空部を埋めて中実部材にすることもできる。また、外筒部材12および内筒部材13の一端に止め環(図示せず)を一体に取り付け、骨組みの各要素に容易に取り付けられるようにすることができる。さらに、外筒部材12内周面および内筒部材13外周面のうち、エネルギー吸収体14を介在させる部分は、ショットブラストまたは成型により凹凸形状に仕上げ、表面積を大きくして加硫接着の強度を高めている。   In this example, steel pipes having rigidity higher than that of the wood constituting the frame are used for the outer cylinder member 12 and the inner cylinder member 13, and the overall rigidity of the damper device 1 is made close to the strength of the wooden frame by the energy absorber 14. Adjusted. In addition, a fastener such as a bolt and nut can be fitted in the inner cylinder member 13, or a hollow portion in the inner cylinder member 13 can be filled into a solid member. Further, a retaining ring (not shown) can be integrally attached to one end of the outer cylinder member 12 and the inner cylinder member 13 so that it can be easily attached to each element of the framework. Further, of the outer peripheral surface of the outer cylindrical member 12 and the outer peripheral surface of the inner cylindrical member 13, the portion where the energy absorber 14 is interposed is finished into a concavo-convex shape by shot blasting or molding, and the surface area is increased to increase the strength of vulcanization adhesion. It is increasing.

延伸性プラグ35の設置は、以下の2通りの方法で行うことができる。それぞれについて、図7および図8に基づき説明する。   The stretchable plug 35 can be installed by the following two methods. Each will be described with reference to FIGS.

第1の方法においては、エネルギー吸収体14を構成するゴムの加硫後にプラグ35を挿入する方法である.ゴム14部にプラグ形状の空洞をダミーの金型14aを配置してゴム14を装填して加硫し、加硫後に外筒部材12のネジ穴12aを通してプラグ35を挿入する。このため、図7(a)に示すように、プラグ35は上下両端部のネジ部35a・35bに比べて本体部分35cの外径を小さく形成する必要がある。また、両端のネジ部35a・35bの定着部近傍の応力集中を避けるために、つまりプラグ35の本体部分35cが全体にわたって塑性化するように、本体部分35cを両端から中央部に向かうのに伴って漸次外径が小さくなるように形成する.中央部の外径をたとえば、両端ネジ部35a・35bの外径の50〜99%ン範囲で設定する。また、外筒部材12にネジ穴12aを設けるのと同時に、内筒13にも対応する位置にネジ穴13aを設けておく。   In the first method, the plug 35 is inserted after vulcanization of the rubber constituting the energy absorber 14. A plug-shaped cavity is placed in the rubber 14 portion with a dummy die 14a and the rubber 14 is loaded and vulcanized. After vulcanization, the plug 35 is inserted through the screw hole 12a of the outer cylinder member 12. For this reason, as shown in FIG. 7A, the plug 35 needs to have a smaller outer diameter of the main body portion 35c than the screw portions 35a and 35b at the upper and lower ends. Further, in order to avoid stress concentration in the vicinity of the fixing portion of the screw portions 35a and 35b at both ends, that is, so that the main body portion 35c of the plug 35 is plasticized as a whole, the main body portion 35c is moved from both ends toward the central portion. The outer diameter is gradually reduced. The outer diameter of the central portion is set, for example, in the range of 50 to 99% of the outer diameter of the both end screw portions 35a and 35b. Further, at the same time when the screw hole 12 a is provided in the outer cylinder member 12, the screw hole 13 a is provided at a position corresponding to the inner cylinder 13.

つまり、外筒部材12と内筒部材13との間にダミー金型14aを配置した状態で、エネルギー吸収体14を構成するゴムを装填し、加硫する(図7(b))。加硫後のゴム14部からダミー金型14aを外方へ引き抜き、エネルギー吸収体14に延伸性プラグ35を挿入する空洞部14bを形成し、ネジ穴12aからネジ穴13aまでを貫通させる(図7(c))。外筒部材12の外側から延伸性プラグ35を挿入してネジ止めし、最後にキャップ37を嵌め込む(図7(d))。空洞部14aの寸法(径)は、空洞部14aの容積に対する延伸性プラグ35の充填率が、エネルギー吸収体14の常温状態(24℃)において90〜120%となるよう設定している。   That is, with the dummy mold 14a disposed between the outer cylinder member 12 and the inner cylinder member 13, the rubber constituting the energy absorber 14 is loaded and vulcanized (FIG. 7B). The dummy mold 14a is pulled out from the rubber 14 after vulcanization to form a cavity 14b into which the extensible plug 35 is inserted into the energy absorber 14, and penetrates from the screw hole 12a to the screw hole 13a (see FIG. 7 (c)). The extensible plug 35 is inserted from the outside of the outer cylinder member 12 and screwed, and finally the cap 37 is fitted (FIG. 7D). The dimension (diameter) of the cavity portion 14a is set so that the filling rate of the stretchable plug 35 with respect to the volume of the cavity portion 14a is 90 to 120% in the normal temperature state (24 ° C.) of the energy absorber 14.

第2の方法においては、あらかじめ表面に非接着被膜(図示せず)を施した延伸性プラグ35を外筒部材12と内筒部材13とにネジ止めしてキャップ37を嵌め(図8(a))、外筒部材12と内筒部材13との間にエネルギー吸収体14を装填して加硫を行うものである(図8(b))。   In the second method, a stretchable plug 35 having a non-adhesive coating (not shown) on its surface is screwed to the outer cylinder member 12 and the inner cylinder member 13 and a cap 37 is fitted (FIG. 8 (a)). )), An energy absorber 14 is loaded between the outer cylinder member 12 and the inner cylinder member 13 for vulcanization (FIG. 8B).

本発明に係るダンパー装置の別の実施例について、図9〜図11に基づき、以下に説明する。   Another embodiment of the damper device according to the present invention will be described below with reference to FIGS.

ダンパー装置には多くの方向から応力が作用するから、図9(d)に示すようにダンパー装置31に対する回転方向Xおよび端部のピン回転面外方向Yの外力が作用しても、ダンパー装置31はスムーズに変形しなければならない。そこで、つぎのような工夫を施している。すなわち、
図9は別の実施例に係る、回転ストッパー320を設けたダンパー装置31を示す。図9(a)は、回転ストッパー320付近の横断面図、同(b)は、外筒部材312の斜視図、同(c)は、内筒部材313の斜視図である。回転ストッパー320は、ダンパー装置31の外筒部材312の内周面に、軸方向に沿って4本形成した長溝部322と、内筒部材313の外周面に、長溝部322に摺動可能に嵌入されるよう軸方向に沿って形成した4本の凸条部323とからなる。回転ストッパー320により、外筒部材312と内筒部材313とは、相対的に回転することがないので、ダンパー装置31は、振動による相対的な回転・ねじれを制止する作用をもつ。また、ダンパー装置31が振動を受けて軸方向に変位する際、長溝部322と凸条部323との接触抵抗が生じて減衰能力(摩擦減衰)も向上する。回転ストッパー320は、ストッパー210と併用することもできる。
Since stress acts on the damper device from many directions, even if external force in the rotational direction X with respect to the damper device 31 and the pin rotation surface outside direction Y at the end acts on the damper device 31 as shown in FIG. 31 must be smoothly deformed. Therefore, the following measures are taken. That is,
FIG. 9 shows a damper device 31 provided with a rotation stopper 320 according to another embodiment. FIG. 9A is a cross-sectional view of the vicinity of the rotation stopper 320, FIG. 9B is a perspective view of the outer cylinder member 312, and FIG. 9C is a perspective view of the inner cylinder member 313. The rotation stopper 320 is slidable in the long groove portion 322 on the inner peripheral surface of the outer cylinder member 312 of the damper device 31 and four long groove portions 322 formed in the axial direction on the outer peripheral surface of the inner cylinder member 313. It consists of four ridges 323 formed along the axial direction so as to be fitted. Since the outer cylinder member 312 and the inner cylinder member 313 are not relatively rotated by the rotation stopper 320, the damper device 31 has an action of restraining relative rotation and torsion caused by vibration. Further, when the damper device 31 receives vibration and is displaced in the axial direction, a contact resistance between the long groove portion 322 and the convex strip portion 323 is generated, and damping capacity (friction damping) is also improved. The rotation stopper 320 can be used in combination with the stopper 210.

図10は、上記した環状シール部215とは別の構成により、エネルギー吸収体14の防水を図るシール機構420を設けたダンパー装置41を示す。図10(a)は、シール機構420の部分断面図で、同(b)は、外筒部材412の斜視図、同(c)は、内筒部材413の斜視図である。シール機構420は、外筒部材412の内周面に全周にわたって取付けたパッキン422と、内筒部材413の外周面に形成した、パッキン422が嵌入される環状溝部423とからなる。パッキン422は、外筒部材412と内筒部材413の相対変位量に追従できる、耐久性の高い弾性体を使用している。   FIG. 10 shows a damper device 41 provided with a seal mechanism 420 for waterproofing the energy absorber 14 with a configuration different from the annular seal portion 215 described above. 10A is a partial cross-sectional view of the seal mechanism 420, FIG. 10B is a perspective view of the outer cylinder member 412, and FIG. 10C is a perspective view of the inner cylinder member 413. The seal mechanism 420 includes a packing 422 attached to the inner peripheral surface of the outer cylinder member 412 over the entire circumference, and an annular groove portion 423 formed on the outer peripheral surface of the inner cylinder member 413 and into which the packing 422 is fitted. The packing 422 uses a highly durable elastic body that can follow the relative displacement of the outer cylinder member 412 and the inner cylinder member 413.

ダンパー装置1の外筒部材12と内筒部材13間にエネルギー吸収体14を構成するゴムを装填して加圧・加硫する一体加硫では、筒体内部が密閉されているため、加硫後のゴムの収縮による接着面への影響が懸念される(収縮により接着力が低下する)。そこで、つぎのようにゴム部分、いいかえればエネルギー吸収体14をリング状に部品化(パーツか)してボルトもしくは溶接で定着するようにしている.本実施例では、溶接は熱による影響が懸念されるので、ボルトにより定着するようにしている。すなわち、
図11に、部品化したエネルギー吸収リング510を、外筒部材12と内筒部材13との間に介在させて一体に結合してなるダンパー装置51を示す。図11(a)は、部品化したエネルギー吸収リング510の断面図で、図11(b)は、エネルギー吸収リング510を2カ所に配置して固定したダンパー装置51の中央断面図である。
In the integrated vulcanization in which the rubber constituting the energy absorber 14 is loaded between the outer cylinder member 12 and the inner cylinder member 13 of the damper device 1 and pressurized and vulcanized, the inside of the cylinder is hermetically sealed. There is concern about the influence on the adhesive surface due to the later shrinkage of the rubber (adhesion force is reduced by the shrinkage). Therefore, the rubber part, in other words, the energy absorber 14 is made into a ring-shaped part (part) as shown below and fixed by bolts or welding. In this embodiment, since welding is concerned about the influence of heat, it is fixed by bolts. That is,
FIG. 11 shows a damper device 51 in which a componentized energy absorbing ring 510 is interposed between the outer cylinder member 12 and the inner cylinder member 13 so as to be integrally coupled. FIG. 11A is a cross-sectional view of the energy absorbing ring 510 formed as a component, and FIG. 11B is a central cross-sectional view of the damper device 51 in which the energy absorbing ring 510 is arranged and fixed at two locations.

エネルギー吸収リング510は、鉄製の外管512と内管513の間に、せん断弾性係数G=0.2〜1.4N/mmで高減衰性能(等価減衰定数Heq=15〜30%)を発揮する粘弾性体514を配置したのち加硫することにより形成している。このエネルギー吸収リング510を、外筒部材12と内筒部材13との間に2本、間隔をあけて配置し、ボルト515により外筒部材12および内筒部材13に対してそれぞれ固定している。 The energy absorbing ring 510 has a high damping performance (equivalent damping constant Heq = 15 to 30%) with a shear elastic modulus G = 0.2 to 1.4 N / mm 2 between the iron outer tube 512 and the inner tube 513. The viscoelastic body 514 to be exhibited is disposed and then vulcanized. Two energy absorption rings 510 are arranged between the outer cylinder member 12 and the inner cylinder member 13 with a space therebetween, and are fixed to the outer cylinder member 12 and the inner cylinder member 13 by bolts 515. .

ダンパー装置1において、ストッパー210(図1)の間隔Lを50mm(建物の層間変形で30mm)で設定した場合、図12(a)・(b)のように想定以上の地震により層間変形が約40mm変形しようとするところを、設定の30mmに抑えることができる。これにより、建物の過大変形による損傷を防ぐことができ、ダンパーの破損も防げる。   In the damper device 1, when the distance L between the stoppers 210 (FIG. 1) is set to 50 mm (30 mm due to the interlayer deformation of the building), the interlayer deformation is reduced by an earthquake more than expected as shown in FIGS. 12 (a) and 12 (b). The place to be deformed by 40 mm can be suppressed to the set 30 mm. Thereby, damage due to excessive deformation of the building can be prevented, and damage to the damper can also be prevented.

本発明に係るダンパー装置は、上記の複数の実施例に限られるものではなく、たとえば円筒状でなく、四角筒状など、他の断面形状をもつこともできる。また、機械系径の防振など減衰性を期待しないでよい場合は、天然ゴム等の復元力の高い弾性体をエネルギー吸収体に使用することができる。   The damper device according to the present invention is not limited to the plurality of embodiments described above, and may have other cross-sectional shapes such as a rectangular tube shape instead of a cylindrical shape. In addition, when it is not necessary to expect damping such as vibration isolation of the mechanical system diameter, an elastic body having a high restoring force such as natural rubber can be used as the energy absorber.

本発明は、主として建築構造物および土木構造物の振動低減用のダンパー装置として利用できる。特に、そうした構造用の骨組みに使用することができる。その他、産業用機械、建造物などの設置状態における振動の吸収緩和部材ならびに自動車、家電製品などの振動の吸収部品としても利用できる。   The present invention can be used mainly as a damper device for reducing vibrations in building structures and civil engineering structures. In particular, it can be used for such structural frameworks. In addition, it can be used as a vibration absorbing and mitigating member in an installed state of industrial machines and buildings, and as a vibration absorbing component of automobiles, home appliances, and the like.

1・31・41・51 ダンパー装置
12・312・412 外筒剛性部材
13・313・413 内筒剛性部材
14 エネルギー吸収体
35 延伸性プラグ
37 キャップ
38 非接着被膜
210 ストッパー
220・230・240 拘束機構
320 回転ストッパー
420 シール機構
510 エネルギー吸収リング
1, 31, 41, 51 Damper device 12, 312, 412 Outer cylinder rigid member 13, 313, 413 Inner cylinder rigid member 14 Energy absorber 35 Stretchable plug 37 Cap 38 Non-adhesive coating 210 Stopper 220/230/240 Restraint mechanism 320 Rotation stopper 420 Seal mechanism 510 Energy absorption ring

Claims (24)

内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合してなるダンパー装置であって、
内外の前記剛性部材が、軸方向に相対変位するのを制限するストッパーを備えていることを特徴とするダンパー装置。
An outer cylindrical rigid member is arranged concentrically on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and energy absorption is made up of a viscoelastic member or an elastic member between the inner and outer rigid members. A damper device that is integrally coupled so as to be relatively displaceable with a body interposed therebetween,
A damper device comprising a stopper for restricting relative displacement of the internal and external rigid members in the axial direction.
前記ストッパーが、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のいずれか一方に、軸方向に所定の間隔をあけて設けられる第1突起部と第2突起部と、他方に、前記第1突起部と第2突起部の間であって当該第1突起部および第2突起部とに当接可能に設けられる第3突起部とからなることを特徴とする請求項1記載のダンパー装置。   A first protrusion and a second protrusion, wherein the stopper is provided on the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member at a predetermined interval in the axial direction. And, on the other hand, a third projecting portion provided between the first projecting portion and the second projecting portion and capable of contacting the first projecting portion and the second projecting portion. The damper device according to claim 1. 内外の前記剛性部材が軸方向に相対変位していない状態で、前記第1突起部と第3突起部との間隔、および前記第2突起部と第3突起部との間隔が、前記エネルギー吸収体の厚さの2〜4倍であることを特徴とする請求項2記載のダンパー装置。   In a state where the inner and outer rigid members are not relatively displaced in the axial direction, the distance between the first protrusion and the third protrusion, and the distance between the second protrusion and the third protrusion are determined as the energy absorption. 3. The damper device according to claim 2, wherein the damper device is 2 to 4 times the thickness of the body. 内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合してなるダンパー装置であって、
内外の前記剛性部材が、周方向に相対回転するのを制限する回転ストッパーを備えていることを特徴とするダンパー装置。
An outer cylindrical rigid member is arranged concentrically on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and energy absorption is made up of a viscoelastic member or an elastic member between the inner and outer rigid members. A damper device that is integrally coupled so as to be relatively displaceable with a body interposed therebetween,
A damper device comprising a rotation stopper for restricting relative rotation of the inner and outer rigid members in the circumferential direction.
前記回転ストッパーが、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のいずれか一方に、軸方向に沿って形成された凸条部と、他方に形成され前記凸条部が摺動可能に嵌入される長溝部とからなることを特徴とする請求項4記載のダンパー装置。   The rotation stopper is formed on one of the outer peripheral surface of the inner cylindrical rigid member and the inner peripheral surface of the outer cylindrical rigid member along the axial direction, and on the other side, the convex The damper device according to claim 4, wherein the strip portion includes a long groove portion that is slidably fitted. 前記エネルギー吸収体のせん断弾性係数が、G=0.2〜1.4N/mm2の範囲にあり、等価減衰乗数が、Heq=15〜30%の範囲にあることを特徴とする請求項1〜5のいずれか1項に記載のダンパー装置。 2. The shear elastic modulus of the energy absorber is in the range of G = 0.2 to 1.4 N / mm 2 , and the equivalent attenuation multiplier is in the range of Heq = 15 to 30%. The damper apparatus of any one of -5. 内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合し、
前記エネルギー吸収体よりも高剛性の延伸性プラグを、前記内筒状剛性部材と前記外筒状剛性部材との内外の筒状壁間に跨り、かつ前記エネルギー吸収体に対し軸方向に直交する方向に貫通させて設けたダンパー装置であって、
前記延伸性プラグが、前記エネルギー吸収体の剛性に対して、少なくとも5〜10倍の剛性を有することを特徴とするダンパー装置。
An outer cylindrical rigid member is arranged concentrically on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and energy absorption is made up of a viscoelastic member or an elastic member between the inner and outer rigid members. Combined with the body so that relative displacement is possible,
An extensible plug having a rigidity higher than that of the energy absorber is straddled between inner and outer cylindrical walls of the inner cylindrical rigid member and the outer cylindrical rigid member, and is orthogonal to the energy absorber in the axial direction. A damper device provided to penetrate in a direction,
The damper device characterized in that the extensible plug has a rigidity of at least 5 to 10 times the rigidity of the energy absorber.
前記延伸性プラグが、取替え可能に設けられていることを特徴とする請求項7記載のダンパー装置。   The damper device according to claim 7, wherein the extensible plug is provided so as to be replaceable. 前記延伸性プラグの両端部にネジ部を設けるとともに、内外の前記剛性部材の筒状壁にネジ穴をそれぞれ設け、前記延伸性プラグの一端を前記内筒状剛性部材に、他端を前記外筒状剛性部材に対してそれぞれネジ止め可能にしたことを特徴とする請求項8記載のダンパー装置。 Threaded portions are provided at both ends of the extensible plug, and screw holes are provided in the cylindrical walls of the inner and outer rigid members, respectively, and one end of the extensible plug is at the inner cylindrical rigid member and the other end is at the outer end. The damper device according to claim 8, wherein each of the cylindrical rigid members can be screwed. 前記延伸性プラグの拘束機構を設けたことを特徴とする請求項7〜9のいずれか1項に記載のダンパー装置。   The damper device according to any one of claims 7 to 9, further comprising a restraining mechanism for the stretchable plug. 前記拘束機構が、前記延伸性プラグの貫通口を有し、前記内筒状剛性部材に対して同心状に間隔をあけて配置される複数枚の鋼板からなることを特徴とする請求項10記載のダンパー装置。   The said restraining mechanism has a through-hole of the said extensible plug, and consists of several steel plates arrange | positioned at intervals concentrically with respect to the said inner cylindrical rigid member. Damper device. 前記拘束機構が、前記延伸性プラグの貫通口を有し、前記内筒状剛性部材に対して同心状に間隔をあけて配置され、前記エネルギー吸収体と積層構造をなす複数の鋼管であることを特徴とする請求項10記載のダンパー装置。   The restraint mechanism is a plurality of steel pipes having a through-hole of the extensible plug, arranged concentrically with respect to the inner cylindrical rigid member, and forming a laminated structure with the energy absorber. The damper device according to claim 10. 前記拘束機構が、前記延伸性プラグを囲むスプリングであることを特徴とする請求項10記載のダンパー装置。   The damper device according to claim 10, wherein the restraining mechanism is a spring surrounding the extensible plug. 前記エネルギー吸収体を内外の前記剛性部材間に配置して加硫したのち、前記エネルギー吸収体に、前記延伸性プラグを前記外筒状剛性部材のネジ穴から前記内筒状剛性部材のネジ穴まで挿入可能な空洞部を設け、前記延伸性プラグの一端を当該内筒状剛性部材に、他端を当該外筒状剛性部材に、それぞれネジ止めすることにより形成したことを特徴とする請求項9記載のダンパー装置。   After the energy absorber is placed between the inner and outer rigid members and vulcanized, the extensible plug is inserted into the energy absorber from the screw hole of the outer cylindrical rigid member to the screw hole of the inner cylindrical rigid member. A hollow portion that can be inserted is provided, and one end of the extensible plug is screwed to the inner cylindrical rigid member and the other end is screwed to the outer cylindrical rigid member. 9. The damper device according to 9. 前記延伸性プラグの表面に非接着処理を施し、当該延伸性プラグの一端を前記内筒状剛性部材のネジ穴に、他端を前記外筒状剛性部材のネジ穴にそれぞれネジ止めしたのち、前記エネルギー吸収体を内外の当該剛性部材間に介在させて加硫することにより形成したことを特徴とする請求項9記載のダンパー装置。   Non-adhesive treatment is performed on the surface of the extensible plug, one end of the extensible plug is screwed to the screw hole of the inner cylindrical rigid member, and the other end is screwed to the screw hole of the outer cylindrical rigid member, The damper device according to claim 9, wherein the energy absorber is vulcanized by interposing between the inner and outer rigid members. 前記空洞部の容積に対する前記延伸性プラグの充填率が、前記エネルギー吸収体の常温状態において、90%〜120%の範囲であることを特徴とする請求項14記載のダンパー装置。   The damper device according to claim 14, wherein a filling rate of the stretchable plug with respect to a volume of the hollow portion is in a range of 90% to 120% in a normal temperature state of the energy absorber. 内筒状剛性部材の外周側に同内筒状剛性部材を囲繞するように外筒状剛性部材を同心状に配置するとともに、内外の前記剛性部材間に粘弾性部材または弾性部材からなるエネルギー吸収体を介在させて相対変位可能に一体的に結合し、
高減衰性の延伸性プラグを、前記内筒状剛性部材と前記外筒状剛性部材との内外の筒状壁間に跨り、かつ前記エネルギー吸収体に対し軸方向に直交する方向に貫通させて設けたダンパー装置であって、
前記延伸性プラグが、当該エネルギー吸収体の剛性に対して、少なくとも5〜10倍の剛性を有することを特徴とするダンパー装置。
An outer cylindrical rigid member is arranged concentrically on the outer peripheral side of the inner cylindrical rigid member so as to surround the inner cylindrical rigid member, and energy absorption is made up of a viscoelastic member or an elastic member between the inner and outer rigid members. Combined with the body so that relative displacement is possible,
A highly attenuating extensible plug is straddled between inner and outer cylindrical walls of the inner cylindrical rigid member and the outer cylindrical rigid member, and penetrates in a direction perpendicular to the axial direction with respect to the energy absorber. A damper device provided,
The damper device characterized in that the extensible plug has a rigidity of at least 5 to 10 times the rigidity of the energy absorber.
前記延伸性プラグの頭部側が、前記外筒状剛性部材のネジ穴に挿入されたキャップで覆われていることを特徴とする請求項7〜17のいずれか1項に記載のダンパー装置。   18. The damper device according to claim 7, wherein a head side of the extensible plug is covered with a cap inserted into a screw hole of the outer cylindrical rigid member. 前記内筒状剛性部材および前記外筒状剛性部材が、前記エネルギー吸収体と接する面において、凹凸形状を有することを特徴とする請求項1〜18のいずれか1項に記載のダンパー装置。   The damper device according to any one of claims 1 to 18, wherein the inner cylindrical rigid member and the outer cylindrical rigid member have an uneven shape on a surface in contact with the energy absorber. 内外の前記剛性部材間に、前記エネルギー吸収体のシール機構を備えたことを特徴とする請求項1〜19のいずれか1項に記載のダンパー装置。   The damper device according to any one of claims 1 to 19, wherein a sealing mechanism for the energy absorber is provided between the inner and outer rigid members. 前記シール機構が、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のうちいずれか一方に全周にわたって形成された環状溝部と、他方に取付けられ前記環状溝部に嵌入される環状パッキンとからなることを特徴とする請求項20記載のダンパー装置。   The sealing mechanism includes an annular groove formed over the entire circumference of either the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member, and is fitted into the annular groove portion attached to the other. The damper device according to claim 20, wherein the damper device comprises an annular packing. 前記シール機構が、前記内筒状剛性部材の外周面または前記外筒状剛性部材の内周面のうち、いずれか一方の周面に全周にわたって一体に形成された環状シール部からなり、該環状シール部の先端周面が、他方の周面に摺動可能に当接することを特徴とする請求項20記載のダンパー装置。   The sealing mechanism comprises an annular seal portion integrally formed over the entire circumference of either the outer peripheral surface of the inner cylindrical rigid member or the inner peripheral surface of the outer cylindrical rigid member, 21. The damper device according to claim 20, wherein the tip peripheral surface of the annular seal portion is slidably contacted with the other peripheral surface. 粘弾性部材または弾性部材を同心状に配置された内筒部材と外筒部材との間に介在させて加硫接着してエネルギー吸収リング部材を形成し、内筒状剛性部材とその外周側に同内筒状剛性部材を囲繞するように同心状に配置された外筒状剛性部材とを前記エネルギー吸収リング部材を介して一体的に結合してなることを特徴とするダンパー装置。   An energy absorbing ring member is formed by interposing a viscoelastic member or an elastic member between an inner cylindrical member and an outer cylindrical member arranged concentrically to form an energy absorbing ring member, and the inner cylindrical rigid member and its outer peripheral side. A damper device comprising: an outer cylindrical rigid member concentrically arranged so as to surround the inner cylindrical rigid member and integrally coupled via the energy absorbing ring member. 前記エネルギー吸収リング部材の内筒部材を前記内筒状剛性部材に、前記エネルギー吸収リング部材の外筒部材を前記外筒状剛性部材にそれぞれネジ止めにより固定したことを特徴とする請求項23記載のダンパー装置。   The inner cylindrical member of the energy absorbing ring member is fixed to the inner cylindrical rigid member, and the outer cylindrical member of the energy absorbing ring member is fixed to the outer cylindrical rigid member by screws. Damper device.
JP2010075134A 2009-03-30 2010-03-29 Damper device Pending JP2010255850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075134A JP2010255850A (en) 2009-03-30 2010-03-29 Damper device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009081403 2009-03-30
JP2010075134A JP2010255850A (en) 2009-03-30 2010-03-29 Damper device

Publications (1)

Publication Number Publication Date
JP2010255850A true JP2010255850A (en) 2010-11-11

Family

ID=43316978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075134A Pending JP2010255850A (en) 2009-03-30 2010-03-29 Damper device

Country Status (1)

Country Link
JP (1) JP2010255850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102979852A (en) * 2012-11-27 2013-03-20 北京华航无线电测量研究所 Framework assembly with radial elastic support
CN114658800A (en) * 2020-12-23 2022-06-24 长城汽车股份有限公司 Vibration absorbing device, transmission system and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102979852A (en) * 2012-11-27 2013-03-20 北京华航无线电测量研究所 Framework assembly with radial elastic support
CN114658800A (en) * 2020-12-23 2022-06-24 长城汽车股份有限公司 Vibration absorbing device, transmission system and vehicle

Similar Documents

Publication Publication Date Title
JP4288370B2 (en) Damper device
JP5960812B2 (en) Passive damper
KR101028217B1 (en) Double steel pipe type hybrid vibration control apparatus using viscoelasticity and friction
WO2016042742A1 (en) Vibration damping device for structure
KR101140160B1 (en) Damper and shock absorbing device for building
JP5886721B2 (en) Damping damper for structures
JP4743750B2 (en) Building structure
KR101541845B1 (en) Brace damper for energy dissipation
RU101514U1 (en) RUBBER-METAL SUPPORT
CN208668661U (en) A kind of sealing plate prefabricated PC viscoelastic damper
KR101402479B1 (en) Aseismic Damper
JP2010255850A (en) Damper device
CA3045493A1 (en) A viscoelastic bracing damper
JP5874336B2 (en) Vibration control device
JP2020029925A (en) Compound type vibration control device
JP6618760B2 (en) Structure for enhancing performance of rubber bearing device or seismic isolation device using damping damper for structure
JP4860938B2 (en) Vibration control structure
JP6358838B2 (en) Damping damper for structures
JP6780632B2 (en) Composite damper
CA3045250A1 (en) A volumetric compression restrainer
JP4286795B2 (en) Vibration control device and safety device
JP2014037858A (en) Damper and damper member
JP2008038374A (en) Bearing wall for house and earthquake-proof house provided with the same
JP5781387B2 (en) Seismic reduction device
CN106286673A (en) A kind of multi-state coupling adaptive inversion gesture safeguard construction