JP2017087405A - 工作機械の熱変位補正装置 - Google Patents

工作機械の熱変位補正装置 Download PDF

Info

Publication number
JP2017087405A
JP2017087405A JP2015225125A JP2015225125A JP2017087405A JP 2017087405 A JP2017087405 A JP 2017087405A JP 2015225125 A JP2015225125 A JP 2015225125A JP 2015225125 A JP2015225125 A JP 2015225125A JP 2017087405 A JP2017087405 A JP 2017087405A
Authority
JP
Japan
Prior art keywords
temperature
representative
standard
representative temperature
thermal displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015225125A
Other languages
English (en)
Other versions
JP6648500B2 (ja
Inventor
岩井 英樹
Hideki Iwai
英樹 岩井
雄二 佐々木
Yuji Sasaki
雄二 佐々木
康匡 桜井
Yasutada Sakurai
康匡 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015225125A priority Critical patent/JP6648500B2/ja
Publication of JP2017087405A publication Critical patent/JP2017087405A/ja
Application granted granted Critical
Publication of JP6648500B2 publication Critical patent/JP6648500B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

【課題】工作機械の構造体の熱変位量を推定し、加工点における熱変位を補正する工作機械の熱変位補正装置において、熱変位量の推定を比較的高精度に行うことを目的とする。
【解決手段】工作機械1の熱変位補正装置90は、工作機械1の構造体の代表温度および非代表温度を検出する温度センサ70と、代表温度が所定温度である時に、構造体の形状が所定の幾何公差の範囲内となる状態を構造体の標準状態と定義する場合、構造体が標準状態であるときの代表温度である標準代表温度および非代表温度である標準非代表温度を、温度センサ70によって取得する標準温度取得部91と、構造体が標準状態であり、かつ、標準代表温度が所定温度であるときの標準非代表温度を基準非代表温度として導出する基準温度導出部92と、基準温度導出部92によって導出された基準非代表温度を基準温度として、有限要素法における構造解析を行うFEM解析部95と、備えている。
【選択図】 図2

Description

本発明は、工作機械の熱変位補正装置に関する。
例えば、特許文献1には、温度センサにより検出される温度情報に基づいて工作機械の構造体の熱変位を推定し、加工点における熱変位を補正する工作機械において、有限要素法による構造解析を高速に行うことができるようにして、高精度でリアルタイムに熱変位補正を行うことができる熱変位補正装置が記載されている。この工作機械の熱変位補正装置は、工作機械の構造体を複数のブロックに分割して、各ブロック内に含まれる各節点の温度を一定値とすることにより、各節点の熱変位量の演算量を大幅に低減している。これにより、工作機械は、高精度でリアルタイムに熱変位補正を行うことができる。
国際公開第2012/157687号
しかしながら、特許文献1の工作機械の熱変位補正装置においても、熱変位量を推定するための全ての各節点の基準となる温度が、例えば、所定の温度にて全て同じ温度とされる場合や、加工開始時の各節点の温度とされる場合がある。これらの場合、構造体の形状が所定の幾何公差内にないときがある。このとき、構造体の形状が所定の幾何公差内となる温度を基準をして熱変位量を推定する場合に比べて、熱変位量の推定の精度が低下する。
本発明は、上述した問題を解消するためになされたもので、工作機械の構造体の熱変位量を推定し、加工点における熱変位を補正する工作機械の熱変位補正装置において、熱変位量の推定を比較的高精度に行うことを目的とする。
上記の課題を解決するため、請求項1に係る工作機械の熱変位補正装置は、工作機械の構造体の代表位置の温度である代表温度および非代表位置の温度である非代表温度を検出する温度センサと、代表温度が所定温度である時に、構造体の形状が所定の幾何公差の範囲内となる状態を構造体の標準状態と定義する場合、構造体が標準状態であるときの代表温度である標準代表温度および非代表温度である標準非代表温度を、温度センサによって取得する標準温度取得部と、構造体が標準状態であり、かつ、標準代表温度が所定温度であるときの標準非代表温度を基準非代表温度と定義する場合、基準非代表温度を導出する基準温度導出部と、構造体の熱変位量を推定する時の非代表温度を推定時非代表温度と定義する場合、推定時非代表温度を温度センサによって取得する推定時温度取得部と、推定時温度取得部によって取得された推定時非代表温度の、基準温度導出部によって導出された基準非代表温度に対する推定時非代表温度差に基づいて、有限要素法における構造解析を行い、かつ、構造体の熱変位量を推定する有限要素法解析部と、有限要素法解析部によって推定された構造体の熱変位量に基づいて、NCプログラムにより工作機械の指令位置に対する補正値を求める補正値演算部と、補正値演算部によって得られる補正値により指令位置を補正する補正部と、を備えている。
これによれば、基準温度導出部は、構造体が標準状態、かつ、標準代表温度が所定温度である場合の標準非代表温度を基準非代表温度として導出する。また、構造体が標準状態、標準代表温度が所定温度である場合、構造体の形状が所定の幾何公差の範囲内であるため、工作機械の指令位置に対する補正値をゼロとすることができる。ここで、有限要素法解析部は、推定時非代表温度の基準非代表温度に対する推定時非代表温度差に基づいて、有限要素法解析部による構造解析が行われる。よって、有限要素法解析部が、補正値をゼロとすることができる構造体の温度(基準非代表温度)を基準として熱変位量を推定するため、熱変位量の推定が比較的高精度に行われる。
本発明の一実施形態に係る工作機械の全体構成を示す斜視図である。 本発明の一実施形態の熱変位補正装置を示す図である。 コラムに対して有限要素法による構造解析を行う場合の四面体一次要素(細線)を示す斜視図である。 熱変位補正装置にて基準温度の導出するときに実行されるフローチャートである。 熱変位補正装置にて熱変位補正をするときに実行されるフローチャートである。
<第一実施形態>
(1.工作機械の機械構成)
工作機械1の一例として、横型マシニングセンタを例に挙げ、図1および図2を参照して説明する。つまり、工作機械1は駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)および鉛直方向の回転軸(B軸)を有する工作機械である。
図1および図2に示すように、工作機械1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、ターンテーブル60と、温度センサ70と、制御装置80と、熱変位補正装置90とから構成される。
ベッド10は、ほぼ矩形状からなり、床上に配置される。ただし、ベッド10の形状は矩形状に限定されるものではない。このベッド10の上面には、コラム20が摺動可能な一対のX軸ガイドレール11a,11bが、X軸方向(水平方向)に延びるように、且つ、相互に平行に形成されている。さらに、ベッド10には、一対のX軸ガイドレール11a,11bの間に、コラム20をX軸方向に駆動するための、図略のX軸ボールねじが配置され、このX軸ボールねじを回転駆動するX軸モータ11cが配置されている。また、ベッド10には、コラム20の位置を検出するX軸スケール11d(本発明のスケールに相当)が配置されている。X軸スケール11dは、例えば光学式リニアエンコーダである。
さらに、ベッド10の上面には、テーブル50が摺動可能な一対のZ軸ガイドレール12a,12bがX軸方向と直交するZ軸方向(水平方向)に延びるように、且つ、相互に平行に形成されている。さらに、ベッド10には、一対のZ軸ガイドレール12a,12bの間に、テーブル50をZ軸方向に駆動するための、図略のZ軸ボールねじが配置され、このZ軸ボールねじを回転駆動するZ軸モータ12cが配置されている。また、ベッド10には、テーブル50の位置を検出するZ軸スケール12d(本発明のスケールに相当)が配置されている。Z軸スケール12dは、例えば光学式リニアエンコーダである。
コラム20の底面(X軸摺動面)には、一対のX軸ガイド溝21a,21bがX軸方向に延びるように、且つ、相互に平行に形成されている。コラム20は、ベッド10に対してX軸方向に移動可能なように、一対のX軸ガイド溝21a,21bが一対のX軸ガイドレール11a,11b上にボールガイド22a,22bを介して嵌め込まれている。
さらに、コラム20のY軸に平行な側面(Y軸摺動面)20aには、サドル30が摺動可能な一対のY軸ガイドレール23a,23bがY軸方向(鉛直方向)に延びるように、且つ、相互に平行に形成されている。さらに、コラム20には、一対のY軸ガイドレール23a,23bの間に、サドル30をY軸方向に駆動するための、図略のY軸ボールねじが配置され、このY軸ボールねじを回転駆動するY軸モータ23cが配置されている。また、コラム20には、サドル30の位置を検出するY軸スケール23d(本発明のスケールに相当)が配置されている。Y軸スケール23dは、例えば光学式リニアエンコーダである。
コラム20のY軸摺動面20aに対向するサドル30の側面30aには、一対のY軸ガイド溝31a,31bがY軸方向に延びるように、且つ、相互に平行に形成されている。サドル30は、コラム20に対してY軸方向に移動可能なように、一対のY軸ガイド溝31a,31bが一対のY軸ガイドレール23a,23bに嵌め込まれている。
回転主軸40は、サドル30内に収容された主軸モータ41により回転可能に設けられ、工具42を支持している。工具42は、回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、工具42は、コラム20およびサドル30の移動に伴ってベッド10に対してX軸方向およびY軸方向に移動する。なお、工具42としては、例えば、ボールエンドミル、エンドミル、ドリル、タップ等である。
テーブル50は、ベッド10に対してZ軸方向に移動可能なように、一対のZ軸ガイドレール12a,12b上に設けられている。テーブル50の上面には、ターンテーブル60が鉛直方向のB軸回りで回転可能に支持されている。ターンテーブル60は、ベッド10内に収容されたB軸モータ61により回転可能に設けられ、工作物Wを治具や磁気吸着等により固定している。
温度センサ70は、工作機械の構造体の代表位置の温度である代表温度および非代表位置の温度である非代表温度を検出するものである。温度センサ70は、例えば、熱電対やサーミスタである。温度センサ70は、工作機械1の代表位置および非代表位置に取り付けられている。
代表位置は、工作物Wと工具42との相対位置を把握する基準となる部位に位置する。代表位置は、具体的には、X軸スケール11d、Z軸スケール12d、Y軸スケール23d、工作物W、および、工具42に位置している。ここで、工作物Wが加工対象であるため、また、工具42が回転駆動するため、工作物Wおよび工具42には、直接的に温度センサ70を取り付けることができない。そこで、工作物Wにおいては、工作物Wの任意の位置とターンテーブル60の任意の位置との温度の相関関係を把握し、ターンテーブル60の任意の位置を工作物Wの代表位置とする。同様に、工具42においては、工具42任意の位置とサドル30の任意の位置との温度の相関関係を把握し、サドル30の任意の位置を工具42の代表位置とする。また、これに加え、代表位置は、構造体において、外的熱負荷による熱変動が最も小さい位置、換言すれば、熱容量が最も大きい位置にも位置する。代表位置は、具体的には、コラム20の後端部に位置するブロック200(後述する)の中心部に位置している。
また、非代表位置は、各構造体、すなわちベッド10、コラム20、サドル30、回転主軸40、テーブル50およびターンテーブル60を後述するブロック100に分割した場合、各ブロック100のおよそ中心部に位置する。すなわち、温度センサ70は、各ブロック100およびブロック200に1個ずつ配設されている。
制御装置80は、主軸モータ41を制御して、工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、およびB軸モータ61を制御して、工作物Wと工具42とをX軸方向、Z軸方向、Y軸方向およびB軸回りに相対移動することにより、工作物Wの加工を行う。また、制御装置80は、ベッド10やコラム20などの構造体の熱変位に伴って生じる工作物Wと工具42との相対位置のずれを解消するために、熱変位補正を行う熱変位補正装置90を備えている。ただし、熱変位補正装置90は、制御装置80の内部に備えるものに限られず、外部装置として適用することもできる。
(2.熱変位補正の概要説明)
次に、熱変位補正装置90による熱変位の補正の概要について説明する。本実施形態においては、工作機械1の構造体の一つであるコラム20の熱変位に伴う熱変位補正を行う場合について図3を参照して説明する。なお、コラム20の他に、ベッド10などの他の構造体にも同様に適用できる。
図3において、細線L1、太線L2、中太線L3を用いている。ここで、中太線L3は、コラム20の形状線である。細線L1は、有限要素法による構造解析における要素の境界線分を示し、各細線L1の頂点を節点とする。つまり、図3において、当該要素は、四面体一次要素としている。また、図3において、太線L2は、ブロック100,100,・・・,200の分割線を示す。つまり、それぞれのブロック100,200の大きさは、有限要素法による構造解析における各要素の大きさよりも大きく設定されている。従って、1つのブロック100,200には、多数の要素が含まれており、多数の節点が含まれている。ここで、本実施形態の例示としての図3において、1つの要素を四面体一次要素として図示するが、これに限られることなく、四面体二次要素、六面体一次要素、六面体二次要素などを適用することもできる。
そして、図3の細線にて示す要素に基づいて、コラム20についてリアルタイムに有限要素法による構造解析を行い、コラム20の一部の節点における熱変位量を推定し、当該熱変位量に基づいて加工指令位置に対する補正値を求める。その補正値により加工指令位置を補正する。ここで、加工指令位置とは、加工や計測などを行うためのNCプログラムによって指令される工作機械1の移動体の位置指令値である。例えば、加工指令位置および補正値は、工作物Wに対する回転主軸40の先端位置の指令値、すなわち工作物Wに対する工具42の先端位置の指令値である。また、加工指令位置は、各軸モータに対する指令位置として捉えることもできる。この加工指令位置は、本実施形態の工作機械1においては、X軸,Y軸,Z軸,B軸座標にて表される。なお、補正値は、X軸,Y軸,Z軸に対する補正を行うため、X軸,Y軸,Z軸座標として表す。
ここで、コラム20について有限要素法による構造解析の際の解析条件として、各節点の温度が必要となる。ただし、本実施形態においては、コラム20を図3の太線L2にて示す複数のブロック100,100,・・・,200に分割して、同一ブロック100,100,・・・,200内に含まれる複数の節点の温度を一定値として構造解析を行う。さらに、全節点の熱変位量を求めるのではなく、必要な部位、例えば、コラム20のY軸摺動面20aの熱変位量のみを求めるようにしている。これらにより、有限要素法による構造解析に要する演算を大幅に低減することができ、演算を高速にすることができる。
ここで、図3に示すように、各ブロック100,100,・・・,200は、コラム20が以下のように分割されて形成される。すなわち、コラム20を、コラム20においてサドル30をY軸方向に摺動させるY軸摺動面20a側とY軸摺動面20aの反対側(裏面側)とに(Z軸方向に)分割すると共に、コラム20のX軸ガイド溝21a,21b側(コラム20自身がベッド10に対して摺動するX軸摺動面側)とX軸摺動面の反対側とに(Y軸方向に)分割する。ここでは、コラム20を23個のブロック100および1個のブロック200に分割する。なお、ブロック200は、コラム20の後端部に位置し、コラム20内において熱容量が最も大きい部位である。本実施形態においては、各ブロック100,200に温度センサ70が1個ずつ取り付けられている。よって、コラム20には、24個の温度センサ70が取り付けられている。温度センサ70は、コラム20の各ブロック100の温度を非代表温度として検出するとともに、ブロック200の温度を代表温度として検出する。
(3.熱変位補正装置の構成)
次に、熱変位補正装置90について、図2を参照して説明する。熱変位補正装置90は、標準温度取得部91、基準温度導出部92、基準温度格納部93、推定時温度取得部94、FEM解析部95(本発明の有限要素法解析部に相当)、補正値演算部96および補正部97を備えて構成される。ここで、標準温度取得部91、基準温度導出部92、基準温度格納部93、推定時温度取得部94、FEM解析部95、補正値演算部96および補正部97は、それぞれ個別のハードウエアによる構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。
標準温度取得部91は、構造体が標準状態である場合の代表温度である標準代表温度および非代表温度である標準非代表温度を、温度センサ70によって取得するものである。構造体の標準状態は、代表温度が所定温度(例えば20℃)である時に、構造体の形状が所定の幾何公差の範囲内となる状態と定義される。所定の幾何公差は、工作機械1の構造体に設定された幾何公差である。例えば、工作機械1の組付時または出荷時における検査や、工作機械1の納入先での据付時や定期検査の時に、工作機械1の構造体が標準状態に調整される。なお、この調整は、所定の雰囲気温度(例えば23℃)にて行われる。
そして、構造体が標準状態に調整されたとき、例えば、所定のスイッチ(図示なし)がオンされることにより、標準温度取得部91が標準代表温度および標準非代表温度を温度センサ70によって取得する。標準温度取得部91によって取得された標準代表温度および標準非代表温度は、基準温度導出部92に出力される。
基準温度導出部92は、構造体が標準状態であり、かつ、標準代表温度が所定温度である時の標準非代表温度を基準非代表温度と定義する場合、基準非代表温度を導出するものである。上述したように、構造体の幾何公差の調整は、所定の雰囲気温度(例えば23℃)にて行われるため、標準代表温度が必ずしも所定温度と同じにならない。しかしながら、構造体が標準状態である場合、標準代表温度が変動したとき、構造体の標準非代表温度が相対的に変動する。例えば、標準代表温度が所定温度から第一温度差だけ変動した場合、任意の非代表位置の標準非代表温度においても同様に第一温度だけ変動する。
すなわち、構造体が標準状態であり、かつ、標準代表温度が所定温度である時の標準非代表温度(すなわち基準非代表温度)は、次のように導出される。まず、標準温度取得部91によって取得された標準代表温度の所定温度に対する代表温度差(=標準代表温度−所定温度)が算出される。そして、標準温度取得部91によって取得された標準非代表温度の基準非代表温度に対する非代表温度差(=標準非代表温度−基準非代表温度)が代表温度差と等しくなるように、基準非代表温度が導出される。具体的には、基準非代表温度は、標準非代表温度から代表温度差を差し引いた温度である(基準非代表温度=標準非代表温度−代表温度差)。本実施形態においては、コラム20に23個の非代表位置があるため、23個の基準非代表温度が導出される。基準温度導出部92によって導出された基準非代表温度は、基準温度格納部93に出力される。
推定時温度取得部94は、構造体の熱変位量を推定する時の非代表温度を推定時非代表温度と定義する場合、推定時非代表温度を温度センサ70によって取得するものである。本実施形態においては、コラム20に23個の非代表位置があるため、23個の推定時非代表温度が取得される。また、推定時温度取得部94は、構造体の熱変位量を推定する時の代表温度を推定時代表温度と定義する場合、推定時代表温度を温度センサ70によって取得する。本実施形態においては、コラム20に1個の代表位置があるため、1個の推定時代表温度が取得される。推定時温度取得部94によって取得された推定時非代表温度および推定時代表温度は、FEM解析部95に出力される。推定時非代表温度および推定時代表温度は、有限要素法によるコラム20の構造解析の解析条件としての温度情報に用いられる。このとき、同一ブロック100内の各部位の温度は、推定時非代表温度にて一定値であるものと定義され、かつ、ブロック200内の各部位の温度は、推定時代表温度にて一定値であるものと定義される。
FEM解析部95は、コラム20について有限要素法による構造解析を行い、コラム20のY軸摺動面20aの熱変位量を推定する。この構造解析の条件として、材料定数、各節点における温度、拘束条件、支持部におけるばね要素が必要となる。ここで、構造解析の条件のうち各節点における温度のみ変化するものであって、他の条件は既知である。各節点の温度は、推定時温度取得部94によって取得された推定時非代表温度および推定時代表温度が用いられる。FEM解析部95は、推定時温度取得部94によって取得された推定時非代表温度および推定時代表温度の基準温度に対する差に基づいて、有限要素法における構造解析を行い、かつ、構造体の熱変位量を推定する。
ブロック100における推定時非代表温度の基準温度は、基準温度導出部92によって導出された基準非代表温度が用いられる。このとき、同一ブロック100内の各部位の基準温度は、基準非代表温度にて一定値であるものと定義される。基準非代表温度は、上述したように、構造体が標準状態であり、かつ、標準代表温度が所定温度であるときの標準非代表温度である。また、ブロック200における推定時代表温度の基準温度は、所定温度が用いられる。このとき、ブロック200内の各部位の基準温度は、所定温度にて一定値であるものと定義される。標準代表温度が所定温度であり、かつ、標準非代表温度が基準代表温度である場合、構造体の形状は、所定の幾何公差の範囲内となっている。よって、この場合、構造体の形状の精度、ひいては、加工精度が確保されるため、工作機械1の指令位置に対する補正値をゼロとすることができる。すなわち、FEM解析部95は、補正値がゼロとなる構造体の温度(所定温度および基準代表温度)を基準温度として熱変位量を推定する。基準非代表温度は、基準温度格納部93からFEM解析部95に入力される。なお、所定温度は、FEM解析部95に予め記憶されている。
FEM解析部95は、推定時温度取得部94によって取得された推定時非代表温度および推定時代表温度の、基準温度に対する差である推定時非代表温度差および推定時代表温度差に基づいて、有限要素法における構造解析を行い、かつ、構造体の熱変位量を推定する。推定時非代表温度差は、推定時温度取得部94によって取得された推定時非代表温度の、基準温度導出部92によって導出された基準非代表温度に対する差(=推定時非代表温度−基準非代表温度)である。推定時代表温度差は、推定時温度取得部94によって取得された推定時代表温度の、所定温度に対する差(=推定時代表温度−所定温度)である。本実施形態においては、同一のブロック100に含まれる全ての節点における推定時非代表温度差は、同一値となる。また、ブロック200に含まれる全ての節点における推定時代表温度差は、同一値となる。
このような条件にて有限要素法による構造解析は、式(1)のような行列演算式により表すことができる。この式(1)の演算回数は、Npart1×2×Nblock回となる。なお、この構造解析の式(1)の導出方法については、後述する。温度ベクトルは、推定時非代表温度差および推定時代表温度差によって構成される。
Figure 2017087405
補正値演算部96は、FEM解析部95にて得られるコラム20のY軸摺動面20aの熱変位量に基づいて加工指令位置に対する補正値を求める。補正部97は、補正値演算部96にて得られる補正値により加工指令位置を補正する。
(4.熱変位補正装置による処理)
次に、熱変位補正装置90による処理について、図4および図5を参照して説明する。熱変位補正装置90による基準非代表温度の導出は、上述したように、例えば組付け後の検査において、構造体が標準状態に調整され、例えば、所定のスイッチ(図示なし)がオンされたときに実行される。図4に示すように、標準温度取得部91は、連続的に、標準代表温度および標準非代表温度を入力する(ステップS1)。続いて、基準温度導出部92は、代表温度差(=標準代表温度−所定温度)を算出する(ステップS2)。そして、基準温度導出部92は、基準非代表温度(=標準非代表温度−代表温度差)を導出する(ステップS3)。続けて、基準温度格納部93が基準非代表温度を格納する(ステップS4)。
また、熱変位補正装置90による熱変位補正は、工作機械1に電源が投入された後、例えば、工作物Wの加工中、タッチプローブ(図示せず)などによる工作物Wの計測時に行われる。図5に示すように、工作機械1の電源が投入されると(ステップS11)、推定時温度取得部94は、連続的に温度センサ70からコラム20の各ブロック100,100,・・・の非代表位置の推定時非代表温度、および、ブロック200の代表位置の推定時代表温度を入力する(ステップS12)。続いて、FEM解析部95は、式(1)に従って有限要素法による構造解析を実行する(ステップS13)。そして、FEM解析部95は、得られたコラム20のY軸摺動面20aの熱変位量の推定値を記憶する(ステップS14)。
続いて、補正値演算部96は、Y軸摺動面20aの熱変位量の推定値に基づいて、回転主軸40の先端の指令位置に対する補正値を演算する(ステップS15)。例えば、現在のサドル30のY軸位置と、当該Y軸位置に対応する摺動面20aの熱変位量の推定値とに基づいて、回転主軸40の先端位置の熱変位量が算出される。このようにして算出された回転主軸40の先端位置の熱変位量が、回転主軸40の先端の指令位置に対する補正値となる。
そして、補正部97は、演算した補正値により回転主軸40の先端の指令位置を補正する(ステップS16)。つまり、制御装置80よって出力される指令位置が、補正値により補正指令位置に補正される。そして、制御装置80により熱変位補正を実行し(ステップS17)、工作機械1の電源が切断されるまで継続する(ステップS18)。すなわち、工作機械1の電源が切断されていなければ、ステップS2に戻って上述の処理を繰り返し、工作機械1の電源が切断された場合に熱変位補正プログラムを終了する。
(5.FEM解析部による構造解析式の導出方法)
有限要素法による構造解析の基本式は、式(2)により表される。この式(2)は、構造体の剛性方程式である。ここで、剛性マトリックス[K]は、コラム20の材料定数およびコラム20の形状により得られる既知の値である。なお、式(2)において、行数および列数、もしくは要素数を示す表記としている。また、本明細書において用いるベクトルは、すべて列ベクトルを意味する。
Figure 2017087405
また、節点温度に応じた節点力の関係式は、式(3)により表される。ここで、節点力マトリックス[F]は、コラム20の材料定数およびコラム20の形状により得られる既知の値である。なお、式(2)において、行数および列数、もしくは要素数を示す表記としている。
Figure 2017087405
式(2)(3)の左辺が共通することから、各節点の熱変位量ベクトル{δall}は式(4)のように表される。つまり、式(4)における各節点の熱変位量ベクトル{δall}は、各節点の熱変位量に相当する。ここで、後の説明の容易化のため、式(5)のように、剛性マトリックス[K]の逆行列と節点力係数マトリックス[F]の乗算行列を[P]と表す。
Figure 2017087405
Figure 2017087405
式(5)に基づいて各節点の熱変位量ベクトル{δ}、すなわち各節点の熱変位量を演算するためには、非常に多数の演算回数を要する。そのため、演算時間も長時間必要となってしまう。一方、本実施形態においては、コラム20を複数に分割されたブロック100,200内における全節点の温度は、一定値であるとする。つまり、温度の種類は、ブロック100,200の数と同数となる。そうすると、上述した節点温度に応じた節点力の関係式についての式(3)は、以下のように、式(6)のように表される。
Figure 2017087405
そうすると、上述した各節点の熱変位量ベクトル{δall}は、式(7)のように表される。式(7)のTblockの要素数が式(4)のTallの要素数より少ない。そのため、式(4)に比べると、式(7)の演算回数は、非常に少なくなる。また、式(8)のように、剛性マトリックス[K]の逆行列と節点力係数マトリックス[F1]の乗算行列を[P1]と表す。
Figure 2017087405
Figure 2017087405
式(8)の演算回数は、上述した式(5)の演算回数に比べると大幅に少なくできるが、以下のようにすることで、さらに演算回数を少なくすることができる。熱変位量ベクトル{δall}は、コラム20の全ての節点における熱変位量を示している。しかしながら、熱変位補正に必要な部位は、コラム20全体ではなく、コラム20のY軸摺動面20aの熱変位量を把握できればよい。そこで、式(8)の熱変位量ベクトル{δall}を、コラム20のY軸摺動面20aの部位の節点における熱変位量ベクトル{δpart1}と、それ以外の部位の節点における熱変位量ベクトル{δpart2}とに分けて表すと、式(9)のようになる。
Figure 2017087405
そして、式(9)のうち、コラム20のY軸摺動面20aの部位の接点における熱変位量ベクトル{δpart1}のみを抽出すると、式(10)のように表すことができる。
Figure 2017087405
この式(10)の演算回数は、式(8)の演算回数に比べても大幅に低減できることが分かる。つまり、式(10)の演算回数は、式(5)の演算回数に比べて極めて少ない回数となる。この式(10)は、上述した式(1)と同式である。つまり、このようにして式(1)を導出する。
そして、上述した式(1)を用いて有限要素法による構造解析を行うことで、加工指令位置の補正に必要な節点の熱変位量ベクトル{δpart1}の演算速度の高速化を図ることができる。そして、この演算を加工中にリアルタイムに行い、熱変位補正を行うことができる。このように、有限要素法による構造解析を高速に行うことができることで、高精度にリアルタイムに熱変位補正を行うことができる。なお、式(8)を用いて有限要素法による構造解析を行う場合の演算速度が十分に高速である場合には、式(8)を用いることもできる。しかし、式(8)に比べると、式(1)を用いる方が確実に演算を高速に行うことができる。
また、コラム20を複数に分割するブロック100,100,・・・,200は、コラム20をコラム20の摺動面側と反摺動面側に分割して形成している。一般に、工作機械1の構造体が移動体を摺動させる摺動面を有する場合には、摺動面側と反摺動面側の熱容量の違いや発熱の影響などにより、摺動面側と反摺動面側との間で温度勾配が生じる。そこで、コラム20を複数のブロック100,200に分割する際に、摺動面側と反摺動面側とに分割することで、ブロック100,200内の温度を一定値と定義したとしても、実際の温度部分に近い状態とすることができる。その結果、熱変位量を高精度に推定できる。
(6.まとめ)
本実施形態によれば、工作機械1の熱変位補正装置90は、工作機械1の構造体の代表位置の温度である代表温度および非代表位置の温度である非代表温度を検出する温度センサ70と、代表温度が所定温度である時に、構造体の形状が所定の幾何公差の範囲内となる状態を構造体の標準状態と定義する場合、構造体が標準状態であるときの代表温度である標準代表温度および非代表温度である標準非代表温度を、温度センサ70によって取得する標準温度取得部91と、構造体が標準状態であり、かつ、標準代表温度が所定温度であるときの標準非代表温度を基準非代表温度と定義する場合、基準非代表温度を導出する基準温度導出部92と、構造体の熱変位量を推定する時の非代表温度を推定時非代表温度と定義する場合、推定時非代表温度を温度センサ70によって取得する推定時温度取得部94と、推定時温度取得部94によって取得された推定時非代表温度の、基準温度導出部92によって導出された基準非代表温度に対する推定時非代表温度差に基づいて、有限要素法における構造解析を行い、かつ、構造体の熱変位量を推定するFEM解析部95と、FEM解析部95によって推定された構造体の熱変位量に基づいて、NCプログラムにより工作機械1の指令位置に対する補正値を求める補正値演算部96と、補正値演算部96によって得られる補正値により指令位置を補正する補正部97と、を備えている。
これによれば、基準温度導出部92は、構造体が標準状態、かつ、標準代表温度が所定温度である場合の標準非代表温度を基準非代表温度として導出する。また、構造体が標準状態、標準代表温度が所定温度である場合、構造体の形状が所定の幾何公差の範囲内であるため、工作機械1の指令位置に対する補正値をゼロとすることができる。ここで、FEM解析部95は、推定時非代表温度の基準非代表温度に対する推定時非代表温度差に基づいて、FEM解析部95による構造解析が行われる。よって、FEM解析部95が、補正値をゼロとすることができる構造体の温度(所定温度および基準非代表温度)を基準として熱変位量を推定するため、熱変位量の推定が比較的高精度に行われる。
例えば、全ての非代表温度が所定温度である場合、構造体の形状が所定の幾何公差内にないため、補正値をゼロとすることができない。よって、熱変位量を推定するための基準温度を所定温度とした場合、補正値がゼロでない構造体の形状を基準として熱変位量が推定される。また、例えば加工開始時において、全ての非代表温度が標準非代表温度である場合においても、標準代表温度が所定温度でないとき、構造体の形状が所定の幾何公差内にないため、補正値をゼロとすることができない。よって、熱変位量を推定するための基準温度を標準非代表温度とした場合、補正値がゼロでない構造体の形状を基準として熱変位量が推定されるときがある。したがって、これらの場合、上述したように、補正値をゼロとすることができる構造体の温度(所定温度および基準非代表温度)を基準として熱変位量を推定したときに比べて、熱変位量の推定精度が低くなる。
また、基準温度導出部92は、標準温度取得部91によって取得された標準代表温度の所定温度に対する代表温度差を算出し、標準温度取得部91によって取得された標準非代表温度の基準非代表温度に対する非代表温度差が代表温度差と等しくなるように、基準非代表温度を導出する。
これによれば、基準温度導出部92は、基準非代表温度を比較的簡便に導出することができる。
また、代表位置は、工作機械1の移動体の位置を検出するスケール11d,12d,23d、工作機械1によって加工される工作物W、および、工作物Wを加工する工具42に位置している。
これによれば、代表位置は、工作物Wと工具42との相対位置を把握する基準となる部位に位置しているため、代表位置が他の位置に位置する場合に比べて、補正値の精度の向上を図ることができる。
また、代表位置は、構造体において熱容量が最も大きい部位に位置している。
これによれば、代表位置が他の位置に位置する場合に比べて、標準代表温度に対する外的要因による温度変動を抑制することができるため、基準温度導出部によって導出される基準非代表温度の精度ひいては構造体の熱変位量の推定精度の向上を図ることができる。
また、標準温度取得部91は、構造体が標準状態に調整された時、標準代表温度および標準非代表温度を取得する。
これによれば、標準温度取得部91は、比較的高精度にて標準代表温度および標準非代表温度を取得することができる。
なお、上述した実施形態において、工作機械の熱変位補正装置の一例を示したが、本発明はこれに限定されず、他の構成を採用することもできる。例えば、温度センサ70は、各ブロック100に1個ずつ取り付けられているが、温度センサ70を全てのブロック100に取り付けないようにしても良い。この場合、温度センサ70が取り付けられていないブロックの温度は、例えば、他の各ブロック100の温度との相関関係を予め実験等により把握しておくことにより導出される。
また、上述した実施形態において、構造体がブロック化されているが、これに代えて、構造体をブロック化しないようにしても良い。この場合、FEM解析部95が用いる各節点の基準温度は、例えば、基準非代表温度との相関関係を予め実験等により把握しておくことにより導出される。
また、上述した実施形態においては、代表位置は、コラム20のブロック200に位置しているが、これに代えて、代表位置をベッド10の中心部に位置するようにしても良い。この場合、コラム20のみの構造解析を行う場合においては、推定時温度取得部94は、推定時非代表温度のみを取得するとともに、FEM解析部95は、推定時温度取得部94からの推定時非代表温度を用いて算出される推定時非代表温度差のみに基づいて構造解析を行う。また、この場合、コラム20のブロック200は、ブロック100として構造解析が行われる。なお、ベッド10の中心部は、一般的に、工作機械1内において熱容量が最も大きい部位である。
1…工作機械、10…ベッド、11d…軸スケール(スケール)、12d…軸スケール(スケール)、20…コラム、23d…軸スケール(スケール)、30…サドル、40…回転主軸、41…主軸モータ、42…工具、50…テーブル、60…ターンテーブル、70…温度センサ、80…制御装置、90…熱変位補正装置、91…標準温度取得部、92…基準温度導出部、93…基準温度格納部、94…推定時温度取得部、95…FEM解析部(有限要素法解析部)、96…補正値演算部、97…補正部、100…ブロック、W…工作物。

Claims (5)

  1. 工作機械の構造体の代表位置の温度である代表温度および非代表位置の温度である非代表温度を検出する温度センサと、
    前記代表温度が所定温度である時に、前記構造体の形状が所定の幾何公差の範囲内となる状態を前記構造体の標準状態と定義する場合、前記構造体が前記標準状態であるときの前記代表温度である標準代表温度および前記非代表温度である標準非代表温度を、前記温度センサによって取得する標準温度取得部と、
    前記構造体が前記標準状態であり、かつ、前記標準代表温度が前記所定温度であるときの前記標準非代表温度を基準非代表温度と定義する場合、前記基準非代表温度を導出する基準温度導出部と、
    前記構造体の熱変位量を推定する時の前記非代表温度を推定時非代表温度と定義する場合、前記推定時非代表温度を前記温度センサによって取得する推定時温度取得部と、
    前記推定時温度取得部によって取得された前記推定時非代表温度の、前記基準温度導出部によって導出された前記基準非代表温度に対する推定時非代表温度差に基づいて、有限要素法における構造解析を行い、かつ、前記構造体の前記熱変位量を推定する有限要素法解析部と、
    前記有限要素法解析部によって推定された前記構造体の前記熱変位量に基づいて、NCプログラムにより前記工作機械の指令位置に対する補正値を求める補正値演算部と、
    前記補正値演算部によって得られる前記補正値により前記指令位置を補正する補正部と、を備えている工作機械の熱変位補正装置。
  2. 前記基準温度導出部は、前記標準温度取得部によって取得された前記標準代表温度の前記所定温度に対する代表温度差を算出し、前記標準温度取得部によって取得された前記標準非代表温度の前記基準非代表温度に対する非代表温度差が前記代表温度差と等しくなるように、前記基準非代表温度を導出する請求項1記載の工作機械の熱変位補正装置。
  3. 前記代表位置は、前記工作機械の前記移動体の位置を検出するスケール、前記工作機械によって加工される工作物、および、前記工作物を加工する工具に位置している請求項1または請求項2記載の工作機械の熱変位補正装置。
  4. 前記代表位置は、前記構造体において熱容量が最も大きい部位に位置している請求項1乃至請求項3記載の何れか一項記載の工作機械の熱変位補正装置。
  5. 前記標準温度取得部は、前記構造体が前記標準状態に調整された時、前記標準代表温度および前記標準非代表温度を取得する請求項1乃至請求項4の何れか一項記載の工作機械の熱変位補正装置。
JP2015225125A 2015-11-17 2015-11-17 工作機械の熱変位補正装置 Active JP6648500B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225125A JP6648500B2 (ja) 2015-11-17 2015-11-17 工作機械の熱変位補正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225125A JP6648500B2 (ja) 2015-11-17 2015-11-17 工作機械の熱変位補正装置

Publications (2)

Publication Number Publication Date
JP2017087405A true JP2017087405A (ja) 2017-05-25
JP6648500B2 JP6648500B2 (ja) 2020-02-14

Family

ID=58767085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225125A Active JP6648500B2 (ja) 2015-11-17 2015-11-17 工作機械の熱変位補正装置

Country Status (1)

Country Link
JP (1) JP6648500B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107363642A (zh) * 2017-08-22 2017-11-21 科德数控股份有限公司 一种分体式对刀仪安装及调整装置及其定位方法
CN107942934A (zh) * 2017-11-06 2018-04-20 大连理工大学 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法
JP2019005874A (ja) * 2017-06-27 2019-01-17 中村留精密工業株式会社 工作機械の熱変位の補正方法及び補正装置
JP2022532018A (ja) * 2019-04-05 2022-07-13 ディッケル マホ ゼーバッハ ゲーエムベーハー 数値制御された工作機械の熱的に誘発された位置変化を補償するための方法および装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005874A (ja) * 2017-06-27 2019-01-17 中村留精密工業株式会社 工作機械の熱変位の補正方法及び補正装置
JP7019163B2 (ja) 2017-06-27 2022-02-15 中村留精密工業株式会社 工作機械の熱変位の補正方法及び補正装置
CN107363642A (zh) * 2017-08-22 2017-11-21 科德数控股份有限公司 一种分体式对刀仪安装及调整装置及其定位方法
CN107363642B (zh) * 2017-08-22 2019-11-22 科德数控股份有限公司 一种分体式对刀仪安装及调整装置及其定位方法
CN107942934A (zh) * 2017-11-06 2018-04-20 大连理工大学 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法
JP2022532018A (ja) * 2019-04-05 2022-07-13 ディッケル マホ ゼーバッハ ゲーエムベーハー 数値制御された工作機械の熱的に誘発された位置変化を補償するための方法および装置

Also Published As

Publication number Publication date
JP6648500B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
JP5811102B2 (ja) 熱変位補正装置および熱変位補正方法
JP6295070B2 (ja) 多軸工作機械の幾何誤差同定方法及び多軸工作機械
JP5816475B2 (ja) 産業機械
JP6648500B2 (ja) 工作機械の熱変位補正装置
JP6942577B2 (ja) 工作機械の数値制御装置及び数値制御方法
WO2011099599A1 (ja) 工作機械の熱変位補正方法および熱変位補正装置
CN105588533A (zh) 形状测定装置以及形状测定方法
JP2009104317A (ja) 数値制御方法及び数値制御装置
JP6155946B2 (ja) 工作機械の各部材の線膨張係数の決定方法および工作機械の熱変位補正装置
EP3611583B1 (en) Machining error compensation
JP2001269841A (ja) 測定誤差を自動補正する方法及び装置
CN107580535A (zh) 用于运行齿轮加工机床的方法
JP6221419B2 (ja) 工作機械の温度測定位置決定方法およびそのための装置
KR20150041328A (ko) 공작기계의 열변위 보정 파라메터 자동 변환 장치 및 변환 방법
JP2015009352A (ja) 熱変位補正方法および熱変位補正装置
JP6561003B2 (ja) 工作機械の熱変位補正方法、工作機械
JP6675548B2 (ja) Nc研削装置及びワークの研削方法
JP6553907B2 (ja) 工作機械
KR20140092078A (ko) 머시닝센터 볼스크류의 열변위보정방법
JP5805268B1 (ja) 工作機械の変位補正方法および工作機械の制御装置
WO2024201885A1 (ja) 工作機械における熱変位補正装置及び熱変位補正方法並びに工作機械
JP6435654B2 (ja) 熱変位量推定装置、熱変位量推定方法、及び熱変位量推定装置を備える工作機械
JP2013255978A (ja) 熱変位補正装置
JP6507619B2 (ja) 工作機械の熱変位量推定装置に用いる温度検出位置の条件決定方法
KR20100082116A (ko) 수치제어방식에 의한 열쇠가공기에서 바이스의 구조와 가공기준점 결정방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150