JP2017073728A - 水晶発振器 - Google Patents

水晶発振器 Download PDF

Info

Publication number
JP2017073728A
JP2017073728A JP2015201106A JP2015201106A JP2017073728A JP 2017073728 A JP2017073728 A JP 2017073728A JP 2015201106 A JP2015201106 A JP 2015201106A JP 2015201106 A JP2015201106 A JP 2015201106A JP 2017073728 A JP2017073728 A JP 2017073728A
Authority
JP
Japan
Prior art keywords
oscillation
frequency
circuit
overtone
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015201106A
Other languages
English (en)
Inventor
高司 中岡
Koji Nakaoka
高司 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2015201106A priority Critical patent/JP2017073728A/ja
Publication of JP2017073728A publication Critical patent/JP2017073728A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

【課題】二つの周波数を同時発振させ、二つの周波数差を温度情報として用いる水晶発振器において、周波数信号の安定度と温度情報としての正確さの両立を図る。
【解決手段】水晶発振器1は、複数の振動モードを有する水晶振動子12と、前記水晶振動子を第1周波数で発振させて第1発振信号を発生する第1の発振回路13と、前記水晶振動子を前記第1周波数とは異なる第2周波数で発振させて第2発振信号を発生する第2の発振回路14と、前記第1発振信号と前記第2発振信号の周波数の差を検出する周波数差検出回路15と、を備え、前記水晶振動子に対し直列にインダクタ17とコンデンサ18からなるLC並列回路19を接続した。
【選択図】図1

Description

本発明は温度特性を向上させた水晶発振器に関する。
水晶発振器において、発振回路とともに用いられる水晶振動片はその切断角度により、発振周波数及び振動モードが変化し、切断角度を適切に選ぶことで、一つの水晶振動片に同時に複数の振動モードを発振させ、複数の周波数信号を取り出すことが可能となっている。このような水晶振動片を利用することで、一つの水晶振動片から複数の周波数信号を取り出し、一方の周波数信号を出力信号として用い、他方の周波数信号を温度情報として一方の周波数信号の温度補償を行なう水晶発振器が知られている。
図5(a)は特許文献1に示される水晶振動片から取り出した周波数信号を温度情報として用いる従来の水晶発振器の回路図であり、図5(b)は従来の水晶発振器の発振周波数Ft、Fxの周波数温度特性を示す図である。ATカットの切断角度にて切り出された水晶基板の表裏に励振電極が配置されている。ATカットに近接して、CTカットに相当する面すべり振動モードの共振があるために、厚みすべり振動モード(TSモード)の共振振動のほかに面すべり振動モード(FSモード)の共振振動が同時に励振される。
この水晶発振器において、発振回路は温度情報の発振周波数FtとFtにより温度補償される発振周波数Fxをそれぞれ発振させる第1発振回路と第2発振回路とからなる。また、第1発振回路と水晶基板の間に低周波ローパスフィルタを挿入しておくことで発振周波数同士の干渉を防止し、二つの発振周波数Ft及びFxにて確実に発振させることができる。
図5(b)に示されるように発振周波数Ftは温度に対して直線状に低下していくことから、精度の高い温度情報として用いることができる。例えば、発振周波数Ftはメモリに保持された温度補償データに対して参照することで、可変容量素子(バリキャップ)等の制御に必要な制御電圧に変換され、発振周波数Fxを温度補償している。
特許文献1には一組の励振電極が形成された水晶振動片を同時発振させ、一方の信号を周波数信号として用いることが示されているが、オーバートーンを用い、複数の周波数信号の差より温度情報を得る際の周波数差の温度変化に関する記載は無い。
また、特許文献2においては水晶振動子に直列にインダクタとコンデンサからなる並列共振回路を設けるとともに、並列共振回路の共振周波数をSCカット振動子のBモード周波数に設定した構成が示されている。ここで示されている並列共振回路は不要モードを発振させないためのものであり、温度変化の大きい負荷として用いている本発明とは異なるものである。
さらに、特許文献3においては二つの水晶振動子を共用として一体化した水晶振動子を用いて、ともにオーバートーンである二つの周波数にて発振させ、発振周波数の差を温度情報として用いる発振装置が示されているが、発振周波数の温度特性の改善に関する記載及び示唆はない。
特開平3−252204号公報 特開平5−063443号公報 特開2012−160790号公報
ATカットの水晶振動子において、3次以上のオーバートーンでは隣り合う次数のオーバートーンの周波数差の温度変化が、基本波と3次オーバートーンの周波数差の温度変化に比べて小さいことが経験的に知られており、二つの発振周波数の差を温度情報として用いる発振器において、基本波と3次オーバートーンを用いることが望ましいと考えられていた。その一方で周波数安定度の観点からは容量比の大きい(但し次数の異なる)オーバートーン同士を用いることが望ましいと考えられていた。
すなわち、基本波と3次オーバートーンの周波数差を用いる場合には温度に対する周波数変化が充分に取れるため、精度の高い温度情報として有効である。しかしながら、それぞれの周波数信号において、容量比が小さいため、周波数安定度の面で十分とは言えなかった。一方、オーバートーン同士、例えば3次オーバートーンと5次オーバートーンの周波数差を取る場合には、それぞれの周波数信号の容量比が大きいため、周波数安定度の面では優れているが、温度に対する周波数差の変化が小さいため、温度情報として利用するには精度が不十分であった。
基本波とオーバートーンの周波数差の温度変化をより具体的な特性図にて以下に示す。図6(a)は従来のATカットの基本波(実線)、5次オーバートーン(点線)それぞれの発振周波数の温度特性のグラフである。また、図6(b)は図6(a)の二つの発振周波数の差分を取ったものの温度変化の様子を示したグラフである。温度に対する発振周波数差のグラフは傾きを有するおおよそ直線形状として変化しており、温度情報として用いることが可能である。
次に、オーバートーン同士の発振周波数差の温度変化を以下に示す。図7(a)は従来の水晶発振器にて3次オーバートーン及び5次オーバートーンで発振させた際の発振周波数の温度特性を示す図であり、図7(b)は従来の水晶発振器にて3次オーバートーン及び5次オーバートーンで発振させた際の3次オーバートーン及び5次オーバートーンの発振周波数差の温度特性を示す図である。図7(a)において、グラフが1本で示されているが、これは、このグラフに示した全温度領域にて3次オーバートーン及び5次オーバートーンの発振周波数はおよそ一致しているためである。
その結果、図7(a)の二つの発振周波数差は図7(b)に示されるように、小さなものとなり、かつ、温度に対する発振周波数の差の変化に一定の傾向が現れず、例えば、水晶発振器の使用が想定される全温度領域において、ばらついた振る舞いを示すこととなる。従って、オーバートーン同士の発振周波数の差は容量比が大きいため、周波数安定度の点では望ましいが、精度が不十分であり、温度情報として用いることは難しい。
本発明の水晶発振器は、複数の振動モードを有する水晶振動子と、前記水晶振動子を第1周波数で発振させて第1発振信号を発生する第1発振回路と、前記水晶振動子を前記第1周波数とは異なる第2周波数で発振させて第2発振信号を発生する第2発振回路と、前記第1発振信号と前記第2発振信号の周波数の差を検出する周波数差検出回路と、を備え、前記水晶振動子に対して直列にインダクタとコンデンサからなるLC並列回路を接続したことを特徴とする。
本発明はオーバートーン同士を同時発振させ、2つの発振周波数の差を温度情報として用いる際に、水晶振動子に直列にLC並列回路を接続することで2つの発振信号の周波数の差が温度に対して精度を有するのに充分な変化の大きさを有し、一定の傾向にて変化するように温度特性を変化させることで、周波数安定度とともに温度の感知精度を十分なものとしている。
本発明の水晶発振器は、前記第1の発振回路と第1のアイソレーション制御回路と第1のインピーダンス調整回路と第1の負性抵抗発生回路とからなる第1の発振ループと、前記第2の発振回路と第2のアイソレーション制御回路と第2のインピーダンス調整回路と第2の負性抵抗発生回路とからなる第2の発振ループを備えたことを特徴とする。
本発明の水晶発振器は、前記水晶振動子が、ATカットであることを特徴とする。
本発明の水晶発振器は、前記第1発振信号の振動モードが基本波より高次である第1の次数のオーバートーンであり、前記第2発振信号の振動モードが基本波より高次であり、かつ前記第1の次数とは異なる第2の次数のオーバートーンであることを特徴とする。
本発明の水晶発振器は、前記水晶振動子が、SCカット又はITカットである。また、本発明の水晶発振器は、前記第1発振信号の振動モードがCモードの基本波またはオーバートーンであり、前記第2発振信号の振動モードがBモードの基本波またはオーバートーンであることを特徴とする。
本発明はこのような事情の元になされたものであり、オーバートーン同士の同時発振を行う際に周波数信号としての安定度を確保することと、温度に対する周波数変化を十分なものとし、温度情報としての精度を確保することの両立を図るものである。
本発明に係る第1の実施形態の水晶発振器に関する概要図である。 (a)本発明にて用いる水晶振動子及びLC並列回路それぞれのインピーダンスの周波数特性を示したグラフである。(b)水晶振動子の発振周波数近傍でのLC並列回路の複数の温度におけるインピーダンスの周波数特性を示したグラフである。 本発明の水晶発振器における3次オーバートーン及び5次オーバートーンの発振周波数の差の温度特性を示す図である。 本発明に係る第2の実施形態の水晶発振器に関する概要図である。 (a)周波数信号を温度情報として用いる従来の水晶発振器の回路図である。(b)従来の水晶発振器の発振周波数Ft、Fxの周波数温度特性を示す図である。 (a)従来の水晶発振器にて基本波及び5次オーバートーンで発振周波数の温度特性を示す図である。(b)従来の水晶発振器にて基本波及び5次オーバートーンで発振させた際の基本波及び5次オーバートーンの発振周波数の差の温度特性を示す図である。 (a)従来の水晶発振器にて3次オーバートーン及び5次オーバートーンの発振周波数の温度特性を示す図である。(b)従来の水晶発振器にて3次オーバートーン及び5次オーバートーンで発振させた際の3次オーバートーン及び5次オーバートーン発振周波数の差の温度特性を示す図である。
(第1の実施形態)
図1は本発明に係る第1の実施形態の水晶発振器の概要図である。水晶発振器1は、水晶振動子12と、第1の発振回路13と、第2の発振回路14と、周波数差検出部15と、温度制御部16と、インダクタ17及びコンデンサ18からなるLC並列回路19とを恒温槽11の内部に設けた構成からなる。
水晶振動子12は、ATカットの水晶振動子である。水晶振動子12は矩形、もしくは円形の薄片形状を有する水晶振動片の両主面に一対の励振電極が形成されている。
第1の発振回路13は水晶振動子12に接続され、水晶振動子12を第1周波数で発振させて第1発振信号を発生する。
第2の発振回路14は水晶振動子12に接続され、水晶振動子12を第2周波数で発振させて第2発振信号を発生する。
ここで、水晶振動子12と第1の発振回路13とを有し、第1発振信号を発生させる回路を第1発振系統といい、水晶振動子12と第2の発振回路14とを有し、第2発振信号を発生させる回路を第2発振系統という。第1の発振回路13と第2の発振回路14はともに水晶振動片に形成された一対の励振電極に接続され、すなわち二つの発振回路で一対の励振電極を有する水晶振動子12を共用した構造となっている。
図2(a)は本発明にて用いるATカットの水晶振動子及びLC並列回路それぞれのインピーダンスの周波数特性を示したグラフである。図2(b)はATカットの水晶振動子の発振周波数近傍でのLC並列回路の複数の温度におけるインピーダンスの周波数特性を示したグラフである。図2(a)にて示された3本のピークが、低周波数側からそれぞれ、基本波、3次オーバートーン、5次オーバートーンである。
本発明にて用いるATカットの水晶振動子において、第1周波数は第1発振系統において発生する基本波より高次である第1の次数のオーバートーンであり、第2周波数は第2発振系統において発生する基本波より高次であり、かつ第1の次数とは異なる第2の次数のオーバートーンである。これ以降において、第1の次数のオーバートーン、第2の次数のオーバートーンのうち、周波数が低い方を低次オーバートーン、周波数が高い方を高次オーバートーンと定義する。すなわち、本実施例において、低次オーバートーンは3次オーバートーンであり、高次オーバートーンは5次オーバートーンである。
周波数差検出部15は第1の発振回路13と第2の発振回路14より出力される第1周波数と第2周波数の差分を検出するものである。温度制御部16は周波数差検出部15に接続されており、周波数差検出部15から出力される第1周波数と第2周波数の差分の周波数を検出する。温度制御部16は、検出した差分の周波数に基づいてヒータの加熱量を制御して恒温槽11を加熱し、恒温槽11内の水晶振動子12付近の温度を制御する。
LC並列回路19はインダクタ17とコンデンサ18の並列回路からなる。そして、LC並列回路19は第1の発振回路13と第2の発振回路14双方と水晶振動子の間に接続されている。したがって、このLC並列回路19は第1発振系統及び第2発振系統の双方に対して、水晶振動子の特性に影響を与える回路である。LC並列回路19の共振周波数を低次オーバートーンの周波数近傍の値に設定する。
このLC並列回路19は従来の不要モードを発振させないように設けられるものではなく、複数の振動モードにて発振させる条件、素子値を持つように選択したものであり、温度変化の大きな負荷として使用しているものである。
本発明のLC並列回路19の効果を従来技術との比較と共に説明する。
従来の水晶発振器にてオーバートーン同士、例えば図7(b)に示したように3次オーバートーン及び5次オーバートーンで発振させた際には一定の傾向を示さず、ばらついた振る舞いを示すことから、温度情報として用いることは難しかった。
それに対し、本発明においては、LC並列回路19を付加するとともに、その共振周波数を低次オーバートーンの発振周波数付近に設定することでLC並列回路19の共振特性にて温度の変化とともに負荷容量を大きく変化させ、低次オーバートーンの発振周波数の温度特性を大きく変化させる。これにより、低次オーバートーンの発振周波数と高次オーバートーンの発振周波数の温度特性との差を生じ(拡大)させることにより、これらの発振周波数差が温度の変化とともに例えば直線状に低下するような、一定の傾向を持った変化をさせる。
実際の特性は本発明における3次オーバートーン及び5次オーバートーンの発振周波数差の温度特性を示した図3にみられるようなものとなる。これはLC並列回路19のインダクタ17とコンデンサ18の温度変化に対する急激なインピーダンスの変化を利用したものである。これは、図2(b)に示されるように、低次オーバートーンの周波数において、LC並列回路19におけるインピ―ダンス(負荷容量)の温度変化が大きなものとなることによる。
また、インダクタ17とコンデンサ18は高次オーバートーンの発振周波数に影響を与えないようにQ値をある程度高くする。このような素子値に設定することで、高次オーバートーンの発振周波数付近におけるLC並列回路19のインピーダンスが充分に低くなるため、高次オーバートーンに与える影響を抑えることが出来る。
その一方で、LC並列回路19の代わりにインダクタ、コンデンサのいずれかを単独に用いた場合には、温度に対する周波数変動の振る舞いは変化するが、低次オーバートーン、高次オーバートーンともに同じ量の周波数変化が生じ、同量であるために差分を取ることにより相殺されてしまうことになるため、周波数の差分を扱う状況においては結果的にLC並列回路19を用いない場合と変わらず、温度情報の感度の向上を図ることは出来ない。
(第2の実施形態)
図4は本発明に係る水晶発振器10の恒温槽11の内部の回路構成図である。恒温槽11には、水晶振動子12、第1の発振回路13、及び第2の発振回路14の他に、第1のインピーダンス調整回路17、第2のインピーダンス調整回路18、制御回路26、第1のアイソレーション制御回路20、及び第2のアイソレーション制御回路21、第1の負性抵抗発生回路22と、第2の負性抵抗発生回路23が設けられている。
なお、水晶発振器1は、第1のインピーダンス調整回路17及び第2のインピーダンス調整回路18のうち、いずれかを備えるようにしてもよい。また、水晶発振器1は第1のアイソレーション制御回路20及び第2のアイソレーション制御回路21のうち、いずれかを備えるようにしてもよい。さらには、水晶発振器1は、第1の負性抵抗発生回路22及び第2の負性抵抗発生回路23のいずれかを備えるようにしてもよい。
第2の実施形態にて追加された回路の効果について、以下に示す。
アイソレーション制御回路は発振回路間のアイソレーションを確保するものである。アイソレーション制御回路を付加することで、第1発振系統及び第2発振系統において、他の発振系統の影響を受けにくくし、安定して、発振信号を出力させることができる。
また、インピーダンス調整回路と、インピーダンス調整回路を制御する制御回路を付加することで、第1発振系統及び第2発振系統における負性抵抗を適切な値に調整し、2つの発振周波数で同時に安定して発振させることが出来る。
負性抵抗発生回路を付加することで、それぞれの発振系統における発振周波数において、負性抵抗を生じさせ、当該発振周波数に対応する所定範囲以外の周波数において、負性抵抗を生じさせないようにする。これにより、第1発振系統及び第2発振系統において、さらに安定して発振信号を出力させることができる。
これらのアイソレーション制御回路(第1のアイソレーション制御回路20及び第2アイソレーション制御回路21)、インピーダンス調整回路(第1のインピーダンス調整回路24及び第2のインピーダンス調整回路25)、負性抵抗発生回路(第1の負性抵抗発生回路22及び第2の負性抵抗発生回路23)を付加することで、LC並列回路19を用いた低次オーバートーンと高次オーバートーンを同時発振させ、発振周波数の差分信号を得る際の安定度を確保するとともに、温度情報としての精度を確保することが可能となる。
これまで、水晶振動子としてATカットを用いた場合の説明を行ったが、例えば、2回回転水晶振動片であるSCカット又はITカットの水晶振動子を用いてもよい。これらのカットの水晶振動子においてはCモードと呼ばれる主振動の10%程度高い領域にBモードと呼ばれる副振動が存在する。
これらのカットの水晶振動子を用いて発振周波数の差を取る際には、同じ次数のオーバートーンのBモード、Cモードを用いてもよい、別の次数のオーバートーンのBモード、Cモードを用いてもよい、さらに、別の次数のBモード同士、別の次数のCモード同士を用いてもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。例えば、実施例では恒温槽を有する恒温型水晶発振器に適用したものとなっているが、恒温槽を持たなく、温度情報をバリキャップダイオードに加える制御電圧とした温度制御水晶発振器に適用しても構わない。
1・・・水晶発振器、11・・・恒温槽、12・・・水晶振動子、13・・・第1の発振回路、14・・・第2の発振回路、15・・・周波数差検出部、16・・・温度制御部、17・・・インダクタ、18・・・キャパシタ、19・・・LC並列回路、20・・・第1のアイソレーション制御回路、21・・・第2のアイソレーション制御回路、22・・・第1の負性抵抗発生回路、23・・・第2の負性抵抗発生回路、24・・・第1のインピーダンス調整回路、25・・・第2のインピーダンス調整回路、26・・・制御回路。

Claims (6)

  1. 複数の振動モードを有する水晶振動子と、
    前記水晶振動子を第1周波数で発振させて第1発振信号を発生する第1の発振回路と、
    前記水晶振動子を前記第1周波数とは異なる第2周波数で発振させて第2発振信号を発生する第2の発振回路と、
    前記第1発振信号と前記第2発振信号の周波数の差を検出する周波数差検出回路と、を備え、
    前記水晶振動子に対し直列にインダクタとコンデンサからなるLC並列回路を接続した水晶発振器。
  2. 前記第1の発振回路と第1のアイソレーション制御回路と第1のインピーダンス調整回路と第1の負性抵抗発生回路とからなる第1の発振ループと、前記第2の発振回路と第2のアイソレーション制御回路と第2のインピーダンス調整回路と第2の負性抵抗発生回路とからなる第2の発振ループを備えた請求項1に記載の水晶発振器。
  3. 前記水晶振動子が、ATカットである、請求項1又は請求項2に記載の水晶発振器。
  4. 前記第1発振信号の振動モードが基本波より高次である第1の次数のオーバートーンであり、前記第2発振信号の振動モードが基本波より高次であり、かつ前記第1の次数とは異なる第2の次数のオーバートーンである、請求項3に記載の水晶発振器。
  5. 前記水晶振動子が、SCカット又はITカットである、請求項1又は請求項2に記載の水晶発振器。
  6. 前記第1発振信号の振動モードがCモードの基本波またはオーバートーンであり、前記第2発振信号の振動モードがBモードの基本波またはオーバートーンである、請求項5に記載の水晶発振器。
JP2015201106A 2015-10-09 2015-10-09 水晶発振器 Pending JP2017073728A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201106A JP2017073728A (ja) 2015-10-09 2015-10-09 水晶発振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201106A JP2017073728A (ja) 2015-10-09 2015-10-09 水晶発振器

Publications (1)

Publication Number Publication Date
JP2017073728A true JP2017073728A (ja) 2017-04-13

Family

ID=58537568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201106A Pending JP2017073728A (ja) 2015-10-09 2015-10-09 水晶発振器

Country Status (1)

Country Link
JP (1) JP2017073728A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624419A (zh) * 2020-04-23 2020-09-04 航天科工防御技术研究试验中心 一种晶体振荡器的测试适配器及测试系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624419A (zh) * 2020-04-23 2020-09-04 航天科工防御技术研究试验中心 一种晶体振荡器的测试适配器及测试系统

Similar Documents

Publication Publication Date Title
JP5015229B2 (ja) 水晶発振器
EP2482458B1 (en) Oscillation device
JP2013051673A (ja) 水晶振動子及び水晶発振器
JP5205827B2 (ja) 発振周波数制御方法及び発振器
JP6548411B2 (ja) 発振装置
JP6509810B2 (ja) 水晶発振器及び水晶発振器の製造方法
JP2017073728A (ja) 水晶発振器
JP4455979B2 (ja) 水晶発振器
JP2012095284A (ja) 発振器
JP2015061171A (ja) 発振装置
JP2013017074A (ja) 温度補償発振器および電子機器
JP4805706B2 (ja) 恒温型の水晶発振器
US20140210566A1 (en) Crystal resonator, crystal resonator package, and crystal oscillator
CN104426477A (zh) 带恒温槽的晶体振荡器
JP6001290B2 (ja) 発振回路
JP2015056728A (ja) 発振器
JP2010161437A (ja) 温度補償型圧電発振器
JP5918594B2 (ja) 発振装置
RU2311726C1 (ru) Термостатированный высокостабильный генератор
JP2015171080A (ja) 電圧制御型発振器
JP2017188845A (ja) 水晶発振器
JP2014027463A (ja) 発振器
JP2018011163A (ja) 発振器
JP2017507617A (ja) 電子発振器において機械共振器を動作させるためのシステム及び方法
JP2018014661A (ja) 発振器