JP2017070944A - 粉粒体散布装置及び粉粒体の散布方法 - Google Patents

粉粒体散布装置及び粉粒体の散布方法 Download PDF

Info

Publication number
JP2017070944A
JP2017070944A JP2016189207A JP2016189207A JP2017070944A JP 2017070944 A JP2017070944 A JP 2017070944A JP 2016189207 A JP2016189207 A JP 2016189207A JP 2016189207 A JP2016189207 A JP 2016189207A JP 2017070944 A JP2017070944 A JP 2017070944A
Authority
JP
Japan
Prior art keywords
granular material
powder
discharge port
hopper
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016189207A
Other languages
English (en)
Other versions
JP6688710B2 (ja
Inventor
良輔 真鍋
Ryosuke Manabe
良輔 真鍋
小林 英男
Hideo Kobayashi
英男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to PCT/JP2016/079143 priority Critical patent/WO2017061339A1/ja
Priority to CN201680057683.1A priority patent/CN108137243B/zh
Priority to TW105132153A priority patent/TWI682884B/zh
Publication of JP2017070944A publication Critical patent/JP2017070944A/ja
Application granted granted Critical
Publication of JP6688710B2 publication Critical patent/JP6688710B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sowing (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

【課題】連続搬送される基材に対して、粉粒体を該基材の幅方向に均一に定量性良く散布し得る粉粒体散布装置及び粉粒体の散布方法を提供すること。【解決手段】粉粒体散布装置1は、内部に粉粒体Pを一時的に貯蔵可能な貯蔵部20、粉粒体Pを排出する排出口23、及び貯蔵部20と排出口23との間を結ぶ粉粒体用移動路22を備えたホッパー2と、排出口23に対して隙間Gを置いて配置され、排出口23から排出された粉粒体Pを所定の一方向Xに搬送し、連続搬送される基材100上に散布する搬送手段3とを備えている。排出口23は平面視において、搬送方向Xと直交する方向の長さが該搬送方向Xの長さに比して長い形状をなしている。移動路22は、その搬送方向Xの最大幅Dが粉粒体Pの最大粒子径の2倍以上5倍未満、その粉粒体Pが排出される方向の長さHが粉粒体Pの最大粒子径の1倍以上である。隙間Gは、粉粒体Pの最大粒子径の1倍以上である。【選択図】図1

Description

本発明は、粉粒体散布装置及びそれを用いた粉粒体の散布方法に関する。
種々の製品の製造において、連続搬送される基材に対してその幅方向に亘って均一に粉粒体を散布させることが要望されている。斯かる要望に応えることを目的とした技術に関し、例えば特許文献1には、粉粒体を内部に一時的に貯蔵可能なホッパーを備え、該ホッパーから排出させた粉粒体を、連続搬送される基材上に散布可能な粉粒体散布装置において、該ホッパーの下方に、該ホッパーから排出された粉粒体を水平方向に搬送するためのスクリューコンベアを配置し、且つ該スクリューコンベアの略下方に、該粉粒体を垂直方向に搬送するためのロータを配置し、且つ該ロータの下方に、該粉粒体を一粒ずつ垂直方向に整列させた状態で排出するための間隙調節機構を配置することが開示されている。
特開平6−92433号公報
特許文献1記載の粉粒体散布装置は、連続搬送される基材に対して粉粒体を散布する直前に、多数の粉粒体を垂直方向に整列させ、その粉粒体の列から一粒ずつ基材に対して散布するところ、このような散布機構が適用できるのは、粉粒体が真球状で且つ粒度分布の小さい場合に限定される。特許文献1記載の粉粒体散布装置を用いて非真球状の粉粒体や粒度分布の広い粉粒体を散布した場合には、粉粒体を垂直方向に整列させ難く、装置内で粉粒体の詰まり等が発生し、定量性良く粉粒体を散布することができないおそれがある。
本発明の課題は、連続搬送される基材に対して、粉粒体を該基材の幅方向に均一に定量性良く散布し得る粉粒体散布装置を提供することに関する。
本発明は、内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、前記排出口は平面視において、前記搬送手段による粉粒体の搬送方向と直交する方向の長さが該搬送方向の長さに比して長い形状をなし、前記移動路は、その前記搬送方向の最大幅が粉粒体の最大粒子径の2倍以上5倍未満、その粉粒体が排出される方向の長さが粉粒体の最大粒子径の1倍以上であり、前記隙間は、粉粒体の最大粒子径の1倍以上である粉粒体散布装置である。
また本発明は、前記の本発明の粉粒体散布装置を用いて、粉粒体を、連続搬送される基材上に散布する、粉粒体の散布方法である。
本発明によれば、連続搬送される基材に対して、粉粒体を該基材の幅方向に均一に定量性良く散布することが可能である。特に本発明の粉粒体散布装置は、該装置内に設けられた粉粒体用移動路における粉粒体の流れを定常流化し且つ粉粒体の流動性を向上させ得るため、粉粒体が真球状ではない場合や粒度分布が比較的広い場合であっても、粉粒体の詰まりが発生し難く、連続搬送される基材に、粉粒体を、該基材の幅方向に均一に散布し得ると共に、該基材の搬送方向に高精度に定量散布し得る。
図1は、本発明の粉粒体散布装置の一実施形態を模式的に示す側面図である。 図2は、図1に示す粉粒体散布装置を、搬送手段による粉粒体の搬送方向の下流側から見た様子を模式的に示す正面図である。 図3は、図1に示す粉粒体散布装置におけるホッパーの斜視図である。 図4は、図1に示す粉粒体散布装置における排出口及びその近傍を模式的に示す側面図である。 図5(a)及び図5(b)は、それぞれ、本発明の粉粒体散布装置の他の実施形態の要部(搬送手段)を模式的に示す側面図である。 図6(a)及び図6(b)は、それぞれ、本発明の粉粒体散布装置に係る排出口を模式的に示す平面図である。 図7は、本発明の範囲内の実施例1の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。 図8は、本発明の範囲内の実施例2の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。 図9は、本発明の範囲内の実施例3の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。 図10は、本発明の範囲内の実施例4の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。 図11は、本発明の範囲内の実施例5の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。 図12は、本発明の範囲外の比較例1の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。 図13は、本発明の範囲外の比較例2の粉粒体散布装置を用いて粉粒体を散布した際の散布定量性を示すグラフである。
以下、本発明について、その好ましい実施形態に基づき図面を参照しながら説明する。図1〜図4には、本発明の粉粒体散布装置の一実施形態である粉粒体散布装置1が示されている。粉粒体散布装置1は、粉粒体Pを内部に一時的に貯蔵可能なホッパー2と、ホッパー2から排出された粉粒体Pを図中符号Xで示す所定の一方向に搬送し、連続搬送される基材100上に散布する搬送手段3とを備えている。基材100は例えば、図1に示す如き搬送ロール、あるいはベルトコンベア等の公知の搬送装置により連続搬送することができる。尚、基材100及びその搬送装置は、粉粒体散布装置1を構成するものではない。
図1に示すように、ホッパー2は、ベースプレート4上に立設された支持部材5によって、同じくベースプレート4上に固定された搬送手段3(受取手段30)の上方位置に固定されている。
ホッパー2は、図1に示す如き側面視、即ち、搬送手段3による粉粒体Pの搬送方向Xと直交する方向から見た場合において、上底が下底より長い台形形状をなしている貯蔵部20と、該貯蔵部20の下端に連接され、該側面視において長方形形状をなす直方体形状の排出部21とを含んで構成されている。貯蔵部20は内部に粉粒体Pを貯蔵可能な空間を有し、その内部空間に粉粒体Pを一時的に貯蔵可能になされている。粉粒体Pは、貯蔵部20の上部開口から粉体供給装置90によって貯蔵部20の内部空間に供給される。排出部21は内部に粉粒体Pの移動路22を有し、且つ排出部21の下端(貯蔵部20側とは反対側の端部)には、粉粒体Pの排出口23が形成されており、貯蔵部20の内部空間と排出口23とが移動路22を介して連通している。ホッパー2は、斯かる構成により、内部に一時的に貯蔵した粉粒体Pを、移動路22を介して排出口23より排出可能になされている。
ホッパー2について詳述する。本実施形態においては図1及び図3に示すように、貯蔵部20の内部空間を画成する内側壁20iは、その一部が水平方向及び垂直方向の両方向に交差する方向に延びる傾斜内側壁20isであり、内側壁20iの残りの部分は全て水平方向と直交する垂直方向に延びる垂直壁である。より具体的には図3に示すように、粉粒体Pを貯蔵する貯蔵部20の内部空間は、4枚の内側壁20i,20isで画成されており、各内側壁20i,20isは、それぞれ、粉粒体Pの移動路22を画成する内側壁21iと繋がっているところ、その4枚の内側壁20i,20isのうち搬送方向Xの最下流側又は最上流側に位置する1枚の内側壁20isを除く、残り3枚の内側壁20iの全てが、垂直方向に延びる垂直壁である。ホッパー2がこのような構造を有することにより、貯蔵部20から排出部21に粉粒体Pの集合体が流れ込む際に、その集合体の流動方向と直交する方向の中央部分が周囲部分よりも流動速度が速くなることが抑制されるため、粉粒体Pの均一な散布に有利となる。
また、排出部21では、図1及び図3に示すように、粉粒体Pの移動路22を画成する内側壁21iの全てが、水平方向と直交する垂直方向に延びる垂直壁となっている。換言すると、排出部21の内部空間である移動路22は、該排出部21の貯蔵部20との接続部側端部から排出口23に向けて、搬送方向X及び搬送方向Xと直交する方向Yの何れに対しても同じ長さを有する直方体形状となっている。従って、本実施形態のホッパー2では、図3に示すように、搬送方向Xに関しては、貯蔵部20の上底の長さが排出口23の長さよりも長く、搬送方向Xに直交する方向Yに関しては、貯蔵部20の上底の長さが排出口23の長さと同じになっている。ホッパー2はこの構造によって、粉粒体Pを排出口23から安定的に定量排出することが容易になっている。
搬送手段3は、図1に示すように、ホッパー2から排出された粉粒体Pを受け取る受取手段30と、受取手段30を振動させる振動発生手段31とを含んで構成されている。搬送手段3は、ホッパー2の下端に位置する排出口23に対して隙間Gを置いて配置されており、より具体的には、受取手段30の上面30a、即ち、ホッパー2から排出された粉粒体Pを受け取って搬送する面30aと排出口23との間に所定の隙間Gが形成されるように、配置されている。振動発生手段31は、受取手段30の下面30bに固定されている。受取手段30において、粉粒体Pの受け取り及び搬送に利用される(粉粒体Pと接触する)のは、ホッパー2(排出口23)の下方に位置する部分及びその近傍であり、それ以外の部分は基本的に粉粒体Pと接触しない粉粒体非接触部であるところ、振動発生手段31は、受取手段30の該粉粒体非接触部における下面30bに固定されている。
搬送手段3は、振動発生手段31を作動させて受取手段30を振動させることによって、受取手段30上の粉粒体Pを所定の方向に搬送可能になされている。粉粒体散布装置1は、振動発生手段31に印加する電圧及び周波数を制御する振動制御部(図示せず)を備えており、該振動制御部によって、受取手段30の振動数及び振幅を制御し、延いては受取手段30上の粉粒体Pの搬送状態を制御する。即ち、前記振動制御部による制御下、振動発生手段31の非作動時には、受取手段30は振動していないため、受取手段30上の粉粒体Pの搬送は停止又は抑制されているが、斯かる状態から振動発生手段31を作動させると、受取手段30が振動を開始することによって、受取手段30上の粉粒体Pの停止又は抑制が解除され、粉粒体Pは、図中符号Xで示す方向に搬送され、最終的には図1及び図2に示すように、受取手段30の搬送方向Xの先端部から落下して、受取手段30の下方を連続搬送されている基材100上に散布される。
受取手段30としては、振動発生手段31によって発生する振動を受取手段30上の粉粒体Pに適切に伝えるようにする観点から、平板状のものが好ましく、より具体的には、図1に示す如き扁平な平板部材が好ましい。斯かる平板部材からなる受取手段30の材質は特に制限されないが、例えば、鉄、ステンレス、アルミニウム、プラスチック等が挙げられる。
また、受取手段30の搬送方向Xに沿う側縁部に、上面30aから上方(ホッパー2側)に向かって立設するガイド部材を設けても良い。受取手段30にこのようなガイド部材を設けることによって、ホッパー2の排出口23から排出された粉粒体Pを受取手段30で受け取ることがより一層確実に行えるようになると共に、受け取った粉粒体Pを基材100に散布するまでの間、受取手段30の上面30aからこぼさずに上面30a上に留めておくことがより一層確実に行えるようになるため、搬送方向X以外の想定外の方向から粉粒体Pを散布する不都合が回避され、受取手段30の搬送方向Xの先端部から基材100に対して粉粒体Pを均一に散布することが確実になされるようになる。
振動発生手段31としては、受取手段30上の粉粒体Pを所望の一方向に搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダー等の公知の振動発生手段が挙げられる。中でも振動フィーダーは、振動発生手段31として好ましく用いられる。また、振動発生手段31の振動数は特に制限されないが、粉粒体の搬送性並びに散布の均一性及び定量性等の観点から、好ましくは50Hz以上、さらに好ましくは100Hz以上、そして、好ましくは500Hz以下、さらに好ましくは300Hz以下、より具体的には、好ましくは50〜500Hz、さらに好ましくは100〜300Hzである。
本実施形態の粉粒体散布装置1は、連続搬送される基材100に対して、粉粒体Pを該基材100の幅方向(基材100の搬送方向と直交する方向。図中符号Yで示す方向。)に均一性に優れ定量性良く散布することを主たる課題とするものであり、斯かる課題を解決するために下記(1)〜(4)が採用されている。
(1)排出口23は平面視(粉粒体Pの排出方向と直交する方向の断面視)において、搬送手段3による粉粒体Pの搬送方向Xと直交する方向(幅方向Y)の長さW(図3参照)が、搬送方向Xの長さD(図1、図3及び図4参照)に比して、長い形状をなしている。
(2)移動路22は、搬送方向Xの最大幅Dが粉粒体Pの最大粒子径r(図4参照)の2倍以上5倍未満である(2≦D/r<5)。
(3)移動路22は、粉粒体Pの排出方向の長さH(図2及び図3参照)が粉粒体Pの最大粒子径rの1倍以上である(r≦H)。
(4)隙間G(図1、図2及び図4参照)は、粉粒体Pの最大粒子径rの1倍以上である(r≦G)。
粉粒体Pの最大粒子径rは公知の方法により測定することができ、具体的には例えば、乾式篩法(JIS Z8815−1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらの中でも、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性と精度の点から好ましい。特に、対象とする粉粒体の形状が不定形である場合、あるいは粉粒体の粒子径が5mm程度以下である場合は、レーザー回折法を用いて粉粒体の最大粒径rを測定することが好ましい。
前記(1)に関し、排出部21の下端に位置する排出口23の平面視形状は、排出部21内の移動路22における粉粒体Pの流れに少なからず影響を及ぼす。本発明者らの知見によれば、排出口23の平面視形状が、長方形形状又はそれに準じた形状、即ち「一方向に長い形状」であると、真円形状や正方形形状の場合に比して、移動路22における粉粒体Pの流れが定常流化されやすく、前記課題の解決に繋がる。前記(1)は斯かる知見に基づき採用されたものであり、排出口23においては、「幅方向Yの長さW>搬送方向Xの長さD」なる大小関係が成立している。長さWと長さDとの比は、W/Dとして、好ましくは2以上、さらに好ましくは5以上、そして、好ましくは1000以下、さらに好ましくは100以下、より具体的には、好ましくは2〜1000、さらに好ましくは5〜100である。尚、長さWは、排出口23の幅方向Yにおける最大長さを意味する。
前記(2)に関し、移動路22の最大幅Dが粉粒体Pの最大粒子径rの2倍未満では、移動路22において粉粒体Pの詰まりが発生するおそれがあり、また、移動路22の最大幅Dが粉粒体Pの最大粒子径rの5倍以上では、移動路22における粉粒体Pの流れを定常流化することが困難となり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。移動路22の最大幅Dは、粉粒体Pの最大粒子径rを基準として、好ましくは3倍以上4倍未満である。
前記(3)に関し、移動路22の長さHが粉粒体Pの最大粒子径rの1倍未満では、移動路22内において粉粒体Pの流れが定常流化されないおそれがあり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。移動路22の長さHは、粉粒体Pの最大粒子径rを基準として、好ましくは5倍以上、さらに好ましくは10倍以上である。移動路22の長さHの上限値としては、粉粒体Pの流れの定常流化の観点からは制限されないが、装置の適正な大さの観点から決定することができ、例えば、粉粒体Pの最大粒子径rの100倍以下であることが好ましい。
前記(4)に関し、ホッパー2(排出部21)の排出口23と搬送手段3(受取手段30)の上面との隙間Gが、粉粒体Pの最大粒子径rの1倍より小さいと、隙間Gにおいて粉粒体Pのつまりが発生するおそれがあり、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布し得ない。この点に関して、粉粒体Pの平均粒径以上の隙間Gを設けていても、粉粒体散布装置1を長時間運転する場合には、排出口23と搬送手段3との間に詰りが生じるといった不都合が生じうるので、大量生産する製品の製造には不向きである。隙間Gは、粉粒体Pの最大粒子径rを基準として、好ましくは1.5倍以上、さらに好ましくは2倍以上、そして、好ましくは10倍以下、さらに好ましくは5倍以下、より具体的には、好ましくは1.5倍以上10倍以下、さらに好ましくは2倍以上5倍以下である。隙間Gが粉粒体Pの最大粒子径rの10倍以下であると、粉粒体Pの排出速度を一定に保ち易い。特に、搬送手段3に振動発生手段31を備えている場合、振動発生手段31の振幅又は振動数により粉粒体Pの排出量を制御できるが、隙間Gが最大粒子径rの10倍以下であると、ホッパー2の排出口23から排出される粉粒体Pの排出量を制御し易いので好ましい。
また、ホッパー2内における粉粒体Pの流れの定常流化及び流動性のさらなる向上の観点から、前記(1)〜(4)を具備することに加えてさらに、ホッパー2における粉粒体Pと接触する内面の水平方向に対する角度が、粉粒体Pの安息角θ(図4参照)以上であることが好ましい。本実施形態においては、ホッパー2の側壁は、貯蔵部20の傾斜側壁20s(図1及び図2参照)を除き、全て水平方向と直交する垂直方向に延びる垂直壁であり、それら垂直壁の内面の水平方向に対する角度は90°であって粉粒体Pの安息角θよりも大きく、また、貯蔵部20の傾斜側壁20sの内面の水平方向に対する角度は、粉粒体Pの安息角θと同じかそれよりも大きくなされている。「ホッパーにおける粉粒体と接触する内面の水平方向に対する角度」をθ1とした場合、θ1と粉粒体の安息角θとの比は、θ1/θとして、好ましくは1.2以上、さらに好ましくは1.5以上である。また、θ1は、好ましくは1.2θ以上であって90°以下、さらに好ましくは1.5θ以上であって90°以下である。
また、基材100に対する粉粒体Pの散布精度を安定的に向上させる観点から、前記(1)〜(4)を具備することに加えてさらに、図4を参照して、排出口23の中心を通って垂直方向に延びる仮想直線VLと搬送手段3(受取手段30の上面30a)との交点23Aは、隙間G、粉粒体Pの安息角θとの関係において、搬送手段3における搬送方向Xの下流側端3DEからG/tanθ以上15G以下の範囲に位置していることが好ましい。換言すれば、搬送手段3(受取手段30)の下流側端3DEと交点23Aとの離間距離Lは、G/tanθ以上15G以下であることが好ましい。斯かる離間距離Lが短いほど、粉粒体Pの散布精度の点で好ましいが、離間距離Lが短すぎると、排出口23から排出された粉粒体Pが、搬送手段3と接触せずに又は粉粒体Pの安息角が崩壊して、直接その下方に位置する基材100に散布されてしまうおそれがあり、散布精度の安定的な向上を却って阻害するおそれがある。離間距離Lは、G/tanθ以上10G以下であることがさらに好ましい。
粉粒体Pとしては、吸水性ポリマー粒子、砂糖、活性炭、小麦粉、PEペレット、PPペレット、PETチップ、PCチップ、PEグラニュール、PBAビーズ、等の有機物の粉粒体や、金属粉、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネス、ガラス、石灰等の無機物の粉粒体が挙げられる。粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。粉粒体散布装置1によれば、粉粒体Pが真球状の場合は勿論のこと、真球状以外の形状であっても、基材100の幅方向Yに均一に定量性良く散布することができる。
粉粒体Pと接触するホッパー2の内側壁20i,20is,21iの素材としては、粉粒体Pが付着しにくい素材であることが好ましい。例えば、粉粒体として、塩化ナトリウム等の潮解性を有するものや、吸水性ポリマーのように吸水による変性を来たすような材料を使用する場合には、ホッパー2の内側壁として、熱伝導性が比較的低い素材を用いることが好ましい。熱伝導率としては、粉粒体の散布が行われる作業時の温度下において、25W/m・K以下のものを使用すると好ましい。熱伝導性の低い材料をホッパー2の内側壁として使用することで、ホッパー2内の結露を防止しやすくなるからである。また、ホッパー2の内側壁の素材としては、該内側壁とは反対側に位置してホッパー2の外面を構成する外側壁よりも、熱伝導性の低い素材などを選択することも可能である。そのような相対的に熱伝導性の低い内側壁をホッパー2に採用した場合には、特に、粉粒体として吸水性ポリマーを用いる場合では、吸水性ポリマーが吸水によって膨張したり、粘着性を発現してお互いにくっついてしまうという不都合も生じ難くなるので、後述する本発明の効果を一層確実に奏する観点から好ましい。また、ホッパー2の内側壁20の素材としては、粉粒体に起因する腐食が発生しにいものであることが好ましく、具体的には例えば、ステンレス鋼、ガラス、ジルコニア、窒化ケイ素等のセラミック材料等が挙げられる。さらに例えば、樹脂粉体のような非導電性材料で、粉粒体Pどうしの間や粉粒体Pと内側壁20i,20is,21iとの接触により静電気が発生しうる材料を粉粒体Pとして使用する場合には、ホッパー2の内側壁20i,20is,21iとして、導電性を有する素材を用いることが望ましい。導電性を有する材料をホッパーの内側壁として使用することで、静電気発生を防止できるからである。そのような材料としては、たとえば、ステンレス鋼、アルミニウム、銅のような金属材料、導電性セラミック、導電性樹脂のような導電性を付与した材料等が挙げられる。
また、ホッパー2の内側壁20i,20is,21iとしては、粉粒体Pが円滑に排出口23へと流れ出るような表面性状を有することが好ましい。従って、ホッパー2の内側壁は、表面が滑らかであって、かつ、動摩擦係数が低いことが好ましい。特に、内側壁のうち、水平方向及び垂直方向の両方向に交差する方向に延びる傾斜内側壁20isが、そのような性状であることが好ましい。具体的には、ホッパー2の内側壁20i,20is,21iの表面粗さ(Ra)は、JIS B 0601−2001に従って測定された値で、10μm以下、特に1μm以下であることが好ましい。
基材100は、シート状の基材であることが好ましいが、シート状の基材に限られない。シート状の基材としては、各種製法による不織布、樹脂フィルム、織物、編み物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。
また、基材100としては、シート状の材料の上に機能性を有する材料や組成物を積層したものが挙げられる。例えば、フィルムや不織布等のシート状材料の上に、被酸化性金属及び水を含む発熱組成物を塗布するなどして配置したものを、基材100とすることができる。そのような形態の例としては、「本発明の粉粒体散布装置を用いて、粉粒体を、連続搬送されるシート状の基材上に散布する、粉粒体の散布方法」の一例として、被酸化性金属の粒子、及び水を含む発熱シートを製造する際に、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等の1又は2以上を散布して、発熱組成物を形成する方法が挙げられる。この基材100の発熱組成物の層に、塩化ナトリウム等の電解質や吸水性ポリマーといった粉粒体を、本発明の粉粒体散布装置を用いて散布することにより、これら粉粒体が均一な状態で配置された発熱体を得ることができる。このような発熱体であれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。尚、本発明の粉粒体散布装置及び粉粒体の散布方法は、発熱体の製造方法において好ましいものであるが、他の機能性シートの製造方法にも適用可能である。例えば、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子を散布し、吸水性シートを製造することができる。
また、基材100が水分を含む組成物等を含んでいることに起因して、該基材100上に散布された粉粒体がその散布直後から該基材100上を移動困難である場合には、排出口23から均一な粉粒体散布が行われることが重要となる。その観点から、本発明の粉粒体散布装置は非常に有用なものである。
図5には、本発明の粉粒体散布装置の他の実施形態の要部が示されている。後述する他の実施形態については、前記粉粒体散布装置1と異なる構成部分を主として説明し、同様の構成部分は同一の符号を付して説明を省略する。特に説明しない構成部分は、前記粉粒体散布装置1についての説明が適宜適用される。
図5に示す粉粒体散布装置1A,1Bは、それぞれ搬送手段が、前記粉粒体散布装置1と異なる。
図5(a)に示す粉粒体散布装置1Aにおける搬送手段3Aは、ホッパー2の排出口23の下方に配置され、回転軸周りに回転する円筒状の搬送ロール32を含んで構成されており、排出口23から排出された粉粒体Pを搬送ロール32の外周面で受け取り、その受け取り位置から搬送ロール32の回転により、搬送ロール32の下方に位置する基材(図示せず)に向けて落下させて該基材に散布するようになされている。
図5(b)に示す粉粒体散布装置1Bにおける搬送手段3Bは、駆動ロール33及び従動ロール34に架け渡された無端状の搬送ベルト35を含んで構成されており、排出口23から排出された粉粒体Pを搬送ベルト35で受け取り、その受け取り位置から搬送ベルト35の移動により、搬送ベルト35の下方に位置する基材(図示せず)に向けて落下させて該基材に散布するようになされている。
本発明は、前記実施形態に制限されず適宜変更可能である。
ホッパー2の排出部22における排出口23の平面視形状は、図3に示す如き長方形形状に限定されず、円形、楕円形、多角形形状等、任意に設定可能であり、例えば、図6(a)に示す如き長楕円形状、あるいは、図6(b)に示す如き一方向に長い五角形以上の多角形形状とすることができる。尤も、前述したように、排出口23の平面視形状は、搬送手段3による粉粒体Pの搬送方向Xと直交する幅方向Yの長さの方が搬送方向Xの長さよりも長いような、「一方向に長い形状」であることが好ましく、図3及び図6に示す排出口23はその具体例である。
また、排出口23が幅方向Yに複数の区画に分割され、排出部21が該複数の区画に1対1で対応する複数の移動路22を有していても良く、その場合、複数の移動路22(排出口23)それぞれにおいて、前記(2)〜(4)が採用される。
前述した本発明の実施形態に関し、更に以下の付記を開示する。
<1> 内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、
前記排出口は平面視において、前記搬送手段による前記粉粒体の搬送方向と直交する方向の長さが該搬送方向の長さに比して長い形状をなし、
前記移動路は、その前記搬送方向の最大幅が前記粉粒体の最大粒子径の2倍以上5倍未満、該粉粒体が排出される方向の長さが該粉粒体の最大粒子径の1倍以上であり、
前記隙間は、前記粉粒体の最大粒子径の1倍以上である粉粒体散布装置。
<2> 前記隙間は、前記粉粒体の最大粒子径の10倍以下である前記<1>に記載の粉粒体散布装置。
<3> 前記ホッパーは、前記貯蔵部に連接され、下端に前記排出口を有する排出部を備えており、前記貯蔵部の内部空間を画成する内側壁は、該排出部に向けて斜め下方に延びる傾斜内側壁と、垂直方向に延びる垂直壁とを含む前記<1>又は<2>に記載の粉粒体散布装置。
<4>
前記移動路を画成する前記排出部の内側壁の全てが、垂直方向に延びる垂直壁となっている前記<1>〜<3>の何れか1つに記載の粉粒体散布装置。
<5>
前記貯蔵部は、前記搬送方向と直交する方向から見た場合において上底が下底より長い台形形状をなしており、
前記搬送方向に関しては、前記貯蔵部の上底の長さが前記排出口の長さよりも長く、該搬送方向に直交する方向に関しては、該貯蔵部の上底の長さが該排出口の長さと同じである前記<4>に記載に粉粒体散布装置。
<6>
前記排出口において、前記搬送方向と直交する方向の長さ(W)と該搬送方向の長さ(D)との比は、W/Dとして、好ましくは2以上1000以下、さらに好ましくは5以上100以下である前記<1>〜<5>の何れか1つに記載の粉粒体散布装置。
<7> 前記ホッパーにおける前記粉粒体と接触する内面の水平方向に対する角度は、該粉粒体の安息角以上である前記<1>〜<6>の何れか1つに記載の粉粒体散布装置。
<8> 前記搬送手段は、前記ホッパーから排出された前記粉粒体を受け取る平板状の受取手段と、該受取手段を振動させる振動発生手段とを含んで構成され、該振動発生手段を作動させて該受取手段を振動させることによって、該受取手段上の該粉粒体を前記一方向に搬送可能になされており、
前記隙間の大きさをG、前記粉粒体の安息角をθとした場合、前記排出口の中心を通って垂直方向に延びる仮想直線と前記搬送手段との交点は、該搬送手段における前記搬送方向の下流側端からG/tanθ以上15G以下の範囲に位置している前記<1>〜<7>の何れか1つに記載の粉粒体散布装置。
<9>
前記粉粒体が水分を吸収するか、又は潮解性を有するものである前記<1>〜<8>の何れか1つに記載の粉粒体散布装置。
<10>
前記ホッパーの内側壁の素材は、前記粉粒体の散布が行われる作業時の温度下における熱伝導率が25W/m・K以下のものである前記<1>〜<9>の何れか1つに記載の粉粒体散布装置。
<11>
前記ホッパーの内側壁の素材は、ステンレス鋼、ガラス、ジルコニア及び窒化ケイ素その他のセラミック材料からなる群から選択される1種以上である前記<1>〜<10>の何れか1つに記載の粉粒体散布装置。
<12>
前記粉粒体が非導電性材料である前記<1>〜<9>の何れか1つに記載の粉粒体散布装置。
<13>
前記ホッパーの内側壁の素材は、導電性を有する素材である前記<12>に記載の粉粒体散布装置。
<14>
前記ホッパーの内側壁の素材は、金属材料、合金材料、導電性セラミック及び導電性樹脂からなる群から選択される1種以上である前記<13>に記載の粉粒体散布装置。
<15>
前記ホッパーの内側壁の素材はステンレス鋼である前記<1>〜<14>の何れか1つに記載の粉粒体散布装置。
<16>
前記粉粒体の安息角(θ)と、前記ホッパーにおける前記粉粒体と接触する内面の水平方向に対する角度(θ1)との比であるθ1/θは、好ましくは1.2以上、さらに好ましくは1.5以上である前記<1>〜<15>の何れか1つに記載の粉粒体散布装置。
<17>
前記ホッパーにおける前記粉粒体と接触する内面の水平方向に対する角度(θ1)は、好ましくは1.2θ以上であって90°以下、さらに好ましくは1.5θ以上であって90°以下である<16>に記載の粉粒体散布装置。
<18>
前記ホッパーの内側壁は、その表面即ち前記ホッパーにおける前記粉粒体と接触する内面の表面粗さRaが、JIS B 0601−2001に従って測定された値で、好ましくは10μm以下、さらに好ましくは1μm以下である前記<1>〜<17>の何れか1つに記載の粉粒体散布装置。
<19>
前記ホッパーの内側壁は、その表面即ち前記ホッパーにおける前記粉粒体と接触する内面が、所定方向に延びる畝部と溝部とが該所定方向と直交する方向に交互に配されてなる畝溝形状を有している前記<1>〜<18>の何れか1つに記載の粉粒体散布装置。
<20>
前記ホッパーの内側壁は、その表面即ち前記ホッパーにおける前記粉粒体と接触する内面がフッ素樹脂で被覆されている前記<1>〜<19>の何れか1つに記載の粉粒体散布装置。
<21>
前記搬送手段は、前記ホッパーから排出された前記粉粒体を受け取る平板状の受取手段と、該受取手段を振動させる振動発生手段と、該振動発生手段に印加する電圧及び周波数を制御する振動制御部とを備えており、該振動制御部によって、該受取手段の振動数及び振幅を制御し、延いては該受取手段上の粉粒体の搬送状態を制御するようなされている<1>〜<20>の何れか1つに記載の粉粒体散布装置。
<22>
前記振動発生手段の振動数は、好ましくは50Hz以上500Hz以下、さらに好ましくは100Hz以上300Hz以下である前記<21>に記載の粉粒体散布装置。
<23>
前記粉粒体が不定形形状であり、その不定形形状の粉粒体の前記最大粒子径がレーザー回折法によって測定されたものである前記<1>〜<22>の何れか1つに記載の粉粒体散布装置。
<24>
前記<1>〜<23>の何れか1つに記載の粉粒体散布装置を用いて、粉粒体を、連続搬送される基材上に散布する、粉粒体の散布方法。
<25>
前記<24>記載の散布方法を用いて、前記粉粒体として吸水性ポリマー又は電解質を基材上に散布する工程を含む、機能性物品の製造方法。
<26>
前記基材は、シート状の材料の一面上に被酸化性金属と水とを含む発熱組成物を配置したものであって、該発熱組成物の上に、前記搬送手段から吸水性ポリマー又は電解質を散布することによって供給する前記<25>に記載の機能性物品の製造方法。
<27>
前記粉粒体は吸水性ポリマーであり、機能性物品が吸水性シートである、前記<25>に記載の機能性物品の製造方法。
以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。
〔実施例1〜5及び比較例1〜3〕
図1〜図4に示す粉粒体散布装置1において、一部の構成部材の寸法等を下記表1に示すように変更した以外は、粉粒体散布装置1と同様の構成の粉粒体散布装置を用い、一方向に連続搬送される基材(不織布、搬送速度40.95m/秒)上に粉粒体を散布した(実施例1〜5及び比較例1〜2)。
また、実施例1において隙間Gをほぼ0とした以外は、実施例1と同じ条件で基材上に粉粒体を散布した(比較例3)。
粉粒体としては、最大粒子径及び安息角が下記表1に示す範囲にある吸水性ポリマー粒子又は塩化ナトリウムを用いた。尚、粉粒体の最大粒子径は、動的光散乱法によって測定し、測定装置として、HORIBA社製レーザー回折/散乱式粒子径分布測定装置LA950V2を用いた。尚、各実施例及び比較例の粉粒体散布装置におけるホッパーは、内側壁を含め、その内外面全体がステンレス鋼で形成されている。
Figure 2017070944
〔評価試験〕
各実施例及び比較例について、市販のロードセル(A&D製)を用いて常法に従って、基材への粉粒体の散布重量を0.1秒間隔で測定した。その結果を図7〜図13に示す。実施例1〜5(図7〜図11)は、比較例1(図12)及び比較例2(図13)に比して粉粒体の散布量の経時的な変化が小さく、散布定量性に優れることが明らかである。特に、比較例1と各実施例との対比から、粉粒体の散布定量性を向上させるためには、粉粒体散布装置における粉粒体の貯蔵部20と排出口23との間を結ぶ移動路22の、粉粒体搬送方向Xの最大幅Dが、粉粒体の最大粒子径rの2倍以上5倍未満である、即ち「2≦D/r<5」なる大小関係を成立させることが有効であることが分かる。また、比較例2と各実施例との対比から、粉粒体の散布定量性を向上させるためには、移動路22の粉粒体排出方向の長さHが粉粒体の最大粒子径rの1倍以上である、即ち「r≦H」なる大小関係を成立させることも有効であることが分かる。
尚、比較例3の粉粒体散布装置においては、粉粒体が排出口から搬送手段3に排出されなかった。そのため比較例3については、図7〜図13に示す如き、散布定量性を示すグラフを作成することができなかった。
1,1A,1B 粉粒体散布装置
2 ホッパー
20 貯蔵部
21 排出部
22 移動路
23 排出口
3,3A,3B 搬送手段
30 受取手段
31 振動発生手段
32 搬送ロール
33 駆動ロール
34 従動ロール
35 搬送ベルト
100 基材
P 粉粒体
X 搬送手段による粉粒体の搬送方向
Y 粉粒体の搬送方向と直交する方向(基材の幅方向)

Claims (7)

  1. 内部に粉粒体を一時的に貯蔵可能な貯蔵部、該貯蔵部内の粉粒体を排出する排出口、及び該貯蔵部と該排出口との間を結ぶ粉粒体用移動路を備えたホッパーと、該排出口に対して隙間を置いて配置され、該排出口から排出された粉粒体を所定の一方向に搬送し、連続搬送される基材上に散布する搬送手段とを備えた粉粒体散布装置であって、
    前記排出口は平面視において、前記搬送手段による粉粒体の搬送方向と直交する方向の長さが該搬送方向の長さに比して長い形状をなし、
    前記移動路は、その前記搬送方向の最大幅が粉粒体の最大粒子径の2倍以上5倍未満、その粉粒体が排出される方向の長さが粉粒体の最大粒子径の1倍以上であり、
    前記隙間は、粉粒体の最大粒子径の1倍以上である粉粒体散布装置。
  2. 前記隙間は、粉粒体の最大粒子径の10倍以下である請求項1に記載の粉粒体散布装置。
  3. 前記ホッパーにおける粉粒体と接触する内面の水平方向に対する角度は、粉粒体の安息角以上である請求項1又は2に記載の粉粒体散布装置。
  4. 前記搬送手段は、前記ホッパーから排出された粉粒体を受け取る平板状の受取手段と、該受取手段を振動させる振動発生手段とを含んで構成され、該振動発生手段を作動させて該受取手段を振動させることによって、該受取手段上の粉粒体を前記一方向に搬送可能になされており、
    前記隙間の大きさをG、粉粒体の安息角をθとした場合、前記排出口の中心を通って垂直方向に延びる仮想直線と前記搬送手段との交点は、該搬送手段における前記搬送方向の下流側端からG/tanθ以上15G以下の範囲に位置している請求項1〜3の何れか1項に記載の粉粒体散布装置。
  5. 請求項1〜4の何れか1項に記載の粉粒体散布装置を用いて、粉粒体を、連続搬送される基材上に散布する、粉粒体の散布方法。
  6. 請求項5に記載の粉粒体の散布方法によって、前記粉粒体を、連続搬送される基材上に散布する工程を含む、粉粒体含有物品の製造方法。
  7. 請求項5に記載の粉粒体の散布方法によって、前記粉粒体として吸水性ポリマー又は電解質を、基材上に散布する工程を含む、機能性物品の製造方法。
JP2016189207A 2015-10-06 2016-09-28 粉粒体散布装置及び粉粒体の散布方法 Active JP6688710B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/079143 WO2017061339A1 (ja) 2015-10-06 2016-09-30 粉粒体散布装置及び粉粒体の散布方法、並びに粉粒体含有物品の製造方法
CN201680057683.1A CN108137243B (zh) 2015-10-06 2016-09-30 粉粒体散布装置及粉粒体的散布方法、以及含粉粒体物品的制造方法
TW105132153A TWI682884B (zh) 2015-10-06 2016-10-05 粉粒體散布裝置及粉粒體之散布方法、以及含粉粒體物品之製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015198134 2015-10-06
JP2015198134 2015-10-06

Publications (2)

Publication Number Publication Date
JP2017070944A true JP2017070944A (ja) 2017-04-13
JP6688710B2 JP6688710B2 (ja) 2020-04-28

Family

ID=58539410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189207A Active JP6688710B2 (ja) 2015-10-06 2016-09-28 粉粒体散布装置及び粉粒体の散布方法

Country Status (1)

Country Link
JP (1) JP6688710B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161303A (ja) * 2019-03-26 2020-10-01 三洋化成工業株式会社 供給装置及びリチウムイオン電池用電極の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161303A (ja) * 2019-03-26 2020-10-01 三洋化成工業株式会社 供給装置及びリチウムイオン電池用電極の製造方法
JP7272839B2 (ja) 2019-03-26 2023-05-12 三洋化成工業株式会社 供給装置及びリチウムイオン電池用電極の製造方法

Also Published As

Publication number Publication date
JP6688710B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
TWI682884B (zh) 粉粒體散布裝置及粉粒體之散布方法、以及含粉粒體物品之製造方法
US5769276A (en) Powder atomizer
WO2017061339A1 (ja) 粉粒体散布装置及び粉粒体の散布方法、並びに粉粒体含有物品の製造方法
JP2019052013A (ja) 粉粒体散布装置及び粉粒体含有物品の製造方法
JP2020515400A (ja) 粒状材料をドージングするためのドージング装置、噴霧装置および粒状材料を基板に提供する方法
JP6688710B2 (ja) 粉粒体散布装置及び粉粒体の散布方法
JP6882125B2 (ja) 粉粒体散布装置
TWI759991B (zh) 粉粒體散布裝置及粉粒體散布方法
JP2018030707A (ja) 粉粒体の散布方法
JP5428042B2 (ja) 物質供給計量装置、粒子加工装置、被覆装置及び被覆システム
JP7017901B2 (ja) 粉粒体散布装置
Wildeboer et al. A novel nucleation apparatus for regime separated granulation
JP6396791B2 (ja) 粉粒体散布装置及び粉粒体の散布方法
JP7002100B2 (ja) 粉体振動輸送装置、粉体振動輸送装置を含む散薬分包機
AU738351B2 (en) Powder atomizer
JP7228475B2 (ja) 粉粒体散布装置
WO2021166731A1 (ja) 粉粒体の散布方法及び粉粒体含有物品の製造方法
JP5531725B2 (ja) 振動搬送装置
KR101590002B1 (ko) 응집방지유닛이 구비된 균일 미세분말 연속 공급장치
JP2011162271A (ja) バラ物搬送装置
CN213440729U (zh) 一种pvc卷材地板振动撒粒机
JP2021046305A (ja) 粉粒体の散布方法
CN206853646U (zh) 一种可连续调速的干式气溶胶发生器
KR101559454B1 (ko) 미세분말의 다중 공급장치
JP7043662B1 (ja) ガス搬送式超音波湧出微粉体定量供給システム、及び、ガス搬送式超音波湧出微粉体定量供給方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6688710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250