JP2017061259A - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP2017061259A
JP2017061259A JP2015188192A JP2015188192A JP2017061259A JP 2017061259 A JP2017061259 A JP 2017061259A JP 2015188192 A JP2015188192 A JP 2015188192A JP 2015188192 A JP2015188192 A JP 2015188192A JP 2017061259 A JP2017061259 A JP 2017061259A
Authority
JP
Japan
Prior art keywords
ecu
power
voltage
engine
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015188192A
Other languages
English (en)
Other versions
JP6252573B2 (ja
Inventor
優 清水
Masaru Shimizu
優 清水
安藤 隆
Takashi Ando
隆 安藤
岳志 岸本
Takashi Kishimoto
岳志 岸本
天野 正弥
Masaya Amano
正弥 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015188192A priority Critical patent/JP6252573B2/ja
Priority to US15/252,607 priority patent/US9707957B2/en
Publication of JP2017061259A publication Critical patent/JP2017061259A/ja
Application granted granted Critical
Publication of JP6252573B2 publication Critical patent/JP6252573B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • B60W2050/0295Inhibiting action of specific actuators or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】制御装置間の通信異常に起因したハイブリッド車両のインバータレス走行中に、駆動トルクの異常を検知して車両走行を停止する。
【解決手段】HV−ECU310とMG−ECU320との間に通信異常が発生すると、インバータ221,222をゲート遮断状態として、エンジンによって回転されたモータジェネレータ10に生じる制動トルクを用いて車両の駆動トルクを確保する、インバータレス走行が実行される。MG−ECU320は、通信異常によるインバータレス走行時には、コンバータ210によりシステム電圧VHを予め定められた電圧V1に制御する。HV−ECU310は、通信異常によるインバータレス走行中において、車両の走行状態に関する検出値と電圧V1からバッテリ150の想定電力範囲を設定し、バッテリ150の電圧VBおよび電流IBからの実績電力が、想定電力範囲から外れている場合には、走行停止処理を実行する。
【選択図】図2

Description

この発明はハイブリッド車両に関し、より特定的には、内燃機関(エンジン)と、エンジンと遊星歯車装置を介して接続された第1および第2のモータジェネレータとを備えるハイブリッド車両の退避走行に関する。
ハイブリッド車両のパワートレーン構成の一態様として、エンジン、第1のモータジェネレータ、および、第2のモータジェネレータを、遊星歯車装置によって連結する構成が特開2013−203116号公報(特許文献1)等に開示されている。このハイリッド車両の電気システムは、バッテリの出力電圧を昇圧可能なコンバータと、コンバータと第1および第2のジェネレータとの間で双方向の電力変換を実行するインバータとを含んで構成される。
特開2013−203116号公報(特許文献1)では、インバータの異常が生じると、インバータをゲート遮断状態に維持した退避走行が実行される。具体的には、インバータの各スイッチング素子をオフに維持した状態で、エンジンの回転力により第1のモータジェネレータを機械的(力学的)に回転させることによって、第1のインバータに逆起電圧を発生させる。この際に第1のモータジェネレータから発生される制動トルクを、遊星歯車装置を経由させて、出力軸(遊星歯車装置のリングギヤ)に正方向(前進)に作用させることによって、退避走行のための車両の駆動トルクが確保される。
特開2013−203116号公報
特許文献1に記載された、インバータをゲート遮断状態とした退避走行(以下、「インバータレス走行」とも称する)は、第1および第2のモータジェネレータに異常が発生していなくても、インバータの制御装置と、他の制御装置との間の通信異常が発生した場合にも適用できる。
たとえば、エンジンを制御する第1の制御装置と、第1および第2のモータジェネレータを制御する第2の制御装置とが別個のECU(Electronic Control Unit)によって構成されると、両制御装置間の通信異常の検知に応じて、インバータレス走行を開始することができる。特許文献1にも記載されるように、インバータレス走行時には、第1の制御装置によるエンジン回転数の制御によって、車両の駆動トルクが調整される。
特許文献1にも記載されるように、インバータレス走行時における第1のモータジェネレータでの制動トルクは、回転数に比例する逆起電圧と、コンバータ出力電圧との電圧差に応じて変化する。すなわち、エンジン回転数によって第1のモータジェネレータの回転数が目標通りに制御できても、コンバータ出力電圧が想定通りに制御されない場合には、駆動トルクが不足あるいは過剰になる虞がある。
しかしながら、制御装置間の通信異常に応じてインバータレス走行を開始した場合には、第1の制御装置は第2の制御装置からコンバータの出力電圧を取得することができない。このため、第1の制御装置は、コンバータの出力電圧が正しく制御できていないことに起因する駆動トルクの異常を認識することができず、トルク異常が発生してもインバータレス走行のためのエンジン回転数制御をそのまま継続してしまう可能性がある。
この発明はこのような問題点を解決するためになされたものであって、この発明の目的は、制御装置間の通信異常に起因したハイブリッド車両のインバータレス走行中に、駆動トルクの異常を検知して車両走行を停止することである。
この発明のある局面によれば、車両は、エンジンと、ロータに永久磁石を有する第1の回転電機と、駆動輪に接続された出力軸と、第2の回転電機と、遊星歯車装置とを備える。遊星歯車装置は、エンジン、第1の回転電機のロータおよび出力軸を機械的に連結し、第1の回転電機、エンジンおよび出力軸の間でトルクを伝達可能である。第2の回転電機は、出力軸に接続されたロータを有する。車両は、さらに、再充電可能な蓄電装置と、監視ユニットと、コンバータと、第1および第2のインバータと、第1および第2の制御装置とをさらに備える。監視ユニットは、蓄電装置の電圧および電流を検出する。コンバータは、蓄電装置と電力線との間で双方向の直流電圧変換を実行する。第1のインバータは、電力線と第1の回転電機との間に接続される。第2のインバータは、電力線と第2の回転電機との間に接続される。第1の制御装置は、エンジンの動作を制御する。第2の制御装置は、第1および第2のインバータによって第1および第2の回転電機を制御するとともに、コンバータによって電力線の電圧を制御する。車両走行は、退避走行モードを有する。退避走行では、第1および第2のインバータをゲート遮断状態として、エンジンの出力によって機械的に回転させられた第1の回転電機が発電する際に出力する制動トルクの反力として出力軸に作用するトルクによって車両の駆動トルクを確保するインバータレス走行が実行される。ゲート遮断状態において、第1および第2のインバータでは、各スイッチング素子はオフ状態に維持されて、各スイッチング素子の逆並列ダイオードによる電流経路が形成される。第1の制御装置は、第2の制御装置との間の通信異常を検知すると、インバータレス走行を実行するためにエンジンの回転数を制御する。第2の制御装置は、第1の制御装置との間の通信異常を検知すると、インバータレス走行を実行するために、第1および第2のインバータをゲート遮断状態にするとともに、電力線の電圧を予め定められた第1の電圧に制御するようにコンバータの動作を制御する。第1の制御装置は、インバータレス走行中において、蓄電装置の電圧および電流から算出された実績電力が、車両の走行状態に関する検出値および第1の電圧から設定された想定電力範囲から外れると車両走行を停止する。
たとえば、想定電力範囲は、蓄電装置の予測入出力電力を含む電力範囲として設定される。予測入出力電力は、第1の電圧と、エンジンの回転数の検出値、車両速度の検出値から換算された第2の回転電機の回転数、および、遊星歯車装置でのギヤ比を用いて求められる。
上記車両によれば、第1および第2の制御装置間での通信異常の発生に応じたインバータレス走行中において、第2の制御装置が電力線の電圧(システム電圧VH)を第1の電圧に制御できているときに想定される電力範囲が、車両走行状態から設定される。さらに、蓄電装置の実績電力が当該想定電力範囲から外れると、駆動トルクの異常を検知して車両走行を停止することができる。この結果、第1および第2の制御装置間での通信異常に起因するインバータレス走行において、第1の制御装置は、電力線の電圧(システム電圧VH)の情報を第2の制御装置から受信することなく、蓄電装置の実績電力の監視によって間接的に駆動トルクの異常を検知することができる。
また、第1の制御装置は、エンジンの回転数および車両速度の検出値を用いて、第2の制御装置によって電力線の電圧(システム電圧VH)が第1の電圧に制御されているときに想定される駆動トルクに対応させて、蓄電装置の想定電力範囲を設定することができる。これにより、電力線の電圧(システム電圧VH)の情報を第2の制御装置から受信することなく、蓄電装置の電力監視による間接的な駆動トルクの異常検出のための、想定される駆動トルクに対応させた蓄電装置の電力適正範囲を設定することができる。
また好ましくは、前記第1の制御装置は、前記第2の制御装置との間の通信異常時においても、前記第1の回転電機の温度に関する情報を検知可能に構成される。そして、想定電力範囲の上限電力値は、前記第1の回転電機の温度が所定温度以上であるときには、前記所定温度よりも低いときと比較して、前記蓄電装置の充電電力が減少する側に設定される想定電力範囲の上限電力は、第1の回転電機の温度が上昇すると、第1の回転電機の温度の非上昇時と比較して、蓄電装置の充電電力が減少する側に設定される。
このように構成すると、温度上昇による磁力低下が発生すると第1の回転電機の逆起電圧の推定精度が低下することに対応させて、蓄電装置の想定電力範囲を適切に設定できる。この結果、駆動トルクの異常を誤検出して退避走行が実行できなくなることを防止できる。
この発明によれば、この発明の目的は、制御装置間の通信異常に起因したハイブリッド車両のインバータレス走行中に、駆動トルクの異常を検知して車両走行を停止することができる。
本実施の形態に係るハイブリッド車両の全体構成を概略的に示すブロック図である。 図1に示したハイブリッド車両の電気システムおよびECUの構成を説明するための回路ブロック図である。 インバータレス走行時における電気システムの状態を概略的に示す回路図である。 インバータレス走行時における駆動トルクの発生条件を説明するための概念図である。 インバータレス走行時における遊星歯車装置の共線図である。 モータジェネレータの逆起電圧の特性を説明する概念図である。 本実施の形態に従うハイブリッド車両でのHV−ECUおよびMG−ECU間での通信異常発生時におけるMG−ECUによる退避モード走行の制御処理を説明するフローチャートである。 本実施の形態に従うハイブリッド車両でのHV−ECUおよびMG−ECU間での通信異常発生時におけるHV−ECUによる退避モード走行の制御処理を説明するフローチャートである。 バッテリの予測電力を算出するための構成を説明するブロック図である。 バッテリの電力想定範囲の設定手法を説明する概念図である。 バッテリの予測電力を算出するための構成の変形例を説明するブロック図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
(車両の全体構成)
図1は、本実施の形態に係るハイブリッド車両の全体構成を概略的に示すブロック図である。
図1を参照して、車両1は、エンジン100と、モータジェネレータ10,20と、遊星歯車装置30と、駆動輪50と、駆動輪50に接続された出力軸60と、「蓄電装置」を構成するバッテリ150と、システムメインリレー(SMR:System Main Relay)160と、電力制御ユニット(PCU:Power Control Unit)200と、電子制御ユニット(ECU:Electronic Control Unit)300とを備える。
車両1は、エンジン100とモータジェネレータ20との少なくとも一方の動力を用いて走行する。車両1は、後述する通常走行中において、エンジン100の動力を用いずにモータジェネレータ20の動力を用いる電気自動車走行(EV走行)と、エンジン100およびモータジェネレータ20の両方の動力を用いるハイブリッド自動車走行(HV走行)との間で車両1の走行態様を切り替えることができる。
エンジン100は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関である。エンジン100は、ECU300からの制御信号に応じて車両1が走行するための動力を発生する。エンジン100により発生した動力は遊星歯車装置30に出力される。
エンジン100にはエンジン回転数センサ410が設けられている。エンジン回転数センサ410は、エンジン100の回転数(エンジン回転数)Neを検出し、その検出結果を示す信号をECU300に出力する。
モータジェネレータ10,20の各々は、たとえば三相交流永久磁石型同期モータである。モータジェネレータ(第1のモータジェネレータ:MG1)10は、エンジン100を始動させる際にはバッテリ150の電力を用いてエンジン100のクランクシャフト110を回転させる。また、モータジェネレータ10は、エンジン100の動力を用いて発電することも可能である。モータジェネレータ10によって発電された交流電力は、PCU200により直流電力に変換されてバッテリ150に充電される。また、モータジェネレータ10によって発電された交流電力がモータジェネレータ20に供給される場合もある。モータジェネレータ10は「第1の回転電機」に対応し、モータジェネレータ20は「第2の回転電機」に対応する。
モータジェネレータ(第2のモータジェネレータ:MG2)20のロータ21は、出力軸60に対して機械的に接続される。モータジェネレータ20は、バッテリ150からの供給電力およびモータジェネレータ10による発電電力の少なくとも一方を用いて出力軸60を回転させる。また、モータジェネレータ20は、回生制動によって発電することも可能である。モータジェネレータ20によって発電された交流電力は、PCU200により直流電力に変換されてバッテリ150に充電される。なお、図1の例では、モータジェネレータ20のロータが出力軸60と直接連結されているが、当該ロータは、変速機(減速機)を経由して、出力軸60と機械的に接続されてもよい。
モータジェネレータ10にはレゾルバ421が設けられている。レゾルバ421は、モータジェネレータ10の回転数(MG1回転数)Nm1を検出し、その検出結果を示す信号をECU300に出力する。同様に、モータジェネレータ20にはレゾルバ422が設けられている。レゾルバ422は、モータジェネレータ20の回転数(MG2回転数)Nm2を検出し、その検出結果を示す信号をECU300に出力する。
遊星歯車装置30は、エンジン100、モータジェネレータ10および出力軸60を機械的に連結し、エンジン100、モータジェネレータ10および出力軸60の間でトルクを伝達可能に構成されている。具体的には、遊星歯車装置30は、回転要素としてサンギヤSと、リングギヤRと、キャリアCAと、ピニオンギヤPとを含む。サンギヤSは、モータジェネレータ10のロータ11に連結される。リングギヤRは、出力軸60に連結される。ピニオンギヤPは、サンギヤSとリングギヤRとに噛合する。キャリアCAは、エンジン100のクランクシャフト110に連結されるとともに、ピニオンギヤPが自転かつ公転できるようにピニオンギヤPを保持する。
バッテリ150は、再充電が可能に構成された「蓄電装置」の代表例として示される。バッテリ150は、代表的にはニッケル水素二次電池もしくはリチウムイオン二次電池などの二次電池によって構成される。蓄電装置としては、電気二重層キャパシタなどのキャパシタを用いることも可能である。バッテリ150の電圧(以下「バッテリ電圧」とも称する)VBは、たとえば200V程度である。
SMR160は、バッテリ150とPCU200との間の電力線に介挿接続されている。SMR160は、ECU300からの制御信号に応じて、バッテリ150とPCU200との導通状態(オン)および遮断状態(オフ)を切り替える。
PCU200は、バッテリ150に蓄えられた直流電力を昇圧し、昇圧された電圧を交流電圧に変換してモータジェネレータ10およびモータジェネレータ20に供給する。また、PCU200は、モータジェネレータ10およびモータジェネレータ20により発電された交流電力を直流電力に変換してバッテリ150に供給する。PCU200の構成については図2にて詳細に説明する。
車両1は、アクセルペダルセンサ511と、ブレーキペダルセンサ512と、車速センサ513と、パワースイッチ514とをさらに備える。アクセルペダルセンサ511は、ドライバによるアクセルペダル(図示せず)の操作量Accを検出する。アクセルペダルの非操作時にはAcc=0である。ブレーキペダルセンサ512は、ドライバによるブレーキペダル(図示せず)の操作量Brkを検出する。車速センサ513は、車両1の速度、すなわち、車速SPを検出する。アクセルペダルセンサ511、ブレーキペダルセンサ512および、車速センサ513による検出値は、ECU300へ入力される。車速SPは、出力軸60の回転数に比例する。したがって、MG2回転数Nm2および車速SPの間にも、所定の比例定数を介した比例関係が成立する。
パワースイッチ514は、ドライバが車両運転の開始、終了を指示する際に操作する。パワースイッチ514がユーザによって操作されると、信号PWRがECU300へ入力されるので、ECU300は、信号PWRに応じてパワースイッチ514が操作されたことを検知できる。
たとえば、ECU300は、運転停止状態において、ドライバがブレーキペダルを踏んだ状態でパワースイッチ514が操作されると、車両1を「Ready−ON状態」とする。Ready−ON状態では、SMR160がオンされて、バッテリ150およびPCU120が導通状態となって、車両1は、アクセルペダルの操作に応じて走行可能な状態となる。
一方で、Ready−ON状態においてドライバがパワースイッチ514を操作すると、車両1は運転停止状態(Ready−OFF状態)に遷移する。Ready−OFF状態では、SMR160がオフされて、バッテリ150およびPCU120の間が電気的に遮断されて、車両1は走行不能な状態となる。
ECU300は、いずれも図示しないが、CPU(Central Processing Unit)と、メモリと、入出力バッファ等とを含んで構成される。ECU300は、各センサおよび機器からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、車両1が所望の走行状態となるように各種機器を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。図1では、ECU300は単一の要素として表記されているが、実際には、複数個に分割配置される。詳細な構成については、図2で説明する。
(電気システムおよびECUの構成)
図2は、車両1の電気システムおよびECU300の構成を説明するための回路ブロック図である。図1および図2を参照して、PCU200は、コンデンサC1と、コンバータ210と、コンデンサC2と、インバータ221,222と、電圧センサ230と、電流センサ241,242とを含む。ECU300は、HV−ECU310と、MG−ECU320と、エンジンECU330とを含む。
バッテリ150には監視ユニット440が設けられている。監視ユニット440は、バッテリ電圧VB、バッテリ150の入出力電流IB、およびバッテリ150の温度を検出して、それらの検出結果を示す信号をHV−ECU310に出力する。
コンデンサC1は、バッテリ150に並列に接続されている。コンデンサC1は、バッテリ電圧VBを平滑化してコンバータ210に供給する。なお、コンデンサC1は、図1に示されたSMR160よりもコンバータ210側に配置される。したがって、SMR160がオフされると、コンデンサC1はバッテリ150から切り離される。
コンバータ210は、MG−ECU320からの制御信号に応じて、バッテリ電圧VBを昇圧し、昇圧された電圧を電力線PL,NLに供給する。また、コンバータ210は、MG−ECU320からの制御信号に応じて、インバータ221およびインバータ222の一方または両方から供給された電力線PL,NLの直流電圧を降圧してバッテリ150を充電する。このように、コンバータ210は、バッテリ150および電力線PL,NLの間で双方向の直流電圧変換を実行する。
より具体的に、コンバータ210は、いわゆる昇圧チョッパによって構成されて、リアクトルL1と、スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。スイッチング素子Q1,Q2および後述するスイッチング素子Q3〜Q14の各々は、たとえばIGBT(Insulated Gate Bipolar Transistor)である。スイッチング素子Q1,Q2は、電力線PLと電力線NLとの間に互いに直列に接続されている。ダイオードD1,D2は、スイッチング素子Q1,Q2に対して逆並列にそれぞれ接続されている。
コンデンサC2は、電力線PLと電力線NLとの間に接続されている。コンデンサC2は、コンバータ210から供給された直流電圧を平滑化してインバータ221,222に供給する。
電圧センサ230は、コンデンサC2の両端の電圧、すなわちコンバータ210とインバータ221とを結ぶ電力線PL,NL間の電圧(以下「システム電圧」とも称する)VHを検出し、その検出結果を示す信号をMG−ECU320に出力する。また、電圧センサ235は、コンデンサC1の両端の電圧VLを検出し、その検出結果を示す信号をMG−ECU320に出力する。
インバータ221は、システム電圧VHが供給されると、MG−ECU320からの制御信号に応じて、直流電圧を交流電圧に変換してモータジェネレータ10を駆動する。これにより、モータジェネレータ10は、トルク指令値に従ったトルクを発生するように駆動される。
インバータ221は、U相アーム1Uと、V相アーム1Vと、W相アーム1Wとを含む。各相アームは、電力線PLと電力線NLとの間に互いに並列に接続されている。U相アーム1Uは、互いに直列に接続されたスイッチング素子Q3,Q4を有する。V相アーム1Vは、互いに直列に接続されたスイッチング素子Q5,Q6を有する。W相アーム1Wは、互いに直列に接続されたスイッチング素子Q7,Q8を有する。各スイッチング素子Q3〜Q8に対して、ダイオードD3〜D8が逆並列にそれぞれ接続されている。
各相アームの中間点は、モータジェネレータ10の各相コイルに接続されている。すなわち、モータジェネレータ10のU相、V相およびW相の3つのコイルの一方端は、中性点に共通接続されている。U相コイルの他方端は、スイッチング素子Q3,Q4の中間点に接続されている。V相コイルの他端は、スイッチング素子Q5,Q6の中間点に接続されている。W相コイルの他方端は、スイッチング素子Q7,Q8の中間点に接続されている。
インバータ222は、各相アーム2U〜2Wと、スイッチング素子Q9〜Q14と、ダイオードD9〜D14とを含む。なお、インバータ222の構成は、基本的にはインバータ221の構成と同等であるため、説明は繰り返さない。
モータジェネレータ10には、レゾルバ421、電流センサ241および温度センサ251が設けられる。モータジェネレータ20には、レゾルバ422、電流センサ242および温度センサ252が設けられる。レゾルバ421は、モータジェネレータ10の回転数(MG1回転数Nm1)を検出する。レゾルバ422は、モータジェネレータ20の回転数(MG2回転数Nm2)を検出する。電流センサ241は、モータジェネレータ10を流れる電流(モータ電流MCRT1)を検出する。電流センサ242は、モータジェネレータ20を流れる電流(モータ電流MCRT2)を検出する。温度センサ251は、モータジェネレータ10の温度(モータ温度Tm1)を検出する。温度センサ252は、モータジェネレータ20の温度(モータ温度Tm2)を検出する。これらのセンサは、検出結果を示す信号をMG−ECU320にそれぞれ出力する。
ECU300は、上述のように、相互に通信可能な、HV−ECU310、MG−ECU320、および、エンジンECU330を含む。
HV−ECU310は、MG−ECU320との通信を行なってモータジェネレータ10,20を制御するとともに、エンジンECU330との通信を行なって100を制御することによって、ドライバ操作に応じた走行が実現されるように車両1全体を統括的に制御する。
具体的には、HV−ECU310は、アクセル操作量Acc、ブレーキ操作量Brkおよび車速SPに基づいて、車両走行に必要な駆動トルクを算出する。ざらに、当該駆動トルクを出力軸60に作用させるための、エンジン100およびモータジェネレータ10,20間の最適な出力配分を決定し、決定された出力配分に従って、モータジェネレータ10,20の運転指令およびエンジン100の運転指令を生成する。
エンジン100の運転指令は、HV−ECU310からエンジンECU330へ出力される。エンジン100の運転指令は、目標エンジン回転数Ne*および目標エンジントルクTe*を含む。エンジンECU330は、エンジン回転数センサ410の出力等に基づいてエンジン100の状態を監視するとともに、エンジン100のアクチュエータ群(燃料噴射弁、点火プラグ、吸気バルブ、排気バルブ等)を制御することによって、HV−ECU310からの運転指令に基づいてエンジン100の出力を制御する。
具体的には、エンジンECU330は、HV−ECU310によって決定されたエンジン100の運転指令(目標エンジン回転数Ne*および目標エンジントルクTe*)でエンジン100が動作するように、エンジン100の燃料噴射、点火時期、バルブタイミング等を制御する。さらに、エンジンECU330は、エンジン回転数センサ410からエンジン回転数Neを受けて、その値をHV−ECU310に出力する。これにより、HV−ECU310は、エンジン回転数Neを取得することができる。
このように、エンジン100は、運転指令を生成するHV−ECU310と、運転指令に従ってエンジン100のアクチュエータ群を制御するエンジンECU300によって制御される。すなわち、図2の例では、HV−ECU310およびエンジンECU330によって、「第1の制御装置」が構成される。なお、図2の例では、HV−ECU310およびエンジンECU330を別個のECUで構成しているが、エンジンECU330の機能をHV−ECU310にマージすることで、両者を単一のECUで構成することも可能である。
一方で、モータジェネレータ10,20は、MG−ECU320によって制御される。MG−ECU320は、「第2の制御装置」に対応する。モータジェネレータ10,20の運転指令は、HV−ECU310からMG−ECU320へ出力される。モータジェネレータ10,20の運転指令には、モータジェネレータ10,20の各々の運転許可指令および運転禁止指令(インバータ221,222へのゲート遮断指令)、モータジェネレータ10のトルク指令値TR1、モータジェネレータ20のトルク指令値TR2等が含まれる。
さらに、HV−ECU310は、コンバータ210の出力電圧の目標値(以下「目標システム電圧」という)VH*を設定して、MG−ECU320に出力する。MG−ECU320は、レゾルバ421,422、電流センサ241,242および温度センサ251,252の出力等に基づいてモータジェネレータ10,20の状態(回転数、通電電流、温度等)を監視するとともに、HV−ECU310からの指令信号に基づいてコンバータ210およびインバータ221,222を制御することによってモータジェネレータ10,20の出力を制御する。
具体的には、MG−ECU320は、目標システム電圧VH*をHV−ECU310から受けた場合、システム電圧VHが目標システム電圧VH*に追従するようにコンバータ210のスイッチング素子Q1,Q2のオンオフを制御する。たとえば、PWM(Pulse Width Modulation)制御によって、スイッチング素子Q1,Q2のオンオフを制御する制御信号PWMCが生成される。
一方、MG−ECU320は、HV−ECU310からコンバータ210のゲート遮断指令を受けた場合には、スイッチング素子Q1,Q2の各々をゲート遮断するためのゲート遮断信号SDNCを生成してコンバータ210に出力する。
なお、HV−ECU310およびMG−ECU320の間には、ECU間の相互通信経路とは別に、電気システム(図2)のシャットダウン指令信号を直接伝達するための信号線315がさらに設けられる。これにより、後述するように、HV−ECU310およびMG−ECU320の間で通信異常により情報(データ)の授受が実行できなくなった場合にも、HV−ECU310からMG−ECU320へのシャットダウン指令信号の伝達経路を確保することができる。
また、MG−ECU320は、モータジェネレータ10,20がHV−ECU310から受けた運転指令に従って動作するようにインバータ221,222を制御する。インバータ221,222の制御は同等であるため、インバータ221の制御について代表的に説明する。
MG−ECU320は、HV−ECU310からモータジェネレータ10の運転許可指令を受けた場合には、システム電圧VH、モータ電流MCRT1およびトルク指令値TR1に基づいて、スイッチング素子Q3〜Q8の各々をスイッチング動作させるためのPWM方式の制御信号PWM1を生成してインバータ221に出力する。一方、MG−ECU320は、HV−ECU310からインバータ221のゲート遮断指令を受けた場合には、スイッチング素子Q3〜Q8の各々をゲート遮断するためのゲート遮断信号SDN1を生成してインバータ221に出力する。
(通常走行およびインバータレス走行)
ECU300は、通常走行モードと退避走行モードのいずれかの制御モードで車両1を走行させることができる。
通常走行モードでは、上述のEV走行とHV走行とを必要に応じて切り替えながら車両1は走行する。言い換えれば、通常走行モードは、インバータ221,222によるモータジェネレータ10,20の電気的な駆動が許容されるモードである。以下では、通常走行モードによる走行を「通常走行」と記載する。
一方で、退避走行モードは、インバータ221,222によるモータジェネレータ10,20の電気的な駆動を正常に行なうことができないような異常が生じた場合に適用される。退避走行モードでは、特許文献1と同様のインバータレス走行によって、車両1は走行する。代表的には、電流センサ241,242のような、インバータ221,222による制御に必要な部品に故障が発生すると、MG−ECU320からHV−ECU310へ異常情報が送信される。これにより、通常モードから退避モードへの遷移が行われて、HV−ECU310からMG−ECU320へゲート遮断指令が出力される。この結果、インバータレス走行が適用される。
図3は、インバータレス走行中における電気システムの状態を概略的に示す図である。
図3を参照して、インバータレス走行中においては、MG−ECU320からのゲート遮断信号SDN1,SDN2に応答して、インバータ221,222はゲート遮断される。これにより、インバータ221,222の各スイッチング素子Q3〜Q8,Q9〜Q14(図2)がオフ状態とされる。ゲート遮断状態において、インバータ221ではダイオードD3〜D8の導通による電流経路のみが形成される。この結果、インバータ221では三相全波整流回路が形成される。同様に、インバータ222においても、ダイオードD9〜D14によって三相全波整流回路が形成される。
一方、インバータレス走行中においても、コンバータ210では、MG−ECU320からの制御信号PWMCに応答して、スイッチング素子Q1,Q2のオンオフを制御することができる。すなわち、インバータレス走行中においても、システム電圧VHは、目標システム電圧VH*に従って制御することができる。
また、インバータレス走行中においては、エンジン100は駆動されて、エンジントルクTeを出力する。このエンジントルクTeによってモータジェネレータ10が力学的(機械的)に回転させられる。三相交流永久磁石型同期モータで構成されたモータジェネレータ10のロータ11(図1)は永久磁石15を有する。
このため、エンジントルクTeによってモータジェネレータ10のロータ11が回転されると、永久磁石15の回転による磁界変化によって、モータジェネレータ10には逆起電圧Vcが生じる。この逆起電圧Vcがシステム電圧VHを超えると、モータジェネレータ10からバッテリ150に向かって回生電流が流れる。この際、モータジェネレータ10には、モータジェネレータ10の回転を妨げる方向に作用する逆起トルクTc(制動トルク)が発生する。
逆起電圧Vcは、永久磁石15の回転によってモータジェネレータ10の各相に発生した誘起電圧(交流)が、インバータ221のダイオードD3〜D8によって形成される三相全波整流回路によって、AC/DC変換された直流電圧に相当する。すなわち、逆起電圧Vcは、インバータ221から電力線PLに出力される。
図4は、インバータレス走行時における駆動トルクの発生条件を説明するための概念図である。図4には、MG1回転数Nm1に対するモータジェネレータ10での逆起電圧Vcおよび逆起トルクTcの特性が示される。
図4の横軸は、MG1回転数Nm1を表わす。図4の上側の縦軸は逆起電圧Vcを表し、下側の縦軸は逆起トルクTcを表す。
図4に示されるように、逆起電圧Vcは、MG1回転数Nm1が高いほど上昇する。逆起電圧Vcがシステム電圧VHと同等となるNm1をNvhとすると、Nm1≦Nvhの領域では、Vc≦VHとなるため、モータジェネレータ10からバッテリ150に向かう電流は流れない。そのため、逆起トルクTcも生じない(Tc=0)。
これに対して、Nm1>Nvhの領域では、Vc>VHとなるため、モータジェネレータ10からバッテリ150に向かう電流が流れる。このとき、モータジェネレータ10には、負トルクである逆起トルクTcが発生する。逆起トルクTcの絶対値は、逆起電圧Vcとシステム電圧VHとの電圧差ΔV(ΔV=Vc−VH)に応じたものとなる。このように、Vc>VHとなる領域が、逆起トルクTcが発生する領域、すなわちインバータレス走行を行なうことが可能な領域である。
図5は、インバータレス走行時における遊星歯車装置の各回転要素の挙動を説明するための共線図である。
図5を参照して、遊星歯車装置30が図1にて説明したように構成されることによって、サンギヤSの回転数(=MG1回転数Nm1)と、キャリアCAの回転数(=エンジン回転数Ne)と、リングギヤRの回転数(=MG2回転数Nm2)とは、共線図上において直線で結ばれる関係を有する。
インバータレス走行中には、エンジン100からエンジントルクTeが出力される。エンジントルクTeによってモータジェネレータ10が力学的に回転させられることにより、モータジェネレータ10は逆起電圧Vcを発生する。図4に示されたように、逆起電圧Vcがシステム電圧VHを超えると、モータジェネレータ10は、モータジェネレータ10の回転を妨げる方向(負方向)に作用する逆起トルクTcを発生する。
逆起トルクTcがモータジェネレータ10からサンギヤSに作用することによって、リングギヤRには、逆起トルクTcの反力として正方向(前進方向)に作用する駆動トルクTepが発生する。駆動トルクTepは、図5中に示した遊星歯車装置30でのギヤ比ρを用いると、Tep=−Tc/ρで示される。制動トルクである逆起トルクTc<0であるため、Tep>0(前進方向)となることが理解される。
この駆動トルクTepによって車両1のインバータレス走行が実現される。このように、インバータレス走行では、モータジェネレータ10および20が回転している。
図6には、モータジェネレータの回転数と逆起電圧との関係を説明するグラフが示される。
図6を参照して、直線k1はモータジェネレータ10の回転数と逆起電圧との関係を示す。同様に、直線k2はモータジェネレータ20の回転数と逆起電圧との関係を示す。以下では、モータジェネレータ20に発生する逆起電圧をVmと表記して、モータジェネレータ20に発生する逆起電圧Vc(図4)と区別する。
モータジェネレータ10,20には、その回転数に比例した逆起電圧Vc,Vmがそれぞれ発生する。モータジェネレータ10,20における比例係数をそれぞれ、Kc,Kmとすると、モータジェネレータ10の逆起電圧Vcは、Vc=Kc・|Nm1|で表される。また、モータジェネレータ20の逆起電圧Vmは、Vm=Km・|Nm2|で表される。
なお、比例係数Kc,Kmは、モータジェネレータ10,20の逆起電圧特性に従って定められる。図6では、一例として、モータジェネレータ20での比例係数Kmがモータジェネレータ10での比例係数Kcより大きい場合を示す。これらの比例係数を予め取得しておくことにより、モータジェネレータ10,20の回転数Nm1,Nm2に基づいて、モータジェネレータ10,20に発生する逆起電圧Vc,Vmをそれぞれ演算することができる。
図6に示されるように、モータジェネレータ10においては、回転数Nm1=判定値Nvhのときに、逆起電圧Vcがインバータ221の直流側電圧(システム電圧)VHと等しくなる。したがって、逆起トルクTcが発生するための判定値Nvhについては、システム電圧VHの検出値から逆算することができる。なお、インバータレス走行においても、コンバータ210によってシステム電圧VHを制御することができる。
一方、モータジェネレータ20においても、回転数Nm2>N2の領域では、逆起トルクが発生する。ただし、図5から理解されるように、モータジェネレータ20の逆起トルクは、車両1の後進方向に作用する。すなわち、モータジェネレータ20に逆起トルクが発生すると、モータジェネレータ10の逆起トルクTcによる駆動トルクTepは減少する。
以上の説明から理解されるように、インバータレス走行では、HV−ECU310が、アクセル操作量Accに応じてモータジェネレータ10の回転数Nm1を制御することによって、アクセル操作量Accに応じた駆動トルクTepを出力軸60に作用させることができる。
たとえば、Acc=0のときには、モータジェネレータ10に発生する逆起電圧Vcがシステム電圧VHを超えないように(Vc≦VH)制御する必要がある。このとき、モータジェネレータ10の回転数Nm1は、下記(1)式の範囲内に制御される必要がある。
−VH/Kc≦Nm1≦VH/Kc …(1)
一方、図5に示されるように、エンジン回転数Neと、モータジェネレータ10の回転数Nm1およびモータジェネレータ20の回転数Nm2との間には、遊星歯車装置30でのギヤ比ρを用いて、下記式(2)に示す関係が成立する。
Ne=Nm1×ρ/(1+ρ)+Nm2/(1+ρ) …(2)
式(2)の関係を用いることにより、上記式(1)は、下記式(3),(4)に示されるように、エンジン回転数Neの制御範囲を規定するように、変形することができる。
−Ne1≦Ne≦Ne1 …(3)
ただし、Ne1=(VH/Kc)×ρ/(1+ρ)+Nm2/(1+ρ) …(4)
したがって、HV−ECU310は、アクセルオフ時(Acc=0)には、上記式(3)で規定される制御範囲内(−Ne1〜Ne1)に収まるように、目標エンジン回転数Ne*を設定する。なお、式(4)のNe1の算出に必要な回転数Nm2は、レゾルバ422による検出値の他、車速センサ513によって検出された車速SPからの算出値によっても求めることができる。
一方で、HV−ECU310は、アクセルオン時(Acc>0)には、エンジン回転数Neを式(4)のNe1よりも高くすることによって、駆動トルクTepを確保する。好ましくは、駆動トルクTepの大きさを、アクセル操作量Accに応じて可変とするために、目標エンジン回転数Ne*を、アクセル操作量Accに応じて可変に設定するころができる。具体的には、HV−ECU310は、下記式(5)に従って、インバータレス走行時における目標エンジン回転数Ne*を設定することができる。
Ne*=Ne1+ΔNe ・・・(5)
なお、式(5)中において、回転数アップ量ΔNeは、アクセル操作量Accに所定の係数α(α>0)を乗じた値とすることができる。(ΔNe=α・Acc)。
なお、アクセル操作量Accに応じた駆動トルクTepを受けて、出力軸60の回転数、すなわち、車速が上昇すると、モータジェネレータ20の逆起電圧Vmが上昇する。そして、図6で説明したように、モータジェネレータ20の逆起電圧Vmがシステム電圧VHを超えると、モータジェネレータ20は制動トルクTmを発生するようになる。この結果、駆動トルクTepが、モータジェネレータ20に生じる制動トルクTmによって実質的に減少する。
したがって、アクセルオン時には、モータジェネレータ20に逆起トルク(制動トルクTm)が発生している場合には、当該制動トルクTmを相殺するための補償トルク(Tm×ρ)分、モータジェネレータ10の逆起トルクTcが増加するように、目標エンジン回転数Ne*を式(5)による設定値から上昇する必要がある。
なお、退避走行モードにおいて、車速SPに制限車速SPmaxを設けることにより、SP>SPmaxの領域では、アクセル操作量Accによらず、モータジェネレータ10の回転数Nm1が上記(1)式の範囲内となるように、エンジン回転数を制御することができる。このとき、制限車速SPmaxにおけるMG2回転数Nm2が図4に示したN2よりも低くなるように、制限車速SPmaxを定めれば、インバータレス走行中にモータジェネレータ20の逆起トルクTm=0とすることができる。
このように、インバータレス走行時には、HV−ECU310が目標エンジン回転数Ne*を設定することによって、MG−ECU320がインバータ221,222をシャットダウン状態とした下で、アクセル操作量Accに応じて変化する駆動トルクTepを出力軸60に作用させることができる。これによって、インバータレス走行による車両1の退避走行が実現される。
(通信異常時におけるインバータレス走行の制御)
インバータレス走行は、モータジェネレータ10,20の制御系における故障発生のみならず、HV−ECU310およびMG−ECU320間での通信異常が発生した場合にも適用される。この場合には、ドライバ操作に基づく動作指令をMG−ECU320に伝達してモータジェネレータ10,20を制御することができなくなるからである。一方で、HV−ECU310およびエンジンECU330の間の通信が正常であれば、エンジン100の制御によってインバータレス走行を実行することができる。
しかしながら、上記通信異常に起因するインバータレス走行中には、HV−ECU310およびMG−ECU320の間では、情報(データ)の授受を実行することができない。このため、HV−ECU310は、MG−ECU320から電気システムの動作状態に係る情報(データ)を得ることができない。この結果、MG1回転数Nm1、MG2回転数Nm2およびシステム電圧VHの検出値について、HV−ECU310は、直接的には把握できないことになる。一方で、HV−ECU310では、車両の走行状態に係る検出値として、車速SPおよびエンジン回転数Neのセンサ値を取得できる。このため、車速SPからMG2回転数Nm2を算出することとともに、式(4)を用いてMG1回転数Nm1についても算出することができる。これにより、HV−ECU310では、MG−ECU320との通信異常が発生しても、図6の特性に基づいて、逆起電圧Vc,Vmを推定することができる。しかしながら、システム電圧VHについては、MG−ECU320との通信異常時には、HV−ECU310では取得することができない。
上述のように、駆動トルクTepとして作用する逆起トルクTcは、逆起電圧Vcのみでは決まらず、システム電圧VHとの電圧差ΔV(ΔV=Vc−VH)で決まる。しかしながら、上記通信異常に起因するインバータレス走行中には、目標システム電圧VH*をHV−ECU310からMG−ECU320へ伝達することができない。
ただし、上記通信異常時に起因するインバータレス走行時の目標システム電圧として、所定電圧V1を予めHV−ECU310およびMG−ECU320の各々に記憶しておくことで、インバータレス走行は実行可能である。一方で、上述のように、HV−ECU310は、MG−ECU320との通信異常時には、コンバータ210がシステム電圧VHを所定電圧V1に制御できているか否かを判断することができない。
これに対して、HV−ECU310によるエンジン回転数制御が正常であっても、システム電圧VHが所定電圧V1に制御されなければ、駆動トルクTepは過剰(VH<V1のとき)あるいは、不足(VH>V1のとき)となってしまう。HV−ECU310は、MG−ECU320との通信異常によるインバータレス走行時には、システム電圧VH=V1に制御されていないことによる駆動トルクTepの異常を認識することができない。すなわち、駆動トルクTepが異常であっても、インバータレス走行が継続されてしまう可能性がある。
したがって、本実施の形態では、上記のような状況においても駆動トルクの異常を検知するための、通信異常発生時における退避モード走行の制御処理を説明する。
図7および図8は、本実施の形態に従うハイブリッド車両でのHV−ECU310およびMG−ECU320間での通信異常発生時における、MG−ECU320およびHV−ECU310による退避モード走行の制御処理をそれぞれ説明するフローチャートである。このとき、HV−ECU310およびエンジンECU330の間の通信は正常である。図7および図8の各フローチャートに従う制御処理は、MG−ECU320およびHV−ECU310により、繰り返し実行される。
図7を参照して、MG−ECU320は、ステップS100により、HV−ECU310との間で通信異常が発生しているか否かを判定する。ステップS100による判定は、MG−ECU320によるダイアグ(故障診断)によって実行される。すなわち、HV−ECU310からの通知によるのではなく、MG−ECU320単体でステップS100による判定は実行される。MG−ECU320は、HV−ECU310との通信異常が発生していないとき(S100のNO判定時)には、ステップS110以降の処理を実行せずに、今回の制御周期での処理を終了する。
MG−ECU320は、HV−ECU310との通信異常が発生すると(S100のYES判定時)、ステップS110に処理を進めてインバータレス走行を実行する。これにより、通信異常によってHV−ECU310からの指令(代表的には、ゲート遮断指令)を受信できなくても、インバータレス走行を開始することができる。
MG−ECU320は、インバータレス走行中には、ステップS120により、インバータ221,222をゲート遮断状態に制御する。すなわち、MG−ECU320は、インバータ221,222に対して、ゲート遮断信号SDN1,SDN2を出力する。
インバータレス走行中において、MG−ECU320は、ステップS130により、コンバータ210への目標システム電圧VH*を所定電圧V1に設定する(VH*=V1)。通信異常によるインバータレス走行では、HV−ECU310から目標システム電圧VH*は送信されないので、予め記憶された所定電圧V1に従って、コンバータ210はシステム電圧VHを制御する。上述のように、インバータレス走行時には、システム電圧VHが低い方が、逆起トルクTcの確保には有利である。したがって、所定電圧V1は、たとえば、バッテリ150の出力電圧(定格)よりもやや高い電圧とすることができる。
さらに、MG−ECU320は、ステップS140により、インバータレス走行がHV−ECU310によって停止されたか否かを判定する。上述のように、通信異常に起因するインバータレス走行においても、MG−ECU320は、信号線315(図2)を経由して、HV−ECU310から電気システムのシャットダウン指令信号を受けることができる。したがって、ステップS140では、当該シャットダウン指令信号の受信時にインバータレス走行の停止を検知して、YES判定とすることができる。なお、ステップS140での判定は、HV−ECU310によるインバータレス走行の停止を検知可能であれば、任意の内容とすることができる。たとえば、MG−ECU320およびエンジンECU330間の通信が正常である場合には、HV−ECU310からエンジンECU330を経由してMG−ECU320に、インバータレス走行が停止されたことを示す情報が送信されることに応じて、ステップS140がYES判定とされてもよい。
MG−ECU320は、インバータレス走行の停止が検知されないとき(S140のNO判定時)には、処理をステップS110に戻してインバータレス走行を継続する。
一方で、MG−ECU320は、インバータレス走行の停止が検知されたとき(S140のYES判定時)には、ステップS150は、コンバータ210についてもゲート遮断することにより、図2に示された電気システムをシャットダウンする。
図8を参照して、HV−ECU310は、ステップS200により、MG−ECU320との間で通信異常が発生しているか否かを判定する。ステップS200による判定は、HV−ECU310によるダイアグ(故障診断)によって実行される。すなわち、MG−ECU320からの通知によるのではなく、HV−ECU310単体でステップS100による判定は実行される。
HV−ECU310は、MG−ECU320との通信異常が発生すると(S100のYES判定時)、ステップS110に処理を進めてインバータレス走行を実行する。これにより、通信異常によってMG−ECU320からの情報を受信できなくても、インバータレス走行を開始することができる。
一方で、HV−ECU310は、MG−ECU320との通信異常が発生していないとき(S200のNO判定時)には、ステップS210以降の処理を実行せずに、今回の制御周期での処理を終了する。
インバータレス走行中には、HV−ECU310は、ステップS220によって、HV−ECU310へ入力された各データ値を読み込む。たとえば、図2に示されたように、アクセル操作量Acc、ブレーキ操作量Brk、車速SP、バッテリ電圧VBおよびバッテリ電流IB等が、HV−ECU310によって取得される。また、エンジンECU330から送信されたエンジン回転数Neについても、ステップS220で取得される。一方で、ステップS220では、MG−ECU320からの通信を要するデータ(VH,Nm1,Nm2等)については取得することができない。
HV−ECU310は、ステップS230により、ドライバのアクセル操作に応じた駆動トルクTepを確保するためのエンジン回転数制御を実行する。具体的には、上記式(3)〜(5)等に従って、アクセル操作量Accに応じて目標エンジン回転数Ne*が設定される。
なお、式(4)でのNe1の算出には、システム電圧VHおよびモータジェネレータ20の回転数Nm2が必要であるが、MG−ECU320との通信異常によるインバータレス走行では、これらの検出値をMG−ECU320から直接得ることができない。ただし、Nm2について、HV−ECU310は、車速センサ513によって検出された車速SPから算出することができる。さらに、システム電圧VHについては、MG−ECU320との間で共有された所定電圧V1が予め記憶される。これにより、MG−ECU320との通信が異常であっても、HV−ECU310は、ステップS120において、式(4)においてVH=V1を代入することで、目標エンジン回転数Ne*を算出することが可能である。
HV−ECU310は、ステップS240により、バッテリ150の入出電力の実績値(バッテリ実績電力)Pbを、バッテリ電圧VBおよびバッテリ電流IBの積によって算出する。バッテリ電流IBは、放電時に正値(IB>0)であり、充電時に負値(IB<0)であるので、バッテリ150の入出力電力についても、放電時には正値で示され、充電時には負で示される。
さらに、HV−ECU310は、ステップS250により、現在の走行状態(インバータレス走行)におけるバッテリ150の入出力電力の予測値Pbe(以下、バッテリ予測電力Pbeとも称する)を算出する。バッテリ予測電力Pbeの算出は、MG−ECU320との通信が異常でも取得できるデータを用いて実行する必要がある。
図9には、ステップS260によるバッテリ予測電力の算出のための構成を説明するブロック図が示される。図9を始めとする各ブロック図中の各ブロックの機能は、HV−ECU310が所定プログラムを実行することによるソフトウェア処理および/または内蔵された専用の電子回路によるハードウェア処理によって実現することができる。
図9を参照して、バッテリ電力予測部500は、単位換算部510と、ギヤ比演算部520と、逆起トルク推定部530と、電力演算部540とを含む。
単位換算部510は、ステップS220において車速センサ513の検出値から取得された車速SPに対して、所定の比例定数を乗算することによって、MG2回転数の推定値Nm2e(以下、MG2推定回転数Nm2eとも称する)を算出する。
ギヤ比演算部520は、ステップS220においてエンジンECU330から取得されたエンジン回転数Neと、単位換算部510によって算出されたMG2推定回転数Nm2eとを式(2)に代入することによって、MG1回転数の推定値Nm1e(以下、MG1推定回転数Nm1eとも称する)を算出する。
逆起トルク推定部530は、ギヤ比演算部520によって算出されたMG1推定回転数Nm1eと、所定電圧V1とを用いて、図4に示された特性に従って、逆起トルクTcの推定値(以下、逆起トルク推定値Tceとも称する)を算出する。たとえば、図4の特性においてVH=V1としたときの、MG1回転数Nm1に対する逆起トルクTcを求めるマップを、実機実験結果やシミュレーション結果に基づいて予め作成しておくことによって、逆起トルク推定部530の機能を実現することができる。
電力演算部540は、逆起トルク推定部530による逆起トルク推定値Tceと、ギヤ比演算部520によって算出されたMG1推定回転数Nm1eとの積に従って、モータジェネレータ10による発電電力を算出する。そして、算出された発電電力に従って、バッテリ予測電力Pbeが算出される。たとえば、モータジェネレータ10による発電電力から、モータジェネレータ10からバッテリ150までの経路における電力損失等のロス分を減算することによって、バッテリ予測電力Pbeを算出することができる。
再び図8を参照して、HV−ECU310は、バッテリ予測電力Pbeを算出すると(S250)、ステップS260により、バッテリ電力想定範囲ARを設定する。
図10は、バッテリの電力想定範囲の設定手法を説明する概念図である。
図10を参照して、バッテリ電力想定範囲ARは、バッテリ予測電力Pbeを含む電力範囲として設定される。たとえば、バッテリ電力想定範囲ARは、バッテリ予測電力Pbeに対して所定のマージンを設けるように設定される。このとき、バッテリ電力想定範囲ARの上限値Pbuおよび下限値Pblは、Pbu=Pbe+α、Pbl=Pbe−αでそれぞれ表される。
再び図8を参照して、HV−ECU310は、ステップS270により、バッテリ実績電力Pb(S240)がバッテリ電力想定範囲AR内であるか否かを判定する。
HV−ECU310は、Pb<PblまたはPb>Pbeであるときには、バッテリ実績電力Pbが電力想定範囲AR外であるため(S270のNO判定時)、ステップS280に処理を進める。HV−ECU310は、ステップS280では、車両1をReady−OFF状態に遷移させるための処理を実行する。これにより、SMR160(図1)がオフされることによって、車両1の走行(インバータレス走行)が停止される。さらに、ステップS280では、信号線315(図2)を用いて、HV−ECU310からMG−ECU320へ電気システムのシャットダウン指令信号が出力される。
一方で、HV−ECU310は、Pbl<Pb<Pbeであるときには、バッテリ実績電力Pb電力想定範囲AR内であるため(S270のYES判定時)、ステップS210に処理を戻す。これにより、バッテリ実績電力Pb電力想定範囲AR内である間は、ステップS210〜S270の処理を繰り返し実行することにより、バッテリレス走行を継続することができる。
このように、本実施の形態に従うインバータレス走行の制御処理によれば、HV−ECU310およびMG−ECU320間での通信異常が発生すると、HV−ECU310およびMG−ECU320のそれぞれが単独でインバータレス走行のための処理を開始することができる。特に、当該異常時のシステム電圧の所定値(VH=V1)を両ECU間で予め共有しておくことにより、HV−ECU310およびMG−ECU320の間で通信できなくても、ドライバのアクセル操作に応じた駆動トルクTepによって車両1を退避走行することが可能となる。
さらに、インバータレス走行中には、車両1の駆動トルクが想定通り得られているときのバッテリ予測電力Pbeを含む電力想定範囲ARとバッテリ実績電力Pbとの比較によって、駆動トルクTepに異常が生じると車両走行を停止することができる。これにより、インバータレス走行中において、制御周毎のバッテリ150の実績電力の監視によって、間接的に駆動トルクの異常有無を検知することができる。
(モータジェネレータ温度上昇への対応のための変形例)
一般的に、インバータレス走行中においては、モータジェネレータ10が回転により過熱状態となると、車両1の走行が停止される。たとえば、温度センサ251によって検出されたモータ温度Tm1が上限温度T1よりも上昇すると、インバータレス走行を停止することができる。
一方で、モータ温度Tm1が上限温度T1より低い領域においても、温度上昇に応じた永久磁石の磁力低下の影響で、図6に示した直線k1の傾きを示す比例係数Kcが小さくなることにより、逆起電圧Vcが低下する可能性がある。このような、温度上昇に応じた逆起電圧Vcの低下が生じると、システム電圧VHが正常に制御されていても(VH=V1)、駆動トルクTepが想定よりも低下する。
したがって、式(4)および逆起トルク推定部530(図9)で用いられる比例係数Kcについて、モータ温度Tm1の上昇に応じた変化を反映したマップを予め作成することが好ましい。たとえば、モータジェネレータ10の永久磁石15の磁気特性に対応させて、モータ温度Tm1が所定温度T2(T2<T1)以下の温度範囲(非温度上昇時)では、比例係数Kcを一定値K0とする一方で、Tm1>T2の温度範囲(温度上昇時)では、比例係数KcをK0よりも小さい値に設定するようにマップを作成することができる。この場合には、図9中に点線で表記するように、逆起トルク推定部530での演算にモータ温度Tm1がさらに用いられる。
この結果、温度上昇時(T2<Tm1<T1)において、バッテリ予測電力Pbeは、MG1推定回転数Nm1eの同一値に対して、非温度上昇時(Tm1≦T2)よりも高い値に設定される。この結果、バッテリ電力想定範囲ARの上限値Pbuについても、温度上昇時(T2<Tm1<T1)には、非温度上昇時(Tm1≦T2)よりも高く(すなわち、バッテリ放電側に)設定される。なお、バッテリ電力想定範囲ARの上限値Pbuは、上記のようなマップを作成する他に、バッテリ電力想定範囲ARの設定時におけるマージン(+α)をモータ温度Tm1の上昇に応じて増大させることによっても実現できる。
このようにすると、磁石温度の上昇に応じて逆起電圧Vcおよび逆起トルクTcが低下する現象に対応させて、駆動トルクの正常範囲に相当するバッテリ電力想定範囲ARの上限値を放電側(すなわち、充電電力減少側)にシフトすることができる。この結果、システム電圧VHが正常に制御されているのに駆動トルクTepが異常であることが検知されて、退避走行(インバータレス走行)が継続できなくなることを防止できる。
なお、このような温度上昇への対応のための変形例では、HV−ECU310は、通信異常の発生時においても、モータ温度に係る情報を検知可能に構成される必要がある。ただし、通信異常時には、通信正常時とは異なり、温度センサ251によるモータ温度Tm1の検出値を、MG−ECU320経由でHV−ECU310に入力することができない。
したがって、この変形例では、HV−ECU310がモータ温度の上昇を直接検知可能とするために、たとえば、温度センサ251,252の検出値について、HV−ECU310にも入力する構成とすることが可能である。あるいは、温度上昇(Tm1>T2)の発生を示す信号を、シャットダウン指令信号に係る信号線315(図2)と同種の信号線を用いて、MG−ECU320からHV−ECU310へ入力する構成とすることも可能である。
(バッテリ予測電力算出の変形例)
上述のように、インバータレス走行での制限車速SPmaxを、SP=SmaxにおけるNm2<N2となるように設計すれば、図8に示したように、モータジェネレータ10の逆起トルクTcのみからバッテリ予測電力Pbeを推定することが可能である。一方で、上記のような設計ができなかった場合、または、SP>Smaxの状態で通信異常が発生した場合には、モータジェネレータ20での逆起トルクTmも考慮して、バッテリ予測電力Pbeを算出することが必要である。
図11は、バッテリの予測電力を算出するための構成の変形例を説明するブロック図である。
図11を参照して、バッテリ電力予測部500♯は、図8と同様の、単位換算部510、ギヤ比演算部520および、逆起トルク推定部530に加えて、逆起トルク推定部535と、電力演算部545と、加算部550とをさらに含む。
逆起トルク推定部535は、単位換算部510によって算出されたMG2推定回転数Nm2eと、所定電圧V1とを用いて、逆起トルクTmの推定値(以下、逆起トルク推定値Tmeとも称する)を算出する。たとえば、モータジェネレータ20について、VH=V1としたときの、MG2回転数Nm2に対する逆起トルクTmを求めるマップを、実機実験結果やシミュレーション結果に基づいて予め作成しておくことによって、逆起トルク推定部535の機能を実現することができる。
電力演算部545は、逆起トルク推定部535による逆起トルク推定値Tmeと、単位換算部510によって算出されたMG2推定回転数Nm2eとの積に従って、モータジェネレータ20による発電電力を算出する。そして、算出された発電電力に従って、モータジェネレータ20での逆起トルクによるバッテリ予測電力Pb2eが算出される。
一方で、電力演算部540は、モータジェネレータ10での逆起トルクによるバッテリ予測電力Pb1eを算出する。電力演算部540によるバッテリ予測電力Pb1eは、図8におけるバッテリ予測電力Pbeと同等である。
加算部550は、電力演算部540によるバッテリ予測電力Pb1eと、電力演算部545によるバッテリ予測電力Pb2eとの和に従って、バッテリ予測電力Pbeを算出する。これにより、図8におけるバッテリ予測電力Pbeに対して、モータジェネレータ20での逆起トルクによるバッテリ予測電力Pb2eを加算して、バッテリ予測電力Pbeを算出することができる。
これにより、モータジェネレータ20に逆起トルクTmが生じる走行状態(Tm>0)であっても、バッテリ電力想定範囲ARを適切に設定することができる。この結果、バッテリ実績電力Pbの監視による間接的な駆動トルクTepの異常検知の精度を高めることができる。また、図10の構成においても、逆起トルク推定部530,535においてモータ温度Tm1,Tm2を用いて、磁石温度の上昇による磁力低下を反映して逆起トルク推定値Tce,Tmeを算出することが可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、1U,1V,1W,2U,2V,2W アーム(インバータ)、10,20 モータジェネレータ、11,21 ロータ、15 永久磁石、30 遊星歯車装置、50 駆動輪、60 出力軸、100 エンジン、110 クランクシャフト、150 バッテリ、210 コンバータ、221,222 インバータ、230,235 電圧センサ、241,242 電流センサ、251,252 温度センサ、300 ECU、310 HV−ECU、320 MG−ECU、330 エンジンECU、410 エンジン回転数センサ、421,422 レゾルバ、440 監視ユニット、500 バッテリ電力予測部、510 単位換算部、511 アクセルペダルセンサ、512 ブレーキペダルセンサ、513 車速センサ、514 パワースイッチ、520 ギヤ比演算部、530,535 逆起トルク推定部、540,545 電力演算部、550 加算部、AR バッテリ電力想定範囲、Acc アクセル操作量、Brk ブレーキ操作量、C1,C2 コンデンサ、CA キャリア、D1〜D14 ダイオード、IB バッテリ電流、Kc,Km 比例係数(逆起電圧)、L1 リアクトル、MCRT1,MCRT2 モータ電流、NL,PL 電力線、Ne エンジン回転数、Ne* 目標エンジン回転数、Nm1 MG1回転数、Nm1e MG1推定回転数、Nm2 MG2回転数、Nm2e MG2推定回転数、P ピニオンギヤ、PWM1,PWMC 制御信号、PWR 信号、Pb バッテリ実績電力、Pb1e,Pb2e,Pbe バッテリ予測電力、Pbl 下限値(バッテリ電力想定範囲)、Pbu 上限値(バッテリ電力想定範囲)、Q1〜Q14 スイッチング素子、R リングギヤ、S サンギヤ、SDN1,SDN2,SDNC ゲート遮断信号、SP 車速、Tc 逆起トルク(MG1)、Tm 逆起トルク(MG2)、Tce,Tme 逆起トルク推定値、Te エンジントルク、Te* 目標エンジントルク、Tep 駆動トルク、Tm1,Tm2 モータ温度、V1 所定電圧(VH)、VB バッテリ電圧、VH システム電圧、VH* 目標システム電圧、VL 直流電圧、Vc,Vm 逆起電圧。

Claims (2)

  1. エンジンと、
    ロータに永久磁石を有する第1の回転電機と、
    駆動輪に接続された出力軸と、
    前記エンジン、前記第1の回転電機のロータおよび前記出力軸を機械的に連結し、前記第1の回転電機、前記エンジンおよび前記出力軸の間でトルクを伝達可能な遊星歯車装置と、
    前記出力軸に接続されたロータを有する第2の回転電機と、
    再充電可能な蓄電装置と、
    前記蓄電装置の電圧および電流を検出するための監視ユニットと、
    前記蓄電装置と電力線との間で双方向の直流電圧変換を実行するコンバータと、
    前記電力線と前記第1の回転電機との間に接続された第1のインバータと、
    前記電力線と前記第2の回転電機との間に接続された第2のインバータと、
    前記エンジンの動作を制御する第1の制御装置と、
    前記第1および第2のインバータによって前記第1および第2の回転電機を制御するとともに、前記コンバータによって前記電力線の電圧を制御するための第2の制御装置とを備え、
    車両走行は、
    前記第1および第2のインバータをゲート遮断状態として、前記エンジンの出力によって機械的に回転させられた前記第1の回転電機が発電する際に出力する制動トルクの反力として前記出力軸に作用するトルクによって車両の駆動トルクを確保するインバータレス走行が実行される退避走行モードを有し、
    前記ゲート遮断状態において、前記第1および第2のインバータでは、各スイッチング素子はオフ状態に維持されて、前記各スイッチング素子の逆並列ダイオードによる電流経路が形成され、
    前記第1の制御装置は、前記第2の制御装置との間の通信異常を検知すると、前記インバータレス走行を実行するために前記エンジンの回転数を制御し、
    前記第2の制御装置は、前記第1の制御装置との間の通信異常を検知すると、前記インバータレス走行を実行するために、前記第1および第2のインバータを前記ゲート遮断状態にするとともに、前記電力線の電圧を予め定められた第1の電圧に制御するように前記コンバータの動作を制御し、
    前記第1の制御装置は、前記インバータレス走行中において、前記蓄電装置の電圧および電流から算出された実績電力が想定電力範囲から外れると車両走行を停止し、
    前記想定電力範囲は、前記蓄電装置の予測入出力電力を含む電力範囲として設定され、
    前記予測入出力電力は、前記第1の電圧、車両速度の検出値から換算された前記第2の回転電機の回転数、前記エンジンの回転数の検出値、および、前記遊星歯車装置でのギヤ比を用いて求められる、ハイブリッド車両。
  2. 前記第1の制御装置は、前記第2の制御装置との間の通信異常時においても、前記第1の回転電機の温度に関する情報を検知可能に構成され、
    前記想定電力範囲の上限電力値は、前記第1の回転電機の温度が所定温度以上であるときには、前記所定温度よりも低いときと比較して、前記蓄電装置の充電電力が減少する側に設定される、請求項1記載のハイブリッド車両。
JP2015188192A 2015-09-25 2015-09-25 ハイブリッド車両 Active JP6252573B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015188192A JP6252573B2 (ja) 2015-09-25 2015-09-25 ハイブリッド車両
US15/252,607 US9707957B2 (en) 2015-09-25 2016-08-31 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015188192A JP6252573B2 (ja) 2015-09-25 2015-09-25 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2017061259A true JP2017061259A (ja) 2017-03-30
JP6252573B2 JP6252573B2 (ja) 2017-12-27

Family

ID=58408459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188192A Active JP6252573B2 (ja) 2015-09-25 2015-09-25 ハイブリッド車両

Country Status (2)

Country Link
US (1) US9707957B2 (ja)
JP (1) JP6252573B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252574B2 (ja) * 2015-09-25 2017-12-27 トヨタ自動車株式会社 ハイブリッド車両
JP6426584B2 (ja) * 2015-11-02 2018-11-21 トヨタ自動車株式会社 ハイブリッド車両
JP6583172B2 (ja) * 2016-07-22 2019-10-02 株式会社デンソー 車載充電装置
JP6652081B2 (ja) * 2017-02-06 2020-02-19 トヨタ自動車株式会社 ハイブリッド自動車
JP6607217B2 (ja) * 2017-03-03 2019-11-20 トヨタ自動車株式会社 ハイブリッド自動車
JP6809354B2 (ja) * 2017-04-18 2021-01-06 トヨタ自動車株式会社 ハイブリッド自動車
JP6888512B2 (ja) * 2017-10-16 2021-06-16 トヨタ自動車株式会社 ハイブリッド自動車
DE102020203127A1 (de) * 2020-03-11 2021-09-16 Continental Teves Ag & Co. Ohg Verfahren zur Steuerung der Längsdynamik eines Fahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254132A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 電動車両用電源装置
WO2013061444A1 (ja) * 2011-10-27 2013-05-02 トヨタ自動車株式会社 電動車両およびその制御方法
JP2013085384A (ja) * 2011-10-11 2013-05-09 Mitsubishi Electric Corp 電動車両用制御装置およびその方法
JP2013203116A (ja) * 2012-03-27 2013-10-07 Toyota Motor Corp ハイブリッド車両およびその制御方法
JP2014184880A (ja) * 2013-03-25 2014-10-02 Toyota Motor Corp 車両および車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254132A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 電動車両用電源装置
JP2013085384A (ja) * 2011-10-11 2013-05-09 Mitsubishi Electric Corp 電動車両用制御装置およびその方法
WO2013061444A1 (ja) * 2011-10-27 2013-05-02 トヨタ自動車株式会社 電動車両およびその制御方法
JP2013203116A (ja) * 2012-03-27 2013-10-07 Toyota Motor Corp ハイブリッド車両およびその制御方法
JP2014184880A (ja) * 2013-03-25 2014-10-02 Toyota Motor Corp 車両および車両の制御装置

Also Published As

Publication number Publication date
US9707957B2 (en) 2017-07-18
US20170088125A1 (en) 2017-03-30
JP6252573B2 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6252573B2 (ja) ハイブリッド車両
EP3162608B1 (en) Limp-home mode for hybrid vehicle
JP6292208B2 (ja) ハイブリッド車両
JP4232789B2 (ja) 内燃機関の停止制御装置および停止制御方法
JP6743740B2 (ja) 車両
JP2017087753A (ja) ハイブリッド車両
JP6252574B2 (ja) ハイブリッド車両
JP6354723B2 (ja) ハイブリッド車両
JP2014184880A (ja) 車両および車両の制御装置
JP6330834B2 (ja) ハイブリッド車両
JP6330837B2 (ja) ハイブリッド車両
JP2019122164A (ja) 自動車
JP6344345B2 (ja) ハイブリッド車両
JP2010200582A (ja) 車両
JP2011162130A (ja) ハイブリッド車およびその制御方法
JP6455379B2 (ja) ハイブリッド車両
JP6398924B2 (ja) ハイブリッド車両
JP2012130098A (ja) 電動車両
JP2017047846A (ja) ハイブリッド車両
JP2018090207A (ja) ハイブリッド自動車
JP2014113977A (ja) 電動車両の制御装置
JP2017127126A (ja) ハイブリッド車両
JP2013124084A (ja) ハイブリッド車
JP5696498B2 (ja) ハイブリッド車両およびその制御方法
JP2017039404A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151