JP2017049227A - マルチカラムクロマトグラフィープロセスのための処理結合容量の最適化 - Google Patents
マルチカラムクロマトグラフィープロセスのための処理結合容量の最適化 Download PDFInfo
- Publication number
- JP2017049227A JP2017049227A JP2016097202A JP2016097202A JP2017049227A JP 2017049227 A JP2017049227 A JP 2017049227A JP 2016097202 A JP2016097202 A JP 2016097202A JP 2016097202 A JP2016097202 A JP 2016097202A JP 2017049227 A JP2017049227 A JP 2017049227A
- Authority
- JP
- Japan
- Prior art keywords
- column
- residence time
- columns
- breakthrough
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 165
- 230000008569 process Effects 0.000 title claims abstract description 142
- 238000012545 processing Methods 0.000 title claims abstract description 86
- 230000008878 coupling Effects 0.000 title claims abstract description 33
- 238000010168 coupling process Methods 0.000 title claims abstract description 33
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 33
- 238000004440 column chromatography Methods 0.000 title claims abstract description 16
- 238000005457 optimization Methods 0.000 title description 2
- 230000003287 optical effect Effects 0.000 abstract 1
- 238000002474 experimental method Methods 0.000 description 71
- 238000010828 elution Methods 0.000 description 36
- 230000008929 regeneration Effects 0.000 description 28
- 238000011069 regeneration method Methods 0.000 description 28
- 239000003463 adsorbent Substances 0.000 description 22
- 238000005406 washing Methods 0.000 description 16
- 230000003278 mimic effect Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000004587 chromatography analysis Methods 0.000 description 11
- 238000011067 equilibration Methods 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000011002 quantification Methods 0.000 description 8
- 230000010354 integration Effects 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 230000005526 G1 to G0 transition Effects 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000012501 chromatography medium Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 239000012515 MabSelect SuRe Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012616 hydrophobic interaction chromatography medium Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012434 mixed-mode chromatography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/60—Construction of the column
- G01N30/6034—Construction of the column joining multiple columns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8658—Optimising operation parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/10—Selective adsorption, e.g. chromatography characterised by constructional or operational features
- B01D15/18—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
- B01D15/1864—Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
- G01N30/461—Flow patterns using more than one column with serial coupling of separation columns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N2030/382—Flow patterns flow switching in a single column
- G01N2030/385—Flow patterns flow switching in a single column by switching valves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N2030/628—Multiplexing, i.e. several columns sharing a single detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/889—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 monitoring the quality of the stationary phase; column performance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
1.ロード時間=処理結合容量と滞留時間の積をタイターで割ったもの。
2.サイクルタイム=ロード時間と休止時間の和。
3.生産性=処理結合容量をサイクルタイムで割ったもの。
を用いることによって、最適な滞留時間及び生産性を決定することができる。
[0085]本実施例においては、1本のカラム(マブセレクトシュアプレパックトハイトラップ(MabSelect SuRe pre−packed Hi−Trap)カラム(0.962mL))を用い、精製したIgG2モノクローナル抗体(濃度2mg/mL)及び1個のインラインUV検出器を用いて、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1
式2:mL=C0×(vL−v0)
式3:OBC=(mL−mFT)/vCol
式4:tL=OBC×RT/C0
式5:tC=tL×NL+tR
式6:P=OBC/tC
式7:NC=切り上げ値(tC/tL)
式8:Pactual=OBC/(NC×tL)
[00109]本実施例においては、1本のカラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したモノクローナルIgG2抗体(CHOフィードストック中濃度約2.2mg/mL)及び市販のバイオセンサーを用いる分画の定量によって、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1
式2:mL=C0×(vL−v0)
式3:OBC=(mL−mFT)/vCol
式4:tL=OBC×RT/C0
式5:tC=tL×NL+tR
式6:P=OBC/tC
式7:NC=切り上げ値(tC/tL)
式8:Pactual=OBC/(NC×tL)
[00132]本実施例においては、1本のカラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したIgG2モノクローナル抗体(濃度2mg/mL)及び破過曲線の積分の代わりに溶出液の定量(溶出液は分画に採取し、希釈し、オフライン検出器を用いて測定する)によって、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1:tL=OBC×RT/C0
式2:tC=tL×NL+tR
式3:P=OBC/tC
式4:NC=切り上げ値(tC/tL)
式5:Pactual=OBC/(NC×tL)
[00149]本実施例においては、1本のカラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したモノクローナル抗体(濃度2mg/mL)及び市販のバイオセンサーを用いる分別による溶出液の定量によって、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1:tL=OBC×RT/C0
式2:tC=tL×NL+tR
式3:P=OBC/tC
式4:NC=切り上げ値(tC/tL)
式5:Pactual=OBC/(NC×tL)
[00166]本実施例においては、互いにデイジーチェーン接続した2本及び3本のカラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したIgG2モノクローナル抗体(濃度2mg/mL)を用いた、市販のバイオセンサーを用いる分別による溶出液の定量によって、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1:tL=OBC×RT/C0
式2:tC=tL×NL+tR
式3:P=OBC/tC
式4:NC=切り上げ値(tC/tL)
式5:Pactual=OBC/(NC×tL)
[00182]本実施例においては、互いにデイジーチェーン接続した2本及び3本のカラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したIgG2モノクローナル抗体(濃度2mg/mL)及び破過曲線の積分の代わりに溶出液の定量(オフライン検出器を用いる)によって、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1:tL=OBC×RT/C0
式2:tC=tL×NL+tR
式3:P=OBC/tC
式4:NC=切り上げ値(tC/tL)
式5:Pactual=OBC/(NC×tL)
[00198]本実施例においては、2本及び3本のデイジーチェーン接続カラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したIgG2モノクローナル抗体(濃度2mg/mL)及び1つのインラインUV検出器を用いた、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1
式2:mL=C0×(vL−v0)
式3:OBC=(mL−mFT)/vCol
式4:tL=OBC×RT/C0
式5:tC=tL×NL+tR
式6:P=OBC/tC
式7:NC=切り上げ値(tC/tL)
式8:Pactual=OBC/(NC×tL)
[00220]本実施例においては、2本及び3本のデイジーチェーン接続カラム(マブセレクトシュアプレパックトハイトラップカラム(0.962mL))を用い、精製したIgG2モノクローナル抗体(CHOフィードストック中濃度約2.2mg/mL)及び市販のバイオセンサーを用いる分別によって、本発明の実施形態に従ってOBCを決定するステップを説明する。
式1
式2:mL=C0×(vL−v0)
式3:OBC=(mL−mFT)/vCol
式4:tL=OBC×RT/C0
式5:tC=tL×NL+tR
式6:P=OBC/tC
式7:NC=切り上げ値(tC/tL)
式8:Pactual=OBC/(NC×tL)
[00242]本実施例においては、本発明の実施形態を用いて捕捉効率を正確に予測するステップを説明する。
Claims (6)
- マルチカラムクロマトグラフィー(MCC)プロセスの処理結合容量を最適化する方法であって、
(a)標的生成物を第1の滞留時間及び/又は第1の流量でカラムにロードするステップと、
(b)前記標的生成物を第2の滞留時間及び/又は第2の流量で前記カラムにロードするステップであって、前記第1の滞留時間及び/又は前記第1の流量が、前記第2の滞留時間及び/又は前記第2の流量と異なる、ステップと、
(c)前記第1の滞留時間及び/又は前記第1の流量並びに前記第2の滞留時間及び/又は前記第2の流量について破過曲線を生成するステップと、
(d)前記MCCプロセスについて最適な処理結合容量を決定するステップと
を含む方法。 - 前記第2の滞留時間が前記第1の滞留時間の約2倍であり、及び/又は前記第2の流量が前記第1の流量の約半分である、請求項1に記載の方法。
- (b’)前記標的生成物を第3の滞留時間及び/又は第3の流量で前記カラムにロードするステップであって、前記第3の滞留時間及び/又は前記第3の流量が、前記第1及び前記第2の滞留時間並びに/又は前記第1及び前記第2の流量と異なる、ステップと、
(c’)前記第1の滞留時間及び/又は前記第1の流量、前記第2の滞留時間及び/又は前記第2の流量、並びに前記第3の滞留時間及び/又は前記第3の流量について破過曲線を生成するステップと、
(d)前記MCCについて最適な処理結合容量を決定するステップと
をさらに含む、請求項1又は2に記載の方法。 - 前記第3の滞留時間が前記第1の滞留時間の約3倍であり、及び/又は前記第3の流量が前記第1の流量の約3分の1である、請求項3に記載の方法。
- 前記MCCプロセスがN本のカラムを含み、前記第1の滞留時間及び/又は前記第1の流量が単一のカラムについて決定され、前記第2の滞留時間及び/又は前記第2の流量が前記N本のカラムにわたる前記滞留時間及び/又は前記流量と等しい、請求項1に記載の方法。
- マルチカラムクロマトグラフィー(MCC)プロセスについて処理結合容量を最適化する方法であって、
(a)少なくとも2本の同じサイズのカラムを直列に接続するステップと、
(b)標的生成物を一定の流量で前記カラムにロードして前記カラムを通る所定の滞留時間を提供するステップと、
(c)前記MCCプロセスについて最適な処理結合容量を決定するステップと
を含む方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/797,785 | 2015-07-13 | ||
US14/797,785 US11835501B2 (en) | 2015-07-13 | 2015-07-13 | Optimizing operating binding capacity for a multiple column chromatography process |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017049227A true JP2017049227A (ja) | 2017-03-09 |
JP6349571B2 JP6349571B2 (ja) | 2018-07-04 |
Family
ID=56080242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016097202A Active JP6349571B2 (ja) | 2015-07-13 | 2016-05-13 | マルチカラムクロマトグラフィープロセスのための処理結合容量の最適化 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11835501B2 (ja) |
EP (2) | EP4411371A2 (ja) |
JP (1) | JP6349571B2 (ja) |
KR (1) | KR101987400B1 (ja) |
CN (1) | CN106353440B (ja) |
AU (2) | AU2016203494A1 (ja) |
CA (1) | CA2930594C (ja) |
SG (1) | SG10201603826UA (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020016545A (ja) * | 2018-07-25 | 2020-01-30 | 株式会社日立製作所 | 精製装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11835501B2 (en) | 2015-07-13 | 2023-12-05 | Sartorius Stedim Chromatography Systems Ltd. | Optimizing operating binding capacity for a multiple column chromatography process |
EP3448928B1 (en) | 2016-04-29 | 2023-02-22 | Nanopareil, LLC | Hybrid membrane comprising crosslinked cellulose |
WO2018111832A1 (en) | 2016-12-12 | 2018-06-21 | Nanopareil, Llc | Spinnerets and spinneret arrays for electrospinning and electrospinning machines |
GB201710130D0 (en) * | 2017-06-26 | 2017-08-09 | Ge Healthcare Bioprocess R & D Ab | A Method of seperation |
CN108169503B (zh) * | 2018-01-12 | 2024-02-02 | 河北工业大学 | 基于微流控芯片的芳香族挥发性气体快速检测系统 |
CN112740030B (zh) * | 2018-09-21 | 2024-02-13 | 株式会社日立高新技术 | 具有液相色谱仪的分析装置以及液相色谱仪的分析方法 |
WO2020258706A1 (zh) * | 2019-06-28 | 2020-12-30 | 信达生物制药(苏州)有限公司 | 组合式层析装置、无缝连接层析方法和生物制剂的纯化方法 |
EP3943931B1 (en) * | 2020-07-24 | 2024-09-04 | Tata Consultancy Services Limited | Method, system and computer program product for determining multi-column chromatography process configuration |
CN112451996B (zh) * | 2020-11-10 | 2021-09-24 | 浙江大学 | 一种多柱连续流层析捕获蛋白的优化方法 |
KR20230060732A (ko) | 2021-10-28 | 2023-05-08 | 주식회사 제이케이테크 | 빔 프로젝터용 스크린 |
CN114832439A (zh) * | 2022-06-07 | 2022-08-02 | 杭州奕安济世生物药业有限公司 | 一种自动控制连续层析上样载量的方法和层析方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999034220A2 (en) * | 1997-12-31 | 1999-07-08 | Genentech, Inc. | Real-time monitoring of an analyte by chromatography using an on-line assay |
WO2010151214A1 (en) * | 2009-06-26 | 2010-12-29 | Ge Healthcare Bio-Sciences Ab | A method in a chromatography system |
WO2012057676A1 (en) * | 2010-10-27 | 2012-05-03 | Ge Healthcare Bio-Sciences Ab | Chromatography system with guard columns |
JP2014202749A (ja) * | 2013-04-08 | 2014-10-27 | クロマコン アーゲー | クロマトグラフィー精製法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4802981A (en) | 1987-11-04 | 1989-02-07 | Oros Systems Limited | Automatic chromatography apparatus |
DE19711083C2 (de) | 1997-03-18 | 1999-04-29 | Sartorius Gmbh | Vorrichtung und Verfahren für die adsorptive Stofftrennung mit Adsorptionsmembranen |
US6153438A (en) | 1997-04-30 | 2000-11-28 | Hewlett-Packard Company | Retention factor database |
DE10128546A1 (de) | 2001-06-13 | 2002-12-19 | Merck Patent Gmbh | Verfahren und Vorrichtung zur automatischen, optimierten Durchführung chromatographischer Analysen |
US6494078B1 (en) | 2001-06-25 | 2002-12-17 | Agilent Technologies, Inc. | Retention-time locked comprehensive multidimensional gas chromatography |
DE10149256A1 (de) | 2001-10-05 | 2003-04-17 | Merck Patent Gmbh | Alkalistabile hydrophile Sorbentien für die Ionenaustauschchromatographie |
US6691053B2 (en) | 2001-11-30 | 2004-02-10 | Agilent Technologies, Inc. | Method of matching retention times among multiple chromatographic system |
WO2008028974A1 (en) | 2006-09-08 | 2008-03-13 | Novo Nordisk A/S | Methods of optimizing chromatographic separation of polypeptides |
KR101546543B1 (ko) | 2007-05-25 | 2015-08-25 | 메르크 파텐트 게엠베하 | 양이온 교환 크로마토그래피용 그래프트 공중합체 |
EP2339339A4 (en) | 2008-09-25 | 2016-10-12 | Jsr Corp | CHARGE FOR AFFINITY CHROMATOGRAPHY |
US20110232373A1 (en) | 2008-12-04 | 2011-09-29 | Vrije Universiteit Brussel | Chromatographic separation device with variable length and a method for its use |
US9527010B2 (en) | 2009-09-25 | 2016-12-27 | Ge Healthcare Bio-Sciences Corp. | Separation system and method |
US20120166098A1 (en) | 2010-01-26 | 2012-06-28 | Mccreary Dennis | Methods for Optimizing Gradients in Liquid Chromatography Systems |
WO2011147974A1 (en) | 2010-05-28 | 2011-12-01 | Dsm Ip Assets B.V. | Retention time locking for multi-dimensional gas chromatography |
FR2967082B1 (fr) | 2010-11-09 | 2016-12-09 | Nicolas Sebastien Fauquet | Procede de separation par chromatographie continue a haut debit |
US8802448B2 (en) | 2011-07-27 | 2014-08-12 | Pall Corporation | Mixed mode ligands |
KR20140086975A (ko) | 2011-10-28 | 2014-07-08 | 에이지씨 에스아이테크 가부시키가이샤 | 실리카 구상체 및 어피니티 담체 |
EP2656892A1 (en) | 2012-04-23 | 2013-10-30 | Merck Patent GmbH | Chromatography method |
CN102909105A (zh) | 2012-10-31 | 2013-02-06 | 江南大学 | 一种脱除木糖发酵液中盐分的方法及装置 |
US11835501B2 (en) | 2015-07-13 | 2023-12-05 | Sartorius Stedim Chromatography Systems Ltd. | Optimizing operating binding capacity for a multiple column chromatography process |
-
2015
- 2015-07-13 US US14/797,785 patent/US11835501B2/en active Active
-
2016
- 2016-05-13 EP EP24175740.0A patent/EP4411371A2/en active Pending
- 2016-05-13 JP JP2016097202A patent/JP6349571B2/ja active Active
- 2016-05-13 SG SG10201603826UA patent/SG10201603826UA/en unknown
- 2016-05-13 EP EP16169704.0A patent/EP3118620B1/en active Active
- 2016-05-20 CA CA2930594A patent/CA2930594C/en active Active
- 2016-05-27 AU AU2016203494A patent/AU2016203494A1/en not_active Abandoned
- 2016-05-31 CN CN201610642206.3A patent/CN106353440B/zh active Active
- 2016-05-31 KR KR1020160067592A patent/KR101987400B1/ko active IP Right Grant
-
2021
- 2021-09-23 AU AU2021236507A patent/AU2021236507B2/en active Active
-
2023
- 2023-11-10 US US18/506,451 patent/US20240085388A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999034220A2 (en) * | 1997-12-31 | 1999-07-08 | Genentech, Inc. | Real-time monitoring of an analyte by chromatography using an on-line assay |
WO2010151214A1 (en) * | 2009-06-26 | 2010-12-29 | Ge Healthcare Bio-Sciences Ab | A method in a chromatography system |
WO2012057676A1 (en) * | 2010-10-27 | 2012-05-03 | Ge Healthcare Bio-Sciences Ab | Chromatography system with guard columns |
JP2014202749A (ja) * | 2013-04-08 | 2014-10-27 | クロマコン アーゲー | クロマトグラフィー精製法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020016545A (ja) * | 2018-07-25 | 2020-01-30 | 株式会社日立製作所 | 精製装置 |
JP7063759B2 (ja) | 2018-07-25 | 2022-05-09 | 株式会社日立プラントサービス | 精製装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6349571B2 (ja) | 2018-07-04 |
EP3118620B1 (en) | 2024-07-10 |
CA2930594A1 (en) | 2017-01-13 |
AU2021236507A1 (en) | 2021-10-28 |
CN106353440A (zh) | 2017-01-25 |
EP4411371A2 (en) | 2024-08-07 |
CN106353440B (zh) | 2019-05-07 |
SG10201603826UA (en) | 2017-02-27 |
KR20170008148A (ko) | 2017-01-23 |
US11835501B2 (en) | 2023-12-05 |
CA2930594C (en) | 2019-09-03 |
KR101987400B1 (ko) | 2019-06-10 |
AU2021236507B2 (en) | 2023-04-13 |
US20240085388A1 (en) | 2024-03-14 |
US20170016864A1 (en) | 2017-01-19 |
EP3118620A1 (en) | 2017-01-18 |
AU2016203494A1 (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6349571B2 (ja) | マルチカラムクロマトグラフィープロセスのための処理結合容量の最適化 | |
Baur et al. | Optimal model‐based design of the twin‐column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture | |
Ng et al. | Design of high productivity sequential multi-column chromatography for antibody capture | |
Bergander et al. | High‐throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin | |
EP2446257B1 (en) | A method in a chromatography system | |
Bhambure et al. | Chromatography process development in the quality by design paradigm I: Establishing a high‐throughput process development platform as a tool for estimating “characterization space” for an ion exchange chromatography step | |
Gjoka et al. | A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes | |
Grom et al. | Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling | |
Pirrung et al. | Chromatographic parameter determination for complex biological feedstocks | |
Sejergaard et al. | Model‐based process development for the purification of a modified human growth hormone using multimodal chromatography | |
Saleh et al. | Cross‐scale quality assessment of a mechanistic cation exchange chromatography model | |
Hahn et al. | Calibration‐free inverse modeling of ion‐exchange chromatography in industrial antibody purification | |
Hilbold et al. | Evaluation of several Protein A resins for application to multicolumn chromatography for the rapid purification of fed‐batch bioreactors | |
Keller et al. | Understanding operational system differences for transfer of miniaturized chromatography column data using simulations | |
Hall | Size exclusion chromatography (SEC) | |
Shekhawat et al. | Design of experiments applications in bioprocessing: Chromatography process development using split design of experiments | |
Tscheliessnig et al. | High-performance monolith affinity chromatography for fast quantitation of immunoglobulin G | |
Hahn et al. | Mechanistic modeling, simulation, and optimization of mixed‐mode chromatography for an antibody polishing step | |
Ghosh et al. | Zonal rate model for axial and radial flow membrane chromatography. Part I: Knowledge transfer across operating conditions and scales | |
Łącki | Introduction to preparative protein chromatography | |
Kozorog et al. | Model-based process optimization for mAb chromatography | |
Degerman et al. | Determining critical process parameters and process robustness in preparative chromatography–A model‐based approach | |
Ghosh et al. | Zonal rate model for axial and radial flow membrane chromatography, part II: Model‐based scale‐up | |
Chan et al. | A systematic approach for modeling chromatographic processes—Application to protein purification | |
Brenac Brochier et al. | High throughput development of a non protein A monoclonal antibody purification process using mini‐columns and bio‐layer interferometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180510 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6349571 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |