JP2017046447A - 太陽電池劣化異常判定システム - Google Patents

太陽電池劣化異常判定システム Download PDF

Info

Publication number
JP2017046447A
JP2017046447A JP2015166895A JP2015166895A JP2017046447A JP 2017046447 A JP2017046447 A JP 2017046447A JP 2015166895 A JP2015166895 A JP 2015166895A JP 2015166895 A JP2015166895 A JP 2015166895A JP 2017046447 A JP2017046447 A JP 2017046447A
Authority
JP
Japan
Prior art keywords
solar cell
value
cell string
output
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015166895A
Other languages
English (en)
Other versions
JP6675775B2 (ja
Inventor
健司 有松
Kenji Arimatsu
健司 有松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2015166895A priority Critical patent/JP6675775B2/ja
Publication of JP2017046447A publication Critical patent/JP2017046447A/ja
Application granted granted Critical
Publication of JP6675775B2 publication Critical patent/JP6675775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】簡易な構成で太陽光発電システムの劣化異常の発生を判定する。
【解決手段】太陽光発電システム100は、直列に接続された複数の太陽電池モジュールを含む太陽電池ストリング1と、太陽電池ストリング1から出力された直流電力を交流電力に変換し、最大電力点追従制御を行うパワーコンディショナ3と、を含む。計算機5は、太陽電池ストリング1の出力電流値と出力電圧値とが決められた基準範囲内にあるか否かを判別した結果に基づいて、太陽電池ストリング1に異常が発生しているか否かを判定し、太陽電池ストリング1に異常が発生していると判定すると、太陽電池ストリング1に異常が発生している旨を出力する。
【選択図】図1

Description

本発明は、太陽電池劣化異常判定システムに関する。
メガソーラーといった、多数の太陽電池モジュールを含む大規模な太陽光発電システムの普及に伴って、太陽電池モジュールの異常を判定する必要性が高まっている。
異常を判定する方法のひとつとして、太陽電池モジュールに接続されている端子箱、接続箱、集電箱等において電圧、電流を計測し、初期状態からの計測値の変化に基づいて発電量に変化があるか否かを判定する方法がある。例えば、特許文献1の異常を判定する手法では、計測した電流値と電圧値とを標準日照条件の下での値に補正し、補正した電流値と電圧値から電流電圧特性の勾配を求める。そして、求めた電流電圧特性の勾配に基づいて発電量が初期状態から減少したことを検出した場合に、太陽電池ストリングに異常な太陽電池モジュールが含まれると判定する。
また、異常を判定する他の方法として、太陽電池モジュールで発電された直流電力を交流電力に変換する電力変換器において発電量を求め、発電量の変化に基づいて異常が発生しているか否かを判定する方法がある。
特開2012−244852号公報
メガソーラー等の大規模な太陽光発電システムでは、複数の太陽電池モジュールが連結された太陽電池ストリングが設置されている敷地面積が広大である。このため、周囲の樹木等の陰、雲等により全ての太陽電池モジュールに同程度の日差しが当たるとは限らない。よって、太陽電池モジュールに異常が発生していないにもかかわらず、太陽電池ストリングの発電量の減少が検出される場合もある。この場合、異常が発生していない太陽電池ストリングに異常が発生しているといった誤判定をしてしまうことがある。
このように、発電量の差だけに基づく異常発生の判定の確度は高くないことから、日射量、太陽電池モジュールの温度に基づいて、異常発生の判定の確度を向上させることも行われている。この場合、全ての太陽電池モジュールに日射量センサ、温度センサを設けることが理想的だが、コストの面から実際の運用においては難しい。全ての太陽電池モジュールの日射量、温度の正確な値を取得することが難しいことから、日射量、太陽電池モジュールの温度を使用することが、異常発生の判定の確度の向上に必ずしも有効であるとはいえない。
本発明は、このような実情に鑑みなされたものであり、簡易な構成で太陽光発電システムの劣化異常の発生を判定することを目的とする。
本発明の第1の観点に係る太陽電池劣化異常判定システムは、
直列に接続された複数の太陽電池モジュールを含む太陽電池ストリングと、前記太陽電池ストリングから出力された直流電力を交流電力に変換し、最大電力点追従制御を行うパワーコンディショナと、を含む太陽光発電システムの劣化異常を判定するシステムであって、
前記太陽電池ストリングの出力電流値と出力電圧値とが決められた基準範囲内にあるか否かを判別した結果に基づいて、前記太陽電池ストリングに劣化異常が発生しているか否かを判定する判定部と、
前記判定部が前記太陽電池ストリングに劣化異常が発生していると判定すると、前記太陽電池ストリングに劣化異常が発生している旨を出力する出力部と、
を備えることを特徴とする。
前記判定部は、一定期間に取得された複数の前記出力電流値の重心と一定期間に取得された複数の前記出力電圧値の重心と、が前記基準範囲内にあるか否かを判別してもよい。
前記判定部は、所定の期間に取得された複数の前記出力電流値、複数の前記出力電圧値のうち、前記基準範囲外にある計測値の数が閾値を超えているか否かを判別してもよい。
前記基準範囲は、所望の電力量を得ることができる電流値と電圧値のそれぞれの上限値及び下限値により規定されてもよい。
前記太陽電池ストリングと前記パワーコンディショナとの間に設けられ、前記太陽電池ストリングの前記出力電流値と前記出力電圧値を計測する計測部、
をさらに備え、
前記判定部は、前記計測部により計測された前記出力電流値と前記出力電圧値を使用して、前記太陽電池ストリングに劣化異常が発生しているか否かを判定してもよい。
前記判定部は、前記パワーコンディショナにより計測された前記出力電流値と前記出力電圧値を使用して、前記太陽電池ストリングに劣化異常が発生しているか否かを判定してもよい。
本発明によれば、簡易な構成で太陽光発電システムの劣化異常の発生を判定することができる。
太陽光発電システムの構成を示す図である。 計測器及び計算機のハードウェア構成を示す図である。 異常が発生している太陽電池ストリングの電流電圧特性を示す図である。 異常が発生している太陽電池ストリングの電流値、電圧値の分布を示す図である。 実施例1の異常判定処理のフローチャートである。 実施例2の異常判定処理のフローチャートである。 太陽光発電システムの他の構成を示す図である。 異常発生の通知の態様の一例を示す図である。 計測値の分布の表示態様の例を示す図である。 基準範囲を分割して異常判定を行う手法を説明するための図である。 正常な太陽電池ストリングにおける天気毎の電流電圧特性を示す図である。 異常な太陽電池ストリングにおける天気毎の電流電圧特性を示す図である。 正常な太陽電池ストリングと異常な太陽電池ストリングの比較のための統計データを示す図である。
発明の実施の形態を図面を参照して説明する。図1に、太陽電池劣化異常判定システムを備える太陽光発電システム100の構成を示す。太陽光発電システム100は、太陽電池モジュールを含む太陽光発電に係る構成と、太陽電池モジュールに異常が発生しているか否かを判定する異常判定に係る構成とを備える。なお、以下の説明において、太陽電池モジュールに発生している異常とは、太陽電池の劣化に起因する異常であるものとする。
太陽光発電システム100は、太陽光発電に係る構成として、太陽電池アレイを構成する4列の太陽電池ストリング1a〜1d(以下、総称して太陽電池ストリング1と呼ぶ場合がある)と、集電箱2と、パワーコンディショナ3と、を含む。さらに、太陽光発電システム100は、異常判定に係る構成として、計測器4と、計算機5と、を含む。
太陽電池ストリング1a〜1dはそれぞれ複数の太陽電池モジュール11と、複数の太陽電池モジュール11を直列に接続する絶縁被膜に覆われた導線12と、を有する。太陽電池モジュール11は、光電変換部にアモルファスシリコン、多結晶シリコン、結晶シリコン等を用いた従来の太陽電池モジュール(太陽電池パネル)を含む。
集電箱2は、太陽電池ストリング1a〜1dとパワーコンディショナ3との間に設置されている。なお、図1に示す、集電箱2とパワーコンディショナ3との間に設けられている計測器4は、集電箱2とパワーコンディショナ3との電気的な接続を妨げるものではない。
集電箱2内には太陽電池ストリング1a〜1dに対応する4台の開閉器6a〜6dが格納されている。太陽電池ストリング1a〜1dの陽極端121と陰極端122とはそれぞれ対応する開閉器6a〜6dに接続されている。開閉器6a〜6dは、接続されている太陽電池ストリング1a〜1dとパワーコンディショナ3とを電気的に接続あるいは遮断する。開閉器6a〜6dが閉状態のとき、太陽電池ストリング1a〜1dが出力した直流電力は開閉器6a〜6dを介してパワーコンディショナ3に供給される。開閉器6a〜6dは、作業者のレバー操作により、開状態あるいは閉状態に切り替えられる。例えば、太陽電池ストリング1aに異常が発生した場合、作業者は、開閉器6aを開放して、太陽電池ストリング1aを他の太陽電池ストリング1b〜1dから切り離す。
さらに、集電箱2内には、太陽電池ストリング1a〜1dに対応する4つの逆流防止用ダイオード7a〜7dが格納されている。逆流防止用ダイオード7a〜7dのアノードは、開閉器6a〜6dを介して、対応する太陽電池ストリング1a〜1dの陽極端121に接続されている。逆流防止用ダイオード7a〜7dは、太陽電池ストリング1a〜1dに逆向きの電流が流れることを防止する。
集電箱2内で、太陽電池ストリング1a〜1dの各陽極端121に接続された逆流防止用ダイオード7a〜7dのカソードは集約され、導線8を介して、パワーコンディショナ3に接続されている。また、集電箱2内で、太陽電池ストリング1a〜1dの各陰極端122は集約され、導線9を介して、パワーコンディショナ3に接続されている。
パワーコンディショナ3は、導線8及び導線9、計測器4を介して集電箱2に接続されている。パワーコンディショナ3は、太陽電池ストリング1a〜1dから出力された直流電力を商用電源周波数の交流電力に変換するためのインバータ装置である。パワーコンディショナ3は変換した交流電力を商用電力系統に送り込む。また、パワーコンディショナ3は、太陽電池ストリング1の出力を最大化できるように、最大電力点追従(Maximum Power Point Tracking :MPPT)制御を行う機能を備える。なお、以下の説明では、電圧制御型のパワーコンディショナを想定して説明する。
パワーコンディショナ3には、開閉器6a〜6dのうち閉状態の開閉器に対応する太陽電池ストリング1a〜1dが出力した直流電力が供給される。このため、太陽電池ストリング1a〜1dのうちパワーコンディショナ3に直流電力を供給している太陽電池ストリングだけが、上述の電力変換、最大電力点追従制御の対象となる。
次に、太陽光発電システム100の異常判定に係る構成を説明する。計測器4は集電箱2とパワーコンディショナ3との間に設けられ、太陽電池ストリング1の出力電流、出力電圧を計測する機器である。図2に示すように、計測器4は、電流計測器41、電圧計測器42、通信部43、制御部44を含む。電流計測器41は導線9に直列に接続されている。電圧計測器42は導線8と導線9に接続されている。電流計測器41は、制御部44の制御に従って、所定の時間間隔で、太陽電池ストリング1a〜1dを流れる総電流を計測する。所定の時間間隔は、例えば、1秒間隔である。電圧計測器42は、制御部44の制御に従って、電流計測器41と同期して太陽電池ストリング1a〜1dの出力電圧を計測する。このように、電流計測器41、電圧計測器42は、太陽電池ストリング1の出力電流、出力電圧を計測する計測部として機能する。
通信部43は、専用線10を介して計算機5の通信部51に接続されている。通信部43は、制御部44の制御に従って、所定の時間間隔で、例えば、電流計測器41、電圧計測器42の計測間隔と同じ間隔で、電流計測器41が計測した電流値、電圧計測器42が計測した電圧値を計算機5に送信する。
制御部44は、プロセッサ、ワークメモリ、RTC(Real Time Clock)、タイマーを含み、電流計測器41、電圧計測器42により計測された太陽電池ストリング1a〜1dの出力電流値、出力電圧値を、通信部43を介して計算機5に送信する。
計算機5は、計測器4が計測した太陽電池ストリング1a〜1dの出力電流値、出力電圧値に基づいて、太陽電池ストリング1a〜1dに異常が発生しているか否かを判定する。計算機5は、例えば、コンピュータからなり、通信部51、記憶部52、入出力部53、制御部54を備える。計算機5の各部は、バス55を介して相互に接続されている。
通信部51は、専用線10を介して計測器4に接続されている。通信部51は、計測器4から受信した太陽電池ストリング1a〜1dの出力電流値、出力電圧値を制御部54に出力する。以下、計測器4により計測された出力電流値、出力電圧値のペアを計測値と呼ぶ場合がある。
記憶部52は、判定プログラム521、計測値522、判定値523を含む。判定プログラム521は、制御部54が後述する異常判定処理のため実行するプログラムである。計測値522には、計測器4から供給された計測値が順次格納(蓄積)される。判定値523には、後述の異常判定処理に使用される各種判定値が格納される。判定値523に格納される値については後述する。
入出力部53は、入力装置であるキーボード531、出力装置であるディスプレイ532を含む。入出力部53は、制御部54の制御に従って、太陽電池ストリング1の異常発生を示す画像をディスプレイ532に表示する。即ち、入出力部53は、太陽電池ストリング1に異常が発生している旨を出力する出力部として機能する。また、入出力部53は、ユーザがキーボード531を介して入力したテキスト等を示す情報信号を制御部54に出力する。
制御部54は、プロセッサ、ワークメモリ、RTC(Real Time Clock)、タイマーを含み、計算機5の各部を制御する。制御部54は、判定プログラム521を実行することで、計測器4から供給された計測値に基づいて、太陽電池ストリング1に異常が発生しているか否かを判定する判定部として機能する。なお、閉状態の開閉器6a〜6dに対応する太陽電池ストリング1のみが電流及び電圧の計測、異常判定の対象となる。
以下、太陽電池ストリング1に異常が発生しているか否かを判定する劣化異常判定システムについて具体的に説明する。上述したように、パワーコンディショナ3は、MPPT制御機能を備えるため、太陽電池ストリング1に含まれる太陽電池モジュール11の発電電力を最大化させる動作電圧を探索し、太陽電池モジュール11の電気的動作点を調節する。ここで、発電量は、電圧×電流で表される。MPPT制御により、太陽電池モジュール11が正常かつ発電している間は、その発電量は、規定の発電能力から予測される値から大幅に外れることはない。言い換えると、太陽電池ストリング1の出力電流と出力電圧の一方、あるいは両方が極端に小さくなることはない。
一方、太陽電池ストリング1に含まれる太陽電池モジュール11に異常がある場合、太陽電池モジュール11は、規定の発電能力を有さず、充分な電力を発電することができない。この場合、パワーコンディショナ3がMPPT制御を行ったとしても、太陽電池ストリング1の出力電流と出力電圧値は規定の発電能力から予測される範囲から外れてしまう。
図3に、太陽電池ストリング1の所定期間の出力電流、出力電圧に基づいて作成されたI−V曲線(電流−電圧曲線)を示す。なお、I−V曲線は、太陽電池の性能を表すのに使用されるものであり、太陽電池は、I−V曲線上の任意の点でのみ動作させることができる。Pmax1〜Pmax4−2は、電圧と電流の積が最大になる点、つまり、最も大きな電力が取り出せる点(最大電力点)である。
特性1は、正常な太陽電池ストリング1のI−V曲線の例である。ここで、正常とは、太陽電池ストリング1が劣化していない状態、例えば、初期状態、であり、規定の発電能力を有することをいう。特性1の最大電力点Pmax1は、4つのI−V曲線のうち最も上に位置している。即ち、特性1の太陽電池ストリング1が出力する最大電力が、特性2〜特性4の太陽電池ストリング1に比べ最も大きいことを示している。
特性2〜特性4は、異常な太陽電池ストリング1のI−V曲線の例である。特性2、特性3は、太陽電池モジュール11の経年劣化等のために、充分な発電能力を有さない太陽電池ストリング1の電流電圧特性を示す。特性2は、正常時に比べ、太陽電池ストリング1の出力電圧と出力電流が共に半減している。特性3は、太陽電池ストリング1の出力電流のみが正常時の30%程度まで減少している。特性4は、太陽電池モジュール11の一部の故障等により、充分な発電能力を有さない太陽電池ストリング1の電流電圧特性を示す。特性4は、正常時に比べ太陽電池ストリング1の出力電流が減少しており、I−V曲線が2段形状であるため最大電力点が二つある。特性2〜特性4のいずれもI−V曲線が、特性1のI−V曲線に比べ、原点方向(紙面左下の方向)へシフトしている。
図4に、特性1〜特性4のI−V曲線の基となった計測値の分布のイメージをI−V曲線とともに図示する。特性2〜特性4の計測値の分布は、特性1に比べ、原点方向(紙面左下の方向)へシフトしている。劣化等により発電能力が低下することで、太陽電池ストリング1の出力電流と出力電圧の計測値の分布は、正常時の計測値の分布から外れてしまうことが想定される。
以上のことを踏まえ、次のような手法で、太陽電池ストリング1に異常が発生しているか否かを判定する。規定の発電能力から予測される計測値のあるべき範囲(基準範囲)を予め決めておき、計測値(出力電流値、出力電圧値)が基準範囲内にあるのか否かを判別する。計測値が基準範囲内にない場合、太陽電池ストリング1に異常が発生していると判定する。
基準範囲は以下のように決定した。ここでは、基本的な太陽電池モジュールの基準条件(Standard Test Conditions :STC)を前提として、正常な太陽電池ストリング1の規定の発電能力から想定される出力電力を得ることができるような、出力電流値、出力電圧値の基準範囲を規定する。具体的には、公称最大出力動作電圧Vpmax、公称開放電圧Voc、公称短絡電流Iscの3つの値を用いて、出力電流値が取り得る範囲(上限値及び下限値)、出力電圧値が取り得る範囲(上限値及び下限値)を決定した。公称開放電圧Vocとは、基準条件STCにおいて太陽電池ストリング1(1a〜1d)に電流が流れていないときの電圧をいう。公称短絡電流Iscとは、基準条件STCにおいて太陽電池ストリング1(1a〜1d)の電圧が0Vのときの電流をいう。
出力電流値、出力電圧値の下限値と上限値を以下の式に示す値とした。
(1)出力電流値の下限値I1=公称最大出力動作電流Ipmax×k1
(2)出力電流値の上限値I2=公称短絡電流値Isc
(3)出力電圧値の下限値V1=公称最大出力動作電圧値Vpmax−(公称開放電圧値Voc×k2−公称最大出力動作電圧値Vpmax)
(4)出力電圧値の上限値V2=公称開放電圧値Voc×k2
k1、k2は、計算により求められた係数である。例えば、k1は0.2(20%)、k2は、1.2(120%)である。なお、k1、k2は、必ずしも計算により求める必要はなく、例えば、コンピュータシミュレーションにより求められてもよい。
公称最大出力動作電圧値Vpmax、公称開放電圧値Voc、公称短絡電流値Iscは、次のように求める。以下の説明においては、太陽電池ストリング1a〜1dがすべてパワーコンディショナ3に接続されていることを想定する。
まず、太陽電池モジュール11の仕様に基づき、太陽電池モジュール11の1個あたりの最大出力動作電圧値、開放電圧値を求め、それぞれの値に1本の太陽電池ストリング1a〜1dに直列接続されている太陽電池モジュール11の個数を乗じて、4本の太陽電池ストリング1a〜1dについての公称最大出力動作電圧値Vpmax、公称開放電圧値Vocを求める。また、太陽電池モジュール11の仕様に基づき、太陽電池モジュール11の1個あたりの短絡電流値を求め、その値に太陽電池ストリング1の本数(4本)を乗じて、4本の太陽電池ストリング1a〜1dについての公称短絡電流値Iscを求める。求めた公称最大出力動作電圧値Vpmax、公称開放電圧値Voc、公称短絡電流値Iscを使用して、上述の式(1)〜(4)から出力電流値の下限値I1及び上限値I2、出力電圧値の下限値V1及び上限値V2を求める。
このようにして求められた出力電流値の下限値I1及び上限値I2、出力電圧値の下限値V1及び上限値V2は、異常判定処理の開始に先立って、計算機5の判定値523に格納される。
[実施例1]
次に、図5を参照して、計算機5の制御部54が異常判定プログラム521を実行して行う異常判定処理について説明する。本実施例1では、制御部54は、計測値の重心を使用して、計測値が上記の基準範囲内にあるか否かを判別する。ここで、計測値の重心は、一定期間に取得された計測値の平均値(算術平均)をいう。制御部54は、計測値の重心が基準範囲外にあることを検出した回数が決められた閾値を超えた場合、異常が発生していると判別する。
なお、閾値は、記憶部52に予め格納されている。また、記憶部52には基準範囲外の重心の検出回数を表すカウンタ値を記憶する領域が確保されているものとする。計測器4は、1秒毎に太陽電池ストリング1a〜1dの電圧及び電流の計測し、計測値を計算機5に送信し続けているものとする。
図5に示すように、制御部54は、計測器4から計測値(出力電流値、出力電圧値)を受信したか否かを判定する(ステップS1)。制御部54は、ステップS1で、計測器4から計測値を受信していないと判定すると(ステップS1;Nо)、再び計測値を待ち受ける。一方、制御部54は、計測器4から計測値を受信した場合(ステップS1;Yes)、計測値を受信した年月日及び時刻(計測日時)とともに計測値522に記憶する(ステップS2)。
制御部54は、現在時刻が毎正時であると判別すると(ステップS3;Yes)、計測値522に格納されている計測値から、過去60分間の計測値を抽出し(ステップS4)、抽出した計測値をワークメモリに格納する。制御部54は、抽出した60分間の計測値から、1分毎の計測値の平均値をそれぞれ算出し(ステップS5)、算出した平均値を要素番号(当該平均値が何番目のデータであるかを示す番号)とともにワークメモリに格納する。ここでは、60分間に取得された計測値から、毎分の計測値(出力電流値、出力電圧値)の平均値をそれぞれ算出する。従って、1分間(60秒間)に取得された電流値の平均値(μ1)と1分間(60秒間)に取得された電圧値の平均値(μ2)のペアが、60件求められる。
制御部54は、処理データの件数をカウントするためのインデックスNに“1”をセットする(ステップS6)。制御部54は、ワークメモリに格納したN件目の平均値が基準範囲内であるか否かを判別する(ステップS7)。具体的には、制御部54は、N件目のデータに含まれるμ1が、出力電流値の下限値I1及び上限値I2により規定される範囲内にあるか否かを判別する。さらに、制御部54は、N件目のデータに含まれるμ2が、出力電圧値の下限値V1及び上限値V2により規定される範囲内にあるか否かを判別する。
制御部54は、N件目の平均値が基準範囲外であると判別すると、(ステップS7;No)、カウンタ値に1を追加する(ステップS8)。ここでは、制御部54はμ1あるいはμ2のいずれかが基準範囲外であると判別した場合、カウンタ値に1を追加する。
制御部54は、カウンタ値が閾値を超えたか否か判別する(ステップS9)。制御部54は、カウンタ値が閾値を超えていると判別すると(ステップS9;Yes)、太陽ストリング1に異常が発生している旨を通知する(ステップS10)。例えば、制御部54は、「異常が発生しました」のテキストを表示した画面をディスプレイ532に表示させる。その後、制御部54はカウンタ値をリセット(“0”をセット)し(ステップS11)、再びステップ1の処理へ戻る。一方、制御部54は、ステップS9でカウンタ値が閾値を超えていないと判別すると(ステップS9;No)、ステップS12へ進む。
また、制御部54は、ステップS7で、N件目の平均値が基準範囲にあると判別すると、(ステップS7;Yes)、インデックスNに1を追加する(ステップS12)。制御部54は、インデックスNの値が60を超えていないと判別すると(ステップS13;No)、ステップS7へ戻り、再び、インデックスNが示すデータが基準範囲内にあるか否かの判別を行う。一方、制御部54は、インデックスNの値が60を超えたと判別すると(ステップS13;Yes)、ステップS11でカウンタ値をリセットし、再びステップ1の処理へ戻る。以上が異常判定処理の一連の流れである。
実施例1では、1時間(60分間)毎に計測値の重心が基準範囲内にあるか否かを判別する処理を実行したが、この期間は、60分間より長くても短くてもよい。また、計測値の平均値は、1分間に取得された計測値から求める必要はなく、1分より長い期間、あるいは短い期間に取得された計測値の平均値を求めてもよい。
電流値の平均値(μ1)、電圧値の平均値(μ2)のいずれかが基準範囲外であると判別した場合に、カウンタ値を増やしたが、あるいは、電流値の平均値(μ1)、電圧値の平均値(μ2)の両方が基準範囲外であると判別した場合に、カウンタ値を増やしてもよい。また、実施例1では、計測値の代表値として重心(平均値)を使用したが、あるいは、一定期間に取得された計測値の代表値として、中央値(当該一定期間の全ての計測値の真ん中の順位に位置する値)、あるいは最大値を使用してもよい。
実施例1では、計測値の代表値である重心が基準範囲内であるか否かを判別したが、計測値の代表値のみならず散布度(分布)も考慮して、異常の発生を判定してもよい。図4に示したように、劣化した太陽電池ストリング1においては、計測値の分布の範囲が、正常時の計測値の分布の範囲から外れてしまう傾向がある。よって、散布度を考慮することで、より精度よく異常の発生を検出することができる。分布を示す値として、分散、標準偏差がある。分散、標準偏差により、太陽電池ストリング1の出力の範囲を判別することができる。
散布度(分布)を考慮した異常判定の手法の一例を説明する。制御部54は、一定期間(例えば、24時間)の計測値のそれぞれの平均値μ、標準偏差σを算出する。従って、電流値の平均値(μ1)、電圧値の平均値(μ2)、電流値の標準偏差(σ1)、電圧値の標準偏差(σ2)が算出される。制御部54は、μ1±k3×σ1が、出力電流値の下限値I1及び上限値I2により規定される範囲内にあるか否かを判別する。制御部54は、μ2±k4×σ2が、出力電圧値の下限値V1及び上限値V2により規定される範囲内にあるか否かを判別する。k3、k4は計算により予め求められた係数である。制御部54は、μ1±k3×σ1が下限値I1及び上限値I2により規定される範囲内にない、あるいは、μ2±k4×σ2が出力電圧値の下限値V1及び上限値V2により規定される範囲内にないと判別すると、太陽ストリング1に異常が発生している旨を通知する。
なお、μ1±k1×σ1が、出力電流値の下限値I1及び上限値I2により規定される範囲外であり、かつ、μ2±k2×σ2が、出力電圧値の下限値V1及び上限値V2により規定される範囲外であるときに、太陽ストリング1に異常が発生していると判別してもよい。
あるいは、ある程度長期にわたって計測値を監視し、計測値の変化に基づいて異常発生を判定してもよい。制御部54は、一定期間、例えば、1日(24時間)の間に取得された計測値の平均値を求める。制御部54は、例えば、1年間にわたり、日毎の計測値の平均値の取得を継続し、平均値を蓄積する。1年間にわたり計測値の平均値を蓄積した後、制御部54は、判定期間の始め計測値の平均値と判定期間の終わりの計測値の平均値の差を求め、求めた差があらかじめ決められた値より大きいか否かに基づいて、太陽電池ストリング1の異常発生の有無を判別する。
なお、上記の平均値の取得に係る一定期間は1日(24時間)より長くてもよいし、短くてもよい。計測値の平均値の変化を監視する期間(監視期間)は1年より長くてもよいし、短くてもよい。
なお、監視期間の初日と最終日のそれぞれの計測値の平均値の差に基づいて、異常の発生を判別してもよいし、あるいは、監視期間の最初の所定の期間、例えば、3日間、の各平均値と、監視期間の最後の所定の期間、例えば、3日間、の各計測値と、を比較した結果に基づいて異常の発生を判別してもよい。この場合、例えば、監視期間の最後の3日間の各平均値のいずれかが、監視期間の最初の3日間の各平均値のいずれかより下回っており、両者の差分が予め決められた値より大きい場合に、異常が発生していると判別してもよい。このような構成により、天気等の影響により、計測値に若干の変動があったとしても、太陽電池ストリング1に異常が発生しているか否かを正確に判別することができる。
上述の実施例1では、一定期間に取得された計測値の代表値、散布度(分布)に基づいて、異常の発生を判別したが、あるいは、取得された計測値すべてについて、基準範囲内にあるか否かを判別して、異常の発生を判定してもよい。
[実施例2]
以下、実施例2に係る太陽電池劣化異常判定システムについて説明する。本実施例2に係る太陽光発電システム100の構成は、図1に示す実施例1に係る太陽光発電システム100と同様である。
図6を参照して、計算機5の制御部54が異常判定プログラム521を実行して行う異常判定処理を説明する。本実施例2では、制御部54は、計測器4が計測した計測値のうち基準範囲外に該当するデータ件数が、記憶部52にあらかじめ格納された閾値を超えた場合に太陽電池ストリング1に異常が発生したと判定する。
なお、基準範囲の決定方法は、実施例1と同様である。上記の式を用いて求められた出力電流値の下限値I1及び上限値I2、出力電圧値の下限値V1及び上限値V2は、計算機5の記憶部52の判定値522にあらかじめ格納されている。計測器4は、1秒毎に太陽電池ストリング1a〜1dの電圧及び電流の計測し、計測値を計算機5に送信し続けているものとする。
図6に示すように、制御部54は、記憶部52のカウンタ値をリセットし(ステップS21)、判定期間の10分間を計測するため、タイマーをスタートする(ステップS22)。
制御部54は、計測器4から計測値(出力電流値、出力電圧値)を受信したか否かを判定する(ステップS23)。制御部54は、ステップS23で、計測器4から計測値を受信していないと判定すると(ステップS23;No)、再び計測値を待ち受ける。
一方、制御部54は、計測器4から計測値を受信している場合(ステップS23;Yes)、計測値が基準範囲内であるか否かを判定する(ステップS24)。具体的には、制御部54は、計測値に含まれる出力電流値が下限値I1及び上限値I2により規定される範囲内にあるか否かを判別する。さらに、制御部54は、計測値に含まれる出力電圧値が、下限値V1及び上限値V2により規定される範囲内にあるか否かを判別する。制御部54は、ワークメモリに格納されている電流値を判定した結果、電圧値を判定した結果に基づいて、電流値、電圧値の少なくともいずれか一方が基準範囲内にないと判別すると(ステップS24;No)、カウンタ値に1を追加する(ステップS25)。ここでは、制御部54は出力電流値あるいは出力電圧値の少なくともいずれかが基準範囲外であると判別した場合、カウンタ値に1を追加する。一方、出力電流値、出力電圧値のいずれも基準範囲内にあると判別した場合(ステップS24;Yes)、制御部54は、ステップS26へ進む。
制御部54は、タイマーのスタートから判定期間(例えば、60分間)が経過したと判定すると(ステップS26;Yes)、ステップS27へ進む。一方、タイマーのスタートから判定期間が経過していないと判定すると(ステップS26;No)、ステップS23に戻り、再び計測器4からの計測値を待ち受ける。
ステップS27で、カウンタ値が閾値を超えたと判定すると(ステップS27;Yes)、制御部54は、異常発生を通知する(ステップS28)。具体的には、制御部54は、入出力部53を制御して、ディスプレイ532に異常発生を示す画面を表示させる。例えば、「異常が発生しました」のテキストを表示した画面を表示させる。その後、制御部54は再びステップS21の処理に戻る。一方、ステップS27で、制御部54は、カウンタ値が閾値を超えていないと判定すると(ステップS27;No)、再びステップS21の処理に戻る。以上が、異常判定処理の一連の流れである。
なお、実施例2では、10分間に計測器4から受信した計測値について、基準範囲外の計測値の数をカウントしたが、この期間は、10分より短くてもよいし、10分より長くてもよい。
以上説明したように、本発明の異常判定システムでは、太陽電池ストリング1の出力電流値、出力電圧値があらかじめ決められた基準範囲内にあるか否かを判別し、基準範囲外にあるときに、太陽電池ストリング1に異常が発生していると判定した。このように、出力電流値、出力電圧値があらかじめ決められた基準範囲内にあるか否かの判定だけを行うことで異常の発生を検出し、複雑な処理等を必要としない。
また、基準範囲を規定する出力電流値の下限値I1及び上限値I2、出力電圧値の下限値V1及び上限値V2は、決められた1つの値である必要はない。例えば、天気(快晴、曇り、晴れ一時曇り、曇り時々雨等)に応じて、下限値I1及び上限値I2、下限値V1及び上限値V2の複数のセットを規定してもよい。この場合、例えば、計算機5は、太陽電池ストリング1a〜1dが設置されている敷地内の照度センサの計測値を取得し、照度に基づいて判定した天気に応じた閾値を使用する。
実施例1及び2では、太陽光発電システム100は、計測器4と計算機5を備えていたが、計測器4を使用せずとも、太陽電池ストリング1の異常の発生を判定することが可能である。パワーコンディショナ3は、MPPT制御のため所定の時間間隔で、太陽電池ストリング1a〜1dの出力電流の合計、出力電圧を計測している。よって、計算機5は、パワーコンディショナ3が計測した電流値、電圧値を使用して、太陽電池ストリング1の異常を判定してもよい。図7に、計測器4を有しない場合の太陽光発電システム100の構成を示す。計算機5は、専用線10を介してパワーコンディショナ3に接続されている。パワーコンディショナ3は、計測した電流値、電圧値を計算機5に供給する。この場合、図1に示す構成より簡易な構成で太陽光発電システムの異常の発生を判定することが可能である。
計算機5は、異常が発生した旨をテキストメッセージで通知しただけであったが、例えば、図8に示すように、判定対象とした計測値から求めた平均値の出力電流値、出力電圧値(実施例1)、あるいは判定対象とした計測値の出力電流値、出力電圧値(実施例2)から、電流−電圧特性を併せて図示してもよい。
さらに、計算機5は、異常発生を検出したタイミングで、あるいは、定期的に、図9に示すように、判定に係る期間に蓄積した計測値(電圧値、電流値)に基づいた計測値のプロット図を表示してもよい。計算機5(制御部54)は、電圧値の下限値V1と上限値V2、電流値の下限値I1と上限値I2に基づいて、基準範囲を示す枠線等を併せて表示してもよい。図示する例では、点A〜点Dを結んだ範囲が基準範囲である。このように、計測値のプロット図を、基準範囲とともに表示することで、ユーザは、どの程度の計測値が基準範囲外であるか等を視角的に確認することが容易になる。さらに、基準範囲内の計測値を黒色で、あるべき範囲外の計測値を赤色で表示してもよい。よって、ユーザが異常値を容易に認識することができる。
また、図9に示すような、判定に係る期間に蓄積された計測値に基づくプロット図だけではなく、正常な太陽電池ストリング1における計測値のプロット図を併せて表示してもよい。この場合、例えば、太陽光発電システム導入当時に太陽電池ストリング1に対して、1日を通じて(例えば、日の出から日の入り)計測した電流値、電圧値のデータをあらかじめ記憶部52に格納しておき、そのデータに基づいて正常な太陽電池ストリング1における測定値のプロット図を表示する。このようにして、ユーザは、太陽電池ストリング1の劣化により計測値がどのように変化したのかを視覚的に認識することが可能である。
実施例1及び2では、単純に計測値(電流値及び電圧値)が許容範囲内であるか否かを判別した。あるいは、許容範囲を複数の小領域に分割し、計測値についての小領域毎の計測値の分布に基づいて異常を判定してもよい。
具体的には、次のように判定する。ここでは、図10に示すように、基準範囲を4つの少領域に分割する。あらかじめ、所定期間(例えば、24時間)の正常な太陽電池ストリング1の計測値が領域1〜領域4に該当する頻度(基準頻度)を求めておく。判定期間(例えば、24時間)に実際に計測された太陽電池ストリング1の計測値が域1〜領域4に該当する頻度を求める。そして、各小領域について、基準頻度と、実際の計測値の頻度との差が同じ、あるいは近似したものである場合には、太陽電池ストリングは正常であると判定し、各小領域の頻度が近似しない場合には、太陽電池ストリングは異常であると判定する。このようにすることで、効果的に発電量の減少等を判定できる。なお、正常な計測値として、例えば、初期状態の太陽電池ストリングに対して計測を行った場合に取得された電流値及び電圧値を使用してもよい。また、小領域の数は4つに限られない。
さらに、異常が発生する可能性が高いことを通知してもよい。例えば、減少量の閾値をいくつか設定しておき、異常の発生と判定できる状態ではないものの、一定量の減少が見られた場合には、異常が発生する可能性が高い旨を示すアラートをユーザに通知してもよい。
次に、本発明の異常判定に係る手法の効果を説明する。実施例1及び2で説明した太陽光発電システム100により、異なる天気の日について、1日を通じて、太陽電池ストリングの電流、電圧を1秒間隔で計測した。
図11に計測値のプロット図を示す。(a)は、天気が快晴である日、(b)は、天気が晴れ一時曇りである日、(c)は、天気が曇りである日、(d)は、天気が曇り時々雨である日の計測値に基づく。併せて基準範囲を図示する。基準範囲は、実施例1と同様の手法により求めた。
比較のため、図12に、異常が発生した太陽電池ストリング1における計測値に基づく電流−電圧特性のプロット図を基準範囲と併せて示す。(a)〜(d)の天気は、図11と同様である。
図11(a)〜(d)に示すように、天気が異なる場合であっても、出力電流値、出力電圧値は、基準範囲内に収まっている。一方、図12(a)〜(d)では、計測値の分布は、全体的に低下している。さらに、基準範囲外にある計測値も多い。これは、前述のように、太陽電池ストリング1に異常が発生しているため、パワーコンディショナ3がMPPT制御を行ったとしても、充分な出力電力を得ることができないからである。このように、電流値、電圧値が基準範囲内にあるか否かに基づいて、太陽電池ストリング1の異常を判定する手法は効果があるといえる。
正常な太陽電池ストリング1における測定データと異常な太陽電池ストリング1における計測データとを比較するため、正常な太陽電池ストリング1の例として図11(a)、異常な太陽電池ストリング1の例として図12(a)の電流−電圧特性の元になったデータそれぞれについて基本統計量を求めた。それぞれの基本統計量を図13に示す。
図示するように、異常な場合の平均値、中央値、最大値は、正常な場合に比べて小さい。即ち、異常な場合は発電出力が低下している。また、標準偏差、分散については、正常な場合は発電出力が異常な場合に比べて大きいため、標準偏差、分散が大きい。なお、測定データの分布を示す標準偏差、分散は、天候、気温、太陽電池モジュール11の温度に影響されるため、標準偏差、分散については、長期的に値の変動を監視し、分布が小さくなる傾向があれば、太陽電池ストリング1の劣化、異常が発生している可能性があると判断してもよい。
さらに、正常な場合、異常な場合ともに測定データの総数はそれぞれ86400であるが、正常な場合については、全測定データのうち34683の測定データが基準範囲内に含まれており、言い換えると、40.1%の測定データが基準範囲内にある。一方、異常な場合については、全測定データのうち27039の測定データが基準範囲内に含まれており、言い換えると、約7割の測定データが基準範囲外にある。このように、基準範囲内にあるか否かを判別することで、太陽電池ストリング1の劣化等に起因する発電出力の低下を検出することができるといえる。
1(1a〜1d) 太陽電池ストリング
2 集電箱
3 パワーコンディショナ
4 計測器
5 計算機
6(6a〜6d) 開閉器
7(7a〜7d) 逆流防止用ダイオード
8 導線
9 導線
10 専用線
11 太陽電池モジュール
12 導線
41 電流計測器
42 電圧計測器
43 通信部
44 制御部
51 通信部
52 記憶部
53 入出力部
54 制御部
521 判定プログラム
522 計測値
523 判定値
531 キーボード
532 ディスプレイ
100 太陽光発電システム
121 陽極端
122 陰極端

Claims (6)

  1. 直列に接続された複数の太陽電池モジュールを含む太陽電池ストリングと、前記太陽電池ストリングから出力された直流電力を交流電力に変換し、最大電力点追従制御を行うパワーコンディショナと、を含む太陽光発電システムの劣化異常を判定するシステムであって、
    前記太陽電池ストリングの出力電流値と出力電圧値とが決められた基準範囲内にあるか否かを判別した結果に基づいて、前記太陽電池ストリングに劣化異常が発生しているか否かを判定する判定部と、
    前記判定部が前記太陽電池ストリングに劣化異常が発生していると判定すると、前記太陽電池ストリングに劣化異常が発生している旨を出力する出力部と、
    を備えることを特徴とする太陽電池劣化異常判定システム。
  2. 前記判定部は、一定期間に取得された複数の前記出力電流値の重心と一定期間に取得された複数の前記出力電圧値の重心と、が前記基準範囲内にあるか否かを判別する、
    請求項1に記載の太陽電池劣化異常判定システム。
  3. 前記判定部は、所定の期間に取得された複数の前記出力電流値、複数の前記出力電圧値のうち、前記基準範囲外にある計測値の数が閾値を超えているか否かを判別する、
    請求項1または2に記載の太陽電池劣化異常判定システム。
  4. 前記基準範囲は、所望の電力量を得ることができる電流値と電圧値のそれぞれの上限値及び下限値により規定される、
    請求項1から3のいずれか1項に記載の太陽電池劣化異常判定システム。
  5. 前記太陽電池ストリングと前記パワーコンディショナとの間に設けられ、前記太陽電池ストリングの前記出力電流値と前記出力電圧値を計測する計測部、
    をさらに備え、
    前記判定部は、前記計測部により計測された前記出力電流値と前記出力電圧値を使用して、前記太陽電池ストリングに劣化異常が発生しているか否かを判定する、
    請求項1から4のいずれか1項に記載の太陽電池劣化異常判定システム。
  6. 前記判定部は、前記パワーコンディショナにより計測された前記出力電流値と前記出力電圧値を使用して、前記太陽電池ストリングに劣化異常が発生しているか否かを判定する、
    請求項1から5のいずれか1項に記載の太陽電池劣化異常判定システム。
JP2015166895A 2015-08-26 2015-08-26 太陽電池劣化異常判定システム Active JP6675775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015166895A JP6675775B2 (ja) 2015-08-26 2015-08-26 太陽電池劣化異常判定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015166895A JP6675775B2 (ja) 2015-08-26 2015-08-26 太陽電池劣化異常判定システム

Publications (2)

Publication Number Publication Date
JP2017046447A true JP2017046447A (ja) 2017-03-02
JP6675775B2 JP6675775B2 (ja) 2020-04-01

Family

ID=58210522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015166895A Active JP6675775B2 (ja) 2015-08-26 2015-08-26 太陽電池劣化異常判定システム

Country Status (1)

Country Link
JP (1) JP6675775B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6185206B1 (ja) * 2017-05-31 2017-08-23 オーナンバ株式会社 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置
CN108390643A (zh) * 2018-02-09 2018-08-10 杭州网策通信技术有限公司 太阳能光伏组件的远程监控系统及方法
WO2019187523A1 (ja) * 2018-03-27 2019-10-03 住友電気工業株式会社 判定装置、天候情報処理装置、判定方法および天候情報処理方法
JP2019187112A (ja) * 2018-04-11 2019-10-24 株式会社日立パワーソリューションズ 太陽電池評価装置及び太陽電池評価方法
KR102182820B1 (ko) * 2020-06-01 2020-11-25 주식회사 코텍에너지 태양광 모듈의 고장 및 열화 상태 진단 기능을 갖는 태양광 발전장치 및 그 발전 관리방법
CN112003564A (zh) * 2020-09-18 2020-11-27 北京航空航天大学 基于智能终端的分布式光伏系统支路功率异常预警方法
JP2022551451A (ja) * 2020-05-15 2022-12-09 エルジー エナジー ソリューション リミテッド 電池を診断するための装置およびその方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077477A (ja) * 2009-10-02 2011-04-14 Sansha Electric Mfg Co Ltd 監視装置
WO2012026449A1 (ja) * 2010-08-24 2012-03-01 三洋電機株式会社 地絡検出装置、その地絡検出装置を用いた集電箱及びその集電箱を用いた太陽光発電装置
JP2012253848A (ja) * 2011-05-31 2012-12-20 Toshiba Corp 太陽光発電システム
US20130015875A1 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
JP2013239686A (ja) * 2012-05-14 2013-11-28 Kiuchi Instrument Maintenance Corp 太陽光発電の異常検出方法及び監視装置
JP2014045073A (ja) * 2012-08-27 2014-03-13 Hitachi Ltd 太陽光発電システムの故障診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077477A (ja) * 2009-10-02 2011-04-14 Sansha Electric Mfg Co Ltd 監視装置
WO2012026449A1 (ja) * 2010-08-24 2012-03-01 三洋電機株式会社 地絡検出装置、その地絡検出装置を用いた集電箱及びその集電箱を用いた太陽光発電装置
JP2012253848A (ja) * 2011-05-31 2012-12-20 Toshiba Corp 太陽光発電システム
US20130015875A1 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
JP2013239686A (ja) * 2012-05-14 2013-11-28 Kiuchi Instrument Maintenance Corp 太陽光発電の異常検出方法及び監視装置
JP2014045073A (ja) * 2012-08-27 2014-03-13 Hitachi Ltd 太陽光発電システムの故障診断方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207595A (ja) * 2017-05-31 2018-12-27 オーナンバ株式会社 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置
JP6185206B1 (ja) * 2017-05-31 2017-08-23 オーナンバ株式会社 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置
CN108390643A (zh) * 2018-02-09 2018-08-10 杭州网策通信技术有限公司 太阳能光伏组件的远程监控系统及方法
CN108390643B (zh) * 2018-02-09 2020-04-17 杭州网策通信技术有限公司 太阳能光伏组件的远程监控系统及方法
JPWO2019187523A1 (ja) * 2018-03-27 2021-03-25 住友電気工業株式会社 判定装置、天候情報処理装置、判定方法および天候情報処理方法
WO2019187523A1 (ja) * 2018-03-27 2019-10-03 住友電気工業株式会社 判定装置、天候情報処理装置、判定方法および天候情報処理方法
JP7207401B2 (ja) 2018-03-27 2023-01-18 住友電気工業株式会社 判定装置、天候情報処理装置、判定方法および天候情報処理方法
JP7080093B2 (ja) 2018-04-11 2022-06-03 株式会社日立パワーソリューションズ 太陽電池評価装置及び太陽電池評価方法
JP2019187112A (ja) * 2018-04-11 2019-10-24 株式会社日立パワーソリューションズ 太陽電池評価装置及び太陽電池評価方法
JP2022551451A (ja) * 2020-05-15 2022-12-09 エルジー エナジー ソリューション リミテッド 電池を診断するための装置およびその方法
JP7313762B2 (ja) 2020-05-15 2023-07-25 エルジー エナジー ソリューション リミテッド 電池を診断するための装置およびその方法
US11959969B2 (en) 2020-05-15 2024-04-16 Lg Energy Solution, Ltd. Apparatus and method for diagnosing battery
KR102182820B1 (ko) * 2020-06-01 2020-11-25 주식회사 코텍에너지 태양광 모듈의 고장 및 열화 상태 진단 기능을 갖는 태양광 발전장치 및 그 발전 관리방법
CN112003564A (zh) * 2020-09-18 2020-11-27 北京航空航天大学 基于智能终端的分布式光伏系统支路功率异常预警方法

Also Published As

Publication number Publication date
JP6675775B2 (ja) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6675775B2 (ja) 太陽電池劣化異常判定システム
JP5856294B2 (ja) 太陽光発電監視方法及びその方法に用いられる太陽光発電監視システム
Silvestre et al. Automatic fault detection in grid connected PV systems
US10389300B2 (en) Photovoltaic system having fault diagnosis apparatus, and fault diagnosis method for photovoltaic system
JP2018018505A (ja) 太陽光発電システムのインバータmppt性能診断装置及び方法
WO2011059067A1 (ja) 電圧設定装置、太陽光発電システム、および電圧設定装置の制御方法
Herteleer et al. Normalised efficiency of photovoltaic systems: Going beyond the performance ratio
JP6087200B2 (ja) 太陽光発電システムの異常検出装置、異常検出方法、及び太陽光発電システム
JP5606882B2 (ja) 太陽光発電診断装置
JP3474711B2 (ja) 連系形太陽光発電装置
JP7289995B2 (ja) 太陽光発電ストリングの動作状態を認識する方法および装置ならびに記憶媒体
JP2011077477A (ja) 監視装置
JP2016027771A (ja) 故障検知装置、故障検知方法及び故障検知システム
JP2012138448A (ja) 太陽光発電の出力低下検出装置及び検出方法
JP2016039766A (ja) 太陽電池パネル異常検出システム
EP3506448A1 (en) Method and system for monitoring a photovoltaic plant to determine a fault condition
KR101265573B1 (ko) 태양광 발전 다기능 데이터 통신 시스템 및 그 방법
KR20180057920A (ko) 태양광 발전효율을 감시 및 분석하는 시스템
CN108322186B (zh) 一种光伏系统故障监控方法及系统
CN107271916B (zh) 一种电池板组串健康状态检测方法
JP6779512B2 (ja) 太陽電池監視システム、および太陽電池監視プログラム
JP6633242B1 (ja) 太陽電池モジュールの劣化判別方法及び劣化判別装置
JP6319681B2 (ja) 太陽光パネル監視装置、太陽光発電システム、太陽光パネル監視方法、及び、プログラム
KR101489821B1 (ko) 태양광 발전 모니터링 시스템 및 그 모니터링 방법
JP2021145509A (ja) 異常検知装置、異常検知方法、および異常検知プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200310

R150 Certificate of patent or registration of utility model

Ref document number: 6675775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250