JP2017031488A - β-TYPE STRENGTHENED TITANIUM ALLOY AND MANUFACTURING METHOD OF β-TYPE STRENGTHENED TITANIUM ALLOY - Google Patents

β-TYPE STRENGTHENED TITANIUM ALLOY AND MANUFACTURING METHOD OF β-TYPE STRENGTHENED TITANIUM ALLOY Download PDF

Info

Publication number
JP2017031488A
JP2017031488A JP2015155089A JP2015155089A JP2017031488A JP 2017031488 A JP2017031488 A JP 2017031488A JP 2015155089 A JP2015155089 A JP 2015155089A JP 2015155089 A JP2015155089 A JP 2015155089A JP 2017031488 A JP2017031488 A JP 2017031488A
Authority
JP
Japan
Prior art keywords
titanium alloy
type
fatigue
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015155089A
Other languages
Japanese (ja)
Other versions
JP6621196B2 (en
Inventor
真宏 塚原
Masahiro Tsukahara
真宏 塚原
茂夫 遠所
Shigeo Ensho
茂夫 遠所
佳孝 三阪
Yoshitaka Misaka
佳孝 三阪
正昭 仲井
Masaaki Nakai
正昭 仲井
光雄 新家
Mitsuo Araya
光雄 新家
健吾 成田
Kengo Narita
健吾 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Neturen Co Ltd
Original Assignee
Tohoku University NUC
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Neturen Co Ltd filed Critical Tohoku University NUC
Priority to JP2015155089A priority Critical patent/JP6621196B2/en
Publication of JP2017031488A publication Critical patent/JP2017031488A/en
Application granted granted Critical
Publication of JP6621196B2 publication Critical patent/JP6621196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide β-type strengthened titanium alloy superior to biocompatibility and improved tensile strength and fatigue strength, and a manufacturing method of the β-type strengthened titanium alloy.SOLUTION: As for β-type strengthened titanium alloy, fatigue limit/tensile strength ratio shown as a ratio of fatigue limit for tensile strength is not less than 0.9. It is desirable that the β-type strengthened titanium alloy has mean grain size equal to or less than 60 μm and fatigue limit not less than 850 Mpa.SELECTED DRAWING: Figure 1

Description

本件発明は、β型強化チタン合金及びその製造方法に関する。   The present invention relates to a β-type reinforced titanium alloy and a method for producing the same.

チタン合金は、軽量であり、引張強度や耐食性等において他の金属よりも優れた性質を有する。また、チタン合金の主成分であるチタンは、金属アレルギーを引き起こす等の人体への害が殆どなく、生体適合性にも優れている。   Titanium alloys are lightweight and have properties superior to other metals in terms of tensile strength and corrosion resistance. Titanium, which is the main component of the titanium alloy, has almost no harm to the human body such as causing metal allergy, and is excellent in biocompatibility.

チタン合金は、常温での母相の結晶構造により大きく3種類に分類される。すなわち、稠密六方晶(HCP)であるα相を母相とするα型チタン合金、体心立方晶(BCC)であるβ相を母相とするβ型チタン合金、稠密六方晶(HCP)であるα相と体心立方晶(BCC)であるβ相とが共存するα+β型チタン合金の3種類である。ここで、β型チタン合金は、低ヤング率で高強度であるという優れた特性を備えることから、航空機や自動車等に用いる構造用材料、人工股関節や人工歯根等の医療用材料等様々な用途が期待されている。   Titanium alloys are roughly classified into three types depending on the crystal structure of the parent phase at room temperature. That is, an α-type titanium alloy whose parent phase is an α phase which is a dense hexagonal crystal (HCP), a β-type titanium alloy whose parent phase is a β-phase which is a body-centered cubic crystal (BCC), and a dense hexagonal crystal (HCP). There are three types of α + β type titanium alloys in which a certain α phase and a β phase which is a body-centered cubic (BCC) coexist. Here, β-type titanium alloy has excellent properties such as low Young's modulus and high strength, so it can be used in various applications such as structural materials used in aircraft and automobiles, medical materials such as artificial hip joints and artificial tooth roots, etc. Is expected.

β型チタン合金は、β単相組織で使用される場合、強化法としては、固溶強化、転位強化、結晶粒微細化強化が使用される。その中でも延性・靱性を損なうことなく大幅に強化出来る手法として、結晶粒微細化強化が有効とされている。β型チタン合金の結晶粒微細化技術としては、熱間加工を用いる方法や冷間加工と熱処理を組みあわせた方法等がある。   When a β-type titanium alloy is used in a β single-phase structure, solid solution strengthening, dislocation strengthening, and crystal grain refinement strengthening are used as strengthening methods. Among them, strengthening of crystal grain refinement is effective as a technique that can greatly strengthen without impairing ductility and toughness. Examples of the grain refinement technology of the β-type titanium alloy include a method using hot working and a method combining cold working and heat treatment.

例えば、特許文献1には、高い強度を有するβ型チタン合金を材料として高強度な部品を製造する方法を提供するために、βトランザス温度以上であって1100℃以下の温度で鍛造または圧延を行なうことが開示されている。また、特許文献1には、鍛造または圧延を行なった後、固溶化熱処理を施して結晶粒を再結晶化させることも好ましいことが開示されている。   For example, Patent Document 1 discloses that forging or rolling is performed at a temperature not lower than the β transus temperature and not higher than 1100 ° C. in order to provide a method for manufacturing a high-strength part using a β-type titanium alloy having high strength. It is disclosed to do. Patent Document 1 discloses that after forging or rolling, it is also preferable to recrystallize crystal grains by performing solution heat treatment.

特開2005−60821号公報JP 2005-60821 A

しかし、特許文献1に開示の製造方法により得られたβ型チタン合金は、引張強度の向上が図られるものの、疲労強度の向上を十分且つ安定的に図ることが出来ない。そのため、特許文献1に開示のβ型チタン合金では、高負荷繰返し応力下での使用が想定される構造用材料や医療用材料として用いるには問題が多い。   However, although the β-type titanium alloy obtained by the manufacturing method disclosed in Patent Document 1 can improve the tensile strength, it cannot sufficiently and stably improve the fatigue strength. Therefore, the β-type titanium alloy disclosed in Patent Document 1 has many problems when used as a structural material or a medical material that is assumed to be used under a high load cyclic stress.

また、β型チタン合金は、疲労強度を向上させる目的で、一般にショットピーニング処理が採用されている。しかし、ショットピーニング処理では、投射材(ショット)として、鉄系、非鉄系、ガラス系、セラミック系、樹脂系等の材料が用いられる。従って、投射材の材質によっては、生体に不適合な成分が含まれる場合があり、この成分がβ型チタン合金材の表面に付着して生体適合性が損われてしまう問題がある。また、この処理によりβ型チタン合金材の表面に凹凸が形成され、当該凹凸が疲労破壊の起点となる恐れがある。   In addition, β-type titanium alloys generally employ shot peening for the purpose of improving fatigue strength. However, in the shot peening treatment, materials such as iron, non-ferrous, glass, ceramic, and resin are used as the projection material (shot). Therefore, depending on the material of the projection material, a component that is incompatible with the living body may be included, and this component may adhere to the surface of the β-type titanium alloy material, thereby impairing the biocompatibility. In addition, this treatment forms irregularities on the surface of the β-type titanium alloy material, and the irregularities may become a starting point for fatigue failure.

以上のことから、本件発明は、生体適合性に優れ、引張強度及び疲労強度の向上が図られたβ型強化チタン合金、及びその製造方法の提供を目的とする。   In view of the above, an object of the present invention is to provide a β-type reinforced titanium alloy having excellent biocompatibility and improved tensile strength and fatigue strength, and a method for producing the same.

そこで、本発明者等は、鋭意研究を行った結果、上述した課題を解決するに到った。以下、本件発明に関して説明する。   Thus, as a result of intensive studies, the present inventors have solved the above-described problems. Hereinafter, the present invention will be described.

本件発明に係るβ型強化チタン合金: 本件発明に係るβ型強化チタン合金は、引張強度に対する疲労限度の比として表される疲労限度比が0.9以上である。 Β-type reinforced titanium alloy according to the present invention: The β-type reinforced titanium alloy according to the present invention has a fatigue limit ratio expressed as a ratio of the fatigue limit to the tensile strength of 0.9 or more.

本件発明に係るβ型強化チタン合金の製造方法は、上述したβ型強化チタン合金の製造方法であって、少なくとも以下に示す工程を備えることを特徴とする。
工程A:β型チタン合金を冷間加工により減面率25%〜85%で減面処理する。
工程B:工程Aを経たβ型チタン合金を、高周波誘導加熱法により以下の条件式(1)又は条件式(2)を満足する温度Tまで100℃/s以上の昇温速度で加熱処理する。
The method for producing a β-type reinforced titanium alloy according to the present invention is a method for producing the β-type reinforced titanium alloy described above, and includes at least the following steps.
Process A: A β-type titanium alloy is subjected to surface reduction treatment by cold working at a surface area reduction rate of 25% to 85%.
Step B: Heat treatment of the β-type titanium alloy that has undergone Step A at a rate of temperature increase of 100 ° C./s or higher to a temperature T 1 that satisfies the following conditional expression (1) or conditional expression (2) by high-frequency induction heating method To do.


工程C:工程Bを経たβ型チタン合金を、100℃/s以上の冷却速度で急冷処理する。

Step C: The β-type titanium alloy that has undergone Step B is rapidly cooled at a cooling rate of 100 ° C./s or more.

本件発明に係るβ型強化チタン合金及びその製造方法によれば、生体適合性に優れ、引張強度及び疲労強度といった機械的特性の向上を効果的に図ることが出来る。   According to the β-type reinforced titanium alloy and the manufacturing method thereof according to the present invention, it is excellent in biocompatibility and can effectively improve mechanical properties such as tensile strength and fatigue strength.

実施例1及び比較例1,2に係る試料の金属組織写真を示す。The metal structure photograph of the sample which concerns on Example 1 and Comparative Examples 1 and 2 is shown. 実施例1及び比較例1,2に係る試料の引張試験結果を示す。The tension test result of the sample which concerns on Example 1 and Comparative Examples 1 and 2 is shown. 実施例1及び比較例1,2で用いる引張試験片形状を示す。The shape of the tensile test piece used in Example 1 and Comparative Examples 1 and 2 is shown. 実施例1及び比較例1,2に係る試料の疲労試験結果を示す。The fatigue test result of the sample which concerns on Example 1 and Comparative Examples 1 and 2 is shown. 実施例1及び比較例1,2に係る試料の疲労限度比と結晶粒径の関係を示す。The relationship between the fatigue limit ratio and the crystal grain size of the samples according to Example 1 and Comparative Examples 1 and 2 is shown. 実施例1及び比較例1,2に係る試料のヤング率の測定結果を示す。The measurement result of the Young's modulus of the sample concerning Example 1 and Comparative Examples 1 and 2 is shown. 本件発明に係るβ型強化チタン合金の製造方法の条件を決定すべく、種々の試験条件で処理を行い、得られた金属組織の一例を示す。In order to determine the conditions of the production method of the β-type reinforced titanium alloy according to the present invention, an example of the metal structure obtained by performing the treatment under various test conditions is shown. 本件発明に係るβ型強化チタン合金の製造方法の条件を決定すべく、種々の試験条件で処理を行い、得られた再結晶の状況に及ぼす減面率と加熱温度の関係を示す。In order to determine the conditions of the method for producing the β-type reinforced titanium alloy according to the present invention, the treatment is performed under various test conditions, and the relationship between the area reduction rate and the heating temperature on the obtained recrystallization state is shown. 本件発明のβ型強化チタン合金の製造方法の条件を決定すべく、種々の試験条件で処理を行い、得られた再結晶部分の結晶粒径と加熱温度の関係を示す。In order to determine the conditions of the production method of the β-type reinforced titanium alloy of the present invention, treatment is performed under various test conditions, and the relationship between the crystal grain size of the obtained recrystallized portion and the heating temperature is shown. 本件発明のβ型強化チタン合金の製造方法における減面率と加熱温度の条件範囲を示す。The condition range of the area reduction rate and the heating temperature in the method for producing a β-type reinforced titanium alloy of the present invention is shown.

本件発明に係るβ型強化チタン合金: 本件発明に係るβ型強化チタン合金は、引張強度に対する疲労限度の比として表される疲労限度比が0.9以上であることを特徴とする。本件発明に係るβ型強化チタン合金は、当該疲労限度比が0.9以上という降伏応力にほぼ匹敵する疲労限度を有する極めて優れた耐疲労特性を有するものである。よって、本件発明に係るβ型強化チタン合金は、高負荷繰返し応力下での使用が想定される構造用材料や医療用材料として用いたとしても疲労破壊が起き難い。 Β-type reinforced titanium alloy according to the present invention: The β-type reinforced titanium alloy according to the present invention is characterized in that a fatigue limit ratio expressed as a ratio of a fatigue limit to tensile strength is 0.9 or more. The β-type reinforced titanium alloy according to the present invention has extremely excellent fatigue resistance characteristics having a fatigue limit substantially equal to the yield stress of the fatigue limit ratio of 0.9 or more. Therefore, even if the β-type reinforced titanium alloy according to the present invention is used as a structural material or a medical material that is supposed to be used under a high load cyclic stress, fatigue failure hardly occurs.

また、本件発明に係るβ型強化チタン合金は、結晶粒径が60μm以下であることが好ましい。本件発明に係るβ型強化チタン合金は、結晶粒径が60μm以下に微細化されていることで、通常相反する機械的強度と靱性を同時に向上させ、引張強度と疲労強度が極めて優れたものとなる。ここで、当該結晶粒径が60μmを超えると、これら特性の低下を招くため好ましくない。   Further, the β-type reinforced titanium alloy according to the present invention preferably has a crystal grain size of 60 μm or less. The β-type reinforced titanium alloy according to the present invention has a crystal grain size refined to 60 μm or less, thereby improving the mechanical strength and toughness which are usually in conflict with each other, and having extremely excellent tensile strength and fatigue strength. Become. Here, it is not preferable that the crystal grain size exceeds 60 μm because these characteristics are deteriorated.

また、本件発明に係るβ型強化チタン合金は、疲労限度が800MPa以上であることが好ましい。具体的には、本件発明に係るβ型強化チタン合金は、疲労試験における10回片振り引張疲労限度が800MPa以上となる。β型チタン合金は、曲げ疲労試験における10回片振り引張疲労限度が800MPa以上であることで、高負荷繰返し応力下で用いたとしても優れた耐久性を発揮出来る。そのため、本件発明に係るβ型強化チタン合金によれば、高荷重化や高トルク化等の過酷な使用条件においても問題なく用いることが出来る。ここで、当該疲労限度が800MPa未満の場合、引張強度と疲労特性とが高いレベルで要求される分野での使用が困難となる。 In addition, the β-type reinforced titanium alloy according to the present invention preferably has a fatigue limit of 800 MPa or more. Specifically, the β-type reinforced titanium alloy according to the present invention has a 107 7 single swing tensile fatigue limit in a fatigue test of 800 MPa or more. β-type titanium alloy, bending 10 7 times pulsating tensile fatigue limit in fatigue test that is at least 800 MPa, can exhibit excellent durability even when used under high load cyclic stress. Therefore, according to the β-type reinforced titanium alloy according to the present invention, it can be used without problems even under severe use conditions such as high load and high torque. Here, when the fatigue limit is less than 800 MPa, it is difficult to use in a field where tensile strength and fatigue characteristics are required at a high level.

本件発明に係るβ型強化チタン合金の製造方法: 本件発明に係るβ型強化チタン合金の製造方法は、β型強化チタン合金の製造方法であって、少なくとも以下に示す工程Aから工程Cの各工程を備えることを特徴とする。
工程A:β型チタン合金を冷間加工により減面率25%〜85%で減面処理する。
工程B:工程Aを経たβ型チタン合金を、高周波誘導加熱法により以下の条件式(1)又は条件式(2)を満足する温度Tまで100℃/s以上の昇温速度で加熱処理する。
Manufacturing method of β-type reinforced titanium alloy according to the present invention: The manufacturing method of β-type reinforced titanium alloy according to the present invention is a method of manufacturing a β-type reinforced titanium alloy, and includes at least each of steps A to C shown below. A process is provided.
Process A: A β-type titanium alloy is subjected to surface reduction treatment by cold working at a surface area reduction rate of 25% to 85%.
Step B: Heat treatment of the β-type titanium alloy that has undergone Step A at a rate of temperature increase of 100 ° C./s or higher to a temperature T 1 that satisfies the following conditional expression (1) or conditional expression (2) by high-frequency induction heating method To do.


工程C:工程Bを経たβ型チタン合金を、100℃/s以上の冷却速度で急冷処理する。

Step C: The β-type titanium alloy that has undergone Step B is rapidly cooled at a cooling rate of 100 ° C./s or more.

本件発明に係るβ型強化チタン合金の製造方法は、β型チタン合金の高強度化を更に増進するための手段として、熱処理前に冷間加工を行なって結晶内部に転位を導入し、次いで急速加熱し、その後急速冷却することにより結晶粒を微細化する。以下に、本件発明に係るβ型強化チタン合金の製造方法が備える工程A〜Cについて説明する。   In the method for producing a β-type reinforced titanium alloy according to the present invention, as a means for further enhancing the strengthening of the β-type titanium alloy, dislocation is introduced into the crystal by performing cold working before the heat treatment, and then rapidly The crystal grains are refined by heating and then rapid cooling. Below, process AC with which the manufacturing method of the beta type strengthened titanium alloy which concerns on this invention is provided is demonstrated.

<工程A>
本件発明に係るβ型強化チタン合金の製造方法は、冷間加工を行うことを必須条件とし、時効処理を行わない。本件発明に係るβ型強化チタン合金の製造方法では、冷間加工を施すことによって再結晶温度を低くして、後の加熱処理で新たな結晶を発現しやすくすることが出来る。その結果、本工程を経ることで、均一で且つ微細な結晶組織を形成して、β型チタン合金の引張強度及び疲労強度の向上を図ることが可能となる。
<Process A>
In the method for producing a β-type reinforced titanium alloy according to the present invention, it is necessary to perform cold working, and no aging treatment is performed. In the method for producing a β-type reinforced titanium alloy according to the present invention, the recrystallization temperature can be lowered by performing cold working, and a new crystal can be easily developed by subsequent heat treatment. As a result, through this step, it is possible to form a uniform and fine crystal structure, and to improve the tensile strength and fatigue strength of the β-type titanium alloy.

本工程では、減面率25%〜85%の冷間加工を行うことが好ましい。本工程に示す条件で処理したβ型チタン合金は、低温で再結晶が終了することにより、後の加熱処理での加熱温度を低く設定することが出来るため、結晶の粒成長が抑制されて結晶組織の均一微細化に好ましい影響を及ぼすものと考えられる。ここで、「減面率」とは、圧延や伸線加工における加工率を表すものであり、例えば減面加工前の線材の断面積をA、減面加工後の線材の断面積をBとすると(A−B)/A×100(%)で表わされる。当該減面率が25%未満では、転位密度が少ないために後の加熱処理で新たな結晶が発現し難く、再結晶温度の上昇を招いてしまう。その結果、後の加熱処理では、加熱温度を高く設定しなければならないため、結晶粒の粗大化を招き、十分な引張強度が得られなくなる。また、当該減面率が82%を超えると、加工後の表面に割れが生じる等して疲労強度を十分に向上することが出来なくなる。   In this step, it is preferable to perform cold working with a reduction in area of 25% to 85%. Since the β-type titanium alloy treated under the conditions shown in this step can be set at a low heating temperature in the subsequent heat treatment by completing the recrystallization at a low temperature, the crystal grain growth is suppressed and the crystal This is considered to have a favorable effect on uniform refinement of the tissue. Here, the “area reduction ratio” represents a reduction ratio in rolling or wire drawing, for example, A is the cross-sectional area of the wire before the area reduction, and B is the cross-section area of the wire after the area reduction. Then, it is expressed by (A−B) / A × 100 (%). If the area reduction ratio is less than 25%, the dislocation density is low, so that it is difficult for new crystals to appear in the subsequent heat treatment, leading to an increase in the recrystallization temperature. As a result, in the subsequent heat treatment, since the heating temperature must be set high, the crystal grains become coarse and sufficient tensile strength cannot be obtained. On the other hand, if the area reduction ratio exceeds 82%, the fatigue strength cannot be sufficiently improved due to cracks on the surface after processing.

<工程B>
本工程では、先の工程Aを経たβ型チタン合金を高周波誘導加熱法により急速加熱することで、チタン合金のβ相が再結晶化された後の結晶の粒成長を抑制して結晶粒を非常に小さいものとし、結晶組織の均一微細化を図ることが出来る。ここで、高周波誘導加熱法とは、被処理品の周りにコイルを配置し、当該コイルに高周波電流を流すことで当該コイルに近い被処理品の表面に誘導電流が生じ、ジュール熱で加熱するものである。この高周波誘導加熱法は、公知の急速加熱手段であり、被処理品の表面を秒単位の短時間で1000℃を超える温度まで昇温させることが可能である。従って、本工程によれば、β型チタン合金を高周波誘導加熱法により急速加熱することで、引張強度及び疲労強度を共に高めることが出来る。
<Process B>
In this step, the β-type titanium alloy that has undergone the previous step A is rapidly heated by a high-frequency induction heating method to suppress the crystal grain growth after the β-phase of the titanium alloy is recrystallized, thereby forming the crystal grains. It can be made very small, and the crystal structure can be uniformly refined. Here, the high-frequency induction heating method is a method in which a coil is arranged around a product to be processed, and an induction current is generated on the surface of the product to be processed close to the coil by supplying a high-frequency current to the coil, which is heated by Joule heat. Is. This high-frequency induction heating method is a known rapid heating means, and can raise the surface of the article to be processed to a temperature exceeding 1000 ° C. in a short time in seconds. Therefore, according to this process, both the tensile strength and the fatigue strength can be increased by rapidly heating the β-type titanium alloy by the high frequency induction heating method.

また、本工程では、先の工程Aを経たβ型チタン合金を、減面率が25%以上50%未満の場合には以下に示す条件式(1)を満たす加熱温度で急速加熱し、減面率が50%以上85%以下の場合には以下に示す条件式(2)を満たす加熱温度で急速加熱する。   Also, in this step, the β-type titanium alloy that has passed through the previous step A is rapidly heated at a heating temperature that satisfies the following conditional expression (1) when the area reduction rate is 25% or more and less than 50%, and the reduction is performed. When the area ratio is 50% or more and 85% or less, rapid heating is performed at a heating temperature that satisfies the following conditional expression (2).

ここで、βトランザス温度(Tβ)とは、チタンの結晶構造が、β変態点温度以下の低温域では稠密六方晶(hcp)構造を持ち、β変態点温度以上の高温域では体心立方晶(bcc)構造へと同素変態するときの変態温度である。当該βトランザス温度は、種々の合金元素がチタン合金に添加されることで変化する。本工程では、先の工程Aを経たβ型チタン合金を、以下に示す条件式(3)又は(4)を満たす温度まで加熱することで全面を再結晶組織にすることが可能となり、結晶粒径を全面的に微細化することが出来る。 Here, β transus temperature (T β ) means that the crystal structure of titanium has a dense hexagonal (hcp) structure in the low temperature range below the β transformation temperature, and the body centered cubic in the high temperature range above the β transformation temperature. This is the transformation temperature at the time of an allotropic transformation into a crystal (bcc) structure. The β transus temperature is changed by adding various alloy elements to the titanium alloy. In this step, it becomes possible to recrystallize the entire surface by heating the β-type titanium alloy that has undergone the previous step A to a temperature that satisfies the following conditional expression (3) or (4). The diameter can be refined entirely.

また、本工程において、β型チタン合金を高周波誘導加熱法により急速加熱する際に、100℃/s以上の昇温速度で加熱処理することが好ましい。本工程で処理したβ型チタン合金は、結晶の粒成長を効果的に抑制することが出来る。ここで、当該昇温速度が100℃/s未満の場合には、β相の粒成長が過剰となり結晶粒の粗大化を招いてしまう。   In this step, when the β-type titanium alloy is rapidly heated by a high-frequency induction heating method, it is preferable to perform a heat treatment at a temperature rising rate of 100 ° C./s or more. The β-type titanium alloy treated in this step can effectively suppress crystal grain growth. Here, when the temperature increase rate is less than 100 ° C./s, the β-phase grain growth becomes excessive and the crystal grains become coarse.

<工程C>
本工程は、図1,2に示す如く、上述した工程Bを経たβ型チタン合金を、100℃/s以上の速度で急速冷却することが好ましい。工程Bで熱処理したβ型チタン合金の結晶粒の粗大化を防ぐことができ、引張強度の向上のみならず延性も改善して疲労強度も向上するからである。ここで、当該冷却速度が100℃/s未満の場合には、結晶粒の粗大化を招く他、Cr、Fe、Mn、Nb、Mo、Vを含む準安定β型合金においてはω相(遷移相)が析出して著しく脆くなるおそれがある。
<Process C>
In this step, as shown in FIGS. 1 and 2, it is preferable to rapidly cool the β-type titanium alloy that has undergone the above-described step B at a rate of 100 ° C./s or more. This is because coarsening of the crystal grains of the β-type titanium alloy heat-treated in the step B can be prevented, and not only the tensile strength is improved but also the ductility is improved and the fatigue strength is also improved. Here, when the cooling rate is less than 100 ° C./s, the crystal grains are coarsened, and in the metastable β-type alloy containing Cr, Fe, Mn, Nb, Mo, V, the ω phase (transition Phase) may precipitate and become extremely brittle.

また、本件発明に係るβ型強化チタン合金の製造方法において、用いるβ型チタン合金は、Ti−12Cr合金であることが好ましい。   In the method for producing a β-type reinforced titanium alloy according to the present invention, the β-type titanium alloy used is preferably a Ti-12Cr alloy.

β型チタン合金は、α+β型チタン合金よりも多量のβ安定化元素を添加して、高温領域で存在するβ相を常温まで完全に残留させた単相合金である。本件発明に係るβ型強化チタン合金は、Ti(チタン)を基とし、合金元素としてβ安定化元素であるCr(クロム)を含めたTi−12Cr合金を用いることで、引張強度と疲労強度とを効果的に向上させることが出来る。このTi−12Cr合金は、高価な合金元素を多く含まないことからコストメリットも大きい。   The β-type titanium alloy is a single-phase alloy in which a larger amount of β-stabilizing element is added than in the α + β-type titanium alloy, and the β phase existing in the high temperature region is completely left to room temperature. The β-type reinforced titanium alloy according to the present invention is based on Ti (titanium), and by using a Ti-12Cr alloy containing a β-stabilizing element Cr (chromium) as an alloy element, tensile strength and fatigue strength can be obtained. Can be effectively improved. This Ti-12Cr alloy has a large cost merit because it does not contain many expensive alloy elements.

以下、本件発明の実施例を示し、本件発明をより詳細に説明する。   Hereinafter, examples of the present invention will be shown, and the present invention will be described in more detail.

実施例1では、β型チタン合金Ti−12Cr(Cr:11.9質量%、C:0.01質量%、O:0.11質量%、N:0.004質量%、Ti:Bal.)からなる、1000℃(溶体化温度域)で熱間鍛造された直径9mmの丸棒をセンタレス研削により直径7mmまで加工を行い、その後この丸棒を直径5mmになるまで冷間加工を施して減面率49%の試料を作製した。そして、当該試料を高周波誘導加熱法(200kHz)により1秒で934℃まで昇温させた後、直ちに水を噴射して約400℃/sで急速冷却を行い、引張試験及び疲労試験を行った。   In Example 1, β-type titanium alloy Ti-12Cr (Cr: 11.9 mass%, C: 0.01 mass%, O: 0.11 mass%, N: 0.004 mass%, Ti: Bal.) A 9mm diameter round bar hot forged at 1000 ° C (solution temperature range) is processed to a diameter of 7mm by centerless grinding, and then this round bar is cold processed to a diameter of 5mm and reduced. A sample with an area ratio of 49% was produced. Then, the sample was heated to 934 ° C. in 1 second by a high frequency induction heating method (200 kHz), then immediately sprayed with water, rapidly cooled at about 400 ° C./s, and subjected to a tensile test and a fatigue test. .

[比較例1]
比較例1では、β型チタン合金Ti−12Cr(Cr:11.9質量%、C:0.01質量%、O:0.11質量%、N:0.004質量%、Ti:Bal.)からなる、1000℃(溶体化温度域)で熱間鍛造された直径9mmの丸棒をセンタレス研削により直径7mmまで加工を行い、その後この丸棒を直径5mmになるまで冷間加工を施して減面率49%の試料を作製した。そして、当該試料を高周波誘導加熱法(200kHz)により1秒で1250℃まで昇温させ、5.5秒間の保定後水を噴射して約400℃/sで急速冷却を行い、引張試験及び疲労試験を行った。
[Comparative Example 1]
In Comparative Example 1, β-type titanium alloy Ti-12Cr (Cr: 11.9 mass%, C: 0.01 mass%, O: 0.11 mass%, N: 0.004 mass%, Ti: Bal.) A 9mm diameter round bar hot forged at 1000 ° C (solution temperature range) is processed to a diameter of 7mm by centerless grinding, and then this round bar is cold processed to a diameter of 5mm and reduced. A sample with an area ratio of 49% was produced. The sample was heated to 1250 ° C. in 1 second by a high frequency induction heating method (200 kHz), water was retained for 5.5 seconds, and rapidly cooled at about 400 ° C./s. A test was conducted.

[比較例2]
比較例2では、β型チタン合金Ti−12Cr(Cr:11.9質量%、C:0.01質量%、O:0.11質量%、N:0.004質量%、Ti:Bal.)からなる、1000℃(溶体化温度域)で熱間鍛造された直径9mmの丸棒をセンタレス研削により直径7mmまで加工を行い試料を作製した。そして、当該試料を真空炉にて730℃で1時間の加熱を行った後に水冷却を行い、引張試験及び疲労試験を行った。
[Comparative Example 2]
In Comparative Example 2, β-type titanium alloy Ti-12Cr (Cr: 11.9 mass%, C: 0.01 mass%, O: 0.11 mass%, N: 0.004 mass%, Ti: Bal.) A 9 mm diameter round bar hot forged at 1000 ° C. (solution temperature range) was processed to a diameter of 7 mm by centerless grinding to prepare a sample. The sample was heated in a vacuum furnace at 730 ° C. for 1 hour, then cooled with water, and subjected to a tensile test and a fatigue test.

[実施例と比較例との対比]
以下に、本件発明の実施例及び比較例とを対比しつつ、本件発明を詳細に説明する。
[Contrast between Example and Comparative Example]
Hereinafter, the present invention will be described in detail while comparing Examples and Comparative Examples of the present invention.

図1には、実施例1及び比較例1,2に係る試料の金属組織写真を示す。図1より、試料の結晶粒径(D)は、実施例1の試料が14μm、比較例1の試料が177μm、比較例2の試料が92μmであった。この結果より、実施例1に係る試料は、比較例1,2に係る試料と比較して結晶粒の微細化が図られたものであることが分かる。   In FIG. 1, the metal structure photograph of the sample which concerns on Example 1 and Comparative Examples 1 and 2 is shown. From FIG. 1, the crystal grain size (D) of the sample was 14 μm for the sample of Example 1, 177 μm for the sample of Comparative Example 1, and 92 μm for the sample of Comparative Example 2. From this result, it can be seen that the sample according to Example 1 is one in which the crystal grains are made finer than the samples according to Comparative Examples 1 and 2.

図2には、実施例1及び比較例1,2に係る試料の引張試験結果を示す。引張試験片は、機械加工を行った後に研磨紙及びバフにより鏡面仕上げを行い、図3に示す試験片形状(平行部の直径:2.3mm、標点間距離:8.4mm)に作製した。引張試験は、室温の大気中にて、インストロン型引張試験機を用い、クロスヘッド速度8.33×10−6m/sで行った。図2より、試料の引張強度(σ)は、実施例1の試料が約950MPa、比較例1の試料が約910MPa、比較例2の試料が約940MPaであった。この結果より、実施例1に係る試料は、比較例1,2に係る試料と比較して、若干ではあるが引張強度に優れたものであることが分かる。 In FIG. 2, the tension test result of the sample which concerns on Example 1 and Comparative Examples 1 and 2 is shown. The tensile test piece was mirror-finished by polishing paper and buffing after machining, and formed into the test piece shape shown in FIG. 3 (diameter of parallel part: 2.3 mm, distance between gauge points: 8.4 mm). . The tensile test was performed in an atmosphere at room temperature using an Instron type tensile tester at a crosshead speed of 8.33 × 10 −6 m / s. From FIG. 2, the tensile strength (σ B ) of the sample was about 950 MPa for the sample of Example 1, about 910 MPa for the sample of Comparative Example 1, and about 940 MPa for the sample of Comparative Example 2. From this result, it can be seen that the sample according to Example 1 is slightly superior in tensile strength as compared with the samples according to Comparative Examples 1 and 2.

図4には、実施例1及び比較例1,2に係る試料の疲労試験結果を示す。疲労試験片は、上述の引張試験片と同様の形状とした(図3を参照のこと。)。疲労試験は、片振り引張疲労試験であり、室温の大気中にて、油圧式疲労試験機を用いて応力比0.1、周波数10Hzで行った。図4より、片振り引張疲労限度(σ)は、実施例1の試料が約930MPa、比較例1の試料が約650MPa、比較例2の試料が約800MPaであった。この結果から、実施例1に係る試料は、比較例1及び2に係る試料と比較して、疲労強度に優れたものであることが分かる。 In FIG. 4, the fatigue test result of the sample which concerns on Example 1 and Comparative Examples 1 and 2 is shown. The fatigue test piece had the same shape as the tensile test piece described above (see FIG. 3). The fatigue test was a one-sided tensile fatigue test, and was performed in a room temperature atmosphere at a stress ratio of 0.1 and a frequency of 10 Hz using a hydraulic fatigue tester. From FIG. 4, the swing tension fatigue limit (σ u ) was about 930 MPa for the sample of Example 1, about 650 MPa for the sample of Comparative Example 1, and about 800 MPa for the sample of Comparative Example 2. From this result, it can be seen that the sample according to Example 1 is superior in fatigue strength as compared with the samples according to Comparative Examples 1 and 2.

図5には、実施例1及び比較例1,2に係る試料の疲労限度比と結晶粒径との関係を示す。図5より、結晶粒径が小さくなるとともに疲労限度比(σ/σ)が増加しており、実施例1の試料に関しては疲労限度比が0.98と非常に高い値であった。そして、図5に示す結果から、疲労限度比と結晶粒径(D)の関係は、以下の条件式(5)で近似できることが分かる。この条件式(5)によれば、疲労限度比を0.90以上とするためには、結晶粒径を60μm以下にすることが必要となる。 FIG. 5 shows the relationship between the fatigue limit ratio and the crystal grain size of the samples according to Example 1 and Comparative Examples 1 and 2. As shown in FIG. 5, the fatigue limit ratio (σ u / σ B ) increased as the crystal grain size decreased, and the fatigue limit ratio for the sample of Example 1 was a very high value of 0.98. From the results shown in FIG. 5, it can be seen that the relationship between the fatigue limit ratio and the crystal grain size (D) can be approximated by the following conditional expression (5). According to this conditional expression (5), in order to make the fatigue limit ratio 0.90 or more, it is necessary to make the crystal grain size 60 μm or less.

図6には、実施例1及び比較例2に係る試料のヤング率の測定結果を示す。ヤング率の測定は、φ3mm×40mmまで研削を行った試験片に対して、自由共振法により行った。図6より、ヤング率は、実施例1の試料が84GPa、比較例2の試料が90GPaであり、実施例1の試料と比較例2の試料ともに90GPa以下の低い値で大差はなかった。β型チタン合金では、時効処理を施せばα相などが析出し、高強度化を図ることが可能であるが、ヤング率も増加する。しかし、本件発明に係るβ型強化チタン合金の製造方法では時効処理を行わないため、この製法により得られたβ型強化チタン合金は、母相はほぼβ相となり、これによって90GPa以下の低いヤング率を維持できることが分かる。   In FIG. 6, the measurement result of the Young's modulus of the sample which concerns on Example 1 and Comparative Example 2 is shown. The Young's modulus was measured by a free resonance method on a test piece ground to φ3 mm × 40 mm. From FIG. 6, the Young's modulus was 84 GPa for the sample of Example 1 and 90 GPa for the sample of Comparative Example 2, and both the sample of Example 1 and the sample of Comparative Example 2 were low values of 90 GPa or less and were not significantly different. In the β-type titanium alloy, an aging treatment precipitates an α phase and the like, and it is possible to increase the strength, but the Young's modulus also increases. However, since the aging treatment is not performed in the method for producing a β-type reinforced titanium alloy according to the present invention, the β-type reinforced titanium alloy obtained by this production method has a parent phase substantially in the β phase, and thereby a low Young's strength of 90 GPa or less. It can be seen that the rate can be maintained.

以上の実施例1と比較例1,2とを対比した結果より、本件発明に係るβ型強化チタン合金の製造方法によって得られたβ型強化チタン合金は、低いヤング率を維持しつつも、引張強度及び疲労強度の向上が図られたものであることが分かる。   From the result of comparing Example 1 and Comparative Examples 1 and 2 above, the β-type strengthened titanium alloy obtained by the method for producing a β-type strengthened titanium alloy according to the present invention maintains a low Young's modulus, It can be seen that the tensile strength and fatigue strength are improved.

<β型強化チタン合金における減面率と加熱温度の条件範囲についての確認>
以上をふまえ、以下に、本件発明に係るβ型強化チタン合金の製造方法における、減面率及び加熱温度の条件範囲の確認を行う。具体的には、本件発明に係るβ型強化チタン合金の製造方法における減面率及び加熱温度の条件を変更したときに観察したβ型チタン合金の再結晶組織に基づき、引張強度及び疲労強度の変化の確認を行う。
<Confirmation of the area reduction ratio and heating temperature condition range in β-type reinforced titanium alloy>
Based on the above, the conditions of the area reduction rate and heating temperature in the method for producing a β-type reinforced titanium alloy according to the present invention will be confirmed below. Specifically, based on the recrystallized structure of the β-type titanium alloy observed when the area reduction rate and the heating temperature conditions in the method for producing the β-type reinforced titanium alloy according to the present invention were changed, the tensile strength and fatigue strength were Check for changes.

表1に、種々の減面率及び加熱条件で処理を行ったβ型Ti−12Cr合金の再結晶判定及び再結晶部分の結晶粒径を示す。再結晶の判定基準としては、再結晶している領域が試験片断面の7割以上占めるものは○、3割以上7割未満であるものは△、3割未満のものは×とした。また、再結晶部分の結晶粒径は、JIS G0551の比較法により得られた粒度番号(G)から以下の条件式(6),(7)を用いて算出した。   Table 1 shows the recrystallization judgment and the crystal grain size of the recrystallized portion of the β-type Ti-12Cr alloy processed under various area reduction rates and heating conditions. As a criterion for recrystallization, ◯ indicates that the recrystallized region occupies 70% or more of the cross section of the specimen, and △ indicates that the region is 30% or more and less than 70%. The crystal grain size of the recrystallized portion was calculated using the following conditional expressions (6) and (7) from the particle size number (G) obtained by the comparison method of JIS G0551.

図7には、減面率49%で冷間加工を行った試験片、表1の代表例として試料番号13、及び8の光学顕微鏡写真を示す。図7より、減面率49%での冷間加工後では変形組織が発達しているが、試料番号13では全面が微細な再結晶組織となっている。一方、試料番号8は一部微細な再結晶粒が存在しているが、多くの部分で未再結晶組織となっていることが分かる。   FIG. 7 shows optical micrographs of test pieces that were cold-worked at a surface reduction rate of 49% and sample numbers 13 and 8 as representative examples in Table 1. From FIG. 7, the deformed structure has developed after cold working with a reduction in area of 49%, but the entire surface of Sample No. 13 has a fine recrystallized structure. On the other hand, sample No. 8 has some fine recrystallized grains, but it can be seen that many portions have an unrecrystallized structure.

図8には、表1の各減面率(R)と、加熱温度(T)とβトランザス温度(Tβ)との差(T−Tβ)での再結晶判定結果をグラフ化したものを示す。ここで、Ti−12Cr合金のβトランザス温度(Tβ)は680℃である。図8をみるに、いずれの減面率においても加熱温度の上昇に伴い再結晶が進行している傾向がみられる。また、図8より、減面率が増加すると、7割以上の再結晶領域を示す下限温度が低下していることが分かる。この結果から、全面再結晶組織を得るためには、以下に示す条件式(3)及び(4)を満たす必要があることが分かる。 FIG. 8 is a graph showing the recrystallization determination results at each area reduction ratio (R A ) in Table 1 and the difference (T 1 −T β ) between the heating temperature (T 1 ) and the β transus temperature (T β ). This shows Here, the Ti-12Cr alloy beta transus temperature (T beta) is 680 ° C.. As can be seen from FIG. 8, there is a tendency that recrystallization proceeds with increasing heating temperature at any area reduction. Moreover, it can be seen from FIG. 8 that the lower limit temperature indicating a recrystallization region of 70% or more decreases as the area reduction ratio increases. From this result, it can be seen that the following conditional expressions (3) and (4) must be satisfied in order to obtain the entire recrystallized structure.

図9には、表1の再結晶部分の結晶粒径(D)と、加熱温度(T)とβトランザス温度(Tβ)との差(T−Tβ)との関係を示す。図9より、加熱温度の増加に伴い、結晶粒径が粗大化する傾向となり、本件発明に係るβ型強化チタン合金を得るための結晶粒径60μm以下となるためには、加熱温度とβトランザス温度との差を450℃以下とする必要があることが分かる。 FIG. 9 shows the relationship between the crystal grain size (D) of the recrystallized portion in Table 1 and the difference (T 1 −T β ) between the heating temperature (T 1 ) and the β transus temperature (T β ). From FIG. 9, the crystal grain size tends to increase with increasing heating temperature, and in order to obtain a crystal grain size of 60 μm or less for obtaining the β-type reinforced titanium alloy according to the present invention, the heating temperature and β transus It can be seen that the difference from the temperature needs to be 450 ° C. or less.

図10には、図8及び9に示す結果に基づき、好ましいとされる加熱温度(T)とβトランザス温度(Tβ)との差(T−Tβ)と、好ましいとされる減面率(R)との関係を斜線部で示した領域により表す。図10に示す結果より、本件発明に係るβ型強化チタン合金の工程Aにおける減面率(R)と工程Bにおける加熱温度(T)の条件は、以下の条件式(1)及び(2)で表すことが出来る。 FIG. 10 shows the difference (T 1 −T β ) between the preferred heating temperature (T 1 ) and the β transus temperature (T β ) based on the results shown in FIGS. The relationship with the surface area (R A ) is represented by the shaded area. From the results shown in FIG. 10, the conditions of the area reduction ratio (R A ) in the process A and the heating temperature (T 1 ) in the process B of the β-type reinforced titanium alloy according to the present invention are the following conditional expressions (1) and ( 2).

また、本件発明に係るβ型強化チタン合金の工程Cにおける急冷処理に関し、表1の試料番号11では、急冷の直前に0.8秒の放冷時間を設けているが、再結晶判定が「○」となっている。この結果より、本件発明に係るβ型強化チタン合金の工程Cでは、結晶粒の粗大化を招かない短時間であれば放冷時間を設けることが出来る。   Further, regarding the rapid cooling process in the step C of the β-type reinforced titanium alloy according to the present invention, in Sample No. 11 of Table 1, a cooling time of 0.8 seconds is provided immediately before the rapid cooling. ○ ”. From this result, in the step C of the β-type reinforced titanium alloy according to the present invention, a cooling time can be provided for a short time that does not cause coarsening of crystal grains.

本件発明に係るβ型強化チタン合金の製造方法によれば、生体適合性に優れ、引張強度及び疲労強度の向上が図られたβ型チタン合金を得ることが出来るため、高負荷繰返し応力下での使用が想定される構造用材料や医療用材料として好適に用いることが出来る。よって、本件発明に係るβ型強化チタン合金は、航空機、自動車エンジン部品、自動車ギア、ゴルフヘッド、眼鏡フレーム等の引張強度と疲労強度が求められる材料に好適に用いることが出来る。   According to the method for producing a β-type reinforced titanium alloy according to the present invention, a β-type titanium alloy having excellent biocompatibility and improved tensile strength and fatigue strength can be obtained. Can be suitably used as a structural material or a medical material that is expected to be used. Therefore, the β-type reinforced titanium alloy according to the present invention can be suitably used for materials that require tensile strength and fatigue strength, such as aircraft, automobile engine parts, automobile gears, golf heads, and spectacle frames.

Claims (5)

引張強度に対する疲労限度の比として表される疲労限度比が0.9以上であることを特徴とするβ型強化チタン合金。   A β-type reinforced titanium alloy, wherein a fatigue limit ratio expressed as a ratio of fatigue limit to tensile strength is 0.9 or more. 平均結晶粒径が60μm以下である請求項1に記載のβ型強化チタン合金。   The β-type reinforced titanium alloy according to claim 1, wherein the average crystal grain size is 60 μm or less. 疲労限度が850MPa以上である請求項1又は請求項2に記載のβ型強化チタン合金。   The β-type reinforced titanium alloy according to claim 1 or 2, wherein the fatigue limit is 850 MPa or more. 請求項1〜請求項3のいずれかに記載のβ型強化チタン合金の製造方法であって、少なくとも以下に示す工程を備えることを特徴とする。
工程A:β型チタン合金を冷間加工により減面率25%〜85%で減面処理する。
工程B:工程Aを経たβ型チタン合金を、高周波誘導加熱法により以下の条件式(1)又は条件式(2)を満足する温度Tまで100℃/s以上の昇温速度で加熱処理する。

工程C:工程Bを経たβ型チタン合金を、100℃/s以上の冷却速度で急冷処理する。
It is a manufacturing method of the beta type reinforced titanium alloy in any one of Claims 1-3, Comprising: At least the process shown below is provided.
Process A: A β-type titanium alloy is subjected to surface reduction treatment by cold working at a surface area reduction rate of 25% to 85%.
Step B: Heat treatment of the β-type titanium alloy that has undergone Step A at a rate of temperature increase of 100 ° C./s or higher to a temperature T 1 that satisfies the following conditional expression (1) or conditional expression (2) by high-frequency induction heating method To do.

Step C: The β-type titanium alloy that has undergone Step B is rapidly cooled at a cooling rate of 100 ° C./s or more.
前記β型チタン合金がTi−12Cr合金である請求項4に記載のβ型強化チタン合金の製造方法。   The method for producing a β-type reinforced titanium alloy according to claim 4, wherein the β-type titanium alloy is a Ti-12Cr alloy.
JP2015155089A 2015-08-05 2015-08-05 β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy Active JP6621196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155089A JP6621196B2 (en) 2015-08-05 2015-08-05 β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155089A JP6621196B2 (en) 2015-08-05 2015-08-05 β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy

Publications (2)

Publication Number Publication Date
JP2017031488A true JP2017031488A (en) 2017-02-09
JP6621196B2 JP6621196B2 (en) 2019-12-18

Family

ID=57985588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155089A Active JP6621196B2 (en) 2015-08-05 2015-08-05 β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy

Country Status (1)

Country Link
JP (1) JP6621196B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014001A (en) * 2017-07-05 2019-01-31 新日鐵住金株式会社 Method for polishing surface of rod-like test piece
JP2019048355A (en) * 2017-09-11 2019-03-28 新日鐵住金株式会社 Rod-like test piece surface polishing device and surface polishing method
CN112404425A (en) * 2020-11-24 2021-02-26 福州大学 High-strength 12Cr steel and preparation method thereof
CN116043153A (en) * 2023-01-15 2023-05-02 西安理工大学 Method for improving strength and plasticity of metastable beta titanium alloy dual-performance structural member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293929A (en) * 1993-04-06 1994-10-21 Sumitomo Electric Ind Ltd Beta titanium alloy wire and its production
JP2004091893A (en) * 2002-09-02 2004-03-25 Kobe Steel Ltd High strength titanium alloy
JP2011153345A (en) * 2010-01-27 2011-08-11 Kobe Steel Ltd beta TYPE TITANIUM ALLOY HAVING EXCELLENT FATIGUE STRENGTH

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293929A (en) * 1993-04-06 1994-10-21 Sumitomo Electric Ind Ltd Beta titanium alloy wire and its production
JP2004091893A (en) * 2002-09-02 2004-03-25 Kobe Steel Ltd High strength titanium alloy
JP2011153345A (en) * 2010-01-27 2011-08-11 Kobe Steel Ltd beta TYPE TITANIUM ALLOY HAVING EXCELLENT FATIGUE STRENGTH

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
新家 光雄: "生体用チタン合金の開発と高力学的生体適合化", 軽金属, vol. 第64巻 第8号 (2014), JPN6019041675, 30 August 2014 (2014-08-30), JP, pages 374 - 381, ISSN: 0004143425 *
赤堀俊和 他, 軽金属, vol. 2011年 第61巻 第12号, JPN6019017967, 30 December 2011 (2011-12-30), JP, pages 705 - 710, ISSN: 0004037263 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014001A (en) * 2017-07-05 2019-01-31 新日鐵住金株式会社 Method for polishing surface of rod-like test piece
JP2019048355A (en) * 2017-09-11 2019-03-28 新日鐵住金株式会社 Rod-like test piece surface polishing device and surface polishing method
CN112404425A (en) * 2020-11-24 2021-02-26 福州大学 High-strength 12Cr steel and preparation method thereof
CN116043153A (en) * 2023-01-15 2023-05-02 西安理工大学 Method for improving strength and plasticity of metastable beta titanium alloy dual-performance structural member

Also Published As

Publication number Publication date
JP6621196B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP5850859B2 (en) Production of high-strength titanium
TWI631222B (en) High strength alpha/beta titanium alloy
JP5078220B2 (en) Method for forming a metal member, heat treating a titanium-based alloy and manufacturing an aircraft, and an aircraft including a loaded structural member
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
US20030168138A1 (en) Method for processing beta titanium alloys
JP6621196B2 (en) β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy
JP2018095941A (en) HEAT RESISTANT Ti ALLOY AND METHOD FOR PRODUCING THE SAME
JP6212976B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JP3934372B2 (en) High strength and low Young&#39;s modulus β-type Ti alloy and method for producing the same
JP2007084864A (en) alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP2015193870A (en) MANUFACTURING METHOD OF Fe-Ni BASE HEAT-RESISTANT SUPERALLOY
JPH07252617A (en) Production of titanium alloy having high strength and high toughness
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP5408525B2 (en) Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method
JP2017218661A (en) Titanium alloy forging material
JP2017002390A (en) Titanium alloy forging material
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
GB2457998A (en) A method of working titanium alloys
JP6351149B2 (en) Titanium alloy and heat treatment method for the same
JP2017218660A (en) Titanium alloy forging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6621196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250