JP2011153345A - beta TYPE TITANIUM ALLOY HAVING EXCELLENT FATIGUE STRENGTH - Google Patents
beta TYPE TITANIUM ALLOY HAVING EXCELLENT FATIGUE STRENGTH Download PDFInfo
- Publication number
- JP2011153345A JP2011153345A JP2010015171A JP2010015171A JP2011153345A JP 2011153345 A JP2011153345 A JP 2011153345A JP 2010015171 A JP2010015171 A JP 2010015171A JP 2010015171 A JP2010015171 A JP 2010015171A JP 2011153345 A JP2011153345 A JP 2011153345A
- Authority
- JP
- Japan
- Prior art keywords
- type titanium
- phase
- titanium alloy
- present
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Forging (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、疲労強度に優れたβ型チタン合金に関するものである。 The present invention relates to a β-type titanium alloy having excellent fatigue strength.
チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性などの利用加工諸特性を有することから、航空機産業を中心に多用されてきた。これらの特性を更に活用すべく、近年では、ゴルフ用品をはじめとしたスポーツ用品にも使用されるようになってきており、自動車部品、土木建築用素材、各種工具類などの民生品分野や、深海やエネルギー開発用途などへの適用拡大も進んでいる。 Titanium alloys have been widely used mainly in the aircraft industry because they have various processing characteristics such as weldability, superplasticity, and diffusion bonding properties in addition to light weight, high strength, and high corrosion resistance. In order to further utilize these characteristics, in recent years it has come to be used for sports equipment such as golf equipment, such as consumer products such as automobile parts, civil engineering materials, various tools, Application to deep seas and energy development applications is also expanding.
チタン合金の中でも、Ti−15V−3Cr−3Sn−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−13V−11Cr−3Al合金等のβ型チタン合金は、時効処理することで高強度が得られやすいため、ゴルフクラブのヘッド、自転車のギヤ、ばね、釣り具、航空機部材などの素材としてその需要は益々拡大する方向にある。 Among titanium alloys, β-type titanium alloys such as Ti-15V-3Cr-3Sn-3Al alloy, Ti-15Mo-5Zr-3Al alloy, Ti-13V-11Cr-3Al alloy have high strength by aging treatment. Therefore, the demand for materials for golf club heads, bicycle gears, springs, fishing gear, aircraft members and the like is increasing.
このような実情もあって、近年、β型チタン合金が種々提案されている。特許文献1として、その成分組成を規定することで、高強度および高靭性としたβ型チタン合金線材およびその製造方法が、特許文献2として、予めα相の平均粒径を0.1〜10μm、β相の平均粒径を0.1〜10μmとしたβ型チタン合金に、「β変態点−450℃」以上で「β変態点−100℃」未満の温度域において15分〜100時間の熱処理を施すβ型チタン合金の製造方法とその製造方法により製造したチタン合金が提案されている。
Under such circumstances, various β-type titanium alloys have been proposed in recent years.
また、本出願人も、特許文献3として、高価な合金元素であるVやMoの含有量を極力少なくしても、優れた強度−延性バランスを得ることができる高強度・高延性β型チタン合金の提案を行っている。
In addition, as disclosed in
以上説明したように、これらβ型チタン合金は、強度に優れるという特性を有しており、ゴルフクラブのヘッド、自転車のギヤ、ばね、釣り具、航空機部材などの素材等として広く採用されているが、繰返し応力を受ける部材として用いられることが多く、高負荷繰返し応力下における長寿命化、疲労寿命のばらつき低減といった更なる高疲労強度化が求められている。 As described above, these β-type titanium alloys have excellent strength properties and are widely used as materials for golf club heads, bicycle gears, springs, fishing gear, aircraft members, and the like. However, it is often used as a member that receives a repeated stress, and a further increase in fatigue strength is required, such as a longer life under high load repeated stress and a reduction in variation in fatigue life.
本発明は、上記従来の実情に鑑みてなされたもので、900MPa以上の高負荷応力下においても高い疲労強度が得られるβ型チタン合金を提供することを課題とするものである。 This invention is made | formed in view of the said conventional situation, and makes it a subject to provide the beta type titanium alloy from which high fatigue strength is obtained under the high load stress of 900 Mpa or more.
請求項1記載の発明は、質量%で、Vを4.0〜10.0%、Snを2.0%以上、Alを2.0%以上含有するβ型チタン合金であって、金属組織中の、幅:幅:0.05μm以上のα相が、0.3μmの間隔をあけて平行する任意の二本の直線の間に収まる形状であり、且つ、長さが5μm以下であると共に、β相の最大粒径が50μm以下であり、且つ、以下の式で定義されるT1が、700超、800未満であることを特徴とする疲労強度に優れたβ型チタン合金である。
T1=937+147.7[O]+20.4[Al]+161.8[C]−19.8[Fe]−10.3[Mo]−8.4[Nb]−13.1[V]−17.0[Cr]−0.2[Sn]−8.5[Cu]
但し、上式で[ ]は各元素の含有量(質量%)を示す。
The invention according to
T1 = 937 + 147.7 [O] +20.4 [Al] +161.8 [C] -19.8 [Fe] -10.3 [Mo] -8.4 [Nb] -13.1 [V] -17 0.0 [Cr] -0.2 [Sn] -8.5 [Cu]
However, in the above formula, [] indicates the content (% by mass) of each element.
請求項2記載の発明は、更に、質量%で、Crを5.0〜9.0%、Feを0.3〜3.5%、Snを2.0〜5.0%、Alを2.0〜4.5%を含有し、残部はTiおよび不可避的不純物であることを特徴とする請求項1記載の疲労強度に優れたβ型チタン合金である。
The invention according to
請求項3記載の発明は、更に、Siを0.5質量%以下含有し、以下の式で定義されるT1が、700超、800未満であることを特徴とする請求項2記載の疲労強度に優れたβ型チタン合金である。
T1=937+147.7[O]+20.4[Al]+161.8[C]−19.8[Fe]−10.3[Mo]−8.4[Nb]−13.1[V]−17.0[Cr]−0.2[Sn]−8.5[Cu]−12[Si]
但し、上式で[ ]は各元素の含有量(質量%)を示す。
The invention according to
T1 = 937 + 147.7 [O] +20.4 [Al] +161.8 [C] -19.8 [Fe] -10.3 [Mo] -8.4 [Nb] -13.1 [V] -17 0.0 [Cr] -0.2 [Sn] -8.5 [Cu] -12 [Si]
However, in the above formula, [] indicates the content (% by mass) of each element.
本発明の疲労強度に優れたβ型チタン合金によると、900MPa以上の高負荷応力下においても高い疲労強度を得ることができる。 According to the β-type titanium alloy excellent in fatigue strength of the present invention, high fatigue strength can be obtained even under a high load stress of 900 MPa or more.
本発明者らは、900MPa以上の高負荷応力下においても高い疲労強度を得ることができる疲労強度に優れたβ型チタン合金を開発するために、鋭意、実験、研究を進めた。その結果、チタンに添加する合金元素、特に、V、Sn、Alの含有量を規定すると共に、金属組織として存在するα相の形状を適切な形状とし、更に金属組織中のβ相の最大粒径を規定することで、900MPa以上の高負荷応力下においても高い疲労強度が得られることを見出し、本発明の完成に至った。 In order to develop a β-type titanium alloy excellent in fatigue strength capable of obtaining high fatigue strength even under a high load stress of 900 MPa or more, the present inventors have advanced earnestly, experiments, and research. As a result, the content of alloying elements added to titanium, particularly V, Sn, and Al, is specified, the shape of the α phase existing as a metal structure is made appropriate, and the largest particles of β phase in the metal structure By defining the diameter, it was found that high fatigue strength was obtained even under a high load stress of 900 MPa or more, and the present invention was completed.
以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
本発明では、β型チタン合金の成分組成と、金属組織中のα相の形態、および金属組織中のβ相の最大粒径を規定するが、まず、チタンに添加する合金元素の種類と、各合金元素の含有率を定めた理由について、元素毎に詳細に説明する。尚、本明細書中に記載する%は全て質量%を示す。 In the present invention, the component composition of the β-type titanium alloy, the form of the α phase in the metal structure, and the maximum particle size of the β phase in the metal structure, first, the type of alloy element to be added to titanium, The reason for determining the content of each alloy element will be described in detail for each element. In addition, all% described in this specification shows the mass%.
V:4.0〜10.0%
Vは、チタン合金として優れた強度−延性バランスを与える上で極めて有効な元素であるが、高価な元素でもあり、コストを抑えるためにはその上限を規定する必要がある。そのため、本発明では、その上限を10.0%と規定している。低コスト化の観点からより好ましい上限は8.0%である。尚、V添加によって得られる時効処理後の延性向上効果は、本発明において極めて重要であり、その効果を有効に発現させるためには、最低でも4.0%は含有させる必要がある。より好ましい下限は5.0%である。
V: 4.0 to 10.0%
V is an extremely effective element for providing an excellent strength-ductility balance as a titanium alloy. However, V is also an expensive element, and it is necessary to define an upper limit in order to reduce costs. Therefore, in the present invention, the upper limit is defined as 10.0%. A more preferable upper limit is 8.0% from the viewpoint of cost reduction. In addition, the ductility improving effect after the aging treatment obtained by adding V is extremely important in the present invention, and in order to effectively exhibit the effect, it is necessary to contain at least 4.0%. A more preferred lower limit is 5.0%.
Cr:5.0〜9.0%
Crは、時効硬化を抑え過度の強度上昇を抑制して延性不足を回避するために有効な元素であるが、その効果を得るためには5.0%以上は含有させる必要がある。好ましい含有量の下限は6.0%である。Crの含有量を多くすれば多くするほど時効硬化は遅延する。当然のことではあるが時効時間を長くするにつれて時効硬化は進行する。しかしながら、実際の製造において時効時間を極度に長くすることは、生産性を低下させるため実情にそぐわない。航空機部材等に適用されるβ型チタン合金に適用される通常の時効時間は8時間程度であり、この程度の時効時間で十分な強度を確保するための上限は、9.0%の含有量と考えられる。好ましい含有量の上限は8.0%である。
Cr: 5.0-9.0%
Cr is an effective element for suppressing age hardening and suppressing an excessive increase in strength to avoid shortage of ductility, but in order to obtain the effect, 5.0% or more needs to be contained. The lower limit of the preferable content is 6.0%. As the Cr content is increased, age hardening is delayed. As a matter of course, age hardening proceeds as the aging time is increased. However, extremely increasing the aging time in actual production is not suitable for the actual situation because it reduces productivity. The normal aging time applied to β-type titanium alloys applied to aircraft members and the like is about 8 hours, and the upper limit for securing sufficient strength at this aging time is 9.0% content it is conceivable that. The upper limit of the preferable content is 8.0%.
Fe:0.3〜3.5%
Feは、Crと同様に共析型のβ安定化元素であり、Crと共に添加することで、強度−延性バランスを一段と高めることができる。このような効果は、Feを0.3%以上添加することで有効に発現することができるが、Feの含有量が3.5%を超えると、Crと同様に時効を遅延して高強度化の障害となる。従って、Feの含有量は3.5%以下とすることが好ましい。より好ましい上限は3.0%である。
Fe: 0.3-3.5%
Fe is a eutectoid β-stabilizing element like Cr, and when added together with Cr, the strength-ductility balance can be further increased. Such an effect can be effectively expressed by adding 0.3% or more of Fe. However, when the Fe content exceeds 3.5%, the aging is delayed as in the case of Cr and high strength is obtained. It becomes an obstacle to crystallization. Therefore, the Fe content is preferably 3.5% or less. A more preferred upper limit is 3.0%.
Sn:2.0〜5.0%
Snは、冷間加工後の時効処理によって高延性を得るために必要な元素であり、その含有量が2.0%未満ではチタン合金内に、ωδ相が出現し、冷間加工後の時効処理で延性劣化を引き起こす原因になる。よって、2.0%以上、好ましくは2.5%以上含有させることが望ましい。但し、SnはTiよりも高密度で、高純度品では高価であるため、低コスト化を目的とすると、極力含有量を少なくする必要がある。従って、その含有量は、多くとも5.0%以下、好ましくは4.5%以下に抑えることが望ましい。
Sn: 2.0-5.0%
Sn is an element necessary for obtaining high ductility by aging treatment after cold working, and when its content is less than 2.0%, an ωδ phase appears in the titanium alloy, and aging after cold working. Causes ductile deterioration in processing. Therefore, it is desirable to contain 2.0% or more, preferably 2.5% or more. However, Sn has a higher density than Ti and is expensive for high-purity products. Therefore, for the purpose of cost reduction, it is necessary to reduce the content as much as possible. Therefore, it is desirable that the content is at most 5.0% or less, preferably 4.5% or less.
Al:2.0〜4.5%
Alは、時効処理後の強度を高めるのに必要な元素であり、その効果を発揮させるためには、2.0%以上、好ましくは2.5%以上含有させることが望ましい。しかし、その含有量が多すぎると、逆に延性が低下して冷間加工性が損なわれるので、多くとも4.5%以下、好ましくは4.0%以下にその含有量を抑制する必要がある。
Al: 2.0 to 4.5%
Al is an element necessary for increasing the strength after the aging treatment, and in order to exert the effect, it is desirable to contain 2.0% or more, preferably 2.5% or more. However, if the content is too large, the ductility is lowered and cold workability is impaired. Therefore, it is necessary to suppress the content to 4.5% or less, preferably 4.0% or less at most. is there.
以上、チタンに添加する合金元素の含有量の上下限を説明したが、本発明のβ型チタン合金は、Vを4.0〜10.0%、Snを2.0%以上、Alを2.0%以上含有することを必須とする。線材を製造する場合は、特に圧延時の温度上昇が問題となり、圧延時の温度上昇はβ相の粒径の粗大化を招く。更に、圧延負荷が高いことも経済性を損ねる。従来はV、Moといった代表的なβ安定化元素を添加することがよく行われてきたが、これらは高価な元素であると共に、多量に添加した場合には圧延時の変形抵抗が大きくなることから、上述した問題を助長することになる。そのため、V、Moに代えてFe、Cr、Nb、Cu、SiといったV、Moに比べると安価なβ安定化元素を添加することも考えられるが、完全に代替させることも難しく、また組織(相)の安定性や時効後の強度向上効果においてはV、Mo添加には及ばない。本発明者らの検討の結果、V含有量を従来より低く抑える(具体的には4.0〜10.0%とする)と共に、SnとAlを適量添加することで前記課題を解決できることが見出されたのである。前記の通り、Snはβ相を安定化させることに有効な元素であり、またAlは時効後の強度を高めることに有効な元素であり、これらをそれぞれ2.0%以上添加することで、添加するV量を4.0〜10.0%と従来に比して少なくすることが可能となるのである。尚、本発明においてはMoを含有させることも可能であるが、後記実施例に示す通り、必ずしも添加する必要はない。Moを添加する場合は、前記の課題を考慮すると10.0%以下、好ましくは8.0%以下、更に好ましくは7.0%以下とする。 The upper and lower limits of the content of the alloying element added to titanium have been described above. In the β-type titanium alloy of the present invention, V is 4.0 to 10.0%, Sn is 2.0% or more, and Al is 2%. It is essential to contain 0.0% or more. When manufacturing a wire, the temperature rise especially at the time of rolling becomes a problem, and the temperature rise at the time of rolling invites coarsening of the particle size of β phase. Furthermore, the high rolling load also impairs economic efficiency. Conventionally, typical β-stabilizing elements such as V and Mo have been often added, but these are expensive elements, and when added in large quantities, deformation resistance during rolling increases. Therefore, the above-mentioned problem is promoted. Therefore, it is conceivable to add an inexpensive β-stabilizing element in place of V and Mo instead of V and Mo such as Fe, Cr, Nb, Cu, and Si, but it is difficult to completely replace them, and the structure ( In terms of the stability of the phase) and the effect of improving the strength after aging, it does not reach the addition of V and Mo. As a result of the study by the present inventors, the above problem can be solved by keeping the V content lower than before (specifically, 4.0 to 10.0%) and adding appropriate amounts of Sn and Al. It was found. As described above, Sn is an element effective for stabilizing the β phase, and Al is an element effective for increasing the strength after aging. By adding 2.0% or more of each of these, This makes it possible to reduce the amount of V to be added to 4.0 to 10.0% as compared with the prior art. In the present invention, it is possible to contain Mo, but it is not always necessary to add it as shown in the examples below. In the case where Mo is added, considering the above-mentioned problems, it is set to 10.0% or less, preferably 8.0% or less, more preferably 7.0% or less.
また、β安定化元素として、Fe、Cr、Nb、Cu、Siも、V、Moと比較して安価であるため、含有させることは可能である。その中でもSiは特に安価であり、β安定化元素としてβ型チタン合金に含有させることが有効であるが、Siの多量の添加はシリサイドが生成して脆化を招くおそれがある。従って、Siを添加する場合は、多くても0.5%とする。 Further, Fe, Cr, Nb, Cu, and Si can be included as β-stabilizing elements because they are less expensive than V and Mo. Among them, Si is particularly inexpensive, and it is effective to contain it in a β-type titanium alloy as a β-stabilizing element. However, if a large amount of Si is added, there is a possibility that silicide is generated and embrittlement is caused. Therefore, when adding Si, it is 0.5% at most.
本発明のβ型チタン合金に添加させる合金元素の成分範囲の限定理由は以上の通りであり、残部はTiおよび不可避的不純物である。 The reason for limiting the component range of the alloy element added to the β-type titanium alloy of the present invention is as described above, and the balance is Ti and inevitable impurities.
また、本発明のβ型チタン合金は、700<T1<800という要件を満足することも要件とする。 In addition, the β-type titanium alloy of the present invention is required to satisfy the requirement of 700 <T1 <800.
ここで示すT1は、β型チタン合金に添加させる各合金元素等の含有量(質量%)を[ ]で表したとき、
T1=937+147.7[O]+20.4[Al]+161.8[C]−19.8[Fe]−10.3[Mo]−8.4[Nb]−13.1[V]−17.0[Cr]−0.2[Sn]−8.5[Cu]
で表すことができる。尚、この式は、各添加元素による影響も考慮した上で、β変態温度(β変態点)を求めるための式である。
T1 shown here represents the content (mass%) of each alloy element to be added to the β-type titanium alloy by [].
T1 = 937 + 147.7 [O] +20.4 [Al] +161.8 [C] -19.8 [Fe] -10.3 [Mo] -8.4 [Nb] -13.1 [V] -17 0.0 [Cr] -0.2 [Sn] -8.5 [Cu]
Can be expressed as This equation is an equation for obtaining the β transformation temperature (β transformation point) in consideration of the influence of each additive element.
また、Siをβ安定化元素として添加する場合は、T1は、β型チタン合金に添加させる各合金元素等の含有量(質量%)を[ ]で表したとき、
T1=937+147.7[O]+20.4[Al]+161.8[C]−19.8[Fe]−10.3[Mo]−8.4[Nb]−13.1[V]−17.0[Cr]−0.2[Sn]−8.5[Cu]−12[Si]
で表すことができる。
When Si is added as a β-stabilizing element, T1 represents the content (mass%) of each alloy element to be added to the β-type titanium alloy by [].
T1 = 937 + 147.7 [O] +20.4 [Al] +161.8 [C] -19.8 [Fe] -10.3 [Mo] -8.4 [Nb] -13.1 [V] -17 0.0 [Cr] -0.2 [Sn] -8.5 [Cu] -12 [Si]
Can be expressed as
どちらの式で計算された値であっても、このT1が700以下では、β相が熱力学的に安定化しすぎるので、時効α相の生成が抑制され、時効時間が非常に長時間となるため、生産性が低下して工業的に成り立たない。一方、T1が800以上になると、圧延後や焼鈍後の冷却中にα相が生成してしまい、粗大な線状のα相が生成して疲労強度を低下させる。従って、700<T1<800を、本発明の要件とした。好ましいT1の下限は730、より好ましいT1の下限は750であり、また、好ましいT1の上限は780、より好ましいT1の下限は770である。 Regardless of the value calculated by either formula, when this T1 is 700 or less, the β phase is too thermodynamically stabilized, so that the formation of an aging α phase is suppressed and the aging time becomes very long. For this reason, productivity is lowered and it cannot be industrially realized. On the other hand, when T1 is 800 or more, an α phase is generated during cooling after rolling or annealing, and a coarse linear α phase is generated to reduce fatigue strength. Therefore, 700 <T1 <800 is defined as a requirement of the present invention. A preferable lower limit of T1 is 730, and a more preferable lower limit of T1 is 750, and a preferable upper limit of T1 is 780, and a more preferable lower limit of T1 is 770.
次に、本発明のβ型チタン合金の金属組織について説明する。本発明のβ型チタン合金の金属組織は図1に示すような形状である。2は略球状のβ相(母相)であって、1(1a、1b)は線状のα相である。1aはβ粒界(β相の間)に存在する粒界α相であり、1bはβ相2の中に存在する粒内α相である。本発明は、これらα相1のうち、幅:0.05μm以上のα相1の形態(形状と大きさ)と、β相2の最大粒径を発明の要件とする。参考のため、図5に本発明の要件を満足するβ型チタン合金の金属組織の顕微鏡写真を、図6に本発明の要件を満足しないβ型チタン合金の金属組織の顕微鏡写真を示す。
Next, the metal structure of the β-type titanium alloy of the present invention will be described. The metal structure of the β-type titanium alloy of the present invention has a shape as shown in FIG. 2 is a substantially spherical β phase (parent phase), and 1 (1a, 1b) is a linear α phase. 1 a is a grain boundary α phase existing in the β grain boundary (between the β phases), and 1 b is an intragranular α phase existing in the
図2に本発明の要件を満足する最大のα相1を示す。このα相1は、幅:0.05μm以上であって、0.3μmの間隔をあけて平行する任意の二本の直線の間に収まる線状の形状であり、その長さは最大で5μmである。
FIG. 2 shows the
β型チタン合金においては、その金属組織中に、ある一定の幅以上のα相1が直線的に連続して生成することが、早期に亀裂が発生し、著しい疲労寿命低下につながることを本発明者らは見出した。一方、連続したα相1であっても、そのα相1が湾曲しておれば亀裂の発生箇所となりにくいことも確認した。そこで本発明者らは、従来のβ型チタン合金に比してより優れた疲労寿命を発揮させるためには、直線状に連続したα相1を低減させることが重要と考え、鋭意、検討を行った結果、α相1に関して、上記の要件を満足させることで、β型チタン合金が高い疲労寿命を発揮し、高い疲労強度が得られることを見出したものである。
In β-type titanium alloys, the fact that the
尚、金属組織中に生成したα相1の幅が何れも0.05μm未満の場合には、十分な時効がなされておらず、強度不足となるか、または延性が低下して、疲労寿命が低下することとなるので、幅:0.05μm以上のα相1が必ず存在する必要がある。
When the width of the
また、本発明では、β相2の最大粒径が50μm以下であることも要件とする。時効により生成するα相1は優先的にβ粒界上に析出する。この時、β粒界が直線的であれば、自ずとそこに連続したα相1が生成して、亀裂の発生箇所となる。従って、直線状の長いβ粒界が存在すると、幅:0.05μm以上のα相1が、0.3μmの間隔をあけて平行する任意の二本の直線の間に収まる形状とならず、また、その長さが5μm以下とならない可能性が高くなる。特に圧延方向に伸張した未再結晶粒がミクロ組織中に存在する場合は、β粒界に直線的な連続したα相1が生成しやすく、それが疲労寿命に大きく影響する。疲労亀裂は、金属組織中で最も脆弱な箇所に生成、伝播することが殆どであることから、β相2の平均粒径ではなく、最大粒径を規定することが重要であり、本発明では、β相の最大粒径を50μm以下と規定した。
In the present invention, it is also a requirement that the maximum particle size of
次に、本発明のβ型チタンの製造方法について説明する。本発明のβ型チタンを製造する方法は多々あると考えられ、また、製造する部材も、線材、板材、鍛造材等があるが、ここでは、線材を製造する場合の一例を説明する。 Next, the manufacturing method of (beta) type titanium of this invention is demonstrated. There are considered to be many methods for producing the β-type titanium of the present invention, and the member to be produced includes a wire, a plate, a forged material, etc. Here, an example in the case of producing a wire will be described.
図3に、その製造方法を温度条件と共に示すが、破線はβ変態点を示している。図3に示すように、例えば、本発明のβ型チタンは、「A.熱間圧延→(B.冷間伸線→)(C.再結晶処理→)D.冷間伸線→(E.回復熱処理→)F.時効処理」という工程を経ることで、製造することができる。 FIG. 3 shows the manufacturing method together with temperature conditions, and the broken line indicates the β transformation point. As shown in FIG. 3, for example, the β-type titanium of the present invention includes: “A. Hot rolling → (B. Cold wire drawing →) (C. Recrystallization treatment →) D. Cold wire drawing → (E It can be manufactured through a process of “.Recovery heat treatment →) F. Aging treatment”.
まず、A.基材の熱間圧延を行うが、仕上げ温度をβ変態点(T1)以上として圧延を実施する。熱間圧延後、冷却し、D.冷間伸線を20〜50%の減面率で実施する。最後に、F.時効処理を実施すれば、β型チタン合金を製造することができるが、この時効処理は、(β変態点−300℃)〜(β変態点−150℃)の温度範囲で2時間保持後、空冷(強制空冷を含む)または水冷を行うことで実施する。 First, A. Although the base material is hot-rolled, the finishing temperature is set to the β transformation point (T1) or higher. C. after hot rolling and cooling. Cold-drawing is performed with a reduction in area of 20 to 50%. Finally, F.A. If an aging treatment is carried out, a β-type titanium alloy can be produced. This aging treatment is carried out at a temperature range of (β transformation point−300 ° C.) to (β transformation point−150 ° C.) for 2 hours, Implement by air cooling (including forced air cooling) or water cooling.
また、D.冷間伸線の前に、β結晶粒微細化のために、C.再結晶処理を行っても良い。再結晶処理を行うにあたっては、熱間圧延後にも、B.冷間伸線を行うことが推奨される。B.冷間伸線を行う場合には、20%以上の減面率で行う必要がある。冷間伸線を20%未満の減面率で行った場合には、その後に行う熱処理などの影響によって、むしろβ結晶粒の成長が促進され、β相2の最大粒径が50μmを超えてしまう可能性がある。また、このときの再結晶処理は、β変態点〜(β変態点+50℃)の温度範囲で30秒〜3時間程度保持後、空冷または水冷を行うことが推奨される。
D. Before cold drawing, C.I. Recrystallization treatment may be performed. In performing the recrystallization treatment, B.B. It is recommended to perform cold drawing. B. When performing cold drawing, it is necessary to carry out with a reduction in area of 20% or more. When cold drawing is performed with a reduction in area of less than 20%, the growth of β crystal grains is rather promoted by the influence of the subsequent heat treatment and the maximum particle size of
また、必要に応じて、D.冷間伸線の後に、E.回復熱処理を実施しても良い。回復熱処理は、(β変態点−100℃)〜β変態点の温度域で保持時間は2時間以下とし、その後、空冷を行うことで実施する。 In addition, if necessary, D.I. After cold drawing, E.I. Recovery heat treatment may be performed. The recovery heat treatment is performed by setting the holding time in the temperature range from (β transformation point−100 ° C.) to β transformation point to 2 hours or less and then performing air cooling.
以上で、本発明のβ型チタンを製造することができるが、次に、回復熱処理を実施した場合と、実施しなかった場合のβ型チタンの金属組織の違いを、図4に基づき説明する。 Although the β-type titanium of the present invention can be manufactured as described above, the difference in the metal structure of the β-type titanium when the recovery heat treatment is performed and when it is not performed will be described with reference to FIG. .
図4の(a)は回復熱処理を実施しなかった場合、(b)は回復熱処理を実施した場合である。D.冷間伸線後にはβ相2には直線状のスリップバンド3が形成されるが、E.回復熱処理を実施することで、スリップバンド3を波状とすることができ、F.時効処理後のα相の長さを短くすることができる。この回復熱処理は、前記の製造条件の説明では必ずしも必要でないと説明したが、α相1を所望の形態とするために有効であると考えることができる。
4A shows the case where the recovery heat treatment is not performed, and FIG. 4B shows the case where the recovery heat treatment is performed. D. A
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
本実施例では、まず、60mm角のビレットを作製して、熱間圧延を行い、線径:16〜21.5mmφとした。その後、再結晶処理(保持時間は20分)、冷間伸線、回復熱処理(保持時間は40秒)、時効処理(保持時間は2時間で強制空冷)という工程を経て最終的に線径:6〜12.6mmφの線材を作製した。作製したβ型チタン合金でなる各線材の成分組成を表1に示す。 In this example, first, a billet of 60 mm square was produced and hot rolled to obtain a wire diameter of 16 to 21.5 mmφ. Thereafter, the wire diameter is finally obtained through steps of recrystallization treatment (retention time is 20 minutes), cold drawing, recovery heat treatment (retention time is 40 seconds), and aging treatment (retention time is 2 hours, forced air cooling): Wires having a diameter of 6 to 12.6 mm were prepared. Table 1 shows the component composition of each wire made of the produced β-type titanium alloy.
作製したβ型チタン合金でなる各線材の金属組織の観察・測定と、疲労寿命の測定・評価を夫々下記の要領で行った。 Observation and measurement of the metal structure of each wire rod made of the produced β-type titanium alloy and measurement and evaluation of fatigue life were performed as follows.
β型チタン合金の金属組織の形態については、以下に示す方法で観察を実施した。α相形態については、電界放出型走査顕微鏡(FE−SEM)(日本電子社製、JSM5410)を用い、電子後方錯乱解析像法(EBSD)によって、方位解析によりα相を観察しつつ、基本的にはSEM像によりその形態を確認した。一方、β相については、線材の圧延方向と平行の断面に鏡面加工を施した後、その加工面を硝フッ酸でエッチングし、光学顕微鏡を用いて100倍の倍率で観察を行い、10視野中のβ粒の最大径(長径)を最大粒径とした。 The form of the metal structure of the β-type titanium alloy was observed by the following method. As for the α phase morphology, a field emission scanning microscope (FE-SEM) (manufactured by JEOL Ltd., JSM5410) is used to observe the α phase by azimuth analysis by electron back-scattering analysis image method (EBSD). The form was confirmed by SEM image. On the other hand, with respect to the β phase, after mirror processing is performed on a cross section parallel to the rolling direction of the wire, the processed surface is etched with nitric hydrofluoric acid, and is observed at a magnification of 100 times using an optical microscope. The maximum diameter (major axis) of the β grains was taken as the maximum particle diameter.
β型チタン合金の疲労寿命については、先に示した方法で作製した線材から図7に示す試験片を採取し、950MPaの高負荷応力下において小野式回転曲げ疲労試験を実施した。周波数は2700〜3000rpmである。本実施例ではこの小野式回転曲げ疲労試験の結果、破断までのサイクル数が200000(2.0E+05)超であったものを疲労強度に優れたβ型チタン合金であると判断した。 For the fatigue life of the β-type titanium alloy, the test piece shown in FIG. 7 was collected from the wire prepared by the method described above, and an Ono type rotating bending fatigue test was performed under a high load stress of 950 MPa. The frequency is 2700 to 3000 rpm. In this example, as a result of this Ono type rotating bending fatigue test, it was determined that a β-type titanium alloy having excellent fatigue strength was one having a cycle number of up to 200,000 (2.0E + 05).
以上の試験結果を表2に示す。 The test results are shown in Table 2.
表2の番号2〜4、9〜14が本発明の要件を全て満足する発明例である。これら発明例では小野式回転曲げ疲労試験で得られた破断サイクル数が全て200000(2.0E+05)超であり、疲労強度に優れたβ型チタン合金であると判断することができる。
The
一方、番号1はβ相の最大粒径とα相の長さが本発明の要件を満足しない比較例、番号5はα相の長さが本発明の要件を満足せず冷間伸線の減面率も前記した線材の製造条件を満足しない比較例、番号6はα相の長さが本発明の要件を満足しない比較例、番号7は金属組織中に幅0.05μm以上のα相が存在しないことで本発明の要件を満足せず時効処理温度も前記した線材の製造条件を満足しない比較例、番号8はβ相の最大粒径とα相の長さが本発明の要件を満足せず熱間圧延の条件も前記した線材の製造条件を満足しない比較例、番号15はT1が本発明の要件を満足せず金属組織中に幅0.05μm以上のα相が存在しないことでも本発明の要件を満足しない比較例である。 On the other hand, No. 1 is a comparative example in which the maximum particle size of the β phase and the length of the α phase do not satisfy the requirements of the present invention, and No. 5 is a cold wire drawing in which the length of the α phase does not satisfy the requirements of the present invention. A comparative example in which the area reduction ratio does not satisfy the above-described manufacturing conditions of the wire, No. 6 is a comparative example in which the length of the α phase does not satisfy the requirements of the present invention, and No. 7 is an α phase having a width of 0.05 μm or more in the metal structure No. 8 is a comparative example in which the requirements of the present invention are not satisfied and the aging treatment temperature does not satisfy the above-described manufacturing conditions of the wire, No. 8 is that the maximum particle size of the β phase and the length of the α phase satisfy the requirements of the present invention. Comparative example in which the conditions for hot rolling are not satisfied and the manufacturing conditions for the wire described above are not satisfied, No. 15 indicates that T1 does not satisfy the requirements of the present invention and the α phase having a width of 0.05 μm or more does not exist in the metal structure However, this is a comparative example that does not satisfy the requirements of the present invention.
これら比較例では小野式回転曲げ疲労試験で得られた破断サイクル数が全て200000(2.0E+05)以下であり、疲労強度に優れたβ型チタン合金であるということができない。 In these comparative examples, the number of rupture cycles obtained in the Ono-type rotating bending fatigue test is all 200,000 (2.0E + 05) or less, and it cannot be said that the β-type titanium alloy has excellent fatigue strength.
1…α相
1a…粒界α相
1b…粒内α相
2…β相
3…スリップバンド
DESCRIPTION OF
Claims (3)
金属組織中の、幅:0.05μm以上のα相が、0.3μmの間隔をあけて平行する任意の二本の直線の間に収まる形状であり、且つ、長さが5μm以下であると共に、
β相の最大粒径が50μm以下であり、
且つ、以下の式で定義されるT1が、700超、800未満であることを特徴とする疲労強度に優れたβ型チタン合金。
T1=937+147.7[O]+20.4[Al]+161.8[C]−19.8[Fe]−10.3[Mo]−8.4[Nb]−13.1[V]−17.0[Cr]−0.2[Sn]−8.5[Cu]
但し、上式で[ ]は各元素の含有量(質量%)を示す。 A β-type titanium alloy containing, in mass%, V of 4.0 to 10.0%, Sn of 2.0% or more, and Al of 2.0% or more,
In the metal structure, the α phase having a width of 0.05 μm or more is a shape that fits between any two straight lines parallel to each other with a spacing of 0.3 μm, and the length is 5 μm or less. ,
The maximum particle size of the β phase is 50 μm or less,
A β-type titanium alloy having excellent fatigue strength, wherein T1 defined by the following formula is more than 700 and less than 800.
T1 = 937 + 147.7 [O] +20.4 [Al] +161.8 [C] -19.8 [Fe] -10.3 [Mo] -8.4 [Nb] -13.1 [V] -17 0.0 [Cr] -0.2 [Sn] -8.5 [Cu]
However, in the above formula, [] indicates the content (% by mass) of each element.
T1=937+147.7[O]+20.4[Al]+161.8[C]−19.8[Fe]−10.3[Mo]−8.4[Nb]−13.1[V]−17.0[Cr]−0.2[Sn]−8.5[Cu]−12[Si]
但し、上式で[ ]は各元素の含有量(質量%)を示す。 The β-type titanium alloy having excellent fatigue strength according to claim 2, further comprising 0.5% by mass or less of Si, and T1 defined by the following formula being more than 700 and less than 800.
T1 = 937 + 147.7 [O] +20.4 [Al] +161.8 [C] -19.8 [Fe] -10.3 [Mo] -8.4 [Nb] -13.1 [V] -17 0.0 [Cr] -0.2 [Sn] -8.5 [Cu] -12 [Si]
However, in the above formula, [] indicates the content (% by mass) of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010015171A JP5503309B2 (en) | 2010-01-27 | 2010-01-27 | Β-type titanium alloy with excellent fatigue strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010015171A JP5503309B2 (en) | 2010-01-27 | 2010-01-27 | Β-type titanium alloy with excellent fatigue strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011153345A true JP2011153345A (en) | 2011-08-11 |
JP5503309B2 JP5503309B2 (en) | 2014-05-28 |
Family
ID=44539518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010015171A Expired - Fee Related JP5503309B2 (en) | 2010-01-27 | 2010-01-27 | Β-type titanium alloy with excellent fatigue strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5503309B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147998A1 (en) * | 2011-04-27 | 2012-11-01 | 東邦チタニウム株式会社 | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME |
JP2017031488A (en) * | 2015-08-05 | 2017-02-09 | 高周波熱錬株式会社 | β-TYPE STRENGTHENED TITANIUM ALLOY AND MANUFACTURING METHOD OF β-TYPE STRENGTHENED TITANIUM ALLOY |
JP2018204095A (en) * | 2017-03-29 | 2018-12-27 | ザ・ボーイング・カンパニーThe Boeing Company | Titanium-copper-iron alloy and associated thixoforming method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11343529A (en) * | 1998-05-28 | 1999-12-14 | Kobe Steel Ltd | High strength, high ductility and high toughness titanium alloy member and its production |
-
2010
- 2010-01-27 JP JP2010015171A patent/JP5503309B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11343529A (en) * | 1998-05-28 | 1999-12-14 | Kobe Steel Ltd | High strength, high ductility and high toughness titanium alloy member and its production |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012147998A1 (en) * | 2011-04-27 | 2012-11-01 | 東邦チタニウム株式会社 | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME |
JP5692940B2 (en) * | 2011-04-27 | 2015-04-01 | 東邦チタニウム株式会社 | α + β-type or β-type titanium alloy and method for producing the same |
JP2017031488A (en) * | 2015-08-05 | 2017-02-09 | 高周波熱錬株式会社 | β-TYPE STRENGTHENED TITANIUM ALLOY AND MANUFACTURING METHOD OF β-TYPE STRENGTHENED TITANIUM ALLOY |
JP2018204095A (en) * | 2017-03-29 | 2018-12-27 | ザ・ボーイング・カンパニーThe Boeing Company | Titanium-copper-iron alloy and associated thixoforming method |
JP7250429B2 (en) | 2017-03-29 | 2023-04-03 | ザ・ボーイング・カンパニー | Titanium-copper-iron alloys and related thixo-forming methods |
Also Published As
Publication number | Publication date |
---|---|
JP5503309B2 (en) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI572721B (en) | High strength alpha/beta titanium alloy | |
US12000021B2 (en) | α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire | |
KR102237789B1 (en) | Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor | |
US20160060740A1 (en) | Cu-AI-Mn-BASED ALLOY ROD AND SHEET EXHIBITING STABLE SUPERELASTICITY, METHOD OF PRODUCING THE SAME, VIBRATION DAMPING MATERIAL USING THE SAME, AND VIBRATION DAMPING STRUCTURE CONSTRUCTED BY USING VIBRATION DAMPING MATERIAL | |
JP6540179B2 (en) | Hot-worked titanium alloy bar and method of manufacturing the same | |
JP5885169B2 (en) | Ti-Mo alloy and manufacturing method thereof | |
JP6719216B2 (en) | α-β type titanium alloy | |
JP5477519B1 (en) | Resource-saving titanium alloy member excellent in strength and toughness and manufacturing method thereof | |
JP5491882B2 (en) | High strength titanium plate with excellent cold rolling properties | |
WO2020031579A1 (en) | Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy | |
JP5748267B2 (en) | Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material | |
JP5503309B2 (en) | Β-type titanium alloy with excellent fatigue strength | |
JP6015536B2 (en) | Heat treatment type aluminum alloy for cold plastic working and manufacturing method thereof | |
JP6718219B2 (en) | Method for manufacturing heat resistant aluminum alloy material | |
JP6432328B2 (en) | High strength titanium plate and manufacturing method thereof | |
JP4507094B2 (en) | Ultra high strength α-β type titanium alloy with good ductility | |
JP6690359B2 (en) | Austenitic heat-resistant alloy member and method for manufacturing the same | |
JP5605273B2 (en) | High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product | |
JP6187679B2 (en) | Α + β type titanium alloy welded pipe excellent in strength and rigidity in the longitudinal direction of the pipe, and method for producing the same | |
JP5408525B2 (en) | Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method | |
JP5931554B2 (en) | Aluminum alloy material | |
JP6673121B2 (en) | α + β type titanium alloy rod and method for producing the same | |
JP5382518B2 (en) | Titanium material | |
JP2000273598A (en) | Manufacture of high strength coil cold rolled titanium alloy sheet excellent in workability | |
JP2001200326A (en) | Wear resistant aluminum alloy long-length body and producing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110414 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110414 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5503309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |