TWI631222B - High strength alpha/beta titanium alloy - Google Patents

High strength alpha/beta titanium alloy Download PDF

Info

Publication number
TWI631222B
TWI631222B TW105136978A TW105136978A TWI631222B TW I631222 B TWI631222 B TW I631222B TW 105136978 A TW105136978 A TW 105136978A TW 105136978 A TW105136978 A TW 105136978A TW I631222 B TWI631222 B TW I631222B
Authority
TW
Taiwan
Prior art keywords
weight
titanium alloy
alloy
ksi
range
Prior art date
Application number
TW105136978A
Other languages
Chinese (zh)
Other versions
TW201708555A (en
Inventor
大衛J 布萊恩
約翰V 馬堤歐尼
湯瑪斯D 貝哈
Original Assignee
冶聯科技地產有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/888,699 external-priority patent/US20120076611A1/en
Priority claimed from US12/903,851 external-priority patent/US10513755B2/en
Application filed by 冶聯科技地產有限責任公司 filed Critical 冶聯科技地產有限責任公司
Publication of TW201708555A publication Critical patent/TW201708555A/en
Application granted granted Critical
Publication of TWI631222B publication Critical patent/TWI631222B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/008Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of light alloys, e.g. extruded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transportation (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Dermatology (AREA)
  • Architecture (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Conductive Materials (AREA)
  • Catalysts (AREA)
  • Golf Clubs (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明提供一種α/β鈦合金,以總合金重量計,其包含:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氫;鈦;及至多總共0.30重量%其他元素。該α/β鈦合金之一非限制性實施例的鋁當量值在6.4至7.2之範圍內,展現在120ksi(827.4MPa)至155ksi(1,069MPa)之範圍內的屈服強度,展現在130ksi(896.3MPa)至165ksi(1,138MPa)之範圍內的極限拉伸強度,且展現在12%至30%伸長率之範圍內的延性。 The present invention provides an α / β titanium alloy, based on the total alloy weight, comprising: 3.9 to 4.5% by weight aluminum; 2.2 to 3.0% by weight vanadium; 1.2 to 1.8% by weight iron; 0.24 to 0.30% by weight oxygen; up to 0.08% by weight % Carbon; up to 0.05% by weight nitrogen; up to 0.015% by weight hydrogen; titanium; and up to a total of 0.30% by weight of other elements. A non-limiting example of this α / β titanium alloy has an aluminum equivalent value in a range of 6.4 to 7.2, exhibits a yield strength in a range of 120 ksi (827.4 MPa) to 155 ksi (1,069 MPa), and exhibits a strength of 130 ksi ( 896.3 MPa) to 165 ksi (1,138 MPa) in the ultimate tensile strength, and exhibits ductility in the range of 12% to 30% elongation.

Description

高強度α/β鈦合金 High-strength α / β titanium alloy

本發明係關於高強度之延性α/β鈦合金。 The present invention relates to a high-strength ductile α / β titanium alloy.

相關申請案之交叉參考 Cross-reference to related applications

本申請案為部分接續申請案,本案根據35 U.S.C.§ 120主張2010年10月13日申請且名稱為「高強度α/β鈦合金扣件及扣件原料(High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock)」之同在申請中之美國專利申請案第12/903,851號的優先權,該案為部分接續申請案,其根據35 U.S.C.§ 120主張2010年9月23日申請且名稱為「高強度α/β鈦合金扣件及扣件原料(High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock)」之同在申請中之美國專利申請案第12/888,699號的優先權。申請案第12/903,851號及第12/888,699號之整體揭示內容以引用的方式併入本文中。 This application is part of a continuation application. This application claims that it was filed on October 13, 2010 and named "High Strength Alpha / Beta Titanium Alloy Fasteners and "Fastener Stock)" has the same priority as US Patent Application No. 12 / 903,851 in the same application, which is a partial continuation application, claiming that it was filed on September 23, 2010 under the name "High High strength alpha / beta titanium alloy fasteners and fastener materials ("High Strength Alpha / Beta Titanium Alloy Fasteners and Fastener Stock") have the same priority as US Patent Application No. 12 / 888,699 in the application. The entire disclosures of Application Nos. 12 / 903,851 and 12 / 888,699 are incorporated herein by reference.

鈦合金通常展現高強度重量比,耐腐蝕且在中等高溫下抗蠕變。因此,鈦合金用於航天、航空、國防、船舶及汽車應用中,包括例如起落架部件、機架、防彈衣、船體及機械扣件。 Titanium alloys typically exhibit high strength-to-weight ratios, corrosion resistance, and creep resistance at moderately high temperatures. Therefore, titanium alloys are used in aerospace, aviation, defense, marine and automotive applications, including, for example, landing gear components, frames, body armor, hulls, and mechanical fasteners.

減輕飛行器或其他移動載具之重量可節約燃料。因此,舉例而言,航天工業具有極大的動力來減輕飛行器重量。鈦及鈦合金由於其強度重量比高而為飛行器應用中達成重量減輕的吸引人的材料。航天應用中所用之大多數鈦合金零件由Ti-6Al-4V合金(ASTM 5級;UNS R56400;AMS 4928、AMS 4911)製成,其為α/β鈦合金。 Reducing the weight of aircraft or other moving vehicles can save fuel. So, for example, the aerospace industry has tremendous power to reduce aircraft weight. Titanium and titanium alloys are attractive materials for achieving weight reduction in aircraft applications due to their high strength-to-weight ratio. Most titanium alloy parts used in aerospace applications are made of Ti-6Al-4V alloy (ASTM level 5; UNS R56400; AMS 4928, AMS 4911), which is an α / β titanium alloy.

Ti-6Al-4V合金為最常見的鈦基製造材料之一,估計其在整個鈦基材料市場佔50%以上。Ti-6Al-4V合金用於許多應用中,該等應用受益於合金之輕質、耐腐蝕性及在低溫至中溫下之高強度的有利組合。舉例而言,Ti-6Al-4V合金用於製造飛行器引擎組件、飛行器結構組件、扣件、高效能汽車組件、醫療裝置組件、運動設備、船舶應用組件及化學加工設備組件。 Ti-6Al-4V alloy is one of the most common titanium-based manufacturing materials, and it is estimated that it accounts for more than 50% of the entire titanium-based material market. Ti-6Al-4V alloys are used in many applications that benefit from the advantageous combination of the alloy's light weight, corrosion resistance, and high strength at low to medium temperatures. For example, Ti-6Al-4V alloy is used to manufacture aircraft engine components, aircraft structural components, fasteners, high-performance automotive components, medical device components, sports equipment, marine application components, and chemical processing equipment components.

Ti-6Al-4V合金軋延產品一般在軋延退火狀態下或在固溶處理及老化(STA)狀態下使用。如本文中所使用,「軋延退火狀態」係指鈦合金在「軋延退火」熱處理後之狀態,其中在高溫(例如1200-1500℉/649-816℃)下使工件退火約1-8小時並在靜止空氣中冷卻。工件在α+β相區內熱加工後,進行軋延退火熱處理。在室溫下,在軋延退火狀態下,直徑為約2至4吋(5.08至10.16cm)之Ti-6Al-4V合金圓桿的最小規定極限拉伸強度為130ksi(896MPa)且最小規定屈服強度為120ksi(827MPa)。軋延退火Ti-6Al-4V板通常根據規格AMS 4911來製造,而軋延退火Ti-6Al-4V桿通常根據規格AMS 4928來製造。 Ti-6Al-4V alloy rolled products are generally used in the rolled annealing state or in the solution treatment and aging (STA) state. As used herein, "rolled annealed state" refers to the state of the titanium alloy after the "rolled annealing" heat treatment, in which the workpiece is annealed at a high temperature (for example, 1200-1500 ° F / 649-816 ° C) for about 1-8 Hours and cooled in still air. After the workpiece is hot-worked in the α + β phase region, it is subjected to rolling annealing heat treatment. At room temperature, in the rolling annealed state, the minimum specified ultimate tensile strength of a Ti-6Al-4V alloy round rod with a diameter of about 2 to 4 inches (5.08 to 10.16 cm) is 130 ksi (896 MPa) and the minimum specified yield. The strength is 120ksi (827MPa). The rolled annealed Ti-6Al-4V plate is usually manufactured according to the specification AMS 4911, and the rolled annealed Ti-6Al-4V rod is usually manufactured according to the specification AMS 4928.

以全文引用的方式併入本文中之美國專利第5,980,655號(「'655專利」)揭示一種α/β鈦合金,其包含2.90至5.00重量%鋁、2.00至3.00重量%釩、0.40至2.00重量%鐵、0.20至0.30重量%氧、附帶雜質及鈦。'655專利中所揭示之α/β鈦合金在本文中稱為「'655合金」。以總合金重量計,'655合金中之市售合金組成標稱地包括4.00重量%鋁、2.50重量%釩、1.50重量%鐵、0.25重量%氧、附帶雜質及鈦,且可在本文中稱為Ti-4Al-2.5V-1.5Fe-0.25O合金。 U.S. Patent No. 5,980,655 ("the '655 Patent"), which is incorporated herein by reference in its entirety, discloses an alpha / beta titanium alloy comprising 2.90 to 5.00 weight percent aluminum, 2.00 to 3.00 weight percent vanadium, 0.40 to 2.00 weight % Iron, 0.20 to 0.30% by weight oxygen, incidental impurities and titanium. The alpha / beta titanium alloy disclosed in the '655 patent is referred to herein as the "' 655 alloy." The commercially available alloy composition in the '655 alloy nominally includes 4.00% by weight aluminum, 2.50% by weight vanadium, 1.50% by weight iron, 0.25% by weight oxygen, incidental impurities, and titanium based on the total alloy weight, and may be referred to herein It is Ti-4Al-2.5V-1.5Fe-0.25O alloy.

由於難以冷加工Ti-6Al-4V合金,故合金一般係在高溫下,一般在α2固溶線溫度以上加工(例如鍛造、輥軋、拉伸及其類似加工)。Ti-6Al-4V合金由於例如在冷變形期間破裂(亦即工件破損)之發生率高而 無法有效地冷加工來增加強度。然而,如以全文引用的方式併入本文中之美國專利申請公開案第2004/0221929號中所述,令人驚訝地且出乎意料地發現,'655合金具有相當大的可冷變形度/可冷加工度。 Because it is difficult to cold-work Ti-6Al-4V alloys, the alloys are generally processed at high temperatures, generally above the α 2 solid solution temperature (such as forging, rolling, drawing, and similar processing). The Ti-6Al-4V alloy cannot be effectively cold-worked to increase strength due to, for example, a high incidence of cracking (i.e., workpiece breakage) during cold deformation. However, as described in U.S. Patent Application Publication No. 2004/0221929, which is incorporated herein by reference in its entirety, it was surprisingly and unexpectedly discovered that the '655 alloy has a considerable degree of cold deformability / Cold workability.

'655合金令人驚訝地可進行冷加工以達成高強度,同時仍保留可加工之延展度。可加工之延展度在本文中定義為合金展現大於6%伸長率之狀態。又,'655合金之強度與Ti-6Al-4V合金可達成之強度相當。舉例而言,如'655專利之表6中所示,針對Ti-6Al-4V合金量測得之拉伸應力為145.3ksi(1,002MPa),而'655合金之測試樣品展現在138.7ksi至142.7ksi(956.3MPa至983.9MPa)之範圍內的拉伸強度。 The '655 alloy is surprisingly cold-workable to achieve high strength, while still retaining machinable ductility. Machinable ductility is defined herein as the state in which the alloy exhibits an elongation greater than 6%. In addition, the strength of the '655 alloy is comparable to that achieved by the Ti-6Al-4V alloy. For example, as shown in Table 6 of the '655 patent, the tensile stress measured for the amount of Ti-6Al-4V alloy is 145.3 ksi (1,002 MPa), while the test sample of the' 655 alloy exhibits 138.7 ksi to 142.7 ksi (956.3MPa to 983.9MPa) in the range of tensile strength.

航天材料規格6946B(AMS 6946B)規定的化學組成範圍比'655專利之申請專利範圍中所述者更有限。AMS 6946B中所規定之合金保留'655專利中元素範圍界限更寬廣的可成形性,但AMS 6946B所允許之機械強度性質最小值低於市售Ti-6Al-4V合金所規定之最小值。舉例而言,根據AMS-4911L,0.125吋(3.175mm)厚的Ti-6Al-4V板之最小拉伸強度為134ksi(923.9MPa)且最小屈服強度為126ksi(868.7MPa)。相比之下,根據AMS 6946B,0.125吋(3.175mm)厚的Ti-4Al-2.5V-1.5Fe-0.25O板之最小拉伸強度為130ksi(896.3MPa)且最小屈服強度為115ksi(792.9MPa)。 The aerospace material specification 6946B (AMS 6946B) specifies a chemical composition range that is more limited than that described in the '655 patent application. The alloy specified in AMS 6946B retains wider formability in the element range of the '655 patent, but the minimum value of mechanical strength properties allowed by AMS 6946B is lower than the minimum value specified by the commercially available Ti-6Al-4V alloy. For example, according to AMS-4911L, the 0.125 inch (3.175mm) thick Ti-6Al-4V board has a minimum tensile strength of 134ksi (923.9MPa) and a minimum yield strength of 126ksi (868.7MPa). In contrast, according to AMS 6946B, the 0.125 inch (3.175mm) thick Ti-4Al-2.5V-1.5Fe-0.25O plate has a minimum tensile strength of 130ksi (896.3MPa) and a minimum yield strength of 115ksi (792.9MPa). ).

假設仍需要經由減輕飛行器及其他載具之重量來降低燃料消耗,則需要改良之延性α/β鈦合金,其較佳展現類似於或優於Ti-6Al-4V α/β鈦合金所展現之機械性質的機械性質。 Assuming that it is still necessary to reduce fuel consumption by reducing the weight of aircraft and other vehicles, an improved ductility α / β titanium alloy is required, which better displays similar or better than that shown by Ti-6Al-4V α / β titanium alloy. Mechanical properties.

根據本發明之一態樣,以總合金重量計,α/β鈦合金包含:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氫;鈦;及至多總共0.30重量%其他元素。 According to one aspect of the present invention, the α / β titanium alloy comprises: 3.9 to 4.5% by weight of aluminum; 2.2 to 3.0% by weight of vanadium; 1.2 to 1.8% by weight of iron; 0.24 to 0.30% by weight of oxygen; based on the total alloy weight; at most 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% hydrogen; titanium; and up to a total of 0.30 wt% other elements.

根據本發明之另一態樣,以總合金重量計,α/β鈦合金基本上由以下組成:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氫;鈦;及至多總共0.30重量%其他元素。 According to another aspect of the present invention, the α / β titanium alloy is basically composed of the following based on the total alloy weight: 3.9 to 4.5% by weight aluminum; 2.2 to 3.0% by weight vanadium; 1.2 to 1.8% by weight iron; 0.24 to 0.30 Up to 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% hydrogen; titanium; and up to a total of 0.30 wt% other elements.

圖1為包含本發明之合金之非限制性實施例之桿及線的極限拉伸強度及屈服強度與鋁當量之關係圖;圖2為包含本發明之合金之非限制性實施例之0.5吋(1.27cm)直徑線的極限拉伸強度及屈服強度與鋁當量之關係圖;及圖3為包含本發明之合金之非限制性實施例之1吋(2.54cm)厚板的拉伸強度、屈服強度及伸長率%與鋁當量之關係圖。 FIG. 1 is a diagram showing the relationship between the ultimate tensile strength and yield strength of a rod and a wire including a non-limiting example of the alloy of the present invention and the aluminum equivalent; FIG. 2 is a 0.5 inch of the non-limiting example of the alloy of the present invention. (1.27cm) The relationship between the ultimate tensile strength and yield strength of the diameter line and the aluminum equivalent; and Figure 3 is a tensile strength of a 1-inch (2.54cm) thick plate including a non-limiting example of the alloy of the present invention. Relationship between yield strength and elongation% and aluminum equivalent.

本文所述之合金及相關方法的特點及優點可參考附圖來充分瞭解。 The characteristics and advantages of the alloys and related methods described herein can be fully understood with reference to the drawings.

讀者經考量以下實施方式將瞭解本發明之合金及相關方法之某些非限制性實施例的以上詳情以及其他詳情。 The reader will understand the above details and other details of some non-limiting examples of alloys and related methods of the present invention after considering the following embodiments.

在本發明之非限制性實施例之描述中,除了在操作實例中或另有說明,所有表示數量或特徵之數字均應理解為在所有情況下由術語「約」修飾。因此,除非有相反說明,否則以下描述中所述之任何數值參數均為近似值,其可視設法藉由本發明之方法獲得之所需材料的性質而變化。最低限度地且不希望均等論(doctrine of equivalents)之應用限於申請專利範圍,各數值參數至少應根據所報導之有效數位的數字且藉由應用一般捨入技術來理解。 In the description of non-limiting embodiments of the present invention, all numbers expressing quantities or features are to be understood as modified in all cases by the term "about", except in the operating examples or otherwise stated. Therefore, unless stated to the contrary, any numerical parameter described in the following description is approximate and can vary depending on the nature of the desired material sought to be obtained by the method of the present invention. The application of doctrine of equivalents is minimally and not intended to be limited to the scope of patent applications. Each numerical parameter should be understood at least based on the reported significant digits and by applying general rounding techniques.

提及以全文或部分引用的方式併入本文中之任何專利、公開案或其他揭示材料僅在以下程度上併入本文中:所併入之材料不與本發明中所述之現有定義、陳述或其他揭示材料衝突。因此,必要時,如 本文中所述之揭示內容與以引用的方式併入本文中之任何材料有衝突時,以本文中所述之揭示內容為準。提及以引用的方式併入本文中但與本文中所述之現有定義、陳述或其他揭示材料衝突的任何材料或其一部分或其一部分僅在以下程度上併入:所併入之材料與現有揭示材料之間不出現衝突。 Any reference to any patent, publication or other disclosure material incorporated herein by reference in its entirety or in part is incorporated herein only to the extent that the incorporated material is not inconsistent with the existing definitions, statements, or descriptions contained herein. Or other revealing material conflicts. Therefore, if necessary, such as In the event of a conflict between the disclosure described herein and any material incorporated by reference, the disclosure described herein shall prevail. References to any material, or part or part thereof, incorporated herein by reference but in conflict with existing definitions, statements or other disclosed materials described herein are incorporated to the extent only that the incorporated material is in conflict with the existing There is no conflict between revealed materials.

本發明之α/β鈦合金的非限制性實施例包含以下、由以下組成或基本上由以下組成:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氮;鈦;及至多總共0.30重量%其他元素。在本發明之某些非限制性實施例中,可存在於α/β鈦合金中之其他元素(作為至多0.30重量%其他元素之一部分)包括硼、錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳、釔及鈷中之一或多者,且在某些非限制性實施例中,每一該種其他元素之重量含量為0.10或小於0.10,但有兩個例外。該等例外為硼及釔,若其完全作為其他元素之一部分存在時,則以小於0.005重量%之個別濃度存在。 Non-limiting examples of the α / β titanium alloy of the present invention include the following, consisting of or consisting essentially of: 3.9 to 4.5% by weight aluminum; 2.2 to 3.0% by weight vanadium; 1.2 to 1.8% by weight iron; 0.24 to 0.30 wt% oxygen; up to 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% nitrogen; titanium; and up to a total of 0.30 wt% other elements. In certain non-limiting embodiments of the invention, other elements that may be present in the α / β titanium alloy (as part of up to 0.30% by weight of other elements) include boron, tin, zirconium, molybdenum, chromium, nickel, silicon Or copper, niobium, tantalum, manganese, yttrium, and cobalt, and in certain non-limiting embodiments, each such other element has a weight content of 0.10 or less, with two exceptions . These exceptions are boron and yttrium, and if they exist entirely as part of other elements, they exist at individual concentrations of less than 0.005% by weight.

I. 合金組成 I. Alloy composition

本發明之合金的非限制性實施例包含鈦、鋁、釩、鐵及氧。只要以下討論之組成中陳述合金元素,則應瞭解其餘包括鈦及附帶雜質。 Non-limiting examples of the alloys of the present invention include titanium, aluminum, vanadium, iron, and oxygen. As long as alloying elements are stated in the composition discussed below, it should be understood that the rest includes titanium and incidental impurities.

A. 鋁 A. Aluminum

鋁為鈦合金中之α相強化劑。本發明之α/β鈦合金的非限制性實施例中鋁之組成範圍比'655專利中所揭示之鋁範圍窄。又,根據本發明之合金的某些非限制性實施例之鋁的最小含量大於AMS 6946B中所述之最小含量。已觀察到此等組成特點使得合金更一致地展現與Ti-6Al-4V合金相似之機械性質。本發明之α/β鈦合金中鋁之最小濃度為3.9重量%。本發明之α/β鈦合金中鋁之最大濃度為4.5重量%。 Aluminum is an α-phase strengthening agent in titanium alloys. In the non-limiting embodiment of the α / β titanium alloy of the present invention, the composition range of aluminum is narrower than the aluminum range disclosed in the '655 patent. Also, the minimum content of aluminum in certain non-limiting embodiments of the alloy according to the present invention is greater than the minimum content described in AMS 6946B. It has been observed that these compositional characteristics allow the alloy to more consistently exhibit mechanical properties similar to those of Ti-6Al-4V alloy. The minimum concentration of aluminum in the α / β titanium alloy of the present invention is 3.9% by weight. The maximum concentration of aluminum in the α / β titanium alloy of the present invention is 4.5% by weight.

B. 釩 B. Vanadium

釩為鈦合金中之β相穩定劑。本發明之α/β鈦合金中釩之最小濃度大於'655專利中所揭示及AMS 6946B中所述之最小濃度。已觀察到此組成特點提供α相與β相之體積分率的最佳、控制平衡。α相與β相之平衡使得本發明合金具有極佳延性及可成形性。釩以2.2重量%之最小濃度存在於本發明之α/β鈦合金中。本發明之α/β鈦合金中釩之最大濃度為3.0重量%。 Vanadium is a beta phase stabilizer in titanium alloys. The minimum concentration of vanadium in the α / β titanium alloy of the present invention is greater than the minimum concentration disclosed in the '655 patent and described in AMS 6946B. This compositional feature has been observed to provide an optimal, controlled balance of volume fractions of the alpha and beta phases. The balance between the α phase and the β phase makes the alloy of the invention have excellent ductility and formability. Vanadium is present in the α / β titanium alloy of the present invention at a minimum concentration of 2.2% by weight. The maximum concentration of vanadium in the α / β titanium alloy of the present invention is 3.0% by weight.

C. 鐵 C. Iron

鐵為鈦合金中之共析β穩定劑。與'655專利中所述之合金相比,本發明之α/β鈦合金包括較大最小濃度及較窄範圍之鐵。已觀察到此等特點提供α相與β相之體積分率的最佳、控制平衡。該平衡使得本發明之合金具有極佳延性及可成形性。鐵以1.2重量%之最小濃度存在於本發明之α/β合金中。本發明之α/β鈦合金中鐵之最大濃度為1.8重量%。 Iron is a eutectoid beta stabilizer in titanium alloys. Compared to the alloy described in the '655 patent, the α / β titanium alloy of the present invention includes a larger minimum concentration and a narrower range of iron. These characteristics have been observed to provide an optimal, controlled balance of volume fractions of the alpha and beta phases. This balance makes the alloy of the present invention excellent in ductility and formability. Iron is present in the α / β alloy of the present invention at a minimum concentration of 1.2% by weight. The maximum iron concentration in the α / β titanium alloy of the present invention is 1.8% by weight.

D. 氧 D. Oxygen

氧為鈦合金中之α相強化劑。本發明之α/β鈦合金中氧之組成範圍比'655專利中及AMS 6946B規格中所揭示之範圍窄。又,本發明之合金的非限制性實施例中氧之最小濃度大於'655專利及AMS 6946B規格中之最小濃度。已觀察到此等組成特點使得本發明之合金一致地展現與某些Ti-6Al-4V機械性質相似之機械性質。本發明之α/β鈦合金中氧之最小濃度為0.24重量%。本發明之α/β鈦合金中氧之最大濃度為0.30重量%。 Oxygen is an α-phase strengthening agent in titanium alloys. The composition range of oxygen in the α / β titanium alloy of the present invention is narrower than that disclosed in the '655 patent and the AMS 6946B specification. In addition, the minimum concentration of oxygen in the non-limiting embodiment of the alloy of the present invention is greater than the minimum concentration in the '655 patent and the AMS 6946B specification. It has been observed that these compositional characteristics allow the alloys of the present invention to consistently exhibit mechanical properties similar to the mechanical properties of certain Ti-6Al-4V. The minimum concentration of oxygen in the α / β titanium alloy of the present invention is 0.24% by weight. The maximum concentration of oxygen in the α / β titanium alloy of the present invention is 0.30% by weight.

除包括如上文所論述之鈦、鋁、釩、鐵及氧外,本發明之α/β鈦合金的某些非限制性實施例包括總濃度不超過0.30重量%之其他元素。在某些非限制性實施例中,此等其他元素包括硼、錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳、釔及鈷中之一或多者,其中除了兩個 例外,每一該種元素之重量%為0.10或小於0.10。該等例外為硼及釔。若存在於本發明之合金中,則硼及釔每一者之重量%小於0.005。 In addition to including titanium, aluminum, vanadium, iron, and oxygen as discussed above, certain non-limiting examples of the alpha / beta titanium alloys of the present invention include other elements with a total concentration of no more than 0.30% by weight. In certain non-limiting embodiments, these other elements include one or more of boron, tin, zirconium, molybdenum, chromium, nickel, silicon, copper, niobium, tantalum, manganese, yttrium, and cobalt, with the exception of two Each Exceptionally, the weight% of each of these elements is 0.10 or less. These exceptions are boron and yttrium. If present in the alloy of the present invention, the weight% of each of boron and yttrium is less than 0.005.

附帶雜質亦可存在於本發明之α/β鈦合金中。舉例而言,可存在至多約0.008重量%碳。可存在至多約0.05重量%氮。可存在至多約0.015重量%氫。其他可能存在之附帶雜質對於一般熟習冶金技術者將顯而易見。 Incidental impurities may also be present in the α / β titanium alloy of the present invention. For example, up to about 0.008% by weight of carbon may be present. Nitrogen may be present up to about 0.05% by weight. Up to about 0.015% by weight hydrogen may be present. Other incidental impurities that may be present will be apparent to those skilled in the art of metallurgy.

表1提供(i)本發明之α/β鈦合金的某些非限制性實施例及(ii)'655專利中所揭示及AMS 6946B中所規定之某些合金之組成的總結。 Table 1 provides a summary of (i) certain non-limiting examples of the α / β titanium alloys of the present invention and (ii) certain alloys disclosed in the '655 patent and specified in AMS 6946B.

本發明者出乎意料地發現,提供鋁、氧及鐵之最小含量大於'655專利中所教示之最小含量的本發明合金可提供一致地展現例如至少與軋延退火Ti-6Al-4V合金之某些機械性質相似之機械性質(諸如強度)的α/β鈦合金。本發明者亦出乎意料地發現,相對於'655專利中所揭示之 彼等最小值及範圍,增加鐵及釩之最小含量及使其範圍變窄可提供在軋延退火形式下展現α相與β相之體積分率之最佳及控制平衡的合金。本發明之α/β鈦合金的此最佳相平衡提供延性比Ti-6Al-4V合金改良、同時保留'655專利中所揭示及AMS 6946B中所規定之合金延性之合金實施例。 The inventors have unexpectedly discovered that providing an alloy of the present invention with a minimum content of aluminum, oxygen, and iron greater than the minimum content taught in the '655 patent can provide a consistent display of, for example, at least the rolling annealed Ti-6Al-4V alloy Certain α / β titanium alloys with similar mechanical properties, such as strength. The inventors also unexpectedly found that, compared to what was disclosed in the '655 patent Their minimum values and ranges, increasing the minimum content of iron and vanadium, and narrowing their ranges can provide alloys that exhibit the best and controlled balance of volume fractions of the α phase and β phase in the form of rolled annealing. This optimal phase balance of the alpha / beta titanium alloy of the present invention provides an embodiment of the alloy that is more ductile than the Ti-6Al-4V alloy while retaining the ductility of the alloy disclosed in the '655 patent and specified in AMS 6946B.

熟習此項技術者瞭解,金屬材料之強度及延性一般展現反比關係。換言之,一般而言,當金屬材料之強度增加時,材料之延性降低。因為一般針對軋延退火鈦合金觀察到強度與延性之間的反比關係,所以未預期本發明之α/β鈦合金具有增加之機械強度與保留之延性的組合。增加之機械強度與保留之延性之出乎意料且令人驚訝的組合為本發明之合金實施例的尤其有利特點。令人驚訝地觀察到,本發明之軋延退火合金的實施例展現與Ti-6Al-4V合金相當之強度而不展現延性降低。 Those familiar with this technology understand that the strength and ductility of metal materials generally show an inverse relationship. In other words, in general, as the strength of a metal material increases, the ductility of the material decreases. Because an inverse relationship between strength and ductility is generally observed for rolled annealed titanium alloys, the α / β titanium alloy of the present invention is not expected to have a combination of increased mechanical strength and retained ductility. The unexpected and surprising combination of increased mechanical strength and retained ductility is a particularly advantageous feature of the alloy embodiment of the invention. It was surprisingly observed that the examples of the rolled annealed alloys of the present invention exhibited a strength comparable to that of Ti-6Al-4V alloy without exhibiting a reduction in ductility.

已觀察到鋁當量值(Aleq)為至少6.3或更佳為至少6.4的本發明之α/β合金的某些非限制性實施例展現至少與Ti-6Al-4V合金之強度相當的強度。亦已觀察到該等合金展現優於鋁當量值通常為約7.5之Ti-6Al-4V合金的延性。如本文中所使用,「鋁當量值」或「鋁當量」(Aleq)意謂等於合金中鋁濃度(重量%)加上合金中氧濃度(重量%)之10倍的值。換言之,合金之鋁當量可如下測定:Aleq=Al(wt.%)+10(O(wt.%))。 It has been observed that certain non-limiting examples of the alpha / beta alloys of the present invention having an aluminum equivalent value (Al eq ) of at least 6.3 or better and at least 6.4 exhibit strengths at least comparable to those of Ti-6Al-4V alloy . These alloys have also been observed to exhibit ductility over Ti-6Al-4V alloys with aluminum equivalent values typically of about 7.5. As used herein, "aluminum equivalent value" or "aluminum equivalent" (Al eq ) means a value equal to 10 times the aluminum concentration (wt%) in the alloy plus the oxygen concentration (wt%) in the alloy. In other words, the aluminum equivalent of the alloy can be determined as follows: Al eq = Al (wt.%) +10 (O (wt.%) ).

雖然認識到鈦合金之機械性質一般受所測試試樣之尺寸影響,但在本發明之非限制性實施例中,α/β鈦合金之鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及屈服強度為至少120ksi(827.4MPa),或在某些實施例中為至少130ksi(896.3MPa)。 Although it is recognized that the mechanical properties of titanium alloys are generally affected by the size of the test specimen, in non-limiting embodiments of the invention, the aluminum equivalent value of the α / β titanium alloy is at least 6.4, or in some embodiments The range is from 6.4 to 7.2, and the yield strength is at least 120 ksi (827.4 MPa), or in some embodiments at least 130 ksi (896.3 MPa).

在本發明之其他非限制性實施例中,α/β鈦合金之鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及屈服強度在120 ksi(827.4MPa)至155ksi(1,069MPa)之範圍內。 In other non-limiting embodiments of the present invention, the aluminum equivalent value of the α / β titanium alloy is at least 6.4, or in some embodiments in the range of 6.4 to 7.2, and the yield strength is 120 ksi (827.4MPa) to 155ksi (1,069MPa).

在其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及極限拉伸強度為至少130ksi(896.3MPa),或在某些實施例中為至少140ksi(965.3MPa)。 In other non-limiting examples, the α / β titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, or in some embodiments in the range of 6.4 to 7.2, and an ultimate tensile strength of at least 130 ksi ( 896.3 MPa), or at least 140 ksi (965.3 MPa) in some embodiments.

在本發明之其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及極限拉伸強度在130ksi(896.3MPa)至165ksi(1,138MPa)之範圍內。 In other non-limiting embodiments of the present invention, the aluminum equivalent value of the α / β titanium alloy of the present invention is at least 6.4, or in some embodiments in the range of 6.4 to 7.2, and the ultimate tensile strength is between 130ksi (896.3MPa) to 165ksi (1,138MPa).

在其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及延性為至少12%或至少16%(伸長率%)。 In other non-limiting embodiments, the aluminum equivalent value of the α / β titanium alloy of the present invention is at least 6.4, or in some embodiments in the range of 6.4 to 7.2, and the ductility is at least 12% or at least 16 %(Elongation%).

在其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及延性在12%至30%(伸長率%或「% el」)之範圍內。 In other non-limiting embodiments, the aluminum equivalent value of the α / β titanium alloy of the present invention is at least 6.4, or in some embodiments in the range of 6.4 to 7.2, and the ductility is 12% to 30% ( Elongation% or "% el").

雖然根據本發明之某些非限制性實施例,6.3為Aleq之絕對最小值,但本發明者已確定需要至少6.4之Aleq值來達成與Ti-6Al-4V合金所展現之強度相同的強度。亦認識到在本發明之α/β鈦合金的其他非限制性實施例中,Aleq之最大值為7.5且根據本文所揭示之其他非限制性實施例的強度與延性之關係適用。 Although according to some non-limiting embodiments of the present invention, 6.3 is the absolute minimum of Al eq , the inventors have determined that an Al eq value of at least 6.4 is required to achieve the same strength as that exhibited by Ti-6Al-4V alloys strength. It is also recognized that in other non-limiting embodiments of the α / β titanium alloy of the present invention, the maximum value of Al eq is 7.5 and the relationship between strength and ductility is applicable according to other non-limiting embodiments disclosed herein.

根據一非限制性實施例,本發明之α/β鈦合金的鋁當量值為至少6.4,屈服強度為至少120ksi(827.4MPa),極限拉伸強度為至少130ksi(896.3MPa),及延性為至少12%(伸長率%)。 According to a non-limiting embodiment, the α / β titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, a yield strength of at least 120 ksi (827.4 MPa), an ultimate tensile strength of at least 130 ksi (896.3 MPa), and a ductility of At least 12% (% elongation).

根據另一非限制性實施例,本發明之α/β鈦合金的鋁當量值為至少6.4,屈服強度為至少130ksi(896.3MPa),極限拉伸強度為至少140ksi(965.3MPa),及延性為至少12%。 According to another non-limiting embodiment, the α / β titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, a yield strength of at least 130 ksi (896.3 MPa), an ultimate tensile strength of at least 140 ksi (965.3 MPa), and ductility. Is at least 12%.

在又一非限制性實施例中,本發明之α/β鈦合金的鋁當量值在6.4 至7.2之範圍內,屈服強度在120ksi(827.4MPa)至155ksi(1,069MPa)之範圍內,極限拉伸強度在130ksi(896.3MPa)至165ksi(1,138MPa)之範圍內,及延性在12%至30%(伸長率%)之範圍內。 In another non-limiting embodiment, the aluminum equivalent value of the α / β titanium alloy of the present invention is 6.4 In the range of 7.2, the yield strength is in the range of 120ksi (827.4MPa) to 155ksi (1,069MPa), the ultimate tensile strength is in the range of 130ksi (896.3MPa) to 165ksi (1,138MPa), and the ductility is 12% to Within 30% (% elongation).

在一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS14.767(Aleq)+48.001。 In a non-limiting example, the α / β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 14.767 (Al eq ) +48.001.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均屈服強度(YS):YS13.338(Aleq)+46.864。 In another non-limiting embodiment, the α / β titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: YS 13.338 (Al eq ) +46.864.

在又一非限制性實施例中,本發明之α/β鈦合金展現以下平均延性:%el3.3669(Aleq)-1.9417。 In yet another non-limiting embodiment, the α / β titanium alloy of the present invention exhibits the following average ductility:% el 3.3669 (Al eq ) -1.9417.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS14.767(Aleq)+48.001;滿足以下方程式之平均屈服強度(YS):YS13.338(Aleq)+46.864;及滿足以下方程式之平均延性:%el3.3669(Aleq)-1.9417。 In another non-limiting example, the α / β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 14.767 (Al eq ) +48.001; average yield strength (YS) satisfying the following equation: YS 13.338 (Al eq ) +46.864; and average ductility satisfying the following equation:% el 3.3669 (Al eq ) -1.9417.

在一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS12.414(Aleq)+64.429。 In a non-limiting example, the α / β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 12.414 (Al eq ) +64.429.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均屈服強度(YS):YS13.585(Aleq)+44.904。 In another non-limiting embodiment, the α / β titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: YS 13.585 (Al eq ) +44.904.

在又一非限制性實施例中,本發明之α/β鈦合金展現以下平均延性:%el4.1993(Aleq)+7.4409。 In yet another non-limiting embodiment, the α / β titanium alloy of the present invention exhibits the following average ductility:% el 4.1993 (Al eq ) +7.4409.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS12.414(Aleq)+64.429;滿足以下方程式之平均屈服強度(YS):YS13.585(Aleq)+44.904;及滿足以下方程式之平均延性:%el4.1993(Aleq)+7.4409。 In another non-limiting example, the α / β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 12.414 (Al eq ) +64.429; the average yield strength (YS) satisfying the following equation: YS 13.585 (Al eq ) +44.904; and average ductility satisfying the following equation:% el 4.1993 (Al eq ) +7.4409.

在一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS): UTS10.087(Aleq)+76.785。 In a non-limiting example, the α / β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 10.087 (Al eq ) +76.785.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均屈服強度(YS):YS13.911(Aleq)+39.435。 In another non-limiting embodiment, the α / β titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: YS 13.911 (Al eq ) +39.435.

在又一非限制性實施例中,本發明之α/β鈦合金展現以下平均延性:%el1.1979(Aleq)+8.5604。 In yet another non-limiting embodiment, the α / β titanium alloy of the present invention exhibits the following average ductility:% el 1.1979 (Al eq ) +8.5604.

在又一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS10.087(Aleq)+76.785;滿足以下方程式之平均屈服強度(YS):YS13.911(Aleq)+39.435;及滿足以下方程式之單位為伸長率%(%el)的平均延性:%el1.1979(Aleq)+8.5604。 In yet another non-limiting example, the α / β titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 10.087 (Al eq ) +76.785; average yield strength (YS) satisfying the following equation: YS 13.911 (Al eq ) +39.435; and the unit satisfying the following equation is the average ductility of elongation% (% el):% el 1.1979 (Al eq ) +8.5604.

已測定,與Ti-6Al-4V合金相比,本發明之α/β鈦合金的非限制性實施例展現相似或更高機械強度、更高延性及改良之可成形性。因此,有可能在航天、航空、船舶、汽車及其他應用中使用由本發明之合金形成之物品作為Ti-6Al-4V合金物品之替代品。本發明之合金之實施例的高強度及延性允許製造具有高耐受性且目前無法由Ti-6Al- 4V合金製成之某些軋延成品形狀。 It has been determined that, compared to Ti-6Al-4V alloys, non-limiting examples of the α / β titanium alloys of the present invention exhibit similar or higher mechanical strength, higher ductility, and improved formability. Therefore, it is possible to use articles formed from the alloy of the present invention as a substitute for Ti-6Al-4V alloy articles in aerospace, aviation, marine, automotive, and other applications. The high strength and ductility of the examples of the alloys of the present invention allow the manufacture to be highly resistant and currently not possible from Ti-6Al- Some rolled product shapes made of 4V alloy.

本發明之一態樣係有關包含本發明之合金及/或由本發明之合金製成的製品。該等製品之某些非限制性實施例可選自飛行器引擎組件、飛行器結構組件、汽車組件、醫療裝置組件、運動設備組件、船舶應用組件及化學加工設備組件。一般技術者現在或今後所知且可包含本發明之α/β鈦合金實施例及/或由其製成之其他製品係在本文所揭示之實施例的範疇內。藉由成形及其他製造技術包含本發明之合金及/或由本發明之合金製成的製品現在或將來為一般技術者所知。 One aspect of the present invention relates to an article comprising the alloy of the present invention and / or made of the alloy of the present invention. Certain non-limiting examples of such articles may be selected from aircraft engine components, aircraft structural components, automotive components, medical device components, sports equipment components, marine application components, and chemical processing equipment components. Those skilled in the art, now or in the future, may include the alpha / beta titanium alloy embodiments of the present invention and / or other articles made therefrom within the scope of the embodiments disclosed herein. Articles comprising the alloys of the invention and / or articles made from the alloys of the invention by forming and other manufacturing techniques are now or will be known to those of ordinary skill.

以下實例意欲進一步描述某些非限制性實施例,而不限制本發明之範疇。一般技術者應瞭解,在僅由申請專利範圍限定之本發明範疇內可能存在以下實例之變化形式,以及本文未特定描述之其他實施例。 The following examples are intended to further describe certain non-limiting embodiments without limiting the scope of the invention. Those of ordinary skill should understand that within the scope of the present invention which is limited only by the scope of the patent application, there may be variations of the following examples, as well as other embodiments not specifically described herein.

實例1Example 1

使用習知真空電弧再熔(VAR)、電漿弧熔化(PAM)或電子束冷膛熔解(EB)進行初熔來鑄造具有本發明之組成的α/β鈦合金鑄錠,且使用VAR再熔。鑄錠之組成包括於上表1之「本發明之非限制性實施例」欄中所列的範圍內。 The conventional α / β titanium alloy ingot having the composition of the present invention is cast using conventional vacuum arc remelting (VAR), plasma arc melting (PAM), or electron beam cold chamber melting (EB), and using VAR remelting melt. The composition of the ingot is included in the range listed in the "non-limiting embodiment of the present invention" column of Table 1 above.

此實例1中所產生之鑄錠組成的鋁當量值範圍為約6.0至約7.1。使用各種熱輥軋操作將鑄錠加工成直徑介於0.25吋(0.635cm)與3.25吋(8.255cm)之間的熱輥軋桿及線。在介於1550℉(843.3℃)與1650℉(898.9℃)之間的起始溫度下進行熱輥軋。此溫度範圍低於此實例之合金的α/β轉變溫度,其為約1750℉至約1850℉(約954.4℃至約1010℃),此視實際化學組成而定。熱輥軋後,在1275℉(690.6℃)下使熱輥軋桿及線退火1小時,隨後進行空氣冷卻。實例1中產生之各桿及線樣品的直徑、鋁濃度、鐵濃度、氧濃度及所計算的Aleq提供於表2中。 The aluminum equivalent value of the ingot composition produced in this Example 1 ranges from about 6.0 to about 7.1. Various hot-rolling operations are used to process the ingots into hot-rolled rods and wires with a diameter between 0.25 inches (0.635 cm) and 3.25 inches (8.255 cm). Hot rolling is performed at a starting temperature between 1550 ° F (843.3 ° C) and 1650 ° F (898.9 ° C). This temperature range is lower than the α / β transition temperature of the alloy of this example, which is about 1750 ° F to about 1850 ° F (about 954.4 ° C to about 1010 ° C), depending on the actual chemical composition. After hot rolling, the hot rolled bars and wires were annealed at 1275 ° F (690.6 ° C) for 1 hour, followed by air cooling. The diameter, aluminum concentration, iron concentration, oxygen concentration, and calculated Al eq of each rod and wire sample produced in Example 1 are provided in Table 2.

圖1以圖表形式顯示表2中所列之桿及線樣品的室溫極限拉伸強度(UTS)、屈服強度(YS)及伸長率%(%el)與樣品中合金之鋁當量值的關係。圖1亦包括穿過由線性回歸測定之UTS、YS及%el數據點的趨勢線。可見平均強度與平均伸長率%皆隨Aleq增加而增加。此關係令人驚訝且出乎意料,因為其與強度增加伴有延性降低之一般所觀察到的關係相反。 Figure 1 graphically shows the room temperature ultimate tensile strength (UTS), yield strength (YS), and elongation% (% el) of the rod and wire samples listed in Table 2 and the aluminum equivalent value of the alloy in the sample. relationship. Figure 1 also includes trend lines across UTS, YS, and% el data points measured by linear regression. It can be seen that the average strength and the average elongation% both increase with the increase of Al eq . This relationship is surprising and unexpected, as it is the opposite of the generally observed relationship of increased strength with reduced ductility.

Ti-6Al-4V之典型UTS及YS最小值分別為135ksi(930.8MPa)及125ksi(861.8MPa)。表2中所列之本發明樣品的YS範圍為約125ksi(對於 Aleq為約6.0之樣品)至約141ksi(對於Aleq為約7.1之樣品)。Aleq為約6.4之樣品展現YS為約130ksi(896.3MPa)。表2中所列之本發明樣品的UTS範圍為約135ksi(對於Aleq為約6.0之樣品)至約153ksi(對於Aleq為約7.1之樣品)。Aleq為約6.4之樣品展現YS為約141ksi(972MPa)。 The typical UTS and YS minimum values of Ti-6Al-4V are 135ksi (930.8MPa) and 125ksi (861.8MPa), respectively. The YS range of the samples of the invention listed in Table 2 is from about 125 ksi (for a sample with Al eq of about 6.0) to about 141 ksi (for a sample with Al eq of about 7.1). A sample with an Al eq of about 6.4 exhibited a YS of about 130 ksi (896.3 MPa). The UTS range of the samples of the invention listed in Table 2 ranges from about 135 ksi (for a sample with Al eq of about 6.0) to about 153 ksi (for a sample with Al eq of about 7.1). A sample with an Al eq of about 6.4 exhibited a YS of about 141 ksi (972 MPa).

實例2Example 2

在室溫下對實例1之直徑為0.5吋(1.27cm)及鋁當量值為約6.5、約6.8及約7.15的線樣品第9-11號進行拉伸測試。拉伸測試之結果在圖2中以圖表形式顯示。所有此等樣品均展現類似或高於商業Ti-6Al-4V合金所展現之強度的拉伸及屈服強度。如同圖1,自圖2可見,Aleq增加使得強度增加,以及平均伸長率%增加。如上文所論述,此趨勢令人驚訝且出乎意料,因為其與強度增加伴有延性降低之一般所觀察到的關係相反。與表示對各種尺寸之樣品進行之測試的圖1相比,表示對相同尺寸之樣品進行之測試的圖2之數據散佈較小,因為機械性質在某種程度上受測試樣品之尺寸影響。 The wire samples No. 9-11 of Example 1 having a diameter of 0.5 inch (1.27 cm) and an aluminum equivalent value of about 6.5, about 6.8, and about 7.15 were subjected to a tensile test at room temperature. The results of the tensile test are shown graphically in FIG. 2. All of these samples exhibited tensile and yield strengths similar to or higher than those exhibited by commercial Ti-6Al-4V alloys. As shown in FIG. 1, it can be seen from FIG. 2 that an increase in Al eq results in an increase in strength and an increase in average elongation%. As discussed above, this trend is surprising and unexpected because it is the opposite of the generally observed relationship of increased strength with reduced ductility. Compared to FIG. 1, which represents tests performed on samples of various sizes, the data in FIG. 2, which represents tests performed on samples of the same size, has a smaller spread because the mechanical properties are affected to some extent by the size of the test samples.

實例3Example 3

由根據實例1中所述之步驟製造的鑄錠製造經熱輥軋之1吋(2.54cm)厚的板樣品。合金鑄錠具有在上表1之「本發明之非限制性實施例」欄中所列的範圍內之組成,其中鋁及氧濃度及鋁當量值如表3中所列。 A 1-inch (2.54 cm) thick plate sample was hot rolled from an ingot manufactured according to the procedure described in Example 1. The alloy ingot has a composition within the range listed in the "non-limiting embodiment of the present invention" column of Table 1 above, wherein the aluminum and oxygen concentrations and aluminum equivalent values are listed in Table 3.

所有熱輥軋溫度均低於合金之α/β轉變溫度。合金之Aleq值為約6.5至約7.1。使用室溫拉伸測試測定拉伸強度、屈服強度及伸長率%(延性)。拉伸測試結果在圖3中以圖表形式顯示。自圖3可見,如由所計算之鋁當量所指示,包括增加含量之Al及O的合金在室溫下展現的強度至少與Ti-6Al-4V合金所展現之強度相當。此外,觀察到強度隨Aleq增加而增加。另外,本發明合金之平均延性隨著Aleq增加及強度增加而略有增加或保持大致不變。此趨勢令人驚訝且出乎意料,因為其與強度增加伴有延性降低之一般所觀察到的關係相反。 All hot rolling temperatures are below the α / β transition temperature of the alloy. The alloy has an Al eq value of about 6.5 to about 7.1. Tensile strength, yield strength, and elongation% (ductility) were measured using a room temperature tensile test. The tensile test results are shown graphically in FIG. 3. It can be seen from FIG. 3 that, as indicated by the calculated aluminum equivalent, the strength of the alloy including increased contents of Al and O at room temperature is at least equivalent to that of the Ti-6Al-4V alloy. In addition, it was observed that the intensity increased as Al eq increased. In addition, the average ductility of the alloy of the present invention increases slightly with the increase of Al eq and the strength, or remains substantially unchanged. This trend is surprising and unexpected because it is the opposite of the generally observed relationship of increased strength with reduced ductility.

本發明已參考各種例示性、說明性及非限制性實施例來描述。然而,一般技術者應認識到,可在不脫離本發明範疇的情況下對任一所揭示實施例(或其一部分)作出各種取代、修改或組合,本發明範疇僅由申請專利範圍限定。因此,預期且瞭解,本發明涵蓋本文未明確闡述之其他實施例。該等實施例可例如藉由組合及/或改變本文所述之實施例的所揭示步驟、成分、組成部分、組分、元素、特點、態樣及其類似物中之任一者來獲得。因此,本發明不受各種例示性、說明性及非限制性實施例之描述限制,而僅受申請專利範圍限制。以此方式,應瞭解,申請專利範圍可在本發明專利申請案之審查期間進行修正以向本發明添加如本文以不同方式所述的特點。 The invention has been described with reference to various illustrative, illustrative, and non-limiting examples. However, a person of ordinary skill should realize that various substitutions, modifications, or combinations can be made to any disclosed embodiment (or a part thereof) without departing from the scope of the present invention, and the scope of the present invention is limited only by the scope of the patent application. Therefore, it is anticipated and understood that the present invention encompasses other embodiments not explicitly set forth herein. The embodiments can be obtained, for example, by combining and / or changing any of the disclosed steps, ingredients, constituents, components, elements, features, aspects, and the like of the embodiments described herein. Therefore, the present invention is not limited by the description of various exemplary, illustrative, and non-limiting embodiments, but is limited only by the scope of patent applications. In this way, it should be understood that the scope of the patent application may be amended during the examination of the patent application of the present invention to add features to the present invention as described herein in different ways.

Claims (11)

一種α/β鈦合金,以總合金重量計,其包含:4.05至4.40重量%鋁;2.2至3.0重量%釩;1.24至1.56重量%鐵;0.24至0.28重量%氧;至多最高0.08重量%碳;至多最高0.05重量%氮;至多最高0.015重量%氫;鈦;及至多總共0.30重量%其他元素;其中該合金包含至少為6.4之鋁當量值,展現至少122ksi(841.2MPa)之屈服強度,展現至少142ksi(979.1MPa)之極限拉伸強度,且展現至少20%之伸長率之延性;及其中當該鋁當量值增加至6.4至7.2之範圍時,平均屈服強度及平均極限拉伸強度增加,且平均延性不減少。An α / β titanium alloy, based on the total alloy weight, comprising: 4.05 to 4.40% by weight aluminum; 2.2 to 3.0% by weight vanadium; 1.24 to 1.56% by weight iron; 0.24 to 0.28% by weight oxygen; up to 0.08% by weight carbon At most 0.05% by weight nitrogen; at most 0.015% by weight hydrogen; titanium; and at most 0.30% by weight of other elements; wherein the alloy contains an aluminum equivalent of at least 6.4 and exhibits a yield strength of at least 122ksi (841.2MPa), Exhibit an ultimate tensile strength of at least 142 ksi (979.1 MPa), and exhibit a ductility of at least 20% elongation; and where the aluminum equivalent value increases to the range of 6.4 to 7.2, the average yield strength and average ultimate tensile strength Increase, and the average ductility does not decrease. 如請求項1之α/β鈦合金,其中:該等至多總共0.30重量%其他元素包括硼、錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳、釔及鈷中之至少一者;存在時,硼及釔中每一者之含量係小於0.005重量%;及存在時,錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳及鈷中每一者之含量係不大於0.10重量%。An α / β titanium alloy as claimed in claim 1, wherein: these total up to 0.30% by weight of other elements include boron, tin, zirconium, molybdenum, chromium, nickel, silicon, copper, niobium, tantalum, manganese, yttrium and cobalt At least one; when present, each of boron and yttrium is less than 0.005% by weight; and when present, each of tin, zirconium, molybdenum, chromium, nickel, silicon, copper, niobium, tantalum, manganese and cobalt The content is not more than 0.10% by weight. 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,且展現在122ksi(841.2MPa)至155ksi(1,069MPa)之範圍內之屈服強度。For example, the α / β titanium alloy of claim 1, wherein the aluminum equivalent value of the alloy is in the range of 6.4 to 7.2, and the yield strength is in the range of 122ksi (841.2MPa) to 155ksi (1,069MPa). 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,且展現在142ksi(979.1MPa)至165ksi(1,138MPa)之範圍內之極限拉伸強度。For example, the α / β titanium alloy of claim 1, wherein the aluminum equivalent value of the alloy is in the range of 6.4 to 7.2, and exhibits the ultimate tensile strength in the range of 142ksi (979.1MPa) to 165ksi (1,138MPa). 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,且展現在20%至30%伸長率之範圍內之延性。For example, the α / β titanium alloy of claim 1, wherein the aluminum equivalent value of the alloy is in the range of 6.4 to 7.2, and the ductility is exhibited in the range of 20% to 30% elongation. 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,展現在122ksi(841.2MPa)至143.1ksi(986.6MPa)之範圍內之屈服強度,展現在142.3ksi(981.1MPa)至154.6ksi(1,066MPa)之範圍內之極限拉伸強度,且展現在20%至22%伸長率之範圍內之延性。For example, the α / β titanium alloy of claim 1, wherein the aluminum equivalent value of the alloy is in the range of 6.4 to 7.2, and the yield strength in the range of 122 ksi (841.2 MPa) to 143.1 ksi (986.6 MPa) is displayed in Ultimate tensile strength in the range of 142.3 ksi (981.1 MPa) to 154.6 ksi (1,066 MPa), and exhibiting ductility in the range of 20% to 22% elongation. 如請求項1之α/β鈦合金,其中以ksi為單位計之該α/β鈦合金之平均極限拉伸強度(UTS)滿足以下方程式:UTS14.767(Aleq)+48.001,標準差為0.6213;其中以ksi為單位計之該α/β鈦合金之平均屈服強度(YS)滿足以下方程式:YS13.338(Aleq)+46.864;標準差為0.4519;且其中以伸長率%測量之該α/β鈦合金平均延性滿足以下方程式:%el3.3669(Aleq)-1.9417,標準差為0.1746;其中Aleq=鋁重量百分比+10(氧)重量百分比。For example, the α / β titanium alloy of claim 1, wherein the average ultimate tensile strength (UTS) of the α / β titanium alloy in ksi meets the following equation: UTS 14.767 (Al eq ) +48.001, standard deviation is 0.6213; where the average yield strength (YS) of the α / β titanium alloy in ksi meets the following equation: YS 13.338 (Al eq ) +46.864; standard deviation is 0.4519; and the average ductility of the α / β titanium alloy measured in elongation% satisfies the following equation:% el 3.3669 (Al eq ) -1.9417, standard deviation is 0.1746; where Al eq = weight percentage of aluminum + 10 (oxygen) weight percentage. 如請求項1之α/β鈦合金,其中以ksi為單位計之該α/β鈦合金之平均極限拉伸強度(UTS)滿足以下方程式:UTS12.414(Aleq)+64.429,標準差為0.9576;其中以ksi為單位計之該α/β鈦合金之平均屈服強度(YS)滿足以下方程式:YS13.585(Aleq)+44.904;標準差為0.8138;且其中以該α/β鈦合金伸長率%測量之平均延性滿足以下方程式:%el4.1993(Aleq)-7.4409,標準差為0.1731;其中Aleq=鋁重量百分比+10(氧)重量百分比。For example, the α / β titanium alloy of claim 1, wherein the average ultimate tensile strength (UTS) of the α / β titanium alloy in ksi meets the following equation: UTS 12.414 (Al eq ) +64.429, standard deviation is 0.9576; where the average yield strength (YS) of the α / β titanium alloy in ksi meets the following equation: YS 13.585 (Al eq ) +44.904; standard deviation is 0.8138; and the average ductility measured by the elongation percentage of the α / β titanium alloy satisfies the following equation:% el 4.1993 (Al eq ) -7.4409, standard deviation is 0.1731; where Al eq = aluminum weight percentage + 10 (oxygen) weight percentage. 如請求項1之α/β鈦合金,其中以ksi為單位計之該α/β鈦合金之平均極限拉伸強度(UTS)滿足以下方程式:UTS10.087(Aleq)+76.785;其中以ksi為單位計之該α/β鈦合金之平均屈服強度(YS)滿足以下方程式:YS13.911(Aleq)+39.435;且其中以伸長率%測量之該α/β鈦合金平均延性滿足以下方程式:%el1.1979(Aleq)+8.5604;其中Aleq=鋁重量百分比+10(氧)重量百分比。For example, the α / β titanium alloy of claim 1, wherein the average ultimate tensile strength (UTS) of the α / β titanium alloy in ksi meets the following equation: UTS 10.087 (Al eq ) +76.785; where the average yield strength (YS) of the α / β titanium alloy in ksi meets the following equation: YS 13.911 (Al eq ) +39.435; and wherein the average ductility of the α / β titanium alloy measured in elongation% satisfies the following equation:% el 1.1979 (Al eq ) + 8.5604; where Al eq = weight percentage of aluminum + 10 (oxygen) weight percentage. 一種製品,其包含如請求項1之合金。An article comprising an alloy as claimed in claim 1. 如請求項10之製品,其中該製品係選自飛行器引擎組件、飛行器結構組件、汽車組件、醫療裝置組件、運動設備組件、船舶應用組件及化學加工設備組件。The article of claim 10, wherein the article is selected from the group consisting of aircraft engine components, aircraft structural components, automotive components, medical device components, sports equipment components, marine application components, and chemical processing equipment components.
TW105136978A 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy TWI631222B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US12/888,699 US20120076611A1 (en) 2010-09-23 2010-09-23 High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock
US12/888,699 2010-09-23
US12/903,851 2010-10-13
US12/903,851 US10513755B2 (en) 2010-09-23 2010-10-13 High strength alpha/beta titanium alloy fasteners and fastener stock
US13/108,045 2011-05-16
US13/108,045 US20120076686A1 (en) 2010-09-23 2011-05-16 High strength alpha/beta titanium alloy

Publications (2)

Publication Number Publication Date
TW201708555A TW201708555A (en) 2017-03-01
TWI631222B true TWI631222B (en) 2018-08-01

Family

ID=45870864

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100134192A TWI572721B (en) 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy
TW105136978A TWI631222B (en) 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100134192A TWI572721B (en) 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy

Country Status (15)

Country Link
US (1) US20120076686A1 (en)
EP (1) EP2619340A1 (en)
JP (1) JP6104164B2 (en)
KR (3) KR20130099001A (en)
CN (1) CN103097559A (en)
AU (1) AU2011305924B2 (en)
BR (1) BR112013005248B1 (en)
CA (1) CA2809035A1 (en)
IL (1) IL224802A (en)
MX (1) MX368806B (en)
NZ (1) NZ607852A (en)
PE (1) PE20131367A1 (en)
RU (1) RU2616676C2 (en)
TW (2) TWI572721B (en)
WO (1) WO2012039929A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) * 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9957836B2 (en) 2012-07-19 2018-05-01 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN104152744A (en) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
CZ2014929A3 (en) * 2014-12-17 2016-05-11 UJP PRAHA a.s. Titanium-based alloy and heat and mechanical treatment process thereof
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN107429329B (en) * 2015-03-02 2019-03-01 新日铁住金株式会社 Titanium sheet metal and its manufacturing method
CN104762525A (en) * 2015-03-27 2015-07-08 常熟市双羽铜业有限公司 Titanium alloy tube for heat exchanger
CN104831119A (en) * 2015-04-15 2015-08-12 苏州维泰生物技术有限公司 Joint titanium alloy material and preparation method thereof
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
JP7022698B2 (en) * 2016-04-25 2022-02-18 ハウメット エアロスペース インコーポレイテッド BCC materials of titanium, aluminum, vanadium, and iron and products made from them
US10851437B2 (en) 2016-05-18 2020-12-01 Carpenter Technology Corporation Custom titanium alloy for 3-D printing and method of making same
CN107058798A (en) * 2016-11-08 2017-08-18 中航装甲科技有限公司 A kind of composite armour material and preparation method thereof
CN106521239B (en) * 2016-11-21 2018-07-20 西北有色金属研究院 A kind of used by nuclear reactor high impact toughness low activation titanium alloy
CN108130485A (en) * 2016-12-01 2018-06-08 北方工业大学 High-strength material for assembly type building connection
CN107335765B (en) * 2017-05-31 2019-06-25 太仓市微贯机电有限公司 A kind of titanium alloy pecker and preparation method thereof for seamless perforating material machine
CN107858558B (en) * 2017-11-23 2019-09-03 北京有色金属研究总院 A kind of Superplastic Titanium Alloys plate and preparation method thereof
EP3502288B1 (en) * 2017-12-21 2020-10-14 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
CN108149066A (en) * 2017-12-28 2018-06-12 宁夏东方钽业股份有限公司 A kind of bicycle use new titanium alloy Ti421 tubing and its processing method
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
CN108467971A (en) * 2018-06-08 2018-08-31 南京赛达机械制造有限公司 A kind of erosion resistant titanium alloy blade of aviation engine
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
EP3671359B1 (en) * 2018-12-21 2023-04-26 Nivarox-FAR S.A. Manufacturing method of a timepiece spiral spring made of titanium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI325895B (en) * 2003-05-09 2010-06-11 Ati Properties Inc Processing of titanium-aluminum-vanadium alloys and products made thereby

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1131234C (en) * 1983-06-09 1994-10-30 ВНИИ авиационных материалов Titanium-base alloy
US5980655A (en) * 1997-04-10 1999-11-09 Oremet-Wah Chang Titanium-aluminum-vanadium alloys and products made therefrom
JPH10306335A (en) * 1997-04-30 1998-11-17 Nkk Corp Alpha plus beta titanium alloy bar and wire rod, and its production
US7073559B2 (en) * 2003-07-02 2006-07-11 Ati Properties, Inc. Method for producing metal fibers
US20060045789A1 (en) * 2004-09-02 2006-03-02 Coastcast Corporation High strength low cost titanium and method for making same
US20080103543A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
JP2009299110A (en) * 2008-06-11 2009-12-24 Kobe Steel Ltd HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
JP5315888B2 (en) * 2008-09-22 2013-10-16 Jfeスチール株式会社 α-β type titanium alloy and method for melting the same
US9255316B2 (en) * 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
CN102212716B (en) * 2011-05-06 2013-03-27 中国航空工业集团公司北京航空材料研究院 Low-cost alpha and beta-type titanium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI325895B (en) * 2003-05-09 2010-06-11 Ati Properties Inc Processing of titanium-aluminum-vanadium alloys and products made thereby

Also Published As

Publication number Publication date
JP2013539822A (en) 2013-10-28
WO2012039929A1 (en) 2012-03-29
KR20180049165A (en) 2018-05-10
IL224802A (en) 2017-05-29
PE20131367A1 (en) 2013-11-25
MX368806B (en) 2019-10-17
BR112013005248B1 (en) 2019-10-01
CN103097559A (en) 2013-05-08
AU2011305924A1 (en) 2013-03-28
RU2616676C2 (en) 2017-04-18
RU2013118571A (en) 2014-10-27
MX2013002312A (en) 2013-05-09
CA2809035A1 (en) 2012-03-29
KR20130099001A (en) 2013-09-05
TW201224163A (en) 2012-06-16
NZ607852A (en) 2015-05-29
US20120076686A1 (en) 2012-03-29
KR102056035B1 (en) 2019-12-13
EP2619340A1 (en) 2013-07-31
BR112013005248A2 (en) 2018-05-02
AU2011305924B2 (en) 2016-04-07
TWI572721B (en) 2017-03-01
JP6104164B2 (en) 2017-03-29
TW201708555A (en) 2017-03-01
KR20190040094A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
TWI631222B (en) High strength alpha/beta titanium alloy
CA2809042C (en) High strength alpha/beta titanium alloy fasteners and fastener stock
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
ES2932726T3 (en) high strength titanium alloys
UA120868C2 (en) Titanium alloy
KR20120115497A (en) Production of high strength titanium alloys
EP3521480B1 (en) High-strength alpha-beta titanium alloy
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
JP2017218660A (en) Titanium alloy forging material
KR20240056276A (en) Titanium alloy and manufacturing method for same