JP2017020416A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017020416A
JP2017020416A JP2015138686A JP2015138686A JP2017020416A JP 2017020416 A JP2017020416 A JP 2017020416A JP 2015138686 A JP2015138686 A JP 2015138686A JP 2015138686 A JP2015138686 A JP 2015138686A JP 2017020416 A JP2017020416 A JP 2017020416A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
ratio
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015138686A
Other languages
English (en)
Inventor
達也 内本
Tatsuya Uchimoto
達也 内本
小川 賢
Masaru Ogawa
賢 小川
晋一 奥西
Shinichi Okunishi
晋一 奥西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015138686A priority Critical patent/JP2017020416A/ja
Publication of JP2017020416A publication Critical patent/JP2017020416A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】内燃機関の冷間始動時、空燃比センサが未活性の状態においても、フィードバック制御によって混合気の実際の空燃比を目標空燃比に精度良く制御でき、目標空燃比に応じた所望の排ガス特性及び燃費を得ることができる内燃機関の制御装置を提供する。【解決手段】本発明による内燃機関の制御装置では、LAFセンサ56によって混合気の空燃比(検出当量比KLAF)を検出する。また、空燃比推定手段により、圧縮行程中の混合気の燃焼が開始される前に検出された実筒内圧P_CPSに応じ、混合気の比熱比に基づいて、混合気の空燃比(推定当量比KCPS)を推定する(図3のステップ11)。そして、LAFセンサ56が活性状態にないと判定されたときには、推定空燃比(推定当量比KCPS)に基づき、推定空燃比を目標空燃比(目標当量比KCMD)に収束するようにフィードバック制御する。【選択図】図5

Description

本発明は、空燃比を制御する内燃機関の制御装置に関し、特に内燃機関の冷間始動時、空燃比センサが非活性の状態において空燃比を制御する制御装置に関する。
従来、空燃比の制御は一般に、排気通路に設けられた空燃比センサにより、排ガスの酸素濃度を介して空燃比を検出し、この検出空燃比を目標空燃比に収束するようにフィードバック制御することによって、行われる。また、空燃比センサは、所定温度以上である活性状態でなければ、空燃比を正確に検出できないという特性を有する。このため、例えば内燃機関が冷間始動された後、空燃比センサが活性状態になるまでは、空燃比制御として、検出空燃比に基づくフィードバック制御が行えず、フィードフォワード制御が行われる。
例えば特許文献1に開示された制御装置では、エンジンの始動時から触媒が活性化するまでの所定期間においては、排ガス中のHCを低減するために、燃料噴射量を減量補正するための始動時リーン係数を設定することにより、空燃比が理論空燃比よりもリーン側に制御される。また、この始動時リーン制御の実行中、エンジン回転数が、エンジン水温に応じて設定される解除回転数を下回ったときには、燃焼状態の悪化や燃焼変動が生じたと判定し、始動時リーン係数をクリアすることで、始動時リーン制御が解除され、空燃比が理論空燃比に制御される。
特開平10−184421号公報
上述した従来の制御装置では、エンジンの始動時から触媒が活性化するまでの間、排ガス中のHCを低減するために、フィードフォワード制御である始動時リーン制御が実行される。このため、排ガス中のHCを確実に低減するためには、始動時リーン制御における目標空燃比を理論空燃比よりもリーン側に大きなマージン(余裕)をもって設定することが必要になり、その結果、安定した燃焼状態を確保できないおそれがある。また、燃焼状態が実際に不安定になり、エンジン回転数が解除回転数を下回った場合には、始動時リーン制御が解除され、空燃比が理論空燃比にフィードフォワード制御されるので、実際の空燃比が理論空燃比よりもリッチ側にずれることがあり、その場合には、排ガス中のHCを有効に低減することができない。
本発明は、以上のような課題を解決するためになされたものであり、内燃機関の冷間始動時、空燃比センサが未活性の状態においても、フィードバック制御によって実際の空燃比を目標空燃比に精度良く制御でき、それにより、目標空燃比に応じた所望の排ガス特性及び燃費を得ることができる内燃機関の制御装置を提供することを目的とする。
上記の目的を達成するために、請求項1に係る発明は、混合気の空燃比を制御する内燃機関の制御装置であって、混合気の空燃比の目標となる目標空燃比(目標当量比KCMD)を設定する目標空燃比設定手段(ECU2、図5のステップ21)と、排気通路7に設けられ、活性状態において、気筒3aから排出された排ガスの酸素濃度に基づき、混合気の空燃比(検出当量比KLAF)を検出する空燃比センサ(LAFセンサ56)と、気筒3a内の圧力を筒内圧PCYLとして検出する筒内圧センサ51と、圧縮行程中の混合気の燃焼が開始される前に検出された筒内圧(実筒内圧P_CPS)に応じ、混合気の比熱比に基づいて、混合気の空燃比(推定当量比KCPS)を推定する空燃比推定手段(ECU2、図3、ステップ11)と、空燃比センサが活性状態にあるか否かを判定する活性状態判定手段(触媒温度センサ57、ECU2、図5のステップ22)と、空燃比センサが活性状態にないと判定されたときに、空燃比推定手段で推定された空燃比を目標空燃比に収束するようにフィードバック制御し、空燃比センサが活性状態にあると判定されたときに、空燃比センサで検出された空燃比を目標空燃比に収束するようにフィードバック制御する制御手段(ECU2、図5のステップ24、30、25〜27)と、を備えることを特徴とする。
この内燃機関の制御装置では、混合気の空燃比の目標となる目標空燃比が設定されるとともに、空燃比が空燃比センサによって検出される。また、空燃比センサとは別個に、混合気の空燃比を推定する空燃比推定手段を備える。この空燃比推定手段は、圧縮行程中の混合気の燃焼が開始される前に筒内圧センサで検出された筒内圧に応じ、混合気の比熱比に基づいて、空燃比を推定する。そして、空燃比センサが活性状態にないと判定されたときには、空燃比推定手段で推定された空燃比に基づき、この推定空燃比を目標空燃比に収束するようにフィードバック制御する。したがって、例えば内燃機関の冷間始動の直後において、空燃比センサが活性状態にないときでも、空燃比をフィードフォワード制御する従来の場合と異なり、リーン側への余分なマージンを設定することなく、混合気の空燃比を目標空燃比に精度良く制御でき、したがって、目標空燃比に応じた所望の排ガス特性及び燃費を得ることができる。
一方、空燃比センサが活性状態にあると判定されたときには、空燃比センサで検出された空燃比に基づき、この検出空燃比を目標空燃比に収束するようにフィードバック制御するので、混合気の空燃比を目標空燃比に精度良く制御することができる。
請求項2に係る発明は、請求項1に記載の内燃機関の制御装置において、排気通路7の空燃比センサよりも下流側に設けられ、排ガスを浄化する三元触媒28と、三元触媒28の暖機を促進するために、混合気の燃焼が終了した後に燃料を追加噴射する触媒暖機制御を実行する触媒暖機制御手段(ECU2、図5のステップ31、35)と、触媒暖機制御において追加噴射される燃料の量である追加噴射量(膨張行程噴射量GFUEL_2nd)を、目標空燃比と直前の圧縮行程において推定された空燃比との差に基づいて算出する追加噴射量算出手段(ECU2、図3のステップ35)と、をさらに備えることを特徴とする。
この構成によれば、排気通路の空燃比センサよりも下流側に三元触媒が設けられており、例えば内燃機関の冷間始動の直後には、三元触媒の暖機を促進するための触媒暖機制御が実行される。この触媒暖機制御は、混合気の燃焼が終了した後に燃料を追加噴射することによって行われ、追加噴射された燃料が三元触媒において燃焼することによって、三元触媒が急速に昇温し、暖機される。
また、この場合の追加噴射量は、目標空燃比と直前の圧縮行程において推定された空燃比との差に基づいて算出される。これにより、目標空燃比に応じ、直前に燃焼した混合気の実際の空燃比を反映させながら、追加噴射量を適切に設定でき、三元触媒の暖機を適切に行うことができる。また、目標空燃比が理論空燃比に設定されている場合には、上記のように設定される追加噴射量は理論空燃比に対する燃料の不足分に相当する。このため、三元触媒における燃焼がストイキ燃焼として行われるので、三元触媒の浄化性能が最大限に発揮されることで、非常に良好な排ガス特性を得ることができる。
請求項3に係る発明は、請求項2に記載の内燃機関の制御装置において、触媒暖機制御が実行される場合に、混合気を生成するために噴射される燃料の量である主噴射量(圧縮行程噴射量GFUEL_1st)を、混合気の空燃比が理論空燃比よりもリーン側になるように算出する主噴射量算出手段(ECU2、図5のステップ33)をさらに備えることを特徴とする。
この構成によれば、触媒暖機制御が実行される場合、燃料の主噴射量を上記のように算出することにより、混合気の空燃比が理論空燃比よりもリーン側に制御され、燃焼ガス中に空気が確実に残される。そして、この残余空気が追加噴射された燃料とともに三元触媒において燃焼することで、燃焼が良好に行われるので、三元触媒の暖機をより短時間で行うことができる。
本発明を適用した内燃機関の構成を概略的に示す図である。 制御装置の概略構成を示すブロック図である。 混合気の空燃比の推定処理を示すフローチャートである。 実筒内圧−基準筒内圧の圧力差と混合気の当量比との関係を示す図である。 空燃比制御処理を示すフローチャートである。
以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1に示すように、本発明を適用した内燃機関(以下「エンジン」という)3は、例えば4つの気筒3aを有するガソリンエンジンであり、車両(図示せず)に動力源として搭載されている。
エンジン3の各気筒3aには、燃料噴射弁(以下「インジェクタ」という)4及び点火プラグ5が、気筒3aの燃焼室(図示せず)に臨むように設けられている。インジェクタ4は、燃焼室内に燃料を直接、噴射するタイプのものである。点火プラグ5からの火花の放電によって、燃料と空気との混合気が点火され、燃焼が行われる。インジェクタ4からの燃料噴射量及び燃料噴射時期と点火プラグ5の点火時期IGLOGは、電子制御ユニット(以下「ECU」という)2からの制御信号によって制御される(図2参照)。
なお、本実施形態において「混合気」は、気筒3aに充填され、燃焼に供される筒内ガスであり、後述するEGR装置14による排気還流(外部EGR)が行われる場合には、外部EGRガスを含むものである。
エンジン3の各気筒3aには、その内部の圧力(筒内圧)を検出する筒内圧センサ51が設けられている。本実施形態では、筒内圧センサ51は、インジェクタ一体型のものであり、図示しないが、燃焼室に臨み、筒内圧をピックアップする圧力検出素子や、圧力検出素子からの信号を増幅し、出力する増幅回路などが、インジェクタ4に一体に組み付けられている。筒内圧センサ51で検出された筒内圧PCYLを表す検出信号は、ECU2に入力される。
また、エンジン3は、ターボチャージャ13及びEGR装置14などを備えている。ターボチャージャ13は、吸気通路6に設けられたコンプレッサ21と、排気通路7に設けられ、シャフト22を介してコンプレッサ21に一体に連結されたタービン23を備えている。排気通路7を流れる排ガスによってタービン23が駆動され、それと一体にコンプレッサ21が回転することによって、吸気が過給される。また、ウェイストゲートバルブ(図示せず)などをECU2からの制御信号で制御することで、過給圧が調整される。
吸気通路6には、上流側から順に、吸気絞り弁25、ターボチャージャ13のコンプレッサ21、過給によって昇温した吸気を冷却するためのインタークーラ26、及びスロットル弁27が設けられている。吸気絞り弁25は、その下流側に外部EGRガスを導入するための負圧を発生させるものであり、その開度は、ECU2からの制御信号に応じ、LPアクチュエータ25aを介して制御される。
スロットル弁27は、吸気通路6の吸気マニホルド6aよりも上流側に配置されている。スロットル弁27の開度は、ECU2からの制御信号に応じ、THアクチュエータ27aを介して制御され、それにより、気筒3aに吸入される筒内ガス量が制御される。
排気通路7のタービン23よりも下流側には、三元触媒28が設けられている。三元触媒28は、昇温された活性状態において、排ガス中のHCやCOを酸化するとともに、NOxを還元することによって、排ガスを浄化する。
EGR装置14は、気筒3aから排気通路7に排出された排ガスの一部を、EGR通路41を介し、外部EGRガスとして吸気通路6に還流させるものである。図1に示すように、EGR通路41は、排気通路7のタービン23及び三元触媒28よりも下流側と、吸気通路6のコンプレッサ21と吸気絞り弁25との間に接続されている。この構成により、外部EGRガスは、排ガスがタービン23に対して仕事を行った後の状態で取り出されるため、比較的低圧になる。すなわち、EGR装置14は、いわゆる低圧EGR装置として構成されている。
EGR通路41の途中には、EGR弁42と、外部EGRガスを冷却するためのEGRクーラ43が設けられている。EGR弁42の開度は、ECU2からの制御信号に応じ、EGRアクチュエータ42aを介して制御され、それにより、外部EGRガス量が制御される。
また、エンジン3には、その運転状態を検出するために、前述した筒内圧センサ51に加えて、以下のような各種のセンサが設けられている(図2参照)。
クランク角センサ52は、クランクシャフトの回転に伴い、所定のクランク角度ごとに、パルス信号であるCRK信号及びTDC信号をECU2に出力する。CRK信号は、所定のクランク角度(例えば0.5度)ごとに出力される。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。
また、TDC信号は、いずれかの気筒3aにおいて、エンジン3のピストン(図示せず)が吸気TDC(上死点)付近の所定のクランク角度位置にあることを表す信号であり、本実施形態のようにエンジン3が4気筒の場合には、クランク角度180度ごとに出力される。ECU2は、TDC信号およびCRK信号に応じて、TDC信号の出力タイミングを基準とするクランク角CAを、気筒3aごとに算出する。また、ECU2は、TDC信号及びCRK信号に応じて、所定のクランク角度(例えば30度)ごとに、クランク角ステージFISTG(=0〜23)を算出し、割り当てる。
また、吸気通路6には、吸気絞り弁25の上流側にエアフローセンサ53が設けられ、スロットル弁27の下流側の吸気チャンバ6bに、吸気圧センサ54及び吸気温センサ55が設けられている。エアフローセンサ53は、気筒3aに吸入される空気(新気)の量(吸入空気量)GAIRを検出し、吸気圧センサ54は、気筒3aに吸入される吸気の圧力(吸気圧)PBAを絶対圧として検出し、吸気温センサ55は、外部EGRガスを含む吸気の温度(吸気温)TAを検出する。これらの検出信号はECU2に入力される。
排気通路7の三元触媒28のすぐ上流側にはLAFセンサ56が設けられ、三元触媒28には触媒温度センサ57が設けられている。LAFセンサ56は、理論空燃比を含む広い空燃比領域において、三元触媒28に流入する排ガス中の酸素濃度を連続的に検出し、その検出信号をECU2に出力する。ECU2は、この検出信号に基づき、混合気の当量比(以下「検出当量比」という)KLAFを算出する。触媒温度センサ57は、三元触媒28の温度(以下「触媒温度」という)TCATを検出し、その検出信号をECU2に出力する。
さらに、ECU2には、水温センサ58からエンジン3を冷却する冷却水の温度(以下「エンジン水温」という)TWを表す検出信号が、アクセル開度センサ59から、車両のアクセルペダル(図示せず)の踏込み量(以下「アクセル開度」という)APを表す検出信号が、それぞれ入力される。
ECU2は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されている。ECU2は、前述した各種のセンサの検出信号などに応じて、エンジン3の運転状態を判別し、インジェクタ4の燃料噴射量や点火プラグ5の点火時期IGLOGの制御などを含むエンジン制御を実行する。また、本実施形態では特に、ECU2は、混合気の空燃比を推定するとともに、推定した空燃比などに応じて空燃比制御を実行する。
本実施形態では、ECU2が、目標空燃比設定手段、空燃比推定手段、活性状態判定手段、制御手段、触媒暖機制御手段、追加噴射量算出手段、及び主噴射量算出手段に相当する。
図3は、ECU2で実行される、混合気の空燃比の推定処理を示す。この推定処理は、本出願人による出願(特願2015−138598号)において詳しく開示したものと基本的に同じであるので、以下、その概要について説明する。
本処理は、気筒3aごとに、前述したクランク角ステージFISTGの切替周期と同じ周期(例えばクランク角度30度ごと)で、繰り返し実行される。なお、筒内圧センサ51で検出された筒内圧PCYLに直接、関連する処理は、本処理とは別個に、CRK信号の発生周期と同じ周期(例えばクランク角度0.5度ごと)で実行され、例えば、検出された筒内圧PCYLがクランク角CAに対応して記憶される。
図3の推定処理では、まずステップ1(「S1」と図示。以下同じ)において、クランク角ステージFISTGが、吸気TDC(上死点)に相当する第1所定値STG1に等しいか否かを判別する。この判別結果がYESで、当該気筒3aが吸気行程に移行した直後の段階にあるときには、吸気関連パラメータとして、検出された吸気温TA及びエンジン水温TWを読み出し、取得する(ステップ2)とともに、ECU2のRAMの所定領域に記憶し、本処理を終了する。
前記ステップ1の判別結果がNOのときには、クランク角ステージFISTGが、圧縮BDC(下死点)に相当する第2所定値STG2に等しいか否かを判別する(ステップ3)。この判別結果がYESで、当該気筒3aが圧縮行程に移行した直後の段階にあるときには、圧縮関連パラメータとして、検出された吸気圧PBA及びエンジン回転数NEと、その時点で設定されている点火時期IGLOGを読み出し、取得する(ステップ4)とともに、ECU2のRAMの所定領域に記憶する。
次に、基準クランク角CA_REFの設定処理を実行する(ステップ5)。この基準クランク角CA_REFは、混合気の燃焼が開始される直前のタイミングを予測し、クランク角で表したものである。具体的には、この設定処理では、前記ステップ4で取得した吸気圧PBA及びエンジン回転数NEに応じ、所定のマップ(図示せず)を検索することによって、遅角補正量ΔC_CAを算出するとともに、この遅角補正量ΔC_CAを前記ステップ4で取得した点火時期IGLOGから減算することによって、基準クランク角CA_REFが設定される。
上記ステップ5に続くステップ6では、基準筒内圧P_REFの算出処理を実行する。この基準筒内圧P_REFは、混合気中に外部EGRガスが存在せず且つ混合気の空燃比が理論空燃比であるという条件で、上記の基準クランク角CA_REFにおいて発生する筒内圧である。
具体的には、この算出処理ではまず、ステップ5で設定された基準クランク角CA_REFと、吸気弁の閉弁タイミングIVC、吸気温TA及び吸気圧PBAに応じ、所定の基準筒内圧マップを検索することによって、基準筒内圧P_REFのマップ値を算出する。図示しないが、この基準筒内圧マップは、上述した混合気の組成の条件で、上記の4つの入力パラメータの様々な条件に対し、混合気の比熱比の温度特性に基づいて、基準筒内圧P_REFをあらかじめ算出し、その結果をマップ化したものである。そして、基準筒内圧マップから得られたマップ値を、エンジン回転数NE及びエンジン水温TWに応じて設定された伝熱補正係数で補正することによって、最終的な基準筒内圧P_REFが算出される。
次に、AF係数C_AFの算出処理を実行し(ステップ7)、本処理を終了する。図4に示すように、このAF係数C_AFは、圧力差ΔP(後述する実筒内圧P_CPSと基準筒内圧P_REFとの差)と混合気の当量比KAFの間に、線形関係が認められることから、圧力差ΔPに対する当量比KAFの傾き(KAF/ΔP)をAF係数C_AFと定義したものである。また、上記の傾きが吸気条件及び圧縮条件に応じて変化するという特性が認められることから、AF係数C_AFの算出処理を行うものである。
具体的には、この算出処理では、基準クランク角CA_REFと、吸気弁の閉弁タイミングIVC、吸気温TA及び吸気圧PBAに応じ、所定のAF係数マップを検索することによって、AF係数C_AFが算出される。これらの4つの入力パラメータは、上記の吸気条件及び圧縮条件を表すものであり、基準筒内圧マップの入力パラメータと共通である。図示しないが、このAF係数マップは、上記の4つの入力パラメータの様々な条件に対し、混合気の比熱比の温度特性に基づいて、AF係数C_AFをあらかじめ算出し、その結果をマップ化したものである。
前記ステップ3の判別結果がNOのときには、クランク角ステージFISTGが、圧縮TDC(上死点)に相当する第3所定値STG3に等しいか否かを判別する(ステップ8)。この判別結果がNOのときには、そのまま本処理を終了する。一方、ステップ8の判別結果がYESで、当該気筒3aが圧縮行程が終了した直後の段階にあるときには、ステップ5で設定した基準クランク角CA_REFにおいて検出された筒内圧PCYLを、RAMから読み出し、実筒内圧P_CPSとして取得する(ステップ9)。
次に、取得した実筒内圧P_CPSと基準筒内圧P_REFとの差(=P_CPS−P_REF)を、圧力差ΔPとして算出する(ステップ10)。次に、これまでに算出した圧力差ΔPとAF係数C_AFを用い、次式(1)によって、混合気の当量比(以下「推定当量比」という)KCPSを算出する(ステップ11)。
KCPS=ΔP×C_AF+1.0 ・・・(1)
この式(1)は、上述したAF係数C_AFの定義と、空燃比が理論空燃比のとき(当量比KAF=1.0)に、実筒内圧P_CPSが基準筒内圧P_REFに一致し、圧力差ΔPが0になるという関係から、導き出される(図4参照)。
次に、次式(2)により、推定当量比KCPSと理論空燃比(=14.7)から混合気の空燃比AFCPSを算出し(ステップ12)、本処理を終了する。
AFCPS=14.7/KCPS ・・・(2)
以上の空燃比の推定処理によれば、所定の混合気の組成条件で、混合気の燃焼の開始直前のタイミングに相当する基準クランク角CA_REFにおいて検出された実筒内圧P_CPSと基準筒内圧P_REFとの圧力差ΔPに基づき、混合気の比熱比の温度特性を良好に反映させながら、混合気の当量比及び空燃比を精度良く推定することができる。
次に、図5を参照しながら、ECU2で実行される空燃比制御処理について説明する。この空燃比制御では、燃料噴射量による空燃比のフィードバック制御が行われる。また、LAFセンサ56が活性状態にあるか否に応じて、LAFセンサ56で検出された空燃比に基づく制御(以下「検出空燃比制御」という)と、図3の推定処理で算出された推定空燃比に基づく制御(以下「推定空燃比制御」という)が使い分けられる。本処理は、TDC信号の発生に同期して実行される。また、本処理では、空燃比を表すパラメータとして、当量比が用いられる。
本処理では、まずステップ21において、混合気の目標当量比KCMDを設定する。その設定は、例えば、要求トルクTRQCMD及びエンジン回転数NEに応じ、所定のマップ(図示せず)を検索することによって行われる。要求トルクTRQCMDは、アクセル開度AP及びエンジン回転数NEに基づいて算出される。この目標当量比KCMDは、加速時(スロットル全開時)などを除くエンジン3の定常運転状態では、始動直後のアイドル運転状態を含めて、通常、理論空燃比に相当するストイキ当量比(=1.0)に設定される。
次に、LAFセンサ56が活性状態にあるか否かを判別する(ステップ22)。この判別は、例えば触媒温度センサ58で検出された触媒温度TCATが、LAFセンサ56の活性温度に相当する第1所定温度TREF1(例えば500℃)以上であるか否かに基づいて、行われる。
この判別結果がYESで、LAFセンサ56が活性状態にあるときには、検出空燃比制御を実行すべきと判定し、そのことを表すために、検出空燃比制御フラグF_FBLAFを「1」に、推定空燃比制御フラグF_FBCPSを「0」に、それぞれセットする(ステップ23)。また、LAFセンサ56で検出された検出当量比KLAFを、実当量比KACTとして設定する(ステップ24)。
次に、圧縮行程において噴射する燃料量(以下「圧縮行程噴射量」という)GFUEL_1stの基本値GFBASEを算出する(ステップ25)。この算出は、例えば、目標当量比KCMD、吸入空気量GAIR及び理論空燃比(=14.7)を用い、次式(3)によって行われる。
GFBASE=(GAIR/14.7)×KCMD ・・・(3)
次に、目標当量比KCMDと実当量比KACTに応じ、PIDフィードバック制御によって、実当量比KACTが目標当量比KCMDに収束するように、空燃比補正係数KAFを算出する(ステップ26)。なお、この空燃比補正係数KAFの算出を、STR(セルフ・チューニング・レギュレータ)などの現代制御理論を用いて行ってもよい。次に、基本値GFBASEに空燃比補正係数KAFを乗算することによって、圧縮行程噴射量GFUEL_1stを算出する(ステップ27)。
次に、膨張行程において噴射する燃料量(以下「膨張行程噴射量」という)GFUEL_2ndを0に設定し(ステップ28)、本処理を終了する。後述するように、この膨張行程噴射は、エンジン3の冷間始動時、三元触媒28を急速に昇温し、暖機するための触媒暖機制御として実行されるものである。
一方、前記ステップ22の判別結果がNOで、LAFセンサ56が活性状態にないときには、推定空燃比制御を実行すべきと判定し、そのことを表すために、検出空燃比制御フラグF_FBLAFを「0」に、推定空燃比制御フラグF_FBCPSを「1」に、それぞれセットする(ステップ29)。また、推定当量比KCPSを実当量比KACTとして設定する(ステップ30)。
次に、触媒暖機制御フラグF_FIREONが「1」であるか否かを判別する(ステップ31)。この触媒暖機制御フラグF_FIREONは、三元触媒28を急速に暖機するための触媒暖機制御が要求されているときに「1」にセットされるものである。このステップ31の判別結果がNOで、触媒暖機制御が要求されていないときには、前記ステップ25以降に進み、目標当量比KCMDと実当量比KACT(=推定当量比KCPS)に応じたフィードバック制御によって、圧縮行程噴射量GFUEL_1stを算出するとともに、膨張行程噴射量GFUEL_2ndを0に設定する。
前記ステップ31の判別結果がYESで、触媒暖機制御が要求されているときには、触媒温度TCATが第2所定温度TREF2よりも高いか否かを判別する(ステップ32)。この第2所定温度TREF2は、膨張行程で噴射された燃料が三元触媒28において燃焼することが可能な下限温度に相当する(例えば350℃)。このため、ステップ32の判別結果がNOのときには、膨張行程噴射を行わないものとして、前記ステップ25以降を実行する。この場合には、エンジン3での燃焼が進むにつれて、三元触媒28は、流入する排ガスの熱によって次第に昇温される。
一方、前記ステップ32の判別結果がYESで、触媒温度TCATが第2所定温度TREF2を上回ったときには、膨張行程噴射を行うものとして、まず圧縮行程噴射量GFUEL_1stを次式(4)によって算出する(ステップ33)。
GFUEL_1st=(GAIR/14.7)×(1.0−ΔK) ・・・(4)
右辺のΔKは、混合気の空燃比を理論空燃比よりもリーン側に補正し、燃焼ガス中に空気を残すための減少補正量であり、混合気の燃焼安定性と膨張行程噴射量GFUEL_2ndの両方を確保できるような値に設定されている。
この算出結果に基づき、圧縮行程噴射量GFUEL_1stの燃料が圧縮行程において噴射され、気筒3a内で混合気の燃焼が行われるとともに、燃焼の開始直前に検出された実筒内圧P_CPSに応じ、図3の推定処理によって、燃焼に供される混合気の推定当量比KCPSが算出される。前記ステップ33に続くステップ34では、算出された推定当量比KCPSを取得する。
次に、この推定当量比KCPSと目標当量比KCMDを用い、膨張行程噴射量GFUEL_2ndを次式(5)によって算出し(ステップ35)、本処理を終了する。
GFUEL_2nd=(GAIR/14.7)×(KCMD−KCPS)
・・・(5)
この算出結果に基づき、膨張行程噴射量GFUEL_2ndの燃料が、膨張行程において噴射される。噴射された燃料は、燃焼ガス中に残された空気とともに、排気行程において気筒3aから排出され、第2所定温度TREF2以上に昇温された三元触媒28において燃焼する。これにより、三元触媒28が急速に昇温し、暖機される。
以上のように、本実施形態によれば、LAFセンサ56が活性状態にないと判定されたときには、図3の推定処理による推定当量比KCPSを実当量比KACTとし(図5のステップ30)、この実当量比KACTが目標当量比KCMDに収束するように、圧縮行程噴射量GFUEL_1stをフィードバック制御する(ステップ25〜27)。したがって、エンジン3の冷間始動後、LAFセンサ56が活性状態にないときでも、空燃比をフィードフォワード制御する従来の場合と異なり、リーン側への余分なマージンを設定することなく、混合気の空燃比を目標空燃比に精度良く制御でき、したがって、目標空燃比に応じた所望の排ガス特性及び燃費を得ることができる。
また、エンジン3の冷間始動の直後などにおいて、三元触媒28の触媒暖機制御を実行する場合には、そのための膨張行程噴射量GFUEL_2ndを、目標当量比KCMDと直前の圧縮行程において算出された推定当量比KCPSとの差に基づいて算出する(ステップ34、35)。これにより、目標空燃比に応じ、直前に燃焼した混合気の実際の空燃比を反映させながら、膨張行程噴射量GFUEL_2ndを適切に設定でき、三元触媒28の暖機を適切に行うことができる。
また、目標当量比KCMDがストイキ当量比に設定されている場合には、上記のように設定される膨張行程噴射量GFUEL_2ndは、ストイキ当量比に対する燃料の不足分に相当する。このため、三元触媒28における燃焼がストイキ燃焼として行われるので、三元触媒28の浄化性能が最大限に発揮されることで、非常に良好な排ガス特性を得ることができる。
さらに、触媒暖機制御を実行する場合には、圧縮行程噴射量GFUEL_1stを、混合気の空燃比が理論空燃比よりもリーン側になるように算出する(ステップ33)。これにより、燃焼ガス中に空気が確実に残され、この残余空気が追加噴射された燃料とともに三元触媒28において燃焼することで、燃焼が良好に行われるので、三元触媒28の暖機をより短時間で行うことができる。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、混合気を生成するための燃料を、圧縮行程において噴射しているが、吸気行程に噴射するものでもよい。また、実施形態では、触媒暖機制御のための追加燃料を、インジェクタ4から膨張行程において供給しているが、本発明は、これに限らず、例えば排気通路7の三元触媒28よりも上流側に、インジェクタ4とは別個の燃料噴射弁などの燃料供給装置を設け、この燃料供給装置から排気通路7に追加燃料を適当なタイミングで供給するようにしてもよい。
また、実施形態では、触媒暖機制御が実行される場合の圧縮行程噴射量GFUEL_1stを、ストイキ当量比と減少補正量ΔKとの差(1.0−ΔK)に基づいて設定しているが、目標当量比KCMDと減少補正量ΔKとの差(KCMD−ΔK)に基づいて設定することも可能である。
また、実施形態では、LAFセンサ56が活性状態にあるか否かの判定を、触媒温度TCATに基づいて行っているが、これに限らず、エンジン3の運転状態を表す適当なパラメータ、例えばエンジン水温TWやエンジン3の始動時からの燃料噴射量又は吸入空気量の積算値などに応じて行うようにしてもよい。
さらに、実施形態では、エンジン3は車両用のエンジンであるが、本発明は、他の用途のエンジン、例えばクランクシャフトを鉛直方向に配置した船外機用のエンジンなどにも適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することができる。
2 ECU(目標空燃比設定手段、空燃比推定手段、活性状態判定手段、制御手段、触 媒暖機制御手段、追加噴射量算出手段、主噴射量算出手段)
3 内燃機関
3a 気筒
4 燃料噴射弁
7 排気通路
28 三元触媒
51 筒内圧センサ
56 LAFセンサ(空燃比センサ)
57 触媒温度センサ(活性状態判定手段)
KCMD 目標当量比(目標空燃比)
KLAF 検出当量比(検出された空燃比)
PCYL 筒内圧(筒内圧センサで検出された筒内圧)
P_CPS 実筒内圧(燃焼が開始される前に検出された筒内圧)
KCPS 推定当量比(推定された空燃比)
KACT 実当量比(実空燃比)
GFUEL_1st 圧縮行程噴射量(主噴射量)
GFUEL_2nd 膨張行程噴射量(追加噴射量)

Claims (3)

  1. 混合気の空燃比を制御する内燃機関の制御装置であって、
    混合気の空燃比の目標となる目標空燃比を設定する目標空燃比設定手段と、
    排気通路に設けられ、活性状態において、気筒から排出された排ガスの酸素濃度に基づき、混合気の空燃比を検出する空燃比センサと、
    前記気筒内の圧力を筒内圧として検出する筒内圧センサと、
    圧縮行程中の混合気の燃焼が開始される前に検出された筒内圧に応じ、混合気の比熱比に基づいて、混合気の空燃比を推定する空燃比推定手段と、
    前記空燃比センサが活性状態にあるか否かを判定する活性状態判定手段と、
    前記空燃比センサが活性状態にないと判定されたときには、前記空燃比推定手段で推定された空燃比を前記目標空燃比に収束するようにフィードバック制御し、前記空燃比センサが活性状態にあると判定されたときには、前記空燃比センサで検出された空燃比を前記目標空燃比に収束するようにフィードバック制御する制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記排気通路の前記空燃比センサよりも下流側に設けられ、排ガスを浄化する三元触媒と、
    当該三元触媒の暖機を促進するために、混合気の燃焼が終了した後に燃料を追加噴射する触媒暖機制御を実行する触媒暖機制御手段と、
    当該触媒暖機制御において追加噴射される燃料の量である追加噴射量を、前記目標空燃比と直前の圧縮行程において推定された空燃比との差に基づいて算出する追加噴射量算出手段と、
    をさらに備えることを特徴とする、請求項1に記載の内燃機関の制御装置。
  3. 前記触媒暖機制御が実行される場合に、混合気を生成するために噴射される燃料の量である主噴射量を、混合気の空燃比が理論空燃比よりもリーン側になるように算出する主噴射量算出手段をさらに備えることを特徴とする、請求項2に記載の内燃機関の制御装置。
JP2015138686A 2015-07-10 2015-07-10 内燃機関の制御装置 Pending JP2017020416A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138686A JP2017020416A (ja) 2015-07-10 2015-07-10 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138686A JP2017020416A (ja) 2015-07-10 2015-07-10 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2017020416A true JP2017020416A (ja) 2017-01-26

Family

ID=57889366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138686A Pending JP2017020416A (ja) 2015-07-10 2015-07-10 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2017020416A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200081315A (ko) * 2018-12-27 2020-07-07 로베르트 보쉬 게엠베하 프로브 작동 준비 상태가 존재하지 않을 때, 배기가스 성분을 위한 촉매 컨버터의 어큐뮬레이터의 충전 레벨을 제어하기 위한 방법 및 제어 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240485A (ja) * 1999-02-19 2000-09-05 Mitsubishi Motors Corp 筒内噴射型内燃機関
JP2005023850A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2007120392A (ja) * 2005-10-27 2007-05-17 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008274811A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240485A (ja) * 1999-02-19 2000-09-05 Mitsubishi Motors Corp 筒内噴射型内燃機関
JP2005023850A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2007120392A (ja) * 2005-10-27 2007-05-17 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008274811A (ja) * 2007-04-26 2008-11-13 Toyota Motor Corp 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200081315A (ko) * 2018-12-27 2020-07-07 로베르트 보쉬 게엠베하 프로브 작동 준비 상태가 존재하지 않을 때, 배기가스 성분을 위한 촉매 컨버터의 어큐뮬레이터의 충전 레벨을 제어하기 위한 방법 및 제어 장치
JP2020118157A (ja) * 2018-12-27 2020-08-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh プローブの作動準備ができていない場合に排気ガス成分のための触媒の貯蔵部の充填レベルを制御するための方法および制御器
KR102676523B1 (ko) * 2018-12-27 2024-06-20 로베르트 보쉬 게엠베하 프로브 작동 준비 상태가 존재하지 않을 때, 배기가스 성분을 위한 촉매 컨버터의 어큐뮬레이터의 충전 레벨을 제어하기 위한 방법 및 제어 장치

Similar Documents

Publication Publication Date Title
US9926873B2 (en) Internal combustion engine control apparatus
US9932920B2 (en) Control device for internal combustion engine
JP2018091267A (ja) 内燃機関の制御装置
JP5124522B2 (ja) 圧縮自己着火式内燃機関の制御装置
JPH116421A (ja) 内燃機関の排気ガス浄化装置
JPH08232745A (ja) 内燃機関の制御装置
JP6456256B2 (ja) 内燃機関の制御装置
JP2018044504A (ja) 内燃機関の制御装置
JP5487978B2 (ja) 内燃機関の制御装置
JPH11107827A (ja) 内燃機関の触媒温制御装置
JP2004225650A (ja) 内燃機関の内部egr量推定装置
JP2017020417A (ja) 内燃機関の制御装置
JP2017020416A (ja) 内燃機関の制御装置
JP4790787B2 (ja) 内燃機関の制御装置
JP4792453B2 (ja) 吸入空気量検出装置
JP6117631B2 (ja) 内燃機関の制御装置
JP4297894B2 (ja) 内燃機関の制御装置
JP6267280B2 (ja) 内燃機関の制御装置
JP6142662B2 (ja) エンジン用触媒の暖機装置及び暖機方法
JP2008202461A (ja) 内燃機関の燃料噴射制御装置
JP4534968B2 (ja) 内燃機関の制御装置
JP6267279B2 (ja) 内燃機関の制御装置
JP4415803B2 (ja) 内燃機関の制御装置
JP6456273B2 (ja) 内燃機関の制御装置
JP2015004343A (ja) 筒内噴射エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120