JP2017009154A - 冷凍機制御装置、冷凍機システムおよびプログラム - Google Patents

冷凍機制御装置、冷凍機システムおよびプログラム Download PDF

Info

Publication number
JP2017009154A
JP2017009154A JP2015122881A JP2015122881A JP2017009154A JP 2017009154 A JP2017009154 A JP 2017009154A JP 2015122881 A JP2015122881 A JP 2015122881A JP 2015122881 A JP2015122881 A JP 2015122881A JP 2017009154 A JP2017009154 A JP 2017009154A
Authority
JP
Japan
Prior art keywords
refrigerator
state
control device
refrigerators
heat load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122881A
Other languages
English (en)
Other versions
JP6572005B2 (ja
Inventor
渡邊 浩之
Hiroyuki Watanabe
浩之 渡邊
松雄 神谷
Matsuo Kamiya
松雄 神谷
慶一 北島
Keiichi Kitajima
慶一 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015122881A priority Critical patent/JP6572005B2/ja
Publication of JP2017009154A publication Critical patent/JP2017009154A/ja
Application granted granted Critical
Publication of JP6572005B2 publication Critical patent/JP6572005B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】冷凍機システムを制御する冷凍機制御装置(20)において、要求負荷に対して適切に冷凍機(3)を選択できるようにする。【解決手段】未来の熱負荷の推移を予測した予測熱負荷を記憶する記憶部(24)と、予測熱負荷に基づいて、複数の冷凍機(3)の運転順位予測情報を求める運転順位予測部(21)と、気象予報に基づいて予測熱負荷を算出し、記憶部(24)に記憶される熱負荷予測部(21)とを設けた。ここで、運転順位予測情報は、予測熱負荷が増加または減少して所定の境界値に至った際、第1の冷凍機をOFF状態からON状態に変更するとともに、第2の冷凍機をON状態からOFF状態に変更する情報を含む。【選択図】図1

Description

本発明は、冷凍機制御装置、冷凍機システムおよびプログラムに関する。
ビルや工場等における冷凍機システムは、複数の冷凍機を備えており、要求負荷に応じて、運転すべき冷凍機が選択される。要求負荷が変動した際に、冷凍機を増段または減段する方法として、下記特許文献1の要約書には、「増段を行う際は、不足負荷値演算部122が、要求負荷に対する負荷の不足分を算出する。そして、運転冷凍機選択部123は、冷凍機の運転環境に応じて求められるCOPを用いて、停止中の冷凍機のうち、不足分の負荷にて運転した場合にCOPの最も高い冷凍機を、増段する冷凍機として選択する。また、減段を行う際は、運転パターン抽出部151が、要求負荷に対応して運転する冷凍機の組み合わせである運転パターンを抽出。そして、停止冷凍機選択部133は、冷凍機の運転環境に応じて求められるCOPを用いて、各運転パターンにおける冷凍機システム全体のCOPを求め、COPの最も高い運転パターンに基づいて、減段する冷凍機を選択する。」と記載されている。
特開2012−37141号公報
しかし、上述の技術において冷凍機を増段する場合は、現在運転中の冷凍機を運転したまま、追加で運転する冷凍機をCOP(Coefficient Of Performance、成績係数)に基づいて決定するため、現在の要求負荷に対して冷房能力が過剰になる等、適切に冷凍機を選択できない場合があった。
この発明は上述した事情に鑑みてなされたものであり、要求負荷に対して適切に冷凍機を選択できる冷凍機制御装置、冷凍機システムおよびプログラムを提供することを目的とする。
上記課題を解決するため本発明の冷凍機制御装置は、未来の熱負荷の推移を予測した予測熱負荷を記憶する記憶部と、
前記予測熱負荷に基づいて、複数の冷凍機の運転順位予測情報を求める運転順位予測部と、
を有することを特徴とする。
本発明によれば、要求負荷に対して適切に冷凍機を選択できる。
本発明の第1実施形態による冷凍機システムのブロック図である。 第1実施形態における冷凍機の原則的なON/OFF状態を示す図である。 比較例における冷凍機のON/OFF状態を示す図である。 第1実施形態における予測ルーチンのフローチャートである。 1日における熱負荷の予測結果の一例を示す図である。 第2実施形態における運転制御ルーチンのフローチャートである。 本発明の第4実施形態による空気調和遠隔制御システムのブロック図である。 第4実施形態における予測ルーチンのフローチャートである。 第5実施形態における予測ルーチンのフローチャートである。
[第1実施形態]
<第1実施形態の構成>
まず、図1に示すブロック図を参照し、本発明の第1実施形態による冷凍機システム100の詳細を説明する。
図1において、複数の冷却塔1と、対応する複数の冷凍機3とは、冷却水還配管9と冷却水往配管12とを介して接続されており、各冷却水往配管12には、冷却水ポンプ2が挿入されている。冷凍機3において昇温した冷却水は、冷却水還配管9を介して対応する冷却塔1に還流される。冷却塔1は、例えば開放式の冷却塔であり、その内部に担持された充填材(図示せず)に冷却水を流し込み、冷却水を送風機によって冷却するように構成されている。冷却水ポンプ2は、冷却塔1にて冷却された冷却水を、冷却水往配管12を介して冷凍機3に向かって圧送する。なお、図示の例においては、各冷却塔1と各冷凍機3とは一対一に対応しているが、一の冷却塔1に複数の冷凍機3を接続してもよく、複数の冷却塔1に一の冷凍機3を接続するようにしてもよい。
また、各冷凍機3は、冷水一次還配管13および冷水一次ポンプ4を介して還ヘッダ5に接続されている。冷水一次ポンプ4は、昇温した冷水を、冷水一次還配管13を介して冷凍機3に向かって圧送する。冷凍機3は、例えば、周知の冷凍サイクルを利用した冷凍機であり、昇温した冷水を冷却するとともに、冷却水を昇温させる。冷却された冷水は、冷水一次往配管14を介して往ヘッダ6に供給される。還ヘッダ5と往ヘッダ6とは、バイパス配管18と、圧力調整用のバルブ19とを介して接続されている。
また、往ヘッダ6は、冷水二次往配管15および冷水二次ポンプ17を介して、複数の空調機7および熱交換器8に接続されている。冷水二次ポンプ17は、往ヘッダ6内の冷水を、空調機7および熱交換器8に圧送する。空調機7は、例えば建物内の部屋毎に接地されている。空調機7は、冷水を通す冷却コイル10と、冷却コイル10に送風する空調用ファン11とを有している。空調機7および熱交換器8を介して昇温された冷水は、冷水二次還配管16を介して還ヘッダ5に還流する。
センサ部30は、以下のセンサを有している。
・各冷水一次往配管14、各冷水一次還配管13における水温を測定する温度センサ、
・各冷水一次往配管14または各冷水一次還配管13に設けられ、冷水の流量を測定する流量センサ、
・冷凍機システム100が設置されている建物の外部の温度や湿度等を測定するセンサ、
・冷凍機システム100が設置されている建物内の各部屋の温度や湿度等を測定するセンサ。
センサ部30に設けられた複数のセンサの計測データは、制御装置20に供給される。
制御装置20は、CPU(Central Processing Unit)21、RAM(Random Access Memory)22、ROM(Read Only Memory)23、HDD(Hard Disk Drive)24、各種情報を表示するディスプレイ25、マウスやキーボードを有する入力装置26、センサ部30や各冷凍機3等との間で信号を入出力する入出力インタフェース27等、一般的なコンピュータとしてのハードウエアを備えている。
そして、HDD24には、OS(Operating System)、アプリケーションプログラム、各種データ等が格納されている。OSおよびアプリケーションプログラムは、RAM22に展開され、CPU21によって実行される。制御装置20は、このアプリケーションプログラム(詳細は後述する)によって熱負荷を計算し、各冷凍機3をON/OFF制御する等、冷凍機システム100全体を制御する。なお、何れかの冷凍機3を起動させることをON制御と呼び、停止させることをOFF制御と呼び、起動または停止させることをON/OFF制御と呼ぶ。
ここで、冷凍機システム100全体の熱負荷q[kW]は、センサ部30の計測データに基づいて、例えば下式(1)によって計算することができる。
q=Σ(Q×ρ×c×(TH−TL)) …式(1)
式(1)において、Qは冷水の流量[m3/s]、ρは冷水の密度[kg/m3]、cは冷水の比熱[kJ/(kg・K)]、THは冷水還温度[℃]、TLは冷水往温度[℃]である。
<第1実施形態の動作>
(冷凍機の原則的なON/OFF状態)
本実施形態においては、要求負荷(実現しようとする熱負荷)に応じて、各冷凍機3のON/OFF状態が決定される。その際、各冷凍機3の処理能力やCOP等に鑑みて、冷凍機システム100全体として最もCOPの高いON/OFF状態が原則として適用される。
要求負荷に対して原則的に採用されるON/OFF状態の一例を図2に示す。図2において縦軸は、複数の(図示の例においては3台の)冷凍機3に対応する。各冷凍機3には、定格出力時のCOP(Coefficient Of Performance、成績係数)の高い順に、「No1」,「No2」,「No3」の番号が付与されている。
また、「No1」,「No2」,「No3」の定格出力時における冷房能力は、それぞれ「2000kW」,「1000kW」,「2000kW」である。周知のように、定格出力時のCOPは、冷房については「冷房能力÷冷房消費電力」によって表されるが、ここで「冷房消費電力」とは、冷凍機3の消費電力のみならず、当該冷凍機3に付随する冷却塔1、冷却水ポンプ2、冷水一次ポンプ4等の消費電力も含む値である。そして、何れかの冷凍機3がON/OFF制御される場合は、当該冷凍機3に付随する冷却塔1、冷却水ポンプ2、冷水一次ポンプ4等も共にON/OFF制御される。
また、図2の横軸は、冷凍機システム100に求められる要求負荷であり、図中においてバー501を付した範囲は、対応する冷凍機3が原則としてON状態にされる範囲であり、バー501を付していない範囲は、対応する冷凍機3が原則としてOFF状態にされる範囲である。図2によれば、要求負荷が1000kW未満である場合は、「No1」,「No2」,「No3」の冷凍機3のON/OFFパターンは、「OFF,ON,OFF」になる。
一般的に、冷凍機は、定格出力付近で運転した場合にCOPが最も高くなる。本実施形態においても、その種の冷凍機3を適用することを想定している。より具体的には、要求負荷が1000kW未満である場合は、「No2」の冷凍機3のCOPが「No1」のものよりも高くなることを想定しており、この想定により、要求負荷が1000kW未満である場合は、「No2」の冷凍機3がON状態にされる。特に、冷房能力の小さい冷凍機3については、付随する補機(冷却塔1、冷却水ポンプ2、冷水一次ポンプ4等)の消費電力も低いため、冷凍機システム100全体として消費電力を抑制することができる。
また、図2において要求負荷が1000kW以上になると、「No1」の冷凍機3は、定格出力時のCOPが最高であるため、原則的には常にON状態になる。このような、「No1」の冷凍機3を「ベース運転機」と呼ぶ場合がある。要求負荷が2000kW〜3000kWの区間では、「No1」の冷凍機3のみでは冷房能力が不足するため、「No1」,「No2」,「No3」の冷凍機3のON/OFFパターンは、原則として、「ON,ON,OFF」になる。また、要求負荷が3000kW〜4000kWの区間では、ON/OFFパターンは、原則として、「ON,OFF,ON」になる。
ここで、比較例におけるON/OFF状態を図3に示す。
図3において、各冷凍機3の仕様は、第1実施形態のもの(図2)と同様である。この比較例においては、要求負荷の増減に対応して、「定格出力時のCOPが高い順にON状態にしてゆく」「定格出力時のCOPが低い順にOFF状態にしてゆく」というルールで運転する冷凍機3を決定するものである。例えば、要求負荷を0kWから5000kWに徐々に上昇させてゆくと、各冷凍機3は「No1」,「No2」,「No3」の順にON状態にされてゆき、逆に要求負荷を5000kWから0kWに徐々に下降させてゆくと、各冷凍機3は「No3」,「No2」,「No1」の順にOFF状態にされてゆく。
図2と図3を比較すると、要求負荷が0kW〜1000kWおよび3000kW〜4000kWの区間にて、ON状態にされる冷凍機3が異なっていることが解る。まず、要求負荷が0kW〜1000kWの区間において図3の比較例では「No1」の冷凍機3がON状態にされている。これは、「No1」の冷凍機3は、定格出力時のCOPが最も高いためである。しかし、要求負荷が0kW〜1000kWの区間においては、上述したように、定格出力が1000kWである「No2」の冷凍機3をON状態にするほうが高いCOPを実現できる。
また、要求負荷が3000kW〜4000kWの区間において図3の比較例では「No1」,「No2」,「No3」の全ての冷凍機3がON状態になっている。これは、「定格出力時のCOPが高い順にON状態にしてゆく」「定格出力時のCOPが低い順にOFF状態にしてゆく」というルールを貫いたためである。しかし、「No1」および「No3」の冷凍機3がON状態であれば、これらによって4000kWの要求負荷に対応できるため、図2に示したように、「No2」の冷凍機3をOFF状態にするほうが高いCOPを実現できるものと考えらえる。
上述したように、本実施形態においては、要求負荷に応じて、各冷凍機3の処理能力やCOP等に鑑みて、冷凍機システム100全体として最もCOPの高いON/OFF状態が原則として適用される。これは、図2に示したように、要求負荷が徐々に上昇したとき(または下降したとき)何れかの冷凍機3のON/OFF状態が切り替わる境界の要求負荷において、ON状態からOFF状態に切り替えるべき一の冷凍機3と、OFF状態からON状態に切り替えるべき他の冷凍機3とが共に存在する場合がある、ということである。
(予測ルーチン)
本実施形態においては、将来の熱負荷を予測するため、制御装置20においては、所定の予測周期毎に図4に示す予測ルーチンが起動される。
図4において処理がステップS202に進むと、制御装置20は、将来の熱負荷を予測するための各種パラメータを取得する。
ここで、取得されるパラメータとは、例えば以下のものである。
(1)気象予報:今後数時間内における、建物周辺の気温および湿度の推移の予測等。なお、これらはインターネット上の気象情報配信サイトから取得することができる。
(2)建物内の発熱源の予測:例えば建物内の人口の推移の予測、建物内の機器(工場設備等)の稼働スケジュール等。
次に、処理がステップS204に進むと、制御装置20は、取得したパラメータに基づいて、将来の(例えば、現在時刻から数時間程度の)熱負荷を予測する。予測した熱負荷は、例えば図5に示すグラフのように表すことができる。図5は1日における熱負荷の予測結果(予測熱負荷)の一例であり、横軸は時刻、縦軸は熱負荷である。
図4において、次に処理がステップS206に進むと、制御装置20は、各冷凍機3の処理能力やCOPと、予測熱負荷との関係から、各時点における冷凍機3のON/OFF予測情報を決定する。より具体的には、図5における各時点の予測熱負荷と、各冷凍機3の処理能力やCOP等とに基づいて、冷凍機システム100全体として各時点のCOPが最も高くなるようにON/OFF予測情報を決定する。そして、各時点のON/OFF予測情報を時系列で結合することにより、運転順位予測情報が作成される。
例えば、図5において時刻t1,t3付近の予測熱負荷は約3500kWであるので、図2によれば、「No1」,「No2」,「No3」の冷凍機3のON/OFFパターンは、「ON,OFF,ON」になる。また、時刻t2付近では、予測熱負荷は約2500kWであるので、図2によれば、ON/OFFパターンは、「ON,ON,OFF」になる。運転順位予測情報は、このようなON/OFFパターンを結合して作成される。次に、処理がステップS208に進むと、作成された運転順位予測情報がHDD24内に記録されるとともに、ディスプレイ25に表示される。以上により、図4に示す予測ルーチンの処理が終了する。
(運転制御)
本実施形態において、実際に冷凍機システム100を運転する場合は、運転員がディスプレイ25に表示された運転順位予測情報を見ながら、入力装置26を操作して、各冷凍機3のON/OFF状態をマニュアル操作によって指定する。このように、冷凍機3をマニュアル操作する場合は、自動操作する場合と比較して、初期導入コストを低減できる。本実施形態においては、ディスプレイ25に表示された運転順位予測情報を参考にして運転員が入力装置26を操作できるため、運転員が未熟練者である場合であっても、効率的な運用を実現することができる。
[第2実施形態]
次に、本発明の第2実施形態の冷凍機システム100について説明する。
本実施形態のハードウエア構成は、第1実施形態のもの(図1)と同様である。但し、本実施形態において、制御装置20は、運転順位予測情報を予め求めることはなく、冷凍機システム100の運転時にセンサ部30の計測データに基づいて、冷凍機3等を自動的にON/OFF制御する。そのため、制御装置20においては、図6に示す運転制御ルーチンが起動される。
図6において処理がステップS302に進むと、制御装置20は、センサ部30から、各センサの計測データ(水温、流量、建物の内外の温度や湿度等)を収集する。次に、処理がステップS304に進むと、制御装置20は、収集したデータと、上述した式(1)とに基づいて、その時点における実際の熱負荷qを計算する。次に、処理がステップS306に進むと、制御装置20は、その時点における各冷凍機3のON/OFF情報を決定する。すなわち、各冷凍機3の処理能力やCOPと、その時点における実際の熱負荷qとに基づいて、冷凍機システム100全体としてのCOPが最も高くなるようにON/OFF情報が決定される。
次に、処理がステップS308に進むと、制御装置20は、決定されたON/OFF情報をディスプレイ25に表示させるとともに、HDD24に記憶させる。次に、処理がステップS310に進むと、制御装置20は、決定されたON/OFF情報に基づいて、必要に応じて冷凍機3のON/OFF制御を行う。なお、ある冷凍機3のON/OFF制御を行う場合は、当該冷凍機3に付随する冷却塔1、冷却水ポンプ2、冷水一次ポンプ4等も共にON/OFF制御される。ステップS310の処理が終了すると、処理はステップS302に戻り、上述したステップS302〜S310の動作が繰り返される。
以上のように、本実施形態においては、センサ部30の計測データに基づいて、制御装置20が冷凍機3のON/OFF状態を自動制御することができる。特に、本実施形態における自動制御は、図2において説明したように、「要求負荷が徐々に上昇したとき(または下降したとき)何れかの冷凍機3のON/OFF状態が切り替わる境界の要求負荷において、ON状態からOFF状態に切り替えるべき一の冷凍機3と、OFF状態からON状態に切り替えるべき他の冷凍機3とが共に存在する場合がある」という特徴を有している。かかる特徴を有することにより、冷凍機システム100全体としてのCOPが最も高くなるようにON/OFF情報を決定することができる。
[第3実施形態]
次に、本発明の第3実施形態の冷凍機システム100について説明する。
本実施形態のハードウエア構成は、第1実施形態のもの(図1)と同様である。
本実施形態の制御装置20においては、第1実施形態と同様に、所定の予測周期毎に予測ルーチン(図4)が起動され、運転順位予測情報がディスプレイ25に表示される。また、冷凍機システム100の運転中は、第2実施形態と同様に、制御装置20にて運転制御ルーチン(図6)が起動され、各冷凍機3のON/OFF状態が自動的に設定される。このように、予測ルーチン(図4)による予測と、運転制御ルーチン(図6)による自動制御とを併用した点に本実施形態の特徴がある。
本実施形態において、各冷凍機3に設定されるON/OFF状態は、運転制御ルーチン(図6)にて自動制御されている限り、第2実施形態のものと同様になる。但し、運転員は、必要に応じて運転制御ルーチン(図6)を停止し、各冷凍機3のON/OFF状態をマニュアル操作によって指定することができる。その場合、如何なるタイミングでマニュアル操作に切り替えるのか、また、マニュアル操作によって如何なるON/OFF状態を設定するのかは運転員が判断することになる。その判断に際して、運転員は、予測ルーチン(図4)によって表示された運転順位予測情報を参照することができるため、運転員が未熟練者である場合であっても、適切な判断を行うことができる。
[第4実施形態]
次に、図7に示すブロック図を参照し、本発明の第4実施形態による空気調和遠隔制御システム120の詳細を説明する。
図7において、複数の拠点(建物)にそれぞれ冷凍機システム100が設置されている。なお、一の冷凍機システム100のハードウエア構成は、第1実施形態のもの(図1)と同様である。各冷凍機システム100に含まれる制御装置20は、通信回線52およびネットワーク54を介して、サーバ機50と接続されている。なお、サーバ機50のハードウエア構成は、制御装置20のものと同様である。
次に、図8を参照し、本実施形態の動作を説明する。
なお、図8は、本実施形態における予測ルーチンのフローチャートであり、図中のステップS402〜S408はサーバ機50によって実行され、ステップS420,S422は各拠点の制御装置20によって実行される。
図8において処理がステップS402に進むと、サーバ機50は、各拠点の所在地における気象予報を取得するとともに、各拠点の制御装置20から、建物内の発熱源の予測や建物内の機器(工場設備等)の稼働スケジュール等のパラメータを受信する。なお、受信するパラメータの内容は、第1実施形態の予測ルーチン(図4)のステップS202のものと同様である。
次に、処理がステップS404に進むと、サーバ機50は、取得されたパラメータに基づいて、拠点毎に、将来の熱負荷を予測する。次に、処理がステップS406に進むと、サーバ機50は、各拠点における冷凍機3の処理能力やCOPと、予測熱負荷との関係に基づいて、拠点毎に、冷凍機3の運転順位予測情報を決定する。
なお、ステップS404、S406の内容は、第1実施形態の予測ルーチン(図4)におけるステップS204、S206のものと同様である。次に、処理がステップS408に進むと、サーバ機50は、拠点毎に、運転順位予測情報を表示する表示データ(例えば、htmlファイル)を作成し、ネットワーク54を介して、拠点毎の表示データを、対応する拠点に対して公開する。
表示データが公開された後、各拠点の制御装置20においては、ステップS420の処理が実行され、公開された表示データがWebブラウザ等によって、各拠点のディスプレイ25に表示される。次に、処理がステップS422に進むと、各拠点の運転員によって、当該拠点の運転順位予測情報が目視により確認される。そして、拠点毎に、冷凍機システム100の運転条件が決定される。
例えば、第1実施形態と同様に、運転順位予測情報を参考にして、運転員のマニュアル操作によって、各冷凍機3のON/OFF状態を設定してもよく、第2,3実施形態と同様に、各拠点の制御装置20において運転制御ルーチン(図6)を実行することにより、各冷凍機3のON/OFF状態を自動制御してもよい。以上により、本実施形態における予測ルーチン(図8)の処理が終了する。
本実施形態によれば、第1〜第3実施形態と同様に、冷凍機システム100を効率的に運転することができる。また、気象予報の取得や、運転順位予測情報の作成はサーバ機50において実行されるため、各拠点の制御装置20としては、処理能力が低いものを採用することができ、コストダウンを図ることができる。
[第5実施形態]
次に、本発明の第5実施形態について説明するが、本実施形態の具体的な内容を説明する前に、再び図5を参照し本実施形態の概要を説明する。
1日における熱負荷の予測結果が図5の通りであったとすると、第1実施形態等に適用される予測ルーチン(図4)によれば、各時点の予測熱負荷に基づいて、冷凍機3のON/OFF予測情報を決定し、これらを時系列で結合することにより、運転順位予測情報が作成されていた。
具体的には、第1実施形態等で得られる運転順位予測情報によれば、「No1」,「No2」,「No3」の冷凍機3のON/OFFパターンは、前述した通り、時刻t1,t3付近において「ON,OFF,ON」になり、時刻t2付近では、「ON,ON,OFF」になる。すると、時刻t1〜t3の期間において、全冷凍機3のON/OFF状態は、合計4回(「No2」が2回、「No3」が2回)切り替えられることになる。
しかし、このように、冷凍機3のON/OFFを繰り返すと、冷凍機システム100全体の効率が悪化するという問題が発生する。それは、一旦OFF状態にした冷凍機3およびこれに接続される配管等は昇温してしまうため、再びON状態にした際、これらを冷却するために一時的に消費電力が大きくなるためである。また、運転員の手動でON/OFF状態を切り替える場合には、運転員の負担が大きくなる。このような場合には、時刻t1〜t3の全期間において、ON/OFFパターンを「ON,OFF,ON」に統一しておくことが、効率を高め、また運転員の負担を減らすために望ましいと考えられる。
また、時刻t4〜t6の期間についても同様である。時刻t4,t6における予測熱負荷は4200〜4800kW程度であるので、図2によれば、「No1」,「No2」,「No3」の冷凍機3のON/OFFパターンは、「ON,ON,ON」になる。一方、時刻t5における予測熱負荷は3500kW程度であるので、図2によれば、ON/OFFパターンは、「ON,OFF,ON」になる。図5において、時刻t5の前後で予測熱負荷が4000kW未満に下がる期間は比較的短いため、時刻t4〜t6の全期間において、ON/OFFパターンを「ON,ON,ON」に統一しておくことが、効率を高め、また運転員の負担を減らすために望ましいと考えられる。
そこで、本実施形態(第5実施形態)は、予測熱負荷が一時的に下がるために原則的なON/OFF状態(図2)が一時的に(所定時間Tth以下の期間だけ)変更される場合は、その前後におけるON/OFF状態を維持した運転順位予測情報を出力しようとするものである。
以下、本実施形態の具体的内容を説明する。
まず、本実施形態のハードウエア構成は、第1実施形態のもの(図1)と同様である。また、本実施形態の制御装置20においては、第1実施形態の予測ルーチン(図4)に代えて、所定の予測周期毎に図9に示す予測ルーチンが起動される。
図9において、ステップS502〜S506の処理は、第1実施形態の予測ルーチン(図4)のステップS202〜S206と同様である。すなわち、制御装置20は、将来の熱負荷を予測するための各種パラメータを取得し(S502)、例えば図5に示すグラフのように将来の熱負荷を予測し(S504)、各時点のCOPが最も高くなるように運転順位予測情報を計算する(S506)。
次に、処理がステップS508に進むと、制御装置20は、計算された運転順位予測情報において、冷凍機3のON/OFFパターンが、所定時間Tth以内に「パターンA→パターンB→パターンA」の順に変化する(但し、パターンBの冷房能力は、パターンAの冷房能力よりも低いものとする)期間が存在するか否かを判定する。ここで「Yes」と判定されると処理はステップS510に進み、当該期間におけるON/OFFパターンがパターンAに統一される。
上述した図5について具体例を挙げると、時刻t1,t3において、「No1,No2,No3」の冷凍機3のON/OFFパターンは「ON,OFF,ON」であり、これが「パターンA」とすると、時刻t2におけるON/OFFパターンは「ON,ON,OFF」であり、これが「パターンB」になる。ON/OFFパターンがパターンAからパターンBに切り替わり、さらにパターンAに戻るまでの時間が所定時間Tth以下であれば、当該期間のON/OFFパターンは、パターンA(ON,OFF,ON)に統一される。
同様に、時刻t4,t6において、「No1,No2,No3」の冷凍機3のON/OFFパターンは「ON,ON,ON」であり、これが「パターンA」とすると、時刻t5におけるON/OFFパターンは「ON,OFF,ON」であり、これが「パターンB」になる。この場合も、ON/OFFパターンがパターンAからパターンBに切り替わり、さらにパターンAに戻るまでの時間が所定時間Tth以下であれば、当該期間のON/OFFパターンは、パターンA(ON,ON,ON)に統一される。
このように、ステップS510の処理によってON/OFFパターンが統一された期間を「パターン統一期間」と呼び、図5において「T1,T2」として示す。
図9に戻り、ステップS508において「No」と判定された場合は、処理はステップS512に進む。ここでは、先にステップS506において計算された運転順位予測情報が、最終的な運転順位予測情報として確定される。次に、処理がステップS514に進むと、確定された運転順位予測情報がHDD24内に記録されるとともに、ディスプレイ25に表示される。また、パターン統一期間が存在する場合には、パターン統一期間を示す情報もHDD24内に記録されるとともに、ディスプレイ25に表示される。以上により、図8に示す予測ルーチンの処理が終了する。
本実施形態において、実際に冷凍機システム100を運転する場合の動作は、第1実施形態と同様である。すなわち、運転員がディスプレイ25に表示された運転順位予測情報を見ながら、入力装置26を操作して、各冷凍機3のON/OFF状態をマニュアル操作によって指定する。本実施形態においてディスプレイ25に表示される運転順位予測情報は、なるべく冷凍機3のON/OFF状態が変化しないように設定されているため、運転員が未熟練者である場合であっても、効率的な運用を実現することができる。
[第6実施形態]
次に、本発明の第6実施形態の冷凍機システム100について説明する。
本実施形態のハードウエア構成は、第1実施形態のもの(図1)と同様である。
本実施形態の制御装置20においては、第5実施形態と同様に、所定の予測周期毎に図8に示す予測ルーチンが起動され、運転順位予測情報(および存在する場合には、パターン統一期間を示す情報)がディスプレイ25に表示される。また、冷凍機システム100の運転中は、第2実施形態と同様に、制御装置20にて図6に示したものと同様の運転制御ルーチンが起動され、各冷凍機3のON/OFF状態が自動的に設定される。
但し、本実施形態における運転制御ルーチンは、第2実施形態のもの(図6)と比較して、ステップS306の処理が若干異なる。すなわち、本実施形態においては、パターン統一期間内においては、現時点でON状態になっている冷凍機3の冷房能力が過剰であったとしても、冷凍機3のON/OFF状態は変更しない。これにより、冷凍機3のON/OFF状態が短時間内に変更され続けることを防止でき、冷凍機システム100の効率的な運用を実現することができる。但し、パターン統一期間内においても、冷凍機3の冷房能力が要求負荷に対して不足する場合には、要求負荷を充足するようにON/OFF状態が切り替えられる。
[変形例]
本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、若しくは他の構成の追加・置換をすることが可能である。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記各実施形態において「予測熱負荷」とは、気象予報や、建物内の発熱源の予測等に基づいて制御装置20が予測した負荷であった。しかし、「予測熱負荷」は、これに限定されるものではなく、「人間(運転員)が計画した負荷」のようなものも含まれる。また、気象予報に基づいて予測熱負荷を求める場合においても、例えば、過去の計測データから気象予報値を修正した値や、過去の履歴から推測した気象予報値を用いてもよい。
(2)上記各実施形態において冷凍機3のON/OFF情報または運転順位予測情報を求める処理(ステップS206,S306,S406,S506)においては、各時点のCOPが最も高くなるON/OFF状態を計算によって求めていた。しかし、要求負荷に対応したON/OFFパターン(例えば、図2に示すON/OFFパターン)をテーブルとしてHDD24に事前に記憶しておき、このテーブルを参照することによってON/OFF情報または運転順位予測情報を求めるようにしてもよい。
(3)上記各実施形態においては、冷凍機3のCOPは、定格出力付近で運転した場合に最も高くなることを前提としていた。しかし、冷凍機3の種類によっては、この前提が当てはまらない場合もある。例えば、インバータ・ターボ冷凍機は、一般的に定格負荷よりも部分負荷のほうが、高いCOPが得られる傾向がある。そのため、運転順位を決定する際には、要求負荷に応じて、冷凍機の運転機種と、そのときの各冷凍機の部分負荷特性に基づいて、冷凍機システム100全体のCOPが最も高くなる組み合わせを選択し、運転するとよい。
(4)また、冷凍機の冷房能力やCOPは、経年変化によって徐々に低下する。従って、同一の機種、(カタログスペック上で)同一の冷房能力の冷凍機を使用する場合、経年変化に鑑みてCOPの高い冷凍機を優先的にON状態にするように、冷凍機のON/OFF状態を決定するようにしてもよい。
(5)上記各実施形態においては、各冷水一次往配管14、各冷水一次還配管13における水温を測定する温度センサと、各冷水一次往配管14または各冷水一次還配管13に設けられ、冷水の流量を測定する流量センサとを設け、これらセンサの計測データに基づいて熱負荷qを計算した。しかし、冷水二次往配管15および冷水二次還配管16に水温を測定する温度センサを設け、冷水二次往配管15または冷水二次還配管16に流量センサを設け、これらの計測データに基づいて熱負荷qを算出してもよい。
(6)上記各実施形態における制御装置20およびサーバ機50のハードウエアは一般的なコンピュータによって実現できるため、図4、図6、図8、図9に示したプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
(7)図4、図6、図8、図9に示した処理は、上記各実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。
[構成・効果の総括]
以上のように、第1,第3〜6実施形態は、未来の熱負荷の推移を予測した予測熱負荷を記憶する記憶部(24,S204,S404,S504)と、前記予測熱負荷に基づいて、性能の異なる複数の冷凍機(3)の運転順位予測情報を求める運転順位予測部(21,S206,S406,S506)と、を有することを特徴とする。
この運転順位予測情報を参考にして冷凍機(3)のON/OFF状態を設定することにより、運転員が未熟練者である場合であっても、冷凍機(3)の効率的な運用を実現することができる。
また、第1,第3〜6実施形態は、気象予報に基づいて前記予測熱負荷を算出し、前記記憶部(24,S204,S404,S504)に記憶される熱負荷予測部(21,S204,S404,S504)をさらに有することを特徴とする。
これにより、気象予報に基づいて、予測熱負荷を適切に算出することができる。
さらに、前記運転順位予測情報は、前記予測熱負荷が増加または減少して所定の境界値(例えば図2の1000kW)に至った際、第1の冷凍機(No1の冷凍機)をOFF状態からON状態に変更するとともに、第2の冷凍機(No2の冷凍機)をON状態からOFF状態に変更する情報を含むことを特徴とする。
これにより、予測熱負荷に対して適切な冷凍機(3)を選択することができる。
さらに、第3,第6実施形態においては、熱負荷を実測するセンサ部(30)と、実測した前記熱負荷に基づいて、複数の前記冷凍機(3)のそれぞれのON/OFF状態を決定する冷凍機決定部(21,S306)と、前記冷凍機決定部(21,S306)にて決定されたON/OFF状態に基づいて、複数の前記冷凍機(3)のON/OFF状態を設定する設定部(21,S310)と、をさらに有することを特徴とする。
これにより、実際の熱負荷に対応して、冷凍機(3)を自動制御することができる。
また、第4実施形態において前記記憶部(24,S404)は、異なる拠点に設けられ各々が複数の冷凍機(3)を有する複数の冷凍機システム(100)について、前記予測熱負荷を記憶するものであり、前記運転順位予測部(21,S406)は、各々の前記冷凍機システム(100)について、前記運転順位予測情報を求めるものであり、各々の前記運転順位予測情報を、ネットワーク(54)を介して、対応する前記拠点に送信することを特徴とする。
これにより、一台の冷凍機制御装置(50)によって、複数の拠点に対する運転順位予測情報を算出し、各拠点に配信することができる。
また、第5,第6実施形態は、前記運転順位予測情報において、前記複数の冷凍機(3)のON/OFFパターンが、所定時間(Tth)内に第1のパターン(パターンA:ON,OFF,ON)から、より冷房能力の低い第2のパターン(パターンB:ON,ON,OFF)に変化し、しかる後に前記第1のパターン(パターンA:ON,OFF,ON)に変化する場合に、前記所定時間(Tth)内のON/OFFパターンを前記第1のパターン(パターンA:ON,OFF,ON)に統一するように前記運転順位予測情報を変更する運転順位予測情報変更部(21,S510)をさらに有することを特徴とする。
これにより、冷凍機(3)のON/OFF状態の切り替え頻度を抑制し、運転効率を一層高めることができる。
また、第2実施形態は、熱負荷を実測するセンサ部(30)と、実測した前記熱負荷に基づいて、複数の冷凍機(3)のそれぞれのON/OFF状態を決定する冷凍機決定部(21,S306)と、前記冷凍機決定部(21,S306)にてON/OFF状態に基づいて、複数の前記冷凍機(3)のON/OFF状態を設定する設定部(21,S310)と、を有し、前記設定部(21,S310)は、前記熱負荷が増加または減少して所定の境界値(例えば図2の1000kW)に至った際、第1の冷凍機(No1の冷凍機)をOFF状態からON状態に変更するとともに、第2の冷凍機(No2の冷凍機)をON状態からOFF状態に変更することを特徴とする。
これにより、実際の熱負荷に対して適切な冷凍機(3)を選択することができる。
1 冷却塔
2 冷却水ポンプ(ポンプ)
3 冷凍機
4 冷水一次ポンプ(ポンプ)
20 制御装置(冷凍機制御装置)
21 CPU(冷凍機決定部,設定部,運転順位予測部,熱負荷予測部)
24 HDD(記憶部)
25 ディスプレイ
50 サーバ機(冷凍機制御装置)
52 通信回線
54 ネットワーク
100 冷凍機システム

Claims (9)

  1. 未来の熱負荷の推移を予測した予測熱負荷を記憶する記憶部と、
    前記予測熱負荷に基づいて、性能の異なる複数の冷凍機の運転順位予測情報を求める運転順位予測部と、
    を有することを特徴とする冷凍機制御装置。
  2. 気象予報に基づいて前記予測熱負荷を算出し、前記記憶部に記憶される熱負荷予測部、
    をさらに有することを特徴とする請求項1に記載の冷凍機制御装置。
  3. 前記運転順位予測情報は、前記予測熱負荷が増加または減少して所定の境界値に至った際、第1の冷凍機をOFF状態からON状態に変更するとともに、第2の冷凍機をON状態からOFF状態に変更する情報を含む
    ことを特徴とする請求項2に記載の冷凍機制御装置。
  4. 熱負荷を実測するセンサ部と、
    実測した前記熱負荷に基づいて、複数の前記冷凍機のそれぞれのON/OFF状態を決定する冷凍機決定部と、
    前記冷凍機決定部にて決定されたON/OFF状態に基づいて、複数の前記冷凍機のON/OFF状態を設定する設定部と、
    をさらに有することを特徴とする請求項3に記載の冷凍機制御装置。
  5. 前記記憶部は、異なる拠点に設けられ各々が複数の冷凍機を有する複数の冷凍機システムについて、前記予測熱負荷を記憶するものであり、
    前記運転順位予測部は、各々の前記冷凍機システムについて、前記運転順位予測情報を求めるものであり、
    各々の前記運転順位予測情報を、ネットワークを介して、対応する前記拠点に送信する
    ことを特徴とする請求項1に記載の冷凍機制御装置。
  6. 前記運転順位予測情報において、前記複数の冷凍機のON/OFFパターンが、所定時間内に第1のパターンから、より冷房能力の低い第2のパターンに変化し、しかる後に前記第1のパターンに変化する場合に、前記所定時間内のON/OFFパターンを前記第1のパターンに統一するように前記運転順位予測情報を変更する運転順位予測情報変更部
    をさらに有することを特徴とする請求項1に記載の冷凍機制御装置。
  7. 熱負荷を実測するセンサ部と、
    実測した前記熱負荷に基づいて、複数の冷凍機のそれぞれのON/OFF状態を決定する冷凍機決定部と、
    前記冷凍機決定部にてON/OFF状態に基づいて、複数の前記冷凍機のON/OFF状態を設定する設定部と、
    を有し、
    前記設定部は、前記熱負荷が増加または減少して所定の境界値に至った際、第1の冷凍機をOFF状態からON状態に変更するとともに、第2の冷凍機をON状態からOFF状態に変更する
    ことを特徴とする冷凍機制御装置。
  8. 請求項1に記載の冷凍機制御装置と、
    前記冷凍機制御装置によってON/OFF状態が制御される、性能の異なる複数の冷凍機と、
    前記複数の冷凍機に対応して設けられ、対応する前記冷凍機とともにON/OFF状態が制御される複数のポンプと、
    を有することを特徴とする冷凍機システム。
  9. コンピュータを、
    熱負荷の推移を予測した予測熱負荷を記憶する記憶手段、
    前記予測熱負荷に基づいて、性能の異なる複数の冷凍機の運転順位予測情報を求める運転順位予測手段、
    として機能させるためのプログラム。
JP2015122881A 2015-06-18 2015-06-18 冷凍機制御装置、冷凍機システムおよびプログラム Expired - Fee Related JP6572005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122881A JP6572005B2 (ja) 2015-06-18 2015-06-18 冷凍機制御装置、冷凍機システムおよびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122881A JP6572005B2 (ja) 2015-06-18 2015-06-18 冷凍機制御装置、冷凍機システムおよびプログラム

Publications (2)

Publication Number Publication Date
JP2017009154A true JP2017009154A (ja) 2017-01-12
JP6572005B2 JP6572005B2 (ja) 2019-09-04

Family

ID=57763058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122881A Expired - Fee Related JP6572005B2 (ja) 2015-06-18 2015-06-18 冷凍機制御装置、冷凍機システムおよびプログラム

Country Status (1)

Country Link
JP (1) JP6572005B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189313A (ja) * 2017-05-08 2018-11-29 東京ガスエンジニアリングソリューションズ株式会社 熱源機制御装置、および熱源機システム
KR101952627B1 (ko) * 2018-06-07 2019-06-11 주식회사 성지공조기술 복합 일체형 냉동기 시스템 및 그 제어방법
JP2019120428A (ja) * 2017-12-28 2019-07-22 株式会社東芝 運用計画装置、運用計画方法、運用計画システム及びコンピュータプログラム
JP2019163869A (ja) * 2018-03-19 2019-09-26 三菱電機冷熱プラント株式会社 冷却装置とその制御方法および制御プログラム
JP2021067429A (ja) * 2019-10-25 2021-04-30 東京ガスエンジニアリングソリューションズ株式会社 熱源機の制御装置
JP6889343B1 (ja) * 2021-01-29 2021-06-18 東京瓦斯株式会社 熱源システム
CN113222231A (zh) * 2021-04-30 2021-08-06 洛阳双瑞精铸钛业有限公司 一种基于物联网技术的智慧供热系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121024A (ja) * 2001-10-11 2003-04-23 Takasago Thermal Eng Co Ltd 統合型熱源システム
JP2008241210A (ja) * 2007-03-28 2008-10-09 Taikisha Ltd 熱源機制御装置及び熱源機の制御方法
JP2012026674A (ja) * 2010-07-26 2012-02-09 Taikisha Ltd 熱源設備制御システム
JP2015072613A (ja) * 2013-10-03 2015-04-16 株式会社インティ エネルギー管理システム、及びエネルギー管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121024A (ja) * 2001-10-11 2003-04-23 Takasago Thermal Eng Co Ltd 統合型熱源システム
JP2008241210A (ja) * 2007-03-28 2008-10-09 Taikisha Ltd 熱源機制御装置及び熱源機の制御方法
JP2012026674A (ja) * 2010-07-26 2012-02-09 Taikisha Ltd 熱源設備制御システム
JP2015072613A (ja) * 2013-10-03 2015-04-16 株式会社インティ エネルギー管理システム、及びエネルギー管理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189313A (ja) * 2017-05-08 2018-11-29 東京ガスエンジニアリングソリューションズ株式会社 熱源機制御装置、および熱源機システム
JP2019120428A (ja) * 2017-12-28 2019-07-22 株式会社東芝 運用計画装置、運用計画方法、運用計画システム及びコンピュータプログラム
JP7109917B2 (ja) 2017-12-28 2022-08-01 株式会社東芝 運用計画装置、運用計画方法、運用計画システム及びコンピュータプログラム
JP2019163869A (ja) * 2018-03-19 2019-09-26 三菱電機冷熱プラント株式会社 冷却装置とその制御方法および制御プログラム
JP7011766B2 (ja) 2018-03-19 2022-01-27 三菱電機冷熱プラント株式会社 冷却装置とその制御方法および制御プログラム
KR101952627B1 (ko) * 2018-06-07 2019-06-11 주식회사 성지공조기술 복합 일체형 냉동기 시스템 및 그 제어방법
JP2021067429A (ja) * 2019-10-25 2021-04-30 東京ガスエンジニアリングソリューションズ株式会社 熱源機の制御装置
JP6889343B1 (ja) * 2021-01-29 2021-06-18 東京瓦斯株式会社 熱源システム
JP2022116781A (ja) * 2021-01-29 2022-08-10 東京瓦斯株式会社 熱源システム
CN113222231A (zh) * 2021-04-30 2021-08-06 洛阳双瑞精铸钛业有限公司 一种基于物联网技术的智慧供热系统

Also Published As

Publication number Publication date
JP6572005B2 (ja) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6572005B2 (ja) 冷凍機制御装置、冷凍機システムおよびプログラム
US10900684B2 (en) Thermostat and method for an environmental control system for HVAC system of a building
JP2007060848A (ja) 電力量制御装置および電力量制御方法ならびにプログラム
US20210055701A1 (en) Central plant control system based on load prediction through mass storage model
JP7203946B2 (ja) 空調管理装置、空調管理システム、空調管理方法及びプログラム
JP5954538B2 (ja) 空気調和機のデマンド制御装置
JP6142781B2 (ja) 電力需要予測装置、電力需要予測方法および電力需要予測プログラム
JP6422710B2 (ja) エネルギーネットワークの運転制御装置及び運転制御方法
KR101515743B1 (ko) 설비기기의 디맨드 제어 장치
JP2006266520A (ja) 空調システム
US11578889B2 (en) Information processing apparatus and air-conditioning system provided with the same
JP2008109813A (ja) デマンド制御装置および電力消費システム
US20230040886A1 (en) Building equipment energy management control system and control therefor
JP2015117887A (ja) 空調システムの評価支援装置及び方法並びにプログラム
JP2007127321A (ja) 冷凍機の冷水負荷率制御装置
JP5489046B2 (ja) 熱源設備制御システム
JP5936714B2 (ja) システムコントローラ、設備管理システム、デマンド制御方法及びプログラム
JP5495148B1 (ja) 運転制御装置及び運転制御方法
JP4857051B2 (ja) 冷凍機設備の運転方法及び冷凍機を備えて成る設備
Aravelli et al. Energy optimization in chiller plants: A novel formulation and solution using a hybrid optimization technique
JP6785867B2 (ja) 空調システム
CN112857132B (zh) 冷却塔、冷却塔检测控制方法、装置、设备及存储介质
JP6476818B2 (ja) 熱需要推定装置、熱需要推定方法、設備制御装置、設備制御方法、設備制御システム、制御プログラムおよび記録媒体
JP2007315648A (ja) 冷凍装置
JP6427317B2 (ja) 熱源設備制御システム、および熱源設備制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6572005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees