JP2016527375A - 形状保持特性を持つ柔軟な高分子材料 - Google Patents

形状保持特性を持つ柔軟な高分子材料 Download PDF

Info

Publication number
JP2016527375A
JP2016527375A JP2016532762A JP2016532762A JP2016527375A JP 2016527375 A JP2016527375 A JP 2016527375A JP 2016532762 A JP2016532762 A JP 2016532762A JP 2016532762 A JP2016532762 A JP 2016532762A JP 2016527375 A JP2016527375 A JP 2016527375A
Authority
JP
Japan
Prior art keywords
polymeric material
polymer
molded
material according
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016532762A
Other languages
English (en)
Other versions
JP2016527375A5 (ja
Inventor
バジリー・エイ・トポロカラエフ
ライアン・ジェイ・マケネーニー
ネイル・ティー・ショール
Original Assignee
キンバリー クラーク ワールドワイド インコーポレイテッド
キンバリー クラーク ワールドワイド インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キンバリー クラーク ワールドワイド インコーポレイテッド, キンバリー クラーク ワールドワイド インコーポレイテッド filed Critical キンバリー クラーク ワールドワイド インコーポレイテッド
Publication of JP2016527375A publication Critical patent/JP2016527375A/ja
Publication of JP2016527375A5 publication Critical patent/JP2016527375A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/12Shape memory

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一つ以上の角変位がある三次元構成を持つ成形高分子材料が提供されている。高分子材料は、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成される。マイクロ包含添加剤およびナノ包含添加剤が、個別領域の形態で連続相内に分散されており、多孔質ネットワークが材料内に定義される。【選択図】図2

Description

(優先権の主張)
本出願は米国仮出願番号第61/863,936号(2013年8月9日出願)、および第61/907,592号(2013年11月22日)に対する優先権を主張し、同出願の全体が参照により本明細書に組み込まれる。
高分子材料は、その他のタイプの材料では容易に達成できないレベルの機能(例えば、バリア特性、強度、断熱性など)を提供するために、さまざまな物品で日常的に使用される。これらの従来的な「高機能」高分子材料で繰り返し起こる問題の一つは、それらが硬すぎるということである。例えば、流体パイプは、パイプの寿命にわたって強度および堅牢性を提供するために硬い性質の高分子材料から形成されうる。しかし、これらの硬い材料で一般的な問題の一つは、設置時によく必要となることであるが、これらを異なる形状または方向へと操作することが難しいことである。現在利用可能な構成要素では、使用者は複数のパイプセグメントおよびコネクタを組み入れて角度のついた経路を作らなければならない。よって、容易に位置付けられるが、それでも望ましい適用のために十分な強度および剛性を持つ改善された高分子材料に対するニーズが存在する。
本発明の一つの実施形態によると、一つ以上の角変位がある三次元構成を持つ成形高分子材料が開示されている。高分子材料は、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成される。マイクロ包含添加剤およびナノ包含添加剤が、個別領域の形態で連続相内に分散されており、多孔質ネットワークが材料内に定義される。
本発明のその他の特徴および態様は、以下でより詳細に検討される。
当業者を対象とした、本発明の完全かつ実施可能な開示は、その最良の様式を含めて、本明細書の残りの部分でさらに具体的に記載されており、これは以下の添付図を参照する。
本発明の成形高分子材料の一つの実施形態の上面図である。 図1の成形高分子材料の側面図である。 図1の成形高分子材料の斜視図である。 本発明の成形高分子材料の別の実施形態の斜視図である。 本発明の成形高分子材料のまた別の実施形態の斜視図である。 実施例1の無延伸フィルムのSEM顕微鏡写真であり、ここでフィルムは流れ方向に対して垂直に切断された。 実施例1の無延伸フィルムのSEM顕微鏡写真であり、ここでフィルムは流れ方向に対して平行に切断された。 実施例1の延伸フィルムのSEM顕微鏡写真である(フィルムは流れ方向配向に対して平行に切断された)。 実施例1の延伸フィルムのSEM顕微鏡写真である(フィルムは流れ方向配向に対して平行に切断された)。 実施例2の無延伸フィルムのSEM顕微鏡写真であり、ここでフィルムは流れ方向に対して垂直に切断された。 実施例2の無延伸フィルムのSEM顕微鏡写真であり、ここでフィルムは流れ方向に対して平行に切断された。 実施例2の延伸フィルムのSEM顕微鏡写真である(フィルムは流れ方向配向に対して平行に切断された)。 実施例2の延伸フィルムのSEM顕微鏡写真である(フィルムは流れ方向配向に対して平行に切断された)。 本明細書に記述された曲げ保持試験を実施するために使用されうる例示的試験装置の写真である。 本明細書に記述された曲げ保持試験を実施するために使用されうる例示的試験装置の写真である。 本明細書に記述されたねじり保持試験を実施するために使用されうる例示的試験装置の写真である。 本明細書に記述されたねじり保持試験を実施するために使用されうる例示的試験装置の写真である。 本明細書に記述されたねじり保持試験を実施するために使用されうる例示的試験装置の写真である。
本明細書および図面での参照文字の反復使用は、本発明の同一または類似の特徴を示すことを意図している。
ここで、本発明のさまざまな実施形態を詳細に参照するが、その一つ以上の例を以下で説明する。各例は、本発明の説明方法として提供されており、本発明を限定するものではない。実際に、本発明の範囲または精神から逸脱することなく、本発明に様々な改造および変形をしうることは、当業者にとって明らかであろう。例えば、一つの実施形態の一部として図示または記述された特徴は、別の実施形態で使用して、なおさらなる実施形態を生じうる。従って、本発明が、添付した請求項の範囲およびそれらの均等物の範囲内に収まるような改造や変形を網羅することが意図される。
一般的に、本発明は、柔軟であるが、物理的変形(例えば、曲げられる、折り畳まれる、ねじられるなど)を受けた後にその形状を保持することもできる高分子材料を対象とする。これらのユニークな特質により、材料は形成または使用中に、異なる形状へとより容易に操作できるようになりうる。例えば、高分子材料は、一つ以上の角変位を持つ三次元構成へと物理的に変形(例えば、曲げられる、ねじられるなど)されうる。角変位は、例えば、約5°〜約250°、一部の実施形態では約10°〜約200°、一部の実施形態では約20°〜約180°、および一部の実施形態では約30°〜約120°の範囲でありうる。特定の実施形態では、三次元構成は複数(例えば、2、3、4など)の角変位を持つ場合があり、これは同じまたは異なる平面にありうる。
それが変形される特定の方法に関わらず、結果得らえる高分子材料はその変形形状を保持することができる。材料のこのような形状保持特性は、約0.1〜1、一部の実施形態では約0.2〜約0.95、一部の実施形態では約0.4〜約0.9、および一部の実施形態では約0.5〜約0.8の範囲内の曲げ保持指数および/またはねじり保持指数によって特徴づけられうる。以下に詳述されるように、「曲げ保持指数」は、曲げ解放角度を曲げ角度で割ることによって決定されるが、ここで「曲げ角度」は、材料の長さ寸法に垂直な線の周りなどに、曲げ力(例えば、9.90キログラム・力/センチメートル)を30秒間受けた後の材料の角度であり、「曲げ解放角度」は、30秒間力が解放された後の材料の角度である。同様に、「ねじり保持指数」は、ねじり解放角度をねじり角度で割ることによって決定されるが、ここで「ねじり角度」は、材料の長さ寸法に垂直な線の周りなどに、反時計回りの力(例えば、3.50キログラム・力/センチメートル)を30秒間受けた後の材料の角度であり、「ねじり解放角度」は、30秒間力が解放された後の材料の角度である。当然、その形状を保持することができる一方、本発明の重要な利点はこの構成が恒久的ではないことである。全く対照的に、特定の形状に変形された後でも、高分子材料は必要であれば、その後その他の形状に変形されうる。従って、高分子材料は、事実上任意の三次元構成へと容易に成形および再成形されうる。
柔軟性および形状保持特性のユニークな組み合わせは、材料が形成される方法に対する選択的制御を通して、単一モノリシック高分子材料に対して達成されうる。より具体的には、高分子材料は、マトリクスポリマー、マイクロ包含添加剤、およびナノ包含添加剤を含む連続相を含有する熱可塑性組成物から形成される。添加剤は、マトリクスポリマーとは異なる弾性係数を持つように選択されうる。このようにすると、マイクロ包含添加剤およびナノ包含添加剤は、それぞれ個別のマイクロスケールおよびナノスケールの相領域として、連続相内に分散されうる。材料の使用前および/または後のいずれかに、変形歪みを受けた時、材料の不適合性から生じる応力集中の結果として、マイクロスケールの個別相領域の近くに強い局所的せん断領域および/または応力強度領域(例えば、垂直応力)が形成されうる。これらのせん断および/または応力強度領域は、マイクロスケール領域に隣接するポリマーマトリクスにいくらかの初期剥離を生じうる。しかし、特に、局所的せん断および/または応力強度領域は、マイクロスケール領域と重複するナノスケールの個別相領域の近くにも作られうる。このような重複したせん断および/または応力強度領域は、ポリマーマトリクスにさらなる剥離を起こし、それによって、ナノスケール領域および/またはマイクロスケール領域に隣接してかなりの数の細孔を生成する。
こうして多孔質ネットワークを高分子材料内に形成しうる。このネットワーク内の細孔のかなりの部分は、約800ナノメートル以下、一部の実施形態では約5〜約250ナノメートル、および一部の実施形態では約10〜約100ナノメートルの平均断面寸法を持つものなど、「ナノスケール」サイズ(「ナノ細孔」)でありうる。「断面寸法」という用語は、細孔の特性寸法(例えば、幅または直径)を一般的に指し、これはその主軸(例えば、長さ)に実質的に直交し、また変形させている間に加えられる応力の方向に一般的には実質的に直交する。例えば、このようなナノ細孔は、高分子材料の合計細孔容量の約15容量%以上、一部の実施形態では約20容量%以上、一部の実施形態では約30容量%〜100容量%、一部の実施形態では、約40容量%〜約90容量%を構成しうる。
上述のように、変形の間の重複したせん断および/または応力強度領域は、ナノスケール領域および/またはマイクロスケール領域に隣接する細孔の形成をもたらしうる。材料のユニークな性質およびそれが形成される方法のために、細孔は、その間にポリマーマトリクスの隆起があり、変形の方向にほぼ垂直に延長する交互の縞状エリア内に分布されうる。隆起は比較的空洞がなく硬いままでいることができる。しかし、ポリマーマトリクスは、その中の細孔の濃度が高いために、比較的柔軟な性質のままとなる縞状エリアに橋を形成することもできる。これらの特徴の組み合わせは、硬い隆起の存在のために構造完全性を持つが、それでも比較的柔軟な橋の存在のために屈曲してエネルギーを消散させることもできる材料をもたらしうる。特に、これは材料の柔軟性を強化しながら、それでも使用中に望ましい形状を保てるように、十分な程度の強度を保つことを可能にする。
約0.5〜約30マイクロメートル、一部の実施形態では約1〜約20マイクロメートル、および一部の実施形態では約2〜約15マイクロメートルの平均断面寸法を持つマイクロスケール領域の箇所および/またはその周りに複数のマイクロ細孔も、延伸中に形成されうる。マイクロ細孔および/またはナノ細孔は、球状、細長い形など、任意の規則的または不規則な形状を持ちうる。特定の場合、アスペクト比(断面寸法に対する軸寸法の比)が約1〜約30、一部の実施形態では約1.1〜約15、および一部の実施形態では約1.2〜約5であるように、マイクロ細孔および/またはナノ細孔の軸方向寸法は断面寸法よりも大きい場合がある。「軸方向寸法」とは、主軸(例えば、長さ)の方向の寸法である。本発明者は、細孔(例えば、マイクロ細孔、ナノ細孔、または両方)は材料全体にわたって実質的に均一な様式で分布されうることも発見した。例えば、細孔は、応力が加えられる方向に対して概して垂直方向に方向付けられたカラム中に分布されうる。これらのカラムは、材料の幅を横切って互いに概して平行でありうる。理論に束縛されることを意図するものではないが、このような均一に分布された多孔質ネットワークは、良好な機械特性をもたらすことができると考えられている。
本発明のさまざまな実施形態をこれから詳細に説明する。
I.熱可塑性組成物
A.マトリクスポリマー
上述のように、熱可塑性組成物は、その中にマイクロ包含添加剤およびナノ包含添加剤が分散されている連続相を含む。連続相は一つ以上のマトリクスポリマーを含み、これは典型的には、熱可塑性組成物の約60重量%〜約99重量%、一部の実施形態では約75重量%〜約98重量%、および一部の実施形態では約80重量%〜約95重量%を占める。連続相を形成するために使用されるマトリクスポリマーの性質は重要ではなく、ポリエステル、ポリオレフィン、スチレンポリマー、ポリアミドなど、任意の適切なポリマーが一般的に用いられうる。特定の実施形態では、例えば、ポリエステルを組成物中に用いてポリマーマトリクスを形成しうる。脂肪族ポリエステルなど、ポリカプロラクトン、ポリエステルアミド、ポリ乳酸(PLA)およびその共重合体、ポリグリコール酸、炭酸ポリアルキレン(例えば、炭酸ポリエチレン)、ポリ−3−ヒドロキシ酪酸(PHB)、ポリ−3−ヒドロキシ吉草酸(PHV)、ポリ−3−ヒドロキシ酪酸−コ−4−ヒドロキシ酪酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシ吉草酸共重合体(PHBV)、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシヘキサン酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシオクタン酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシデカン酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシオクタデカン酸、およびコハク酸ベース脂肪族ポリマー(例えば、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリエチレンサクシネートなど)、脂肪族方向族コポリエステル(例えば、ポリブチレンアジペートテレフタレート、ポリエチレンアジペートテレフタレート、ポリエチレンアジペートイソフタレート、ポリブチレンアジペートイソフタレートなど)、芳香族ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)など、さまざまなポリエステルの任意のものを一般的に用いうる。
特定の場合、熱可塑性組成物は、硬い性質のために比較的高いガラス転移温度を持つ少なくとも一つのポリエステルを含みうる。例えば、ガラス転移温度(「T」)は、約0℃以上、一部の実施形態では約5℃〜約100℃、一部の実施形態では約30℃〜約80℃、および一部の実施形態では約50℃〜約75℃でありうる。ポリエステルは、約140℃〜約300℃、一部の実施形態では約150℃〜約250℃、および一部の実施形態では約160℃〜約220℃の溶融温度も持ちうる。溶融温度は、ASTM D−3417に従い、示差走査熱量測定(「DSC」)を使用して決定されうる。ガラス転移温度は、ASTM E1640−09に従って、動的機械分析で決定されうる。
一つの特に適切な硬質ポリエステルはポリ乳酸であり、これは、左旋性乳酸(「L−乳酸」)、右旋性乳酸(「D−乳酸」)、メソ乳酸、またはその混合物など、乳酸の任意のアイソマーのモノマー単位から一般的に由来しうる。モノマー単位も、L−ラクチド、D−ラクチド、メソ−ラクチド、またはその混合物を含む、乳酸の任意のアイソマーの無水物から形成されうる。このような乳酸の環状二量体および/またはラクチドも使用しうる。重縮合または開環重合など、既知の任意の重合方法を、乳酸の重合のために使用しうる。少量の鎖延長剤(例えば、ジイソシアン酸化合物、エポキシ化合物または酸無水物)も使用しうる。ポリ乳酸は、L−乳酸から由来するモノマー単位およびD−乳酸から由来するモノマー単位を含むものなど、ホモポリマーまたは共重合体でありうる。必須ではないが、L−乳酸から由来するモノマー単位およびD−乳酸から由来するモノマー単位のうち一つの含有率は、約85モル%以上、一部の実施形態では約90モル%以上、および一部の実施形態では約95モル%以上であることが好ましい。それぞれがL−乳酸から由来するモノマー単位とD−乳酸から由来するモノマー単位の間の異なる比率を持つ複数のポリ乳酸を、任意のパーセントで混合しうる。当然、ポリ乳酸は、その他のタイプのポリマー(例えば、ポリオレフィン、ポリエステルなど)と混合することもできる。
一つの特定の実施形態では、ポリ乳酸は以下の一般的構造を持つ:
本発明に使用されうる適切なポリ乳酸ポリマーの一つの具体例は、BIOMER(商標) L9000という名前でBiomer, Inc.(ドイツ、クレイリング)から市販されている。その他の適切なポリ乳酸ポリマーは、ミネソタ州ミネトンカのNatureworks LLC(NATUREWORKS(登録商標))または三井化学株式会社(LACEA(商標))から市販されている。さらにその他の適切なポリ乳酸が、米国特許第4,797,468号、第5,470,944号、第5,770,682号、第5,821,327号、第5,880,254号、および第6,326,458号に記述されている場合がある。
ポリ乳酸は、一般的に、約40,000〜約180,000グラム/モル、一部の実施形態では約50,000〜約160,000グラム/モル、および一部の実施形態では約80,000〜約120,000グラム/モルの範囲の数平均分子量(「M」)を持つ。同様に、ポリマーも、一般的に、約80,000〜約250,000グラム/モル、一部の実施形態では約100,000〜約200,000グラム/モル、および一部の実施形態では約110,000〜約160,000グラム/モルの範囲の重量平均分子量(「M」)を持つ。数平均分子量に対する重量平均分子量の比(「M/M」)、すなわち「多分散指数」も比較的低い。例えば、多分散指数は、一般的に約1.0〜約3.0の範囲で、一部の実施形態では約1.1〜約2.0、および一部の実施形態では約1.2〜約1.8である。重量および数平均分子量は、当業者に知られている方法で決定されうる。
ポリ乳酸はまた、190℃の温度および1000秒−1のせん断速度で測定した時、約50〜約600パスカル秒(Pa・s)、一部の実施形態では約100〜約500Pa・s、および一部の実施形態では約200〜約400Pa・sの見かけ粘度を持ちうる。ポリ乳酸のメルトフローレート(ドライベース)もまた、2160グラムの負荷および190℃で測定された場合、約0.1〜約40グラム/10分、一部の実施形態では約0.5〜約20グラム/10分、および一部の実施形態では約5〜約15グラム/10分でありうる。
一部のタイプの純のポリエステル(例えば、ポリ乳酸)は、開始ポリ乳酸の乾燥重量に基づいて約500〜600百万分率(「ppm」)またはそれ以上の水分含量を持つように、周囲環境から水を吸収することができる。水分含量は、下記のように、ASTM D 7191−05に従ってなど、当技術分野で知られているさまざまな方法で決定されうる。溶融処理中の水の存在は、ポリエステルを加水分解で分解しその分子量を減少させる可能性があるので、混合前にポリエステルを乾燥させることが望ましいことがある。ほとんどの実施形態では、例えば、マイクロ包含添加剤およびナノ包含添加剤を混合する前に、ポリエステルが、約300百万分率(「ppm」)以下、一部の実施形態では約200ppm以下、一部の実施形態では約1〜約100ppmの水分含量を持つことが望ましい。ポリエステルの乾燥は、例えば、約50℃〜約100℃、一部の実施形態では約70℃〜約80℃の温度で起こりうる。
B.マイクロ包含添加剤
本明細書で使用される場合、「マイクロ包含添加剤」という用語は、ポリマーマトリクス内にマイクロスケールサイズの個別領域の形態で分散されることのできる任意の非晶質、結晶または半結晶材料を一般的に指す。例えば、変形前に、領域は、約0.05μm〜約30μm、一部の実施形態では約0.1μm〜約25μm、一部の実施形態では約0.5μm〜約20μm、および一部の実施形態では約1μm〜約10μmの平均断面寸法を持ちうる。「断面寸法」という用語は、領域の特性寸法(例えば、幅または直径)を一般的に指し、これはその主軸(例えば、長さ)に実質的に直交し、また変形させている間に加えられる応力の方向に一般的には実質的に直交する。一般的にはマイクロ包含添加剤から形成されるが、当然のことながら、マイクロスケール領域はマイクロ包含添加剤およびナノ包含添加剤および/または組成物のその他の成分の組み合わせからも形成されうる。
特定の実施形態では、マイクロ包含添加剤は一般的に高分子の性質であり、比較的高い分子量を持ち、熱可塑性組成物の溶融強度および安定性の改善に役立つ。典型的には、マイクロ包含ポリマーは、一般的にマトリクスポリマーと非混和性でありうる。このように、添加剤は、マトリクスポリマーの連続相内に個別相領域として、より良く分散しうる。個別領域は、外部力から生じるエネルギーを吸収することができ、結果として生じる材料の全体的靱性および強度を増加させる。領域は、楕円形、球形、円筒形、プレート状、管状などのさまざまな異なる形状を持ちうる。例えば、一つの実施形態では、領域は実質的に楕円の形状を持つ。個々の領域の物理的寸法は、一般的に、外部応力が加わった時、高分子材料を通した割れ目の伝播を最小化するために十分小さいが、プラスチックの微小な変形を開始させ、粒子含有物の所およびその周りのせん断および/または応力強度ゾーンを可能にするために十分大きい。
ポリマーは非混和性でありうるが、それでもなおマイクロ包含添加剤は、マトリクスポリマーと比較的類似した溶解パラメータを持つように選択されうる。これは、個別相と連続相の境界の界面適合性および物理的相互作用を向上させ、従って組成物が砕ける可能性を減少させる。この点で、添加剤に対するマトリクスポリマーの溶解パラメータの比は、典型的に約0.5〜約1.5であり、一部の実施形態では約0.8〜約1.2である。例えば、マイクロ包含添加剤は、約15〜約30Mジュール1/2/m3/2、一部の実施形態では約18〜約22Mジュール1/2/m3/2の溶解パラメータを持つことがある一方、ポリ乳酸は、約20.5Mジュール1/2/m3/2の溶解パラメータを持ちうる。「溶解パラメータ」という用語は本書で使用される時、「ヒルデンブランド溶解パラメータ」を指すが、これは凝集エネルギー密度の平方根で、以下の等式に従って計算される:
ここで、
ΔHv=蒸発熱
R=理想気体定数
T=温度
Vm=モル体積
多くのポリマーのヒルデンブランド溶解パラメータは、Wyeychのプラスチックの溶解性ハンドブック(2004年)からも利用可能で、これは参照により本書に組み込まれる。
マイクロ包含添加剤はまた、個別領域および結果生じる細孔が適切に維持されることを確実にするために一定のメルトフローレート(または粘度)を持ちうる。例えば、添加剤のメルトフローレートが高すぎると、流れて、連続相を通して制御されないで分散する傾向がある。これは、維持が難しく、また時期尚早に砕ける可能性の高い層状のプレート様領域または共連続相構造を生じる。反対に、添加剤のメルトフローレートが低すぎると、凝集して非常に大きな楕円形領域を形成する傾向があり、これは混合中に分散させることが困難である。これは、連続相の全体を通して、添加剤の不均一な分布を生じうる。この点で、本発明者は、マトリクスポリマーのフローレートに対するマイクロ包含添加剤のメルトフローレートの比は、一般的に約0.2〜約8、一部の実施形態では約0.5〜約6、および一部の実施形態では約1〜約5であることを発見した。例えば、マイクロ包含添加剤のメルトフローレートは、2160グラムの負荷および190℃で測定された場合、約0.1〜約250グラム/10分、一部の実施形態では約0.5〜約200グラム/10分、および一部の実施形態では約5〜約150グラム/10分でありうる。
上述の特性に加えて、マイクロ包含化添加剤の機械的特性も、望ましい多孔質ネットワークを達成するために選択されうる。例えば、マトリクスポリマーおよびマイクロ包含添加剤の混合物に外部力が加えられる時、添加剤とマトリクスポリマーの弾性係数の差から生じる応力集中の結果として、応力集中(例えば、垂直またはせん断応力を含む)およびせん断および/またはプラスチック降伏域が、個別相領域およびその周りで開始されることがありうる。応力集中が大きいほど、領域でのより強い局所的プラスチックの流れを促進し、これによって、応力が伝えられた時、領域が大きく伸長することが可能になる。これらの伸長領域は、組成物が硬質ポリエステル樹脂などである時、マトリクスポリマーよりもよりしなやかで柔軟な挙動を示すことを可能にする。応力集中を高めるために、マイクロ包含添加剤は、マトリクスポリマーと比べて比較的低いヤング弾性係数を持つように選択されうる。例えば、添加剤の弾性係数に対するマトリクスポリマーの弾性係数の比は、一般的に約1〜約250、一部の実施形態では約2〜約100、および一部の実施形態では約2〜約50である。マイクロ包含添加剤の弾性係数は、例えば、約2〜約1000メガパスカル(MPa)、一部の実施形態では約5〜約500MPa、および一部の実施形態では約10〜約200MPaの範囲でありうる。それとは反対に、ポリ乳酸の弾性係数は、例えば、一般的に約800MPa〜約3000MPaである。
上記で特定された特性を持つ多種多様のマイクロ包含添加剤を使用しうるが、このような添加剤の特に適切な例には、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブチレンなど)、スチレン共重合体(例えば、スチレン−ブタジエン−スチレン、スチレン−イソプレン−スチレン、スチレン−エチレン−プロピレン−スチレン、スチレン−エチレン−ブタジエン−スチレンなど)、ポリテトラフルオロエチレン、ポリエステル(例えば、再生ポリエステル、ポリエチレンテレフタレートなど)、ポリ酢酸ビニル(例えば、ポリ(エチレン酢酸ビニル)、ポリ塩化ビニル−酢酸ビニルなど)、ポリビニルアルコール(例えば、ポリビニルアルコール、ポリ(エチレンビニルアルコール)など)、ポリビニルブチラール、アクリル樹脂(例えば、ポリアクリル酸塩、ポリアクリル酸メチル、ポリメタクリル酸メチルなど)、ポリアミド(例えば、ナイロン)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリウレタンなどの合成ポリマーを含みうる。適切なポリオレフィンには、例えば、エチレンポリマー(例えば、低密度ポリエチレン(「LDPE」)、高密度ポリエチレン(「HDPE」)、直鎖低密度ポリエチレン(「LLDPE」)など)、プロピレンホモポリマー(例えば、シンジオタクチック、アタクチック、イソタクチックなど)、プロピレン共重合体などを含みうる。
一つの特定の実施形態では、ポリマーは、ホモポリプロピレンまたはプロピレンの共重合体など、プロピレンポリマーである。プロピレンポリマーは、例えば、実質的にイソタクチックポリプロピレン・ホモポリマーまたはその他のモノマーを約10重量%以下(すなわち、プロピレンの少なくとも約90重量%)を含む共重合体から形成されうる。このようなホモポリマーは、約160℃〜約170℃の融点を持ちうる。
また別の実施形態では、ポリオレフィンは、エチレンまたはプロピレンと別のα−オレフィン(C−C20 α−オレフィンまたはC−C12 α−オレフィンなど)の共重合体でありうる。適切なα−オレフィンの具体例には、1−ブテン、3−メチル−1−ブテン、3,3−ジメチル−1−ブテン、1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘキセン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘプテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−オクテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ノネン、エチル、メチルまたはジメチル置換1−デセン、1−ドデセン、およびスチレンを含む。特に望ましいα−オレフィンコモノマーは、1−ブテン、1−ヘキセンおよび1−オクテンである。このような共重合体のエチレンまたはプロピレン含量は、約60モル%〜約99モル%、一部の実施形態では約80モル%〜約98.5モル%、および一部の実施形態では約87モル%〜約97.5モル%でありうる。α−オレフィン含量は、同様に約1モル%〜約40モル%、一部の実施形態では約1.5モル%〜約15モル%、および一部の実施形態では約2.5モル%〜約13モル%の範囲でありうる。
本発明で使用するための模範的オレフィン共重合体には、テキサス州ヒューストンのExxonMobil Chemical CompanyからEXACT(商標)という名称で市販されているエチレンベースの共重合体を含む。その他の適切なエチレン共重合体は、ミシガン州ミッドランドのDow Chemical CompanyからENGAGE(商標)、AFFINITY(商標)、DOWLEX(商標)(LLDPE)およびATTANE(商標)(ULDPE)という名称で市販されている。その他の適切なエチレンポリマーは、Ewenらの米国特許第4,937,299号、Tsutsuiらの第5,218,071号、Laiらの第5,272,236号、およびLaiらの第5,278,272号に記述されている。適切なプロピレン共重合体も、ExxonMobil Chemical Co.(テキサス州ヒューストン)のVISTAMAXX(商標)、Atofina Chemicals(ベルギー、フェルイ)のFINA(商標)(例えば、8573)、三井石油化学工業のTAFMER(商標)、およびDow Chemical Co.(ミシガン州ミッドランド)のVERSIFY(商標)という名称で市販されている。適切なポリプロピレンホモポリマーには同様に、Exxon Mobil 3155ポリプロピレン、Exxon Mobil Achieve(商標)樹脂およびTotal M3661 PP樹脂を含みうる。プロピレンポリマーのその他の例は、Dattaらの米国特許第6,500,563号、Yangらの第5,539,056号、およびResconiらの第5,596,052号に記述されている。
さまざまな既知の技術のいずれでも、オレフィン共重合体を形成するために一般的に使用されうる。例えば、オレフィンポリマーは、フリーラジカルまたは配位触媒(例えば、チーグラー・ナッタ)を使用して形成されうる。好ましくは、オレフィンポリマーは、メタロセン触媒などの、単一部位配位触媒から形成される。このような触媒系は、コモノマーが、分子鎖内に無作為に分布され、異なる分子量分画にわたって均一に分布されたエチレン共重合体を生成する。メタロセン触媒によるポリオレフィンは、例えば、McAlpinらの米国特許第5,571,619号、Davisらの第5,322,728号、Obijeskiらの第5,472,775号、Laiらの第5,272,236号、およびWheatらの第6,090,325号に記述されている。メタロセン触媒の例には、ビス(n−ブチルシクロペンタジエニル)チタニウム・ジクロリド、ビス(n−ブチルシクロペンタジエニル)ジルコニウム・ジクロリド、ビス(シクロペンタジエニル)スカンジウム・クロリド、ビス(インデニル)ジルコニウム・ジクロリド、ビス(メチルシクロペンタジエニル)チタニウム・ジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウム・ジクロリド、コバルトセン、シクロペンタジエニルチタニウム・トリクロリド、フェロセン、ハフノセン・ジクロリド、イソプロピル(シクロペンタジエニル,−1−フルオレニル)ジルコニウム・ジクロリド、二塩化モリブドセン、ニッケロセン、二塩化ニオボセン、ルテノセン、二塩化チタノセン、ジルコノセンクロリドヒドリド、二塩化ジルコノセンなどを含む。メタロセン触媒を使用して作ったポリマーは、一般的に狭い分子量範囲を持つ。例えば、メタロセン触媒によるポリマーは、4より小さい多分散数(M/M)、制御された短鎖分岐分布、および制御されたイソタクシチシーを持ちうる。
使用する材料に関わらず、熱可塑性組成物中のマイクロ包含添加剤の相対的パーセントは、組成物の基本特性に大きく影響することなく、望ましい特性を達成するように選択される。例えば、マイクロ包含添加剤は一般的に、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約1重量%〜約30重量%、一部の実施形態では、約2重量%〜約25重量%、および一部の実施形態では約5重量%〜約20重量%の量で使用される。熱可塑性組成物全体のマイクロ包含添加剤の濃度は、同様に、約0.1重量%〜約30重量%、一部の実施形態では約0.5重量%〜約25重量%、および一部の実施形態では約1重量%〜約20重量%を占めうる。
C.ナノ包含添加剤
本明細書で使用される場合、「ナノ包含添加剤」という用語は、ポリマーマトリクス内にナノスケールサイズの個別領域の形態で分散されることのできる任意の非晶質、結晶または半結晶材料を一般的に指す。例えば、変形する前に、領域は、約1〜約1000ナノメートル、一部の実施形態では約5〜約800ナノメートル、一部の実施形態では約10〜約500ナノメートル、および一部の実施形態では約20〜約200ナノメートルの平均断面寸法を持ちうる。これも当然のことながら、ナノスケール領域はマイクロ包含添加剤およびナノ包含添加剤および/または組成物のその他の成分の組み合わせからも形成されうる。ナノ包含添加剤は一般的に、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約0.05重量%〜約20重量%、一部の実施形態では、約0.1重量%〜約10重量%、および一部の実施形態では約0.5重量%〜約5重量%の量で使用される。熱可塑性組成物全体のナノ包含添加剤の濃度は、同様に、約0.01重量%〜約15重量%、一部の実施形態では約0.05重量%〜約10重量%、および一部の実施形態では約0.3重量%〜約6重量%でありうる。
ナノ包含添加剤は高分子の性質であり、比較的高い分子量を持ち、熱可塑性組成物の溶融強度および安定性の改善に役立つ。ナノスケール領域中に分散するその能力を強化するために、ナノ包含添加剤は、マトリクスポリマーおよびマイクロ包含添加剤と一般的に適合する材料からも選択されうる。これは、マトリクスポリマーまたはマイクロ包含添加剤が、ポリエステルなどの極性部分を有する時、特に有用でありうる。一例では、このようなナノ包含添加剤は官能性ポリオレフィンである。例えば、極性成分は一つ以上の官能基によって提供され、非極性成分はオレフィンによって提供されうる。ナノ包含添加剤のオレフィン成分は、概して、上述のようなオレフィンモノマーから由来する任意の直鎖または分岐α−オレフィンモノマー、オリゴマー、またはポリマー(共重合体を含む)から形成されうる。
ナノ包含添加剤の官能基は、分子に極性成分を提供し、マトリクスポリマーと適合しない任意の基、分子セグメントおよび/またはブロックでありうる。ポリオレフィンと適合しない分子セグメントおよび/またはブロックの例には、アクリレート、スチレン、ポリエステル、ポリアミドなどが含まれうる。官能基は、イオン性質を持ち、荷電金属イオンを含みうる。特に適切な官能基は、無水マレイン酸、マレイン酸、フマル酸、マレイミド、マレイン酸ヒドラジド、無水マレイン酸とジアミンの反応生成物、メチルナド酸無水物、ジクロロマレイン酸無水物、マレイン酸アミドなどである。無水マレイン酸修飾ポリオレフィンは、本発明の使用に特に適している。このような修飾ポリオレフィンは、ポリマー骨格材料に無水マレイン酸をグラフトすることによって一般的に形成される。このようなマレイン酸化ポリオレフィンは、E. I. du Pont de Nemours and CompanyからFusabond(登録商標)という名前で市販されており、Pシリーズ(化学修飾ポリプロピレン)、Eシリーズ(化学修飾ポリエチレン)、Cシリーズ(化学修飾エチレン酢酸ビニル)、Aシリーズ(化学修飾エチレンアクリレート共重合体またはターポリマー)、またはNシリーズ(化学修飾エチレン−プロピレン、エチレン−プロピレンジエンモノマー(「EPDM」)またはエチレン−オクタン)などがある。代替的に、マレイン酸化ポリオレフィンは、Polybond(登録商標)という名称でChemtura Corp.から、Eastman Gシリーズという名称でEastman Chemical Companyからも市販されている。
特定の実施形態では、ナノ包含添加剤も反応性でありうる。このような反応性のナノ包含添加剤の一例は、分子あたり平均して少なくとも二つのオキシレン環を含むポリエポキシドである。理論に制限されるものではないが、このようなポリエポキシド分子は、特定条件下でマトリクスポリマー(例えば、ポリエステル)の反応を誘発し、それによってガラス転移温度を大きく低下させることなく溶融強度を改善することができると考えられる。反応には、鎖延長、側差分岐、グラフト、共重合体形成などが伴いうる。例えば、鎖延長は、さまざまな異なる反応経路を通して起こりうる。例えば、修飾剤は、ポリエステルのカルボニル末端基を通して(エステル化)またはヒドロキシル基を通して(エーテル化)、求核的開環反応を可能にしうる。オキサゾリン副反応が同様に起こって、エステルアミド部分を形成しうる。このような反応を通して、マトリクスポリマーの分子量を増加させて、溶融処理中によく見られる分解に対抗しうる。上述のようにマトリクスポリマーの反応を誘発することが望ましい場合があるが、本発明者らは、反応が進みすぎると、ポリマー骨格間の架橋を生じうることを発見した。このような架橋がかなりの程度まで進むと、結果生じるポリマー混合物が脆くなって、望ましい強度および伸長特性を持つ材料へと処理することが困難になりうる。
この点で、本発明者は、比較的低いエポキシ官能性を持つポリエポキシドが特に効果的であり、これはその「エポキシ当量」によって定量化しうることを発見した。エポキシ当量は、エポキシ基の1分子を含む樹脂の量を反映し、これは、修飾剤の数平均分子量を分子中のエポキシ基の数で割ることによって計算されうる。本発明のポリエポキシドは、一般的に、約7,500〜約250,000グラム/モル、一部の実施形態では約15,000〜約150,000グラム/モル、および一部の実施形態では約20,000〜約100,000グラム/モルの範囲の数平均分子量を持ち、多分散指数は一般的に2.5〜7の範囲である。ポリエポキシドは、50個未満、一部の実施形態では5〜45個、および一部の実施形態では15〜40個のエポキシ基を含みうる。同じく、エポキシ当量は、約15,000グラム/モル未満、一部の実施形態では約200〜約10,000グラム/モル、および一部の実施形態では約500〜約7,000グラム/モルでありうる。
ポリエポキシドは、末端エポキシ基、骨格オキシレン単位、および/または張り出したエポキシ基を含む、直鎖または分岐の、ホモポリマーまたは共重合体(例えば、ランダム、グラフト、ブロックなど)でありうる。このようなポリエポキシドを形成するために使用されるモノマーは異なりうる。一つの特定の実施形態では、例えば、ポリエポキシドは、少なくとも一つのエポキシ官能性(メタ)アクリルモノマー成分を含む。本書で使用される時、「(メタ)アクリル」という用語は、アクリルおよびメタクリルモノマー、並びにアクリレートおよびメタクリレートモノマーなど、その塩またはエステルを含む。例えば、適切なエポキシ官能性(メタ)アクリルモノマーには、アクリル酸グリシジルおよびメタクリル酸グリシジルなどの、1,2−エポキシ基を含むものが含まれうるがこれに限定されない。その他の適切なエポキシ官能性モノマーには、アリルグリシジルエーテル、エタクリル酸グリシジル、およびイタコン酸グリシジルが含まれる。
ポリエポキシドは、鎖延長をもたらすだけでなく、望ましい混合形態を達成するのに役立つように、上述のように比較的高い分子量を一般的に持つ。こうして、ポリマーの結果生じるメルトフローレートは、2160グラムの負荷および190℃で測定された場合、約10〜約200グラム/10分、一部の実施形態では約40〜約150グラム/10分、および一部の実施形態では約60〜約120グラム/10分でありうる。
必要に応じて、望ましい分子量を達成するのを助けるためにポリエポキシド中に追加的モノマーも使用しうる。このようなモノマーは異なることがあり、例えば、エステルモノマー、(メタ)アクリルモノマー、オレフィンモノマー、アミドモノマーなどを含みうる。一つの特定の実施形態では、例えば、ポリエポキシドは、2〜20個の炭素原子、好ましくは2〜8個の炭素原子を持つものなどの、少なくとも一つの直鎖または分岐α−オレフィンモノマーを含む。具体例には、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテン、3,3−ジメチル−1−ブテン、1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘキセン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘプテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−オクテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ノネン、エチル、メチルまたはジメチル置換1−デセン、1−ドデセン、およびスチレンを含む。特に望ましいα−オレフィンコモノマーは、エチレンおよびプロピレンである。
別の適切なモノマーには、エポキシ官能性でない(メタ)アクリルモノマーを含みうる。このような、(メタ)アクリルモノマーの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸i−プロピル、アクリル酸n−ブチル、アクリル酸s−ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸n−アミル、アクリル酸i−アミル、アクリル酸イソボルニル、アクリル酸n−ヘキシル、アクリル酸2−エチルブチル、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸n−デシル、アクリル酸メチルシクロヘキシル、アクリル酸シクロペンチル、アクリル酸シクロヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸n−プロピル、メタクリル酸n−ブチル、メタクリル酸i−プロピル、メタクリル酸i−ブチル、メタクリル酸n−アミル、メタクリル酸n−ヘキシル、メタクリル酸i−アミル、メタクリル酸s−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルブチル、メタクリル酸メチルシクロヘキシル、メタクリル酸シンナミル、メタクリル酸クロチル、メタクリル酸シクロヘキシル、メタクリル酸シクロペンチル、メタクリル酸2−エトキシエチル、メタクリル酸イソボルニルなど、並びにその組み合わせを含みうる。
本発明の特に望ましい一つの実施形態では、ポリエポキシドは、エポキシ官能性の(メタ)アクリル単量体成分、α−オレフィン単量体成分、および非エポキシ官能性の(メタ)アクリル単量体成分である。例えば、ポリエポキシドは、ポリ(エチレン−コ−メチルアクリレート−コ−グリシジルメタクリレート)であることがあり、これは以下の構造を持つ:
ここで、x、y、およびzは1以上である。
さまざまな既知の技術を使用して、エポキシ官能性モノマーをポリマーにしうる。例えば、極性官能基を含むモノマーは、ポリマー骨格にグラフトされてグラフト共重合体を形成しうる。このようなグラフト技術は、当技術分野でよく知られており、例えば、米国特許第5,179,164号に記述されている。その他の実施形態では、エポキシ官能基を含むモノマーは、高圧反応、チーグラー・ナッタ触媒反応系、単一部位触媒(例えば、メタロセン)反応系などの、既知のフリーラジカル重合技術を使用して、モノマーと共重合されてブロックまたはランダム共重合体を形成しうる。
単量体成分の相対的部分は、エポキシ反応性とメルトフローレートの間のバランスを達成するように選択されうる。より具体的には、高いエポキシモノマー含量は、マトリクスポリマーとの良好な反応性をもたらしうるが、含量が高すぎると、ポリエポキシドがポリマー混合物の溶融強度に悪影響を与えるほど、メルトフローレートを減少させうる。従って、ほとんどの実施形態では、エポキシ官能性(メタ)アクリルモノマーは、共重合体の約1重量%〜約25重量%、一部の実施形態では約2重量%〜約20重量%、および一部の実施形態では約4重量%〜約15重量%を占める。同様にα−オレフィンモノマーは、共重合体の約55重量%〜約95重量%、一部の実施形態では約60重量%〜約90重量%、および一部の実施形態では約65重量%〜約85重量%を占めうる。使用される場合、その他の単量体成分(例えば、非エポキシ官能性(メタ)アクリルモノマー)は、共重合体の約5重量%〜約35重量%、一部の実施形態では約8重量%〜約30重量%、および一部の実施形態では約10重量%〜約25重量%を占めうる。本発明で使用されうる、適切なポリエポキシドの一つの具体例は、LOTADER(登録商標) AX8950または AX8900という名前でArkemaから市販されている。例えば、LOTADER(登録商標) AX8950は、70〜100g/10分のメルトフローレートを持ち、7重量%〜11重量%のメタクリル酸グリシジルモノマー含量、13重量%〜17重量%のアクリル酸メチルモノマー含量、および72重量%〜80重量%のエチレンモノマー含量を持つ。別の適切なポリエポキシドは、ELVALOY(登録商標) PTWという名称でDuPontから市販されており、これはエチレン、ブチルアクリレート、およびグリシジルメタクリレートのターポリマーであり、12g/10分のメルトフローレートを持つ。
ポリエポキシドを形成するために使用するモノマーのタイプおよび相対的含量を制御することに加えて、望ましい利益を達成するために全体的重量パーセントも制御されうる。例えば、修飾レベルが低すぎると、溶融強度および機械的特性の望ましい増加が達成されないことがある。しかし本発明者は、修飾レベルが高すぎると、エポキシ官能基による強い分子間相互作用(例えば、架橋)および物理的ネットワーク形成のために、プロセスが制限されうることも発見した。従って、ポリエポキシドは、一般的に、組成物に使用されるマトリクスポリマーの重量に基づいて、約0.05重量%〜約10重量%、一部の実施形態では、約0.1重量%〜約8重量%、一部の実施形態では約0.5重量%〜約5重量%、および一部の実施形態では約1重量%〜約3重量%の量で使用される。またポリエポキシドは、組成物の総重量に基づいて、約0.05重量%〜約10重量%、一部の実施形態では約0.05重量%〜約8重量%、一部の実施形態では約0.1重量%〜約5重量%、および一部の実施形態では約0.5重量%〜約3重量%を占めうる。
オキサゾリン官能基化ポリマー、シアニド官能基化ポリマーなど、その他の反応性のナノ包含添加剤も本発明で使用しうる。使用された場合、このような反応性のナノ包含添加剤は、ポリエポキシドに対して上述の濃度内で使用されうる。一つの特定の実施形態では、オキサゾリン環を含むモノマーでグラフトされたポリオレフィンである、オキサゾリングラフト化ポリオレフィンが使用されうる。オキサゾリンには、2−ビニル−2−オキサゾリン(例えば、2−イソプロペニル−2−オキサゾリン)、2−脂肪−アルキル−2−オキサゾリン(例えば、オレイン酸、リノレン酸、パルミトオレイン酸、ガドレイン酸、エルカ酸および/またはアラキドン酸のエタノールアミドから取得可能)およびその組み合わせなどの、2−オキザロリンを含みうる。別の実施形態では、オキサゾリンは、例えば、マレイン酸リシノールオキサゾリン、ウンデシル−2−オキサゾリン、ソヤ−2−オキサゾリン、リシヌス−2−オキサゾリンおよびその組み合わせから選択されうる。また別の実施形態では、オキサゾリンは、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4,4−ジメチル−2−オキサゾリンおよびその組み合わせから選択される。
カーボンブラック、カーボンナノチューブ、カーボンナノ繊維、ナノクレイ、金属ナノ粒子、ナノシリカ、ナノアルミナなどの、ナノフィラーも使用しうる。ナノクレイは特に適している。「ナノクレイ」という用語は、クレイ材料(天然鉱物、有機修飾された鉱物、または合成名の材料)のナノ粒子を一般的に指し、これは典型的には板状構造を持つ。ナノクレイの例には、例えば、モンモリロナイト(2:1層状スメクタイト粘土構造)、ベントナイト(モンモリロナイトで主に形成されたフィロケイ酸アルミニウム)、カオリナイト(1:1板状構造およびAlSi(OH))の経験式を持つ)アルミノケイ酸塩)、ハロイサイト(1:1管状構造およびAlSi(OH))を持つアルミノケイ酸塩などが含まれる。適切なナノクレイの一例はCloisite(登録商標)で、これは、モンモリロナイトナノクレイであり、Southern Clay Products, Inc.から市販されている。合成ナノクレイのその他の例には、混合金属水酸化物ナノクレイ、層状二重水酸化物ナノクレイ(例えば、セピオサイト)、ラポナイト、ヘクトライト、サポナイト、インドナイトなどが含まれるがこれらに限定されない。
望ましい場合、ナノクレイは、マトリクスポリマー(例えば、ポリエステル)との適合性を改善するのを助ける表面処理剤を含みうる。表面処理剤は有機または無機でありうる。一つの実施形態では、有機カチオンとクレイの反応によって得られる有機表面処理剤が用いられる。適切な有機カチオンには、例えば、ジメチルビス[水素化獣脂]塩化アンモニウム(2M2HT)、メチルベンジルビス[水素化獣脂]塩化アンモニウム(MB2HT)、メチルトリス[水素化獣脂アルキル]クロリド(M3HT)など、クレイとカチオンを交換することのできる有機第四級アンモニウム化合物を含みうる。市販されている有機ナノクレイの例には、例えば、ジメチルベンジル水素化獣脂アンモニウム塩で修飾されたモンモリロナイトクレイであるDellite(登録商標) 43B(イタリア、リボルノのLaviosa Chimica)が含まれうる。その他の例には、Cloisite(登録商標)25AおよびCloisite(登録商標)30B(Southern Clay Products)およびNanofil 919(Svd Chemie)が含まれる。望ましい場合、ナノフィラーを担体樹脂と混合して、添加剤と組成物のその他のポリマーとの適合性を向上させるマスターバッチを形成できる。特に適切な担体樹脂には、上記にさらに記述されるように、例えば、ポリエステル(例えば、ポリ乳酸、ポリエチレンテレフタル酸など)、ポリオレフィン(例えば、エチレンポリマー、プロピレンポリマーなど)などが含まれる。
本発明の特定の実施形態では、複数のナノ包含添加剤を組み合わせて使用しうる。例えば、第一のナノ包含添加剤(例:ポリエポキシド)は、約50〜約500ナノメートル、一部の実施形態では約60〜約400ナノメートル、および一部の実施形態では約80〜約300ナノメートルの平均断面寸法を持つ領域の形態で分散されうる。第二のナノ包含添加剤(例えば、ナノフィラー)は、約1〜約50ナノメートル、一部の実施形態では約2〜約45ナノメートル、および一部の実施形態では約5〜約40ナノメートルの平均断面寸法を持つものなど、第一のナノ包含添加剤より小さい領域の形態でも分散されうる。用いられる時、第一および/または第二のナノ包含添加剤は一般的に、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約0.05重量%〜約20重量%、一部の実施形態では、約0.1重量%〜約10重量%、および一部の実施形態では約0.5重量%〜約5重量%の量を占める。熱可塑性組成物全体の第一および/または第二のナノ包含添加剤の濃度は、同様に、熱可塑性組成物の約0.01重量%〜約15重量%、一部の実施形態では約0.05重量%〜約10重量%、および一部の実施形態では約0.1重量%〜約8重量%でありうる。
D.その他の成分
さまざまな異なる理由で、組成物には多種多様な原料を使用しうる。例えば、一つの特定の実施形態では、熱可塑性組成物に相間修飾剤を使用して、マイクロ包含添加剤とマトリクスポリマーの間の摩擦および結合性の程度を減らすのを助け、そのため剥離の程度および均一性を向上させうる。このように、細孔は、組成物全体に渡って実質的に均一な様式で分布されうる。修飾剤は、比較的低い粘度を持ち、熱可塑性組成物により容易に組み込むことができ、ポリマー表面に簡単に移動できるよう、室温(例えば、25℃)で液体または半固体の形態でありうる。この点で、相間修飾剤の動粘度は、40℃で測定された時、一般的に約0.7〜約200センチストーク(「cs」)、一部の実施形態では、約1〜約100cs、および一部の実施形態では約1.5〜約80csである。さらに、相間修飾剤は、マイクロ包含添加剤に対する親和性を持ち、例えばマトリクスポリマーと添加剤との間の界面張力の変化を生じるように、一般的に疎水性でもある。マトリクスポリマーとマイクロ包含添加剤との間の界面での物理的力を減らすことによって、修飾剤の低粘度、疎水性の性質が剥離の促進を助けることができると考えられる。本書で使用されるとき、「疎水性」という用語は、一般的に、空気中の水の接触角が約40度以上、一部の場合は約60度以上の材料を指す。対照的に、「親水性」という用語は、一般的に、空気中の水の接触角が約40度未満の材料を指す。接触角の測定のための一つの適切な試験はASTM D5725−99(2008年)である。
適切な疎水性、低粘度の相間修飾剤には、例えば、シリコン、シリコン−ポリエステル共重合体、脂肪族ポリエステル、芳香族ポリエステル、アルキレングリコール(例えば、エチエングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなど)、アルカンジオール(例えば、1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2,4−トリメチル−1,6ヘキサンジオール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、2,2,4,4,−テトラメチル−1,3−シクロブタンジオールなど)、アミンオキシド(例えば、オクチルジメチルアミン・オキシド)、脂肪酸エステル、脂肪酸アミド(例えば、オレアミド、エルカミド、ステアラミド、エチレンビス(ステアラミド)など)、鉱物、および植物油などを含みうる。一つの特に適切な液体および半固体はポリエーテルポリオールであり、BASF Corp.からPluriol(登録商標)WIという商標名で市販されているものなどがある。別の適切な修飾剤は、部分的に再生可能なエステルであり、HallstarからHALLGREEN(登録商標)IMという名称で市販されているものなどがある。
用いられる時、相間修飾剤は、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約0.1重量%〜約20重量%、一部の実施形態では、約0.5重量%〜約15重量%、および一部の実施形態では約1重量%〜約10重量%の量を占めうる。熱可塑性組成物全体の相間修飾剤の濃度も、同様に、約0.05重量%〜約20重量%、一部の実施形態では約0.1重量%〜約15重量%、および一部の実施形態では約0.5重量%〜約10重量%を占めうる。
上述の量で使用された時、相間修飾剤は、熱可塑性組成物の全体的溶解特性を妨げることなく、ポリマーの界面に容易に移動し、剥離を促進することを可能にする特徴を持つ。例えば、相間修飾剤は、ガラス転移温度を低下させることによる、ポリマーに対する可塑化効果は一般的に持たない。これとは対照的に、本発明者らは、熱可塑性組成物のガラス転移温度は、初めのマトリクスポリマーと実質的に同じでありうることを発見した。この点で、マトリクスポリマーのガラス転移温度に対する組成物のガラス転移温度の比は、一般的に約0.7〜約1.3、一部の実施形態では約0.8〜約1.2、および一部の実施形態では約0.9〜約1.1である。熱可塑性組成物は、例えば、約35℃〜約80℃、一部の実施形態では約40℃〜約80℃、および一部の実施形態では約50℃〜約65℃のガラス転移温度を持ちうる。熱可塑性組成物のメルトフローレートも、マトリクスポリマーのメルトフローレートと同様でありうる。例えば、組成物のメルトフローレート(ドライベース)もまた、2160グラムの負荷および190℃で測定された場合、約0.1〜約70グラム/10分、一部の実施形態では約0.5〜約50グラム/10分、および一部の実施形態では約5〜約25グラム/10分でありうる。
界面接着を改善し、領域とマトリクスの間の界面張力を減らして、それによって混合中のより小さな領域の形成を可能にする相溶化剤も用いうる。適切な相溶化剤の例には、例えば、エポキシまたは無水マレイン酸化学部分で官能基化された共重合体が含まれる。無水マレイン酸相溶化剤の例は、ポリプロピレン−グラフト化−無水マレイン酸で、これはOrevac(商標)18750およびOrevac(商標)CA 100の商標でArkemaから市販されている。用いられる時、相溶化剤は、連続相マトリクスの重量に基づいて、熱可塑性組成物の約0.05重量%〜約10重量%、一部の実施形態では、約0.1重量%〜約8重量%、および一部の実施形態では約0.5重量%〜約5重量%の量を占めうる。
熱可塑性組成物に使用されうるその他の適切な材料には、触媒、抗酸化剤、安定剤、界面活性剤、ワックス、固体溶剤、充填剤、核形成剤(例えば、炭酸カルシウムなど)、微粒子、ならびに熱可塑性組成物の処理可能性および機械的特性を高めるために追加されるその他の材料が含まれうる。いずれにしても、本発明の一つの有益な側面は、発泡剤(例えば、クロロフルオロカーボン、ヒドロクロロフルオロカーボン、炭化水素、二酸化炭素、超臨界二酸化炭素、窒素など)および可塑剤(例えば、固体または半固体のポリエチレングリコール)など、さまざまな従来的添加剤を必要とすることなく、良好な特性が提供されうることである。実際、熱可塑性組成物は、一般的に発泡剤および/または可塑剤を含まない場合がある。例えば、発泡剤および/または可塑剤は、熱可塑性組成物の約1重量%以下、一部の実施形態では約0.5重量%以下、および一部の実施形態では約0.001重量%〜約0.2重量%の量で存在しうる。さらに、以下で詳述されるその応力白化特性のために、結果として生じる組成物は、二酸化チタンなどの従来的色素を必要とすることなく、不透明色(例えば、白色)を達成しうる。特定の実施形態では、例えば、色素は、熱可塑性組成物の約1重量%以下、一部の実施形態では約0.5重量%以下、および一部の実施形態では約0.001重量%〜約0.2重量%の量で存在しうる。
II. 高分子材料
本発明の高分子材料は、フィルム、繊維状材料、成形品、輪郭など、およびその複合体および積層板など、特定の用途に応じてさまざまに異なる形態を持ちうる。一つの実施形態では、例えば、高分子材料はフィルムまたはフィルムの層の形態である。多層フィルムは、2〜15層、および一部の実施形態では3〜12層を含みうる。このような多層フィルムは、少なくとも一つのベース層および少なくとも一つの追加層(例えば、皮膚層)を通常含むが、望ましい任意の数の層を含みうる。例えば、多層フィルムは、ベース層および一つ以上の皮膚層から形成される場合があり、ここでベース層および/または皮膚層は本発明の高分子材料から形成される。しかし当然のことながら、ポリオレフィンポリマーなど、その他のポリマー材料もベース層および/または皮膚層に用いられうる。フィルムの厚さは、柔軟性を増すために比較的小さい場合がある。例えば、フィルムは、約1〜約200マイクロメートル、一部の実施形態では約2〜約150マイクロメートル、一部の実施形態では約5〜約100マイクロメートル、および一部の実施形態では約10〜約60マイクロメートルの厚さを持ちうる。
フィルムに加えて、高分子材料も繊維状材料または層または繊維状材料の成分の形態である場合があり、これは個々の短繊維またはフィラメント(連続繊維)、およびこのような繊維から形成される糸、織物などを含むことができる。糸には、例えば、一緒にねじられた複数の短繊維(「スパン糸」)、ねじらずに一緒に配置されたフィラメント(「ゼロツイスト糸」)、ある程度のねじりを加えて一緒に配置されたフィラメント、ねじりありまたはなしの単一フィラメント(「モノフィラメント」)などが含まれうる。糸は嵩高加工されることもされないこともある。同様に適切な織物には、例えば、織物、編物、不織布(例えば、スパンボンドウェブ、メルトブローンウェブ、ボンデッドカーデッドウェブ、湿式ウェブ、エアレイドウェブ、コフォームウェブ、水圧交絡ウェブなど)などが含まれうる。熱可塑性組成物から形成された繊維は、一般的に、単一成分および多成分(例えば、シース・コア構成、横並び構成、分割されたパイの構成、海中の島の構成など)を含む、任意の望ましい構成を持ちうる。一部の実施形態では、繊維は、強度およびその他の機械的特性を高めるために、成分(例えば、2成分)または構成成分(例えば、2構成成分)として一つ以上の追加的ポリマーを含みうる。例えば、熱可塑性組成物は、シース/コア2成分繊維のシース成分を形成する一方、追加的ポリマーはコア成分を形成するか、またはその反対でありうる。追加的ポリマーは、ポリエステル(例えば、ポリ乳酸、ポリエチレンテレフタル酸、ポリブチレンテレフタル酸など)、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブチレンなど)、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリ塩化ビニル−酢酸、ポリビニルブチラール、アクリル樹脂(例えば、ポリアクリル酸塩、ポリアクリル酸メチル、ポリメタクリル酸メチルなど)、ポリアミド(例えば、ナイロン)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリビニルアルコール、およびポリウレタンなどでありうる。
その特定の形状に関わらず、本発明の高分子材料は、マトリクスポリマー、マイクロ包含添加剤、ナノ包含添加剤、およびその他の選択的構成要素を含みうる熱可塑性組成物から一般的に形成される。最初の熱可塑性組成物を形成するために、成分は典型的には、さまざまな既知の技術のいずれかを使用して混合される。一つの実施形態では、例えば、組成物は別々に、または組み合わせて供給されうる。例えば、組成物は、まず乾燥混合されて基本的に均一な乾燥混合物を形成し、同様に、分散的に材料を混合する溶融処理装置に同時または順番に供給されうる。バッチおよび/または連続溶融処理技術を用いうる。例えば、ミキサー/混練機、バンバリーミキサー、ファレル連続ミキサー、単軸スクリュー押出機、二軸スクリュー押出機、ロールミルなどを使用して、材料を混合し溶融処理しうる。特に適切な溶融処理装置は、共回転、二軸スクリュー押出機(例えば、Werner & Pfleiderer Corporation(ニュージャージー州ラムジー)から入手可能なZSK−30押出機またはThermo Electron Corp.(イギリス、ストーン)から入手可能なThermo Prism(商標) USALAB 16押出機でありうる。このような押出機は、供給ポートおよび換気ポートを含み、強力な分配・分散混合をもたらす。例えば、成分は二軸スクリュー押出機の同じまたは異なる供給ポートに供給され溶融混合されて、実質的に均一な溶融混合物を形成しうる。必要に応じて、その他の添加剤も、ポリマー溶解物に注入および/または押出機の長さに沿った異なる点で押出機に別々に供給されうる。
結果得られる溶融混合された組成物は、上述のようなマイクロ包含添加剤のマイクロスケール領域およびナノ包含添加剤のナノスケール領域を含みうる。せん断/圧力および熱の程度は、十分な分散を確実にするが、望ましい特性を達成できないほど領域のサイズを不利に減少させないように制御されうる。例えば、混合は一般的に、約180℃〜約300℃、一部の実施形態では約185℃〜約250℃、および一部の実施形態では約190℃〜約240℃の温度で起こる。同様に、溶融処理中の見かけのせん断速度は、約10秒−1〜約3000秒−1、一部の実施形態では約50秒−1〜約2000秒−1、および一部の実施形態では約100秒−1〜約1200秒−1の範囲でありうる。見かけのせん断速度は、4Q/πRと等しい場合があり、ここでQはポリマー溶融物の体積流量(「m/秒」)であり、Rは溶融ポリマーの流れが通るキャピラリー(例えは、押出機金型)の半径(「m」)である。もちろん、押出し量に反比例する溶融処理中の滞留時間など、その他の変数も、均一の望ましい程度を達成するために制御されうる。
望ましいせん断条件(例えば、速度、滞留時間、せん断速度、溶融処理温度など)を達成するために、押出機スクリュー速度を、特定の範囲に選択しうる。一般的に、システムへの追加的な機械エネルギーの投入のために、スクリュー速度の増加と共に、製品温度の上昇が見られる。例えば、スクリュー速度は、約50〜約600回転/分(「rpm」)、一部の実施形態では約70〜約500rpm、および一部の実施形態では約100〜約300rpmの範囲でありうる。これは、結果として生じる領域のサイズに悪影響を与えることなく、マイクロ包含添加剤を分散するために十分高い温度をもたらしうる。溶融せん断速度、および同様に添加剤が分散される程度も、押出機の混合セクション内での一つ以上の分配および/または分散混合成分の使用を通して増加させうる。単軸スクリュー押出機のための適切な分配ミキサーには、例えば、Saxon、Dulmage、Cavity Transferミキサーなどが含まれうる。同様に、適切な分散ミキサーには、Blisterリング、Leroy/Maddock、CRDミキサーなどが含まれうる。当技術分野でよく知られているように、Buss Kneader押出機、Cavity Transferミキサー、およびVortex Intermeshing Pin(VIP)ミキサーで使用されるものなど、混合は、ポリマー溶融物の折り畳みおよび再配列を生成するバレルのピンの使用によって、さらに改善されうる。
一旦形成されると、多孔質ネットワークが高分子材料に導入されうる。例えば、材料は、縦方向(例えば、流れ方向)、横方向(例えば、幅方向)など、およびそれらの組み合わせに延伸されうる。望ましい延伸を行うために、熱可塑性組成物を、前駆体形状に形成してから延伸し、その後望ましい材料(例えば、フィルム、繊維など)へと変換しうる。一つの実施形態では、前駆体形状は、約1〜約5000マイクロメートル、一部の実施形態では約2〜約4000マイクロメートル、一部の実施形態では約5〜約2500マイクロメートル、および一部の実施形態では約10〜約500マイクロメートルの厚さを持つフィルムでありうる。前駆体形状の形成に代わるものとして、熱可塑性組成物は、それが高分子材料の望ましい形態に成形される際に、その場で延伸されうる。一つの実施形態では、例えば、熱可塑性組成物は、それがフィルムまたは繊維に成形される際に、延伸されうる。
吸引(例えば、繊維延伸ユニット)、引張フレーム延伸、二軸延伸、多軸延伸、プロファイル延伸、真空延伸などの、さまざまな延伸技術を一般的に使用しうる。一つの実施形態では、例えば、組成物は、Marshall and Willams, Co.(ロードアイランド州プロビデンス)から市販されているものなど、流れ方向オリエンター(「MDO」)で延伸される。MDOユニットは典型的に、フィルムを流れ方向に漸進的に延伸して薄くする複数の延伸ロール(例えば、5〜8個)を持つ。組成物は、単一または複数の個別の延伸動作のいずれかで引かれうる。MDO装置のロールの一部は漸進的に高くなる速度で動作していない場合があることに、注意すべきである。上述の方法で材料を延伸するために、MDOのロールが加熱されないことが一般的には望ましい。いずれにしても、望ましい場合、組成物の温度が上述の範囲より下に留まる限り、延伸プロセスを促進するようなわずかな程度まで一つ以上のロールを加熱しうる。
延伸の程度は、延伸されている材料(例えば、繊維またはフィルム)の性質に一部依存するが、一般的には望ましい多孔質ネットワークが達成されるのを確実にするように選択される。この点で、組成物は、約1.1〜約3.5、一部の実施形態では約1.2〜約3.0、および一部の実施形態では約1.3〜約2.5の延伸比に(例えば、流れ方向に)延伸される。「延伸比」は、延伸材料の長さを延伸前のその長さで割ることによって決定されうる。延伸率も、望ましい特性の達成を助けるために、例えば約5%〜約1500%/変形分、一部の実施形態では約20%〜約1000%/変形分、および一部の実施形態では約25%〜約850%/変形分の範囲内で変化しうる。組成物は、延伸中、マトリクスポリマーおよびマイクロ包含添加剤のガラス転移温度より下の温度に保たれうる。とりわけ、これは、多孔質ネットワークが不安定になる程度までポリマー鎖が変えられないことを確実にするのに役に立つ。例えば、組成物は、マトリクスポリマーのガラス転移温度より少なくとも約10℃、一部の実施形態では約20℃、および一部の実施形態では約30℃下の温度で延伸されうる。例えば、組成物は、約−50℃〜約125℃、一部の実施形態では約−25℃〜約100℃、および一部の実施形態では約−20℃〜約50℃の温度で延伸されうる。組成物は典型的には外部熱(例えば、加熱ロール)を適用することなく延伸されるが、このような熱を随意に利用して、処理可能性を改善し、延伸力を低減し、延伸速度を増加させ、繊維の均一性を改善しうる。
多孔質ネットワークの形成に加えて、延伸は、マイクロスケール領域の軸方向寸法も大幅に増加させて、一般的に直線的で細長い形状を持つようにしうる。例えば、細長いマイクロスケール領域は、延伸前の領域の軸方向寸法よりも約10%以上、一部の実施形態では約20%〜約500%、および一部の実施形態では約50%〜約250%大きな平均軸方向寸法を持ちうる。延伸後の軸方向寸法は、例えば、約0.5〜約250マイクロメートル、一部の実施形態では約1〜約100マイクロメートル、一部の実施形態では約2〜約50マイクロメートル、および一部の実施形態では約5〜約25マイクロメートルの範囲でありうる。マイクロスケール領域は比較的薄いこともあり、従って、約0.05〜約50マイクロメートル、一部の実施形態では約0.2〜約10マイクロメートル、および一部の実施形態では0.5〜約5マイクロメートルなど、小さな断面寸法を持ちうる。これは、約2〜約150、一部の実施形態では約3〜約100、および一部の実施形態では約4〜約50の第一の領域のアスペクト比(断面寸法に対する軸方向寸法の比)をもたらしうる。
III. 物理的変形
本発明の高分子材料のユニークな構造により、材料が物理的変形(例えば、曲げ、延伸、ねじりなど)をより簡単に受け、複雑な三次元構造を作ることが可能になる。とりわけ、このような物理的変形は周囲条件下で起こりうる。従って、例えば、材料は、約0℃〜約50℃、一部の実施形態では約5℃〜約40℃、および一部の実施形態では約10℃〜約35℃の温度にある間に変形されうる。特に、これは、多孔質ネットワークが不安定になるまでポリマー鎖が変性しないことを確実にするのに役立つ。
高分子材料が変形されうるさまざまな方法は、特定の用途に応じて異なりうる。例えば、三次元構成は、同じまたは異なる平面にある一つ以上の角変位を持ちうる。例えば図1〜3を参照すると、L型の三次元構成に変形された高分子材料10の一つの特定の実施形態が示されている。この特定の実施形態では、材料10は、線12の周りに変形されて角変位14を定義し、これは約5°〜約160°、一部の実施形態では約20°〜約130°、および一部の実施形態では約30°〜約120°の曲げ角度αを持ちうる。当然、本発明は、図1〜3に示された方法で線の周りに変形された材料に決して限定されない。図4では、例えば、らせん状のねじりによって定義された角変位22を含む材料20の別の実施形態が示されている。
当然のことながら、材料は2つ以上、一部の実施形態では3つ以上、および一部の実施形態では4〜10の複数の角変位を持ちうる。角変位のそれぞれは、例えば、約5°〜約160°、一部の実施形態では約20°〜約130°、および一部の実施形態では約30°〜約120°の範囲でありうる。複数の角変位を持つ高分子材料の使用は、設置または使用中に異なる方向に延長しなければならない物品に対して特に適している。例えば、一つの実施形態では、材料は、流体を運ぶためなど中空の通路を含み、使用中にそれが横断しなければならない経路に応じて一つ以上の角度で曲げられる環状部材(例えば、パイプ)に使用されうる。このような環状部材の一例が要素30として図5に示されている。示されるように、この実施形態の環状部材30は、中空の通路61を定義し、3つの角変位40、50、および60を含む。それぞれの角変位の間の環状部材50のセクションは、直線または湾曲でありうる。例示実施形態では、例えば、角変位40と50の間の環状部材50のセクションは概して直線である一方、角変位50と60の間のセクションはわずかに湾曲している。
その特定の構成に関わらず、結果得られる成形高分子材料は一般的に多孔質であり、例えば、約15%〜約80%/cm、一部の実施形態では約20%〜約70%、および一部の実施形態では材料の立方センチメートルあたり約30%〜約60%である多孔質ネットワークを定義する。上述のように、このような高い細孔容量の存在は高分子材料の柔軟性を強化することができる。一つの実施形態では、例えば、高分子材料は、ASTM D638−10に従って23℃で測定された場合、約2500メガパスカル(「MPa」)以下、一部の実施形態では約2200MPa以下、一部の実施形態では約50MPa〜約2000MPa、および一部の実施形態では約100MPa〜約1000MPaの弾性係数を示しうる。高い細孔容量の存在はその他の利益も提供できる。例えば、高分子材料は、比較的高い水蒸気透過速度(「WVTR」)によって特徴付けられるように、水蒸気に対して一般的に透過性であるが、これはグラム/平方メートル/24時間(g/m/24時間)の単位で測定された時、材料を通して水蒸気が透過する速度である。例えば、高分子材料は、ASTM E96/96M−12、手順BまたはINDA試験手順IST−70.4(01)などによって決定される時、約300g/m−24時間以上、一部の実施形態では約500g/m−24時間以上、一部の実施形態では約1,000g/m−24時間以上、および一部の実施形態では約3,000〜約15,000g/m−24時間のWVTRを示しうる。蒸気の通過を許すことに加えて、材料の比較的高い細孔容量は、材料の密度を大幅に低下させることもでき、これはより軽く、より柔軟で、それでもなお良好な特性を達成する材料の使用を可能にしうる。例えば組成物は、約1.2グラム/立方センチメートル(「g/cm」)以下、一部の実施形態では約1.0g/cm以下、一部の実施形態では約0.2g/cm〜約0.8g/cm、および一部の実施形態では約0.1g/cm〜約0.5g/cmなど、比較的低い密度を持ちうる。
高分子材料は、約0.40ワット/メートル・ケルビン(「W/m−K])以下、一部の実施形態では約0.20W/m−K以下、一部の実施形態では約0.15W/m−K以下、一部の実施形態では約0.01〜0.12W/m−K、および一部の実施形態では約0.02〜約0.10W/m−Kなど、比較的低い熱伝導率も示しうる。特に、材料は、比較的薄い厚さでこのように低い熱伝導率値を達成でき、これは材料がより大きな柔軟性および適合性を持つこと可能にする。このため、高分子材料は、比較的低い「熱特性」を示しうるが、これは材料の熱伝導率をその厚さで割ったものに等しく、ワット/平方メートル−ケルビン(「W/mK」)の単位で提供される。例えば、材料は、約1000W/mK以下、一部の実施形態では約10〜約800W/mK、一部の実施形態では約20〜約500W/mK、および一部の実施形態では約40〜約200W/mKの熱特性を示しうる。高分子材料の実際の厚さはその特定の形状に依存しうるが、典型的には、約5マイクロメートル〜約100ミリメートル、一部の実施形態では約10マイクロメートル〜約50ミリメートル、一部の実施形態では約200マイクロメートル〜約25ミリメートル、および一部の実施形態では約50マイクロメートル〜約5ミリメートルの範囲である。
高分子材料は高いレベルの初期柔軟性を示しうるが、望ましい場合、この柔軟性を選択的に減少させることも可能である。例えば、これは、設置時には物品(例えば、パイプ)を特定の形状へと操作するために柔軟性が必要となるが、物品が設置された後には剛性が必要な時に有用となりうる。これに関して、高分子材料の少なくとも一部分が随意に熱処理プロセスを受けうるが、熱処理プロセスは高分子材料の結晶性を増加させ収縮の結果として細孔の一部またはすべてのサイズを減少させることによって、その剛性を増加させる。例えば、変形された高分子材料は、約40℃〜約200℃、一部の実施形態では約50℃〜約150℃、および一部の実施形態では約70℃〜約120℃など、ポリマーマトリクスのガラス転移温度以上に加熱されうる。このような温度では、ポリマーが流れ始めて結晶化し、細孔が不安定化してサイズが減少する可能性がある。
IV. 物品
容易に成形され強化された機能特性を提供するそのユニークな特性のために、本発明の結果得られる高分子材料は、吸収性物品、包装フィルム、バリアフィルム、医療製品(例えば、ガウン、外科用ドレープ、ファイスマスク、ヘッドカバー、手術帽、靴カバー、滅菌ラップ、保温毛布、加熱パッドなど)など、さまざまに異なるタイプの物品での使用に非常に適している。例えば、高分子材料は、水またはその他の流体を吸収できる「吸収性物品」に組み込まれうる。一部の吸収性物品の例には、おむつ、トレーニングパンツ、吸収性下着、失禁物品、女性用衛生用品(例えば、生理用ナプキン)、水着、おしり拭き、ミットワイプなどのパーソナルケア吸収物品、衣類、穿孔材料、アンダーパッド、ベッドパッド、包帯、吸収性ドレープ、および医療用ワイプなどの医療用吸収性物品、食品サービスタオル、衣料物品、パウチなどを含むがこれに限定されない。このような物品の形成に適した材料およびプロセスは、当業者にはよく知られている。例えば吸収性物品は、一般的に、実質的に液体透過性の層(例えば、外側カバー)、液体透過性層(例えば、体側のライナー、サージ層など)、および吸収性コアを含む。
高分子材料は、その他さまざまなタイプの物品にも使用されうる。例えば非限定的例には、例えば、おもちゃ、照明器具、スクリーン保持システム、冷却ユニット(例えば、冷蔵庫、冷凍庫、自動販売機など)の断熱材料、自動車部品(例えば、前後の座席、ヘッドレスト、アームレスト、ドアパネル、後部棚/パッケージトレー、ハンドルおよび内部トリム、ダッシュボードなど)、建物パネルおよびセクション(例えば、屋根、壁穴、床下など)、衣料品(例えば、コート、シャツ、パンツ、手袋、エプロン、カバーオール、靴、ブーツ、帽子、靴下ライナーなど)、家具および寝具(例えば、寝袋、掛布団など)、流体保管/移送システム(例えば、液体/ガス炭化水素、液体窒素、酸素、水素、または原油用パイプまたはタンカー)、極端な環境(例えば、地下水または空間)、食品および飲料製品(例えば、カップ、カップホルダー、皿など)、容器およびビンなどが含まれる。一つの実施形態では、例えば、高分子材料は、アクションフィギュア、Lego(登録商標)おもちゃなど、おもちゃ設計に使用されうる。高分子材料は、「衣類」にも使用される場合があり、これは一般的に、身体の一部にフィットするように成形されている任意の物品を含むことが意図される。このような物品の例には、衣服(例えば、シャツ、パンツ、ジーンズ、スラックス、スカート、コート、アクティブウェア、アスレチック、エアロビクスおよび運動衣類、水着、サイクリングジャージまたはショーツ、水着、レース用衣服、ウェットスーツ、ボディースーツなど)、履物(例えば、靴、靴下、ブーツなど)、保護衣服(例えば、消防士のコート)、衣服付属品(例えば、ベルト、ブラストラップ、サイドパネル、手袋、靴下、レギンス、整形外科用装具など)、肌着(例えば、下着、Tシャツなど)、圧迫衣類、ドレープ衣類(例えば、キルト腰巻、トーガ、ポンチョ、マント、ショールなど)などが含まれるがこれらに限定されない。
高分子材料は、任意の特定用途内の幅広いさまざまな物品で使用されうる。例えば、自動車用途を考慮した時、高分子材料を繊維状物品中に、または固体成形品として用いられうる。例として、高分子材料の繊維は、車両の快適性および/または美観を向上させることのできる物品(例えば、サンバイザーのカバーおよび/またはパッド、スピーカーのハウジングおよびカバー、座席カバー、シールスリップ剤、および座席カバーの裏張り、カーペットおよびカーペットの裏張りを含むカーペットの強化、車マットおよび車マットの裏張り、シートベルトおよびシートベルトアンカーのカバー、トランクのフロアカバーおよびライナー、後部棚パネル、ヘッドライナーの表張りおよび裏張り、内装の裏張り、一般装飾布など)、一般的な温度および/または雑音遮断を提供できる材料(例えば、カラムパッド、ドアトリムパッド、ボンネットライナー、防音および断熱材料、マフラーラップ、車体部品、窓、サルーンルーフ、およびサンルーフ、タイヤ強化など)、およびろ過/エンジン材料(例えば、燃料フィルター、オイルフィルター、バッテリーセパレータ、客室エアフィルター、変速機用トンネル、燃料タンクなど)に、有益に使用されうる。
高分子材料を含む固体成形品は、自動車の安全部品を強化するために使用されうる。例えば、高分子材料は、車両の後部、前部および/または側部の衝撃吸収帯などの受動的安全部品の、自動車の安全セル内に、エアバッグまたはハンドルの部品(例えば、折り畳み式ハンドルカラム)として、貨物バリアとして、または歩行者安全システムの部品として(例えば、バンパー、ボンネット、窓枠などの部品として)包含されうる。
低密度の高分子材料は、自動車用途で重量節約利益を提供できる。例えば、高分子材料は、ボンネット、バンパーおよび/またはバンバーサポート、トランクの蓋および/または部品、および車両のシャシを含むがこれらに限定されない自動車の構造の部品となりうる。
高分子材料のこのような広範囲にわたる用途は、幅広い分野に適用でき、自動車産業に限定されることを決して意図していない。例えば、高分子材料は、輸送産業の、航空・宇宙用途(例えば、飛行機、ヘリコプター、宇宙輸送、軍事航空宇宙装置など)、海洋用途(ボート、船、レクリエーショナルビークル)、列車などを含むがこれらに限定されない任意の適切な用途に使用されうる。高分子材料は、例えば、繊維状物品または固体成形品、審美的用途、温度および/または騒音遮断のため、ろ過および/またはエンジン部品、安全部品など、任意の望ましい形態で輸送用途に使用されうる。
本発明は、以下の例を参照してより良く理解されうる。
試験方法
曲げ保持
曲げられた後にその形状を保持する高分子材料の能力は、以下の試験に従って決定されうる。初めに、材料は、ASTM D638タイプIに従ったサイズ(厚さ0.3175cm、幅1.27cm、長さ16.51cm)を持つ、射出成型された棒試験片へと形成されうる。試験は、厚さ0.3175cm、幅1.27cm、長さ12.7cmのサイズを持つIZOD棒でも実施できる。
一旦形成されたら、試料は、材料の各端に取り付けられたクランプで試験装置の垂直平面に固定される。この試験の例示的試験装置が図14に示されている。図示されるように、上部トルククランプは、51ミリメートルの分離距離で下部試料クランプの上方に中心を置き、試料はクランプの間に中心を置く。トルクは、所定設定(例えば、9.90キログラム・力/センチメートル)に調節され、試料の長さ寸法に垂直な線の周りで試験試料に曲げ力を加える。トルクを30秒間加えた後、試料の角変位が「曲げ角度」として直ちに記録される。例えば、図15を参照すると、約60°の曲げ角度を持つとして例示的測定が示されている。その後、曲げ力が解放され、試料はさらに30秒間クランプ内に置かれて弛緩状態を達成する。試料を30秒間弛緩させた後、試料の角変位が、「曲げ解放角度」として再び記録される。曲げ解放角度の曲げ角度に対する比率(「曲げ保持指数」)がその後計算され、より大きな値はより良い形状保持特性を持つ材料を示す。
曲げ試験は周辺条件(例えば、約25℃の温度)下で実施されうる。
ねじり保持
ねじられた後にその形状を保持する高分子材料の能力は、以下の試験に従って決定されうる。初めに、材料は、ASTM D638タイプIに従ったサイズ(厚さ0.3175cm、幅1.27cm、長さ16.51cm)を持つ、射出成型された棒試験片へと形成されうる。試験は、厚さ0.3175cm、幅1.27cm、長さ12.7cmのサイズを持つIZOD棒でも実施できる。
一旦形成されたら、試料は、材料の各端に取り付けられたクランプで試験装置の水平平面に固定される。この試験の例示的試験装置が図16〜17に示されている。図示されるように、各クランプの上縁は、51ミリメートルの分離距離で互いに平行になるように位置付けられ、試料は、その上縁が両方のクランプの上縁に近接して整列するように位置付けられる。トルクは、所定設定(例えば、3.50キログラム・力/センチメートル)に調節され、試料の長さ寸法に平行な線の周りで試験試料に反時計回りのねじり力を加える。トルクを30秒間加えた後、試料の角変位が「ねじり角度」として直ちに記録される。例えば、図18を参照すると、約90°のねじり角度を持つとして例示的測定が示されている。その後、ねじり力が解放され、試料はさらに30秒間クランプ内に置かれて弛緩状態を達成する。試料を30秒間弛緩させた後、試料の角変位が、「ねじり解放角度」として再び記録される。ねじり解放角度のねじり角度に対する比率(「ねじり保持指数」)がその後計算され、より大きな値はより良い形状保持特性を持つ材料を示す。
ねじり試験は周辺条件(例えば、約25℃の温度)下で実施されうる。
水蒸気透過速度(「WVTR」)
材料のWVTRを決定するために使用される試験は、材料の性質に基づいて変わりうる。WVTR値を測定するための一つの技術は、ASTM E96/96M−12、手順Bである。別の方法にはINDA試験手順IST−70.4(01)の使用を伴う。INDA試験手順は以下のように要約される。恒久的ガードフィルムおよび試験されるサンプル材料によって、ドライチャンバーが既知の温度と湿度でウェットチャンバーから分離される。ガードフィルムの目的は、明確な空隙を定義し、空隙が特徴化される間に空隙の空気を静めるまたは鎮静化することである。ドライチャンバー、ガードフィルム、およびウェットチャンバーは、その中に試験フィルムが密封される拡散セルを構成する。サンプルホルダーは、Mocon/Modem Controls, Inc.(ミネソタ州ミネアポリス)社製のPermatran−Wモデル100Kとして知られている。第一の試験は、ガードフィルムおよび100%相対的湿度を生成する蒸発器組立品の間の空隙のWVTRから成る。水蒸気は空隙およびガードフィルムを通して拡散し、水蒸気濃度に比例する乾燥ガスの流れと混ざり合う。電気信号が処理のためにコンピュータに送られる。コンピュータは、空隙およびガードフィルムの透過速度を計算し、その値を将来使用するために保存する。
ガードフィルムおよび空隙の透過速度はCalCとしてコンピュータに保存される。次にサンプル材料は試験セル中に密封される。再び、水蒸気は空隙を通してガードフィルムおよび試験材料へと拡散し、試験材料を運び去る乾燥ガスと混ざり合う。そして再び、この混合物は蒸気センサーに運ばれる。その後コンピュータは、空隙、ガードフィルムおよび試験材料の組み合わせの透過速度を計算する。そしてこの情報は、次の方程式に従って、水分が試験材料を通して透過する透過速度を計算するために使用される:
その後、水蒸気透過速度(「WVTR」)は以下のように計算される:
ここで、
F=水蒸気の流れ(cm/分)
ρsat(T)=温度Tでの飽和空気中の水の密度
RH=セルの特定の場所での相対湿度
A=セルの断面積
sat(T)=温度Tでの水蒸気の飽和蒸気圧。
伝導特性:
熱伝導率(W/mK)および熱抵抗(mK/W)は、ASTM E−1530−11(「保護熱流量技術による材料の熱貫流に対する抵抗」)に従い、Anter Unithermモデル2022試験機を使用して決定されうる。目標試験温度は25℃、適用負荷は0.17MPaとしうる。試験前に、サンプルは温度23℃(±2℃)、相対湿度50%(±10%)で40+時間の間調整しうる。熱特性(W/mK)も、1を熱抵抗で割ることで計算されうる。
フィルム引張特性:
フィルムは、引張特性(ピーク応力、係数、破壊歪み、および破断時の容積あたりのエネルギー)に対してMTS Synergie200引張フレームで試験しうる。試験はASTM D638−10(約23℃)に従って実施されうる。フィルムサンプルは、試験前に、中央の幅が3.0mmの犬用の骨の形にカットされうる。犬用の骨の形のフィルムサンプルは、MTS Synergie 200装置のグリップを使用して、18.0mmのゲージ長さで定位置に保持されうる。フィルムサンプルは、破断が起こるまで5.0インチ/分のクロスヘッド速度で延伸されうる。各フィルムに対して5つのサンプルを、流れ方向(MD)および幅方向(CD)の両方で試験しうる。コンピュータプログラム(例えば、TestWorks 4)を使用して、試験中のデータを収集し、応力対歪み曲線を生成し、それから係数、ピーク応力、伸長、および破断までのエネルギーを含む多くの特性を決定しうる。
メルトフローレート:
メルトフローレート(「MFR」)は、一般的に190℃、210℃、または230℃で、2160グラム/10分の負荷をかけた時、押出レオメーター口(直径0.0825インチ)を通して押し出されるポリマーの重量(グラム)である。別段の指示がない限り、メルトフローレートは、Tinius Olsen Extrusion PlastometerでASTM試験方法D1239に従って測定される。
熱特性:
ガラス転移温度(T)は、ASTM E1640−09に従って、動的機械分析(DMA)で決定されうる。TA Instruments社のA Q800機器を使用しうる。実験は、張力/張力形状で、−120℃〜150℃の温度掃引モード、3℃/分の加熱率で実行されうる。歪振動振幅周波数は、試験中、一定(2Hz)に保ちうる。3つの独立サンプルを試験して、平均ガラス転移温度を得るが、これはtan δ曲線の最大値によって定義され、ここでδは、貯蔵弾性率に対する損失弾性率の比(tan δ=E”/E’)として定義される。
溶融温度は、示差走査熱量測定(DSC)によって決定されうる。示差走査熱量測定計は、DSC Q100示差走査熱量計とすることができ、これには液体窒素冷却付属品およびUNIVERSAL ANALYSIS 2000(バージョン4.6.6)分析ソフトウェアプログラムを取り付けることができ、これらは両方ともT.A. Instruments Inc.(デラウェア州ニューキャッスル)から入手可能である。サンプルを直接取り扱うことを避けるために、ピンセットまたはその他のツールを使用しうる。サンプルはアルミニウム皿に入れて、化学てんびんで0.01ミリグラムの精度まで秤量する。材料サンプルの皿の上にふたを圧着させうる。一般的に、樹脂ペレットは秤量皿に直接置いてよい。
示差走査熱量計は、示差走査熱量計の操作マニュアルに記述されるように、インジウム金属標準を使用して較正することができ、基準線補正を実施しうる。材料サンプルは、試験のために示差走査熱量計の試験チャンバーに配置することができ、空の皿を対照として使用しうる。すべての試験は、試験チャンバーへの55立方センチメートル/分の窒素(産業グレード)パージで実行しうる。樹脂ペレットサンプルについては、加熱および冷却プログラムは2サイクル試験であり、−30℃へのチャンバーの平衡化で始まり、次に10℃/分の加熱速度での温度200℃への第一の加熱期間、続いて200℃で3分間のサンプルの平衡化、その後10℃/分の冷却速度での温度−30℃への第一の冷却期間、次に−30℃への3分間のサンプルの平衡化、そして温度200℃への10℃/分の加熱速度での第二の加熱期間が続く。繊維サンプルについては、加熱および冷却プログラムは1サイクル試験であり、−25℃へのチャンバーの平衡化で始まり、次に10℃/分の加熱速度での温度200℃への加熱期間、続いて200℃で3分間のサンプルの平衡化、その後10℃/分の冷却速度での温度−30℃への冷却期間が続く。すべての試験は、試験チャンバーへの55立方センチメートル/分の窒素(産業グレード)パージで実行しうる。
結果は、変曲点のガラス転移温度(T)、吸熱ピークと発熱ピーク、およびDSCプロットのピーク下面積を特定・定量するUNIVERSAL ANALYSIS 2000分析ソフトウェアプログラムを使用して評価しうる。ガラス転移温度は、傾きの明らかな変化が起こるプロットライン上の領域として特定でき、溶融温度は、自動変曲点計算を使用して決定しうる。
密度および細孔容量パーセント:
密度および細孔容量パーセントを決定するために、延伸の前に、標本の幅(W)および厚さ(T)が最初に測定されうる。延伸前の長さ(L)も、標本の表面上の二つのマークの間の距離を測定することによって決定された。その後、標本を延伸して空隙化を開始しうる。次に、Digimatic Caliper(株式会社ミツトヨ)を使用して、標本の幅(W)、厚さ(T)、および長さ(L)が直近の0.01mmまで測定された。延伸の前の体積(V)は、W×T×L=Vで計算されうる。延伸後の体積(V)も、W×T×L=Vで計算されうる。密度(P)は、P=P/Φで計算され、ここでPは、前駆材料の密度であり、細孔容量パーセント(%V)は、%V=(1−1/Φ)×100で計算されうる。
水分含量:
水分含量は、Arizona Instruments Computrac Vapor Pro水分分析器(モデル番号3100)を使用して、ASTM D 7191−05に実質的に従って決定することができ、これは参照によりすべての目的に対してその全体が本明細書に組み込まれる。試験温度(§X2.1.2)は130℃、サンプルサイズ(§X2.1.1)は2〜4グラム、およびバイアルパージ時間(§X2.1.4)は30秒としうる。さらに、終了基準(§X2.1.3)は、「予測」モードとして定義でき、これはプログラムされた内蔵基準(これは数学的に終了点水分含量を計算する)が満足された時に試験が終了することを意味する。
高分子材料内にユニークな多孔質ネットワークを作る能力が実証された。最初に、熱可塑性組成物が、85.3重量%のポリ乳酸(PLA 6201D、Natureworks(登録商標))、9.5重量%のマイクロ包含添加剤、1.4重量%のナノ包含添加剤、および3.8重量%の内部界面修飾剤から形成された。マイクロ包含添加剤はVistamaxx(商標) 2120(ExxonMobil)で、これは、メルトフローレート29g/10分(190℃、2160g)および密度0.866g/cmのポリプロピレン−ポリエチレン共重合体エラストマーである。ナノ包含添加剤は、5〜6g/10分(190℃/2160g)のメルトフローレート、7〜11重量%のメタクリル酸グリシジル含量、13〜17重量%のアクリル酸メチル含量、および72〜80重量%のエチレン含量を持つ、ポリ(エチレン−コ−アクリル酸メチル−コ−メタクリル酸グリシジル)(Lotader(登録商標) AX8900、Arkema)であった。内部界面修飾剤はBASF社のPLURIOL(登録商標) WI285潤滑油で、これはポリアルキレングリコール機能液であった。
ポリマーは混合のために、Werner and Pfleiderer Corporation(ニュージャージー州ラムジー)製の共回転、2軸スクリュー押出機(ZSK−30、直径30mm、長さ1328ミリメートル)に供給された。押出機は14個のゾーンを持ち、これらは供給ホッパーから金型へと1から14まで連続的に番号付けされている。第一のバレルゾーン番号1が、重量測定供給器を通して15ポンド/時間の合計押出量で樹脂を受け取った。PLURIOL(登録商標) WI285が、注入ポンプでバレルゾーン番号2に加えられた。樹脂を押し出すために使用された金型は、4ミリメートル離れた3つの金型開口部(直径6ミリメートル)を持っていた。形成されると、押出された樹脂は、ファン冷却コンベヤー上で冷却され、Conairペレタイザーでペレットに成形された。押出機スクリュー速度は200回転/分(「rpm」)であった。次にペレットは、212℃に加熱された単軸スクリュー押出機に供給され、ここで溶融混合物は4.5インチ幅のスリットを通して排出され、36μm〜54μmの範囲のフィルム厚さに延伸された。キャビテーションおよび空隙形成を開始するために、フィルムは流れ方向に約100%延伸された。
フィルムの形態は、延伸の前後に走査電子顕微鏡法(SEM)で分析された。結果が図6〜9に示されている。図6〜7に示されるように、マイクロ包含添加剤は、約2〜約30マイクロメートルの軸方向サイズ(流れ方向)および約1〜3マイクロメートルの横寸法(幅方向)を持つ領域に初めに分散されたのに対して、ナノ包含添加剤は、約100〜約300ナノメートルの軸方向サイズを持つ半球または回転楕円状の領域として最初に分散された。図8〜9は延伸後のフィルムを示す。図に示されるように、細孔が包含添加剤の周りに形成された。マイクロ包含添加剤の周りに形成されたマイクロ細孔は、軸方向に約2〜約20マイクロメートルの範囲の広いサイズ分布の細長いまたはスリット様の形状を一般的に持っていた。ナノ包含添加剤に関連するナノ細孔は一般的に、約50〜約500ナノメートルのサイズであった。
実施例1の複合ペレットは、第三の包含添加剤と乾燥混合されたが、これは22重量%のスチレン共重合体修飾ナノクレイおよび78重量%のポリプロピレン(Exxon Mobil 3155)を含むハロイサイトクレイマスターバッチ(MacroComp MNH−731−36、MacroM)であった。混合比率はペレット90重量%およびクレイマスターバッチ10重量%で、これは2.2%の合計クレイ含量をもたらした。次に乾燥混合物は、212℃に加熱された単軸スクリュー押出機に供給され、ここで溶融混合物は4.5インチ幅のスリットを通して排出され、51〜58μmの範囲のフィルム厚さに延伸された。キャビテーションおよび空隙形成を開始するために、フィルムは流れ方向に約100%延伸された。
フィルムの形態は、延伸の前後に走査電子顕微鏡法(SEM)で分析された。結果が図10〜13に示されている。図10〜11に示されるように、(明るい領域として見える)ナノクレイ粒子の一部は非常に小さな領域(すなわち、約50〜約300ナノメートルの範囲の軸方向寸法)の形態で分散された。マスターバッチ自体も、マイクロスケールサイズ(約1〜約5マイクロメートルの軸方向寸法)領域を形成した。また、マイクロ包含添加剤(Vistamaxx(商標))は細長い領域を形成した一方、ナノ包含添加剤(非常に小さな暗い点として見えるLotader(登録商標))およびナノクレイマスターバッチは回転楕円状の領域を形成した。延伸されたフィルムが図12〜13に示されている。示されるように、空隙構造がさらに開いており、細孔径の幅広さを示している。第一の包含物(Vistamaxx(商標))によって形成される非常に細長いマイクロ細孔に加えて、ナノクレイマスターバッチ包含物は、約10ミクロン以下の軸方向サイズおよび約2ミクロンの横サイズを持つより開いた回転楕円状マイクロ細孔を形成した。球状ナノ細孔も、第二の包含添加剤(Lotader(登録商標))および第三の包含添加剤(ナノクレイ粒子)によって形成される。
ユニークな特性を持つ高分子材料を作る能力が実証された。最初に、85.3重量%のPLA 6201D、9.5重量%のVistamaxx(商標)2120、1.4重量%のLotader(登録商標)AX8900、および3.8重量%のPLURIOL(登録商標) WI285の混合物が形成された。ポリマーは混合のために、Werner and Pfleiderer Corporation(ニュージャージー州ラムジー)製の共回転、2軸スクリュー押出機(ZSK−30、直径30mm、長さ1328ミリメートル)に供給された。押出機は14個のゾーンを持ち、これらは供給ホッパーから金型へと1から14まで連続的に番号付けされている。第一のバレルゾーン番号1が、重量測定供給器を通して15ポンド/時間の合計押出量で樹脂を受け取った。PLURIOL(登録商標) WI285が、注入ポンプでバレルゾーン番号2に加えられた。樹脂を押し出すために使用された金型は、4ミリメートル離れた3つの金型開口部(直径6ミリメートル)を持っていた。形成されると、押出された樹脂は、ファン冷却コンベヤー上で冷却され、Conairペレタイザーでペレットに成形された。押出機スクリュー速度は200回転/分(「rpm」)であった。次にペレットは、212℃に加熱された単軸スクリュー押出機に供給され、ここで溶融混合物は4.5インチ幅のスリットを通して排出され、0.54〜0.58mmの範囲のフィルム厚さに延伸された。
実施例3で製造されたシートは6インチの長さに切断され、50mm/分のMTS 820引張モードの液圧引張フレームを使用して100%伸長まで延伸された。
実施例3で製造されたシートは6インチの長さに切断され、50mm/分のMTS 820引張モードの液圧引張フレームを使用して150%伸長まで延伸された。
実施例3で製造されたシートは6インチの長さに切断され、50mm/分のMTS 820引張モードの液圧引張フレームを使用して200%伸長まで延伸された。実施例3〜6の熱特性が次に決定された。結果が以下の表に記載されている。
実施例3に記述されたようにペレットが形成されて、25:1のL/D比でRheomix 252単軸スクリュー押出機に供給され、212℃温度まで加熱されたが、ここで溶融混合物はHaake 6インチ幅のsキャストフィルムダイスを通って排出されて、Haake巻き取りロールによって39.4μm〜50.8μmの範囲のフィルム厚さに延伸された。フィルムは、ゲージ長さ75mmの握りのMTS Synergie 200引張フレームを使用して、50mm/分の引張速度で160%の縦変形まで(67%/分の変形率)、流れ方向に延伸された。
フィルムが、50mmのゲージ長さの握り、50mm/分の引張速度(100%/分の変形率)で、100%の変形まで幅方向にも延伸されたこと以外、フィルムは実施例7に記述されたように形成された。実施例7〜8のフィルムのさまざまな特性が、上述のように試験された。結果が以下の表に記載されている。
フィルム特性
引張特性
ペレットは実施例1に記述されたように形成され、次に射出成型装置(Spritzgiessautomaten BOY 22D)内にフラッド供給され、ASTM D638タイプIに従って引張試験片が形成された。射出成型プロセスの温度ゾーンは185℃〜225℃の範囲、保持圧力は10〜14秒、冷却時間は25〜50秒、サイクル時間は35〜65秒、型温度は約10℃または21℃のいずれかであった。一旦形成されたら、引張試験片は次にMTS 810システムで、23℃(±3℃)、50ミリメートル/分の速度で60%の伸長率まで延伸された。
次にサンプルの5つが、上述のように曲げ試験およびねじり試験を受けた。アクリロニトリル・ブタジエン・スチレン(GP22、BASF)およびポリプロピレン(SV954、Basell)から形成された対照サンプルも試験された。平均結果が以下に記載されている。
本発明は、その特定の実施形態に関して詳細に記述されているが、当然のことながら、当業者であれば、上記の理解を得ることで、これらの実施形態に対する改造、その変形、およびそれとの等価物をすぐに思いつくことができる。従って、本発明の範囲は、添付した請求項およびその任意の等価物の範囲として評価されるべきである。
特許請求の範囲に記載の数値限定に「約」が記載されているか否かにかかわらず、本発明の技術思想に鑑みて、実質的に同一の範囲を含むものである。

Claims (33)

  1. 一つ以上の角変位がある三次元構成を持つ成形高分子材料であって、前記高分子材料が、マトリクスポリマーを含む連続相を含む熱可塑性組成物から形成され、さらにマイクロ包含添加剤およびナノ包含添加剤が前記連続相内に個別領域の形態で分散されており、多孔質ネットワークが前記材料に定義される成形高分子材料。
  2. 前記角変位が約5°〜約250°、好ましくは約10°〜約200°、より好ましくは約20°〜約180°、さらにより好ましくは約30°〜約120°の範囲である、請求項1に記載の成形高分子材料。
  3. 前記三次元構成が複数の角変位を持つ、請求項1または2に記載の成形高分子材料。
  4. 前記高分子材料が曲がっている、請求項1〜3のいずれか一項に記載の成形高分子材料。
  5. 前記高分子材料がねじれている、請求項1〜3のいずれか一項に記載の成形高分子材料。
  6. 前記材料が約0.1〜約1、好ましくは約0.2〜約0.95、より好ましくは約0.4〜約0.9、さらにより好ましくは約0.5〜約0.8曲げ保持指数および/またはねじり保持指数を示す、前述の請求項のいずれか一項に記載の成形高分子材料。
  7. 前記材料の平均細孔容量が、約15%〜約80%/cm、好ましくは約20%〜約70%、より好ましくは約30%〜約60%/立方センチメートルである、前述の請求項のいずれか一項に記載の成形高分子材料。
  8. 前記材料の密度が、約1.2g/cm以下、好ましくは約1.0g/cm以下、より好ましくは約0.2g/cm〜約0.8g/cm、さらにより好ましくは約0.1g/cm〜約0.5g/cmである、前述の請求項のいずれか一項に記載の成形高分子材料。
  9. 前記材料の弾性係数が約2500MPa以下、好ましくは約2200MPa以下、より好ましくは約50MPa〜約2000MPa、およびさらにより好ましくは約100MPa〜約1000MPaである、前述の請求項のいずれか一項に記載の成形高分子材料。
  10. 前記多孔質ネットワークが、約800ナノメートル以下、および好ましくは約10〜約100ナノメートルの平均断面寸法を持つ複数のナノ細孔を含む、前述の請求項のいずれか一項に記載の成形高分子材料。
  11. 前記ナノ細孔が前記材料の合計細孔容量の約20容量%以上を構成する、請求項10に記載の成形高分子材料。
  12. 前記多孔質ネットワークがマイクロ細孔をさらに含む、請求項10または11に記載の成形高分子材料。
  13. 前記マイクロ細孔のアスペクト比が約1〜約30である、請求項12に記載の成形高分子材料。
  14. 前記連続相が、前記熱可塑性組成物の約60重量%〜約99重量%を構成する、前述の請求項のいずれか一項に記載の成形高分子材料。
  15. 前記マトリクスポリマーがポリエステルまたはポリオレフィンを含む、前述の請求項のいずれか一項に記載の成形高分子材料。
  16. 前記ポリエステルが約0℃以上のガラス転移温度を持つ、請求項15に記載の成形高分子材料。
  17. 前記ポリエステルがポリ乳酸を含む、請求項15または16に記載の成形高分子材料。
  18. 前記マイクロ包含添加剤が高分子である、前述の請求項のいずれか一項に記載の成形高分子材料。
  19. 前記マイクロ包含添加剤がポリオレフィンを含む、請求項18に記載の成形高分子材料。
  20. 前記ポリオレフィンが、プロピレンホモポリマー、プロピレン/α−オレフィン共重合体、エチレン/α−オレフィン共重合体、またはその組み合わせである、請求項19に記載の成形高分子材料。
  21. 前記マイクロ包含添加剤の溶解パラメータに対する前記マトリクスポリマーの溶解パラメータの比率が約0.5〜約1.5、前記マイクロ包含添加剤のメルトフローレートに対する前記マトリクスポリマーのメルトフローレートの比率が約0.2〜約8、および/または前記マイクロ包含添加剤のヤング弾性係数に対する前記マトリクスポリマーのヤング弾性係数の比率が約1〜約250である、前述の請求項のいずれか一項に記載の成形高分子材料。
  22. 前記ナノ包含添加剤が高分子である、前述の請求項のいずれか一項に記載の成形高分子材料。
  23. 前記ナノ包含添加剤が官能性ポリオレフィンである、請求項22に記載の成形高分子材料。
  24. 前記ナノ包含添加剤が反応性である、請求項22または23に記載の成形高分子材料。
  25. 前記ナノ包含添加剤がポリエポキシドである、請求項24に記載の成形高分子材料。
  26. 前記マイクロ包含添加剤が、前記連続相の重量に基づいて、前記組成物の約1重量%〜約30重量%を構成する、前述の請求項のいずれか一項に記載の成形高分子材料。
  27. 前記ナノ包含添加剤が、前記連続相の重量に基づいて、前記組成物の約0.05重量%〜約20重量%を構成する、前述の請求項のいずれか一項に記載の成形高分子材料。
  28. 前記熱可塑性組成物が相間修飾剤をさらに含む、前述の請求項のいずれか一項に記載の成形高分子材料。
  29. 前述の請求項のいずれかに記載の前記高分子材料を含む環状部材。
  30. マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成される高分子材料を成形するための方法であって、さらにマイクロ包含添加剤およびナノ包含添加剤が前記連続相内に個別領域の形態で分散されており、前記方法が、前記高分子材料を、一つ以上の角変位を持つ三次元構成へと物理的に変形させる工程を含む方法。
  31. 前記材料が、物理的変形前に延伸されて、前記材料内に多孔質ネットワークを形成する、請求項30に記載の方法。
  32. 前記高分子材料が曲げられるかまたはねじられている、請求項30に記載の方法。
  33. 物理的変形が約0℃〜約50℃、好ましくは約5℃〜約40℃、より好ましくは約10℃〜約35℃の温度で起こる、請求項30〜32のいずれか一項に記載の方法。
JP2016532762A 2013-08-09 2014-06-06 形状保持特性を持つ柔軟な高分子材料 Withdrawn JP2016527375A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361863936P 2013-08-09 2013-08-09
US61/863,936 2013-08-09
US201361907592P 2013-11-22 2013-11-22
US61/907,592 2013-11-22
PCT/IB2014/062037 WO2015019203A1 (en) 2013-08-09 2014-06-06 Flexible polymeric material with shape retention properties

Publications (2)

Publication Number Publication Date
JP2016527375A true JP2016527375A (ja) 2016-09-08
JP2016527375A5 JP2016527375A5 (ja) 2017-07-13

Family

ID=52460725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532762A Withdrawn JP2016527375A (ja) 2013-08-09 2014-06-06 形状保持特性を持つ柔軟な高分子材料

Country Status (10)

Country Link
US (1) US11434340B2 (ja)
EP (1) EP3030605B1 (ja)
JP (1) JP2016527375A (ja)
KR (1) KR102334602B1 (ja)
CN (1) CN105408403B (ja)
AU (1) AU2014304181B2 (ja)
BR (1) BR112016002589B1 (ja)
MX (1) MX2016001599A (ja)
RU (1) RU2016107693A (ja)
WO (1) WO2015019203A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223849A1 (ja) * 2022-05-16 2023-11-23 住友化学株式会社 ペレット、ペレットの製造方法、ペレットを用いた組成物/成形体の製造方法、及び、ペレット製造用の組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016368586B2 (en) * 2015-12-11 2022-03-31 Kimberly-Clark Worldwide, Inc. Multi-stage drawing technique for forming porous fibers
BR112018011237B1 (pt) 2015-12-17 2022-06-14 Kimberly-Clark Worldwide, Inc Material polimérico de mudança de cor, e, método para iniciar uma mudança de cor em um material polimérico
CN105646798A (zh) * 2016-04-08 2016-06-08 苏州锦腾电子科技有限公司 一种易弯折脚垫及其制备方法
BR112019002051B1 (pt) * 2016-08-11 2022-09-06 Kimberly-Clark Worldwide, Inc. Película de elastômero de poliolefina termoplástica, e, artigo
CN109880349A (zh) * 2019-01-14 2019-06-14 脉通医疗科技(嘉兴)有限公司 一种医用材料及其制备方法
CN111393732A (zh) * 2020-04-02 2020-07-10 广州敬信高聚物科技有限公司 一种口罩全塑鼻梁条聚烯烃改性材料及其制备方法

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423255A (en) 1965-03-31 1969-01-21 Westinghouse Electric Corp Semiconductor integrated circuits and method of making the same
DE2048006B2 (de) 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Verfahren und Vorrichtung zur Herstellung einer breiten Vliesbahn
CA948388A (en) 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
GB1453447A (en) 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
AU3568278A (en) * 1977-05-02 1979-11-08 Pinkus A E Wrist support
US4282735A (en) 1979-04-02 1981-08-11 Van Mark Products Corporation Brake for sheet metal or the like
US4731266A (en) 1981-06-03 1988-03-15 Rhone-Poulenc, S.A. Water-resistant polyvinyl alcohol film and its application to the preparation of gas-impermeable composite articles
US4374888A (en) 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
US4937299A (en) 1983-06-06 1990-06-26 Exxon Research & Engineering Company Process and catalyst for producing reactor blend polyolefins
US4557132A (en) 1984-02-03 1985-12-10 Tapco Products Company, Inc. Sheet bending brake
US4698372A (en) 1985-09-09 1987-10-06 E. I. Du Pont De Nemours And Company Microporous polymeric films and process for their manufacture
US4741944A (en) 1986-07-30 1988-05-03 Kimberly-Clark Corporation Wet wipe and wipe dispensing arrangement
ES2052551T3 (es) 1986-12-19 1994-07-16 Akzo Nv Metodo para preparar poli(acido lactico) o copolimeros de poli(acido lactico) por polimeracion de la lactida.
US4766029A (en) 1987-01-23 1988-08-23 Kimberly-Clark Corporation Semi-permeable nonwoven laminate
US4770931A (en) * 1987-05-05 1988-09-13 Eastman Kodak Company Shaped articles from polyester and cellulose ester compositions
US5179164A (en) 1988-02-20 1993-01-12 Basf Aktiengesellschaft Thermoplastic polypropylene/polyamide molding composition
US5218071A (en) 1988-12-26 1993-06-08 Mitsui Petrochemical Industries, Ltd. Ethylene random copolymers
US5169706A (en) 1990-01-10 1992-12-08 Kimberly-Clark Corporation Low stress relaxation composite elastic material
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
CA2048905C (en) 1990-12-21 1998-08-11 Cherie H. Everhart High pulp content nonwoven composite fabric
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5743129A (en) 1991-11-26 1998-04-28 Tapco International Corporation Heavy duty sheet bending brake
US6326458B1 (en) 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
US5470944A (en) 1992-02-13 1995-11-28 Arch Development Corporation Production of high molecular weight polylactic acid
US5350624A (en) 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5322728A (en) 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
IT1256260B (it) 1992-12-30 1995-11-29 Montecatini Tecnologie Srl Polipropilene atattico
US5472775A (en) 1993-08-17 1995-12-05 The Dow Chemical Company Elastic materials and articles therefrom
US6093665A (en) 1993-09-30 2000-07-25 Kimberly-Clark Worldwide, Inc. Pattern bonded nonwoven fabrics
CA2123330C (en) 1993-12-23 2004-08-31 Ruth Lisa Levy Ribbed clothlike nonwoven fabric and process for making same
US5571619A (en) 1994-05-24 1996-11-05 Exxon Chemical Patents, Inc. Fibers and oriented films of polypropylene higher α-olefin copolymers
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US5539056A (en) 1995-01-31 1996-07-23 Exxon Chemical Patents Inc. Thermoplastic elastomers
US5540332A (en) 1995-04-07 1996-07-30 Kimberly-Clark Corporation Wet wipes having improved dispensability
EP0755956B1 (en) 1995-07-25 2004-01-14 Toyota Jidosha Kabushiki Kaisha Method for producing polylactic acid
US5770682A (en) 1995-07-25 1998-06-23 Shimadzu Corporation Method for producing polylactic acid
CA2234205C (en) 1995-11-01 2006-08-08 Kimberly-Clark Worldwide, Inc. Antimicrobial compositions and wet wipes including the same
US5764521A (en) 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
UA21995A (uk) 1996-03-19 1998-04-30 Національний Технічний Університет України "Київський Політехнічний Інститут" Композиція для одержаhhя пористого матеріалу з розплаву
JP3588907B2 (ja) 1996-03-22 2004-11-17 トヨタ自動車株式会社 ポリ乳酸の製造方法
USD384819S (en) 1996-03-22 1997-10-14 Kimberly-Clark Corporation Top surface of a wipe
US5667635A (en) 1996-09-18 1997-09-16 Kimberly-Clark Worldwide, Inc. Flushable premoistened personal wipe
US6028018A (en) 1996-07-24 2000-02-22 Kimberly-Clark Worldwide, Inc. Wet wipes with improved softness
USD384508S (en) 1996-08-22 1997-10-07 Kimberly-Clark Worldwide, Inc. Wipe
USD390708S (en) 1996-10-31 1998-02-17 Kimberly-Clark Worldwide, Inc. Pattern for a bonded fabric
US5962112A (en) 1996-12-19 1999-10-05 Kimberly-Clark Worldwide, Inc. Wipers comprising point unbonded webs
US6070107A (en) 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6228923B1 (en) 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6090325A (en) 1997-09-24 2000-07-18 Fina Technology, Inc. Biaxially-oriented metallocene-based polypropylene films
US6004124A (en) 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
USD418305S (en) 1998-09-24 2000-01-04 Kimberly-Clark Worldwide, Inc. Wipe
US6431477B1 (en) 1998-10-20 2002-08-13 Pallmann Maschinenfabrik Gmbh & Co. Kg Gas flow-type chipping machine
US6479003B1 (en) 1998-11-18 2002-11-12 Northwestern University Processes of mixing, compatibilizing, and/or recylcing blends of polymer materials through solid state shear pulverization, and products by such processes
US6103255A (en) 1999-04-16 2000-08-15 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US7754807B2 (en) 1999-04-20 2010-07-13 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US6790403B1 (en) 1999-04-20 2004-09-14 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US6776602B2 (en) 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US6440437B1 (en) 2000-01-24 2002-08-27 Kimberly-Clark Worldwide, Inc. Wet wipes having skin health benefits
US6500563B1 (en) 1999-05-13 2002-12-31 Exxonmobil Chemical Patents Inc. Elastic films including crystalline polymer and crystallizable polymers of propylene
USD428267S (en) 1999-08-27 2000-07-18 Kimberly-Clark Worldwide, Inc. Repeating pattern for a bonded fabric
US20030113528A1 (en) 1999-09-17 2003-06-19 Wilson Moya Patterned porous structures
US6494390B1 (en) 2000-05-24 2002-12-17 Northwestern University Solid state shear pulverization of multicomponent polymeric waste
TW539705B (en) 2000-06-30 2003-07-01 Tonen Sekiyukagaku Kk Process for preparing heat curable resin micro-porous film
US6818173B1 (en) 2000-08-10 2004-11-16 Northwestern University Polymeric blends formed by solid state shear pulverization and having improved melt flow properties
US20020098341A1 (en) * 2000-12-07 2002-07-25 Schiffer Daniel K. Biodegradable breathable film and laminate
US6582810B2 (en) * 2000-12-22 2003-06-24 Kimberly-Clark Worldwide, Inc. One-step method of producing an elastic, breathable film structure
US20030180525A1 (en) * 2000-12-28 2003-09-25 Strack David Craige Cross-directional extendible films having high breathability and low outer dampness
US20020122828A1 (en) 2001-03-02 2002-09-05 Jun Liu Hybrid porous materials for controlled release
US6592995B2 (en) * 2001-07-24 2003-07-15 Kimberly-Clark Worldwide, Inc. Humidity activated materials having shape-memory
US6866807B2 (en) 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US8684739B2 (en) 2002-03-14 2014-04-01 Mycone Dental Supply Co., Inc. Durable film coating compositions having sustained slow-release capability, and methods of use therefor
US20040002273A1 (en) 2002-07-01 2004-01-01 Kimberly-Clark Worldwide, Inc. Liquid repellent nonwoven protective material
CN1312335C (zh) 2002-08-05 2007-04-25 东丽株式会社 多孔纤维
WO2004043663A2 (en) 2002-11-05 2004-05-27 Material Sciences Corporation Method of producing exfoliated polymer-clay nanocomposite and polymer-clay nanocomposite produced therefrom
US20050119359A1 (en) * 2003-12-02 2005-06-02 Shelby Marcus D. Void-containing polyester shrink film
DE102004050003B4 (de) 2004-10-14 2009-10-01 Pallmann Maschinenfabrik Gmbh & Co Kg Vorrichtung zum Zerkleinern von Aufgabegut mit Kühlluftkanal
US7445735B2 (en) * 2004-12-07 2008-11-04 Daramic Llc Method of making microporous material
JP5033326B2 (ja) * 2005-12-12 2012-09-26 三菱樹脂株式会社 熱収縮性空孔含有フィルム、並びに該フィルムを用いた成形品、熱収縮性ラベル及び容器
US7914891B2 (en) 2005-12-28 2011-03-29 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US7604470B2 (en) 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
CN101506278B (zh) * 2006-08-31 2012-11-14 金伯利-克拉克环球有限公司 高透气性可生物降解薄膜
US7910041B1 (en) 2006-11-27 2011-03-22 Stratasys, Inc. Build materials containing nanofibers for use with extrusion-based layered depositions systems
JP5039795B2 (ja) 2007-02-12 2012-10-03 ストラタシス,インコーポレイテッド 押出型堆積システムのための粘性ポンプ
US7625200B2 (en) 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US8530577B2 (en) 2008-06-30 2013-09-10 Fina Technology, Inc. Compatibilized polypropylene heterophasic copolymer and polylactic acid blends for injection molding applications
US8759446B2 (en) 2008-06-30 2014-06-24 Fina Technology, Inc. Compatibilized polypropylene and polylactic acid blends and methods of making and using same
EP2344578A2 (en) * 2008-10-30 2011-07-20 David Liu Micro-spherical porous biocompatible scaffolds and methods and apparatus for fabricating same
US8435631B2 (en) 2010-04-15 2013-05-07 Ppg Industries Ohio, Inc. Microporous material
US8936740B2 (en) * 2010-08-13 2015-01-20 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
US10753023B2 (en) * 2010-08-13 2020-08-25 Kimberly-Clark Worldwide, Inc. Toughened polylactic acid fibers
US8512024B2 (en) 2011-01-20 2013-08-20 Makerbot Industries, Llc Multi-extruder
JP5755016B2 (ja) * 2011-04-28 2015-07-29 株式会社林技術研究所 発泡樹脂成形体
AU2013217352B2 (en) * 2012-02-10 2016-12-01 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
US11028246B2 (en) * 2013-06-12 2021-06-08 Kimberly-Clark, Inc. Absorbent article containing a porous polyolefin film
ES2837999T3 (es) * 2013-06-12 2021-07-01 Kimberly Clark Co Material polimérico con una distribución multimodal del tamaño de los poros
CN105247119B (zh) * 2013-06-12 2018-07-06 金伯利-克拉克环球有限公司 多孔聚烯烃纤维
JP2016530345A (ja) * 2013-06-12 2016-09-29 キンバリー クラーク ワールドワイド インコーポレイテッド エネルギー吸収部材
KR102166747B1 (ko) * 2013-06-12 2020-10-16 킴벌리-클라크 월드와이드, 인크. 단열재에 사용하기 위한 중합체 물질
US20160120247A1 (en) * 2013-06-12 2016-05-05 Kimberly-Clark Worldwide, Inc. Garment Containing a Porous Polymer Material
EP3008231B1 (en) * 2013-06-12 2019-05-08 Kimberly-Clark Worldwide, Inc. Multi-functional fabric
RU2016107419A (ru) * 2013-08-09 2017-09-06 Кимберли-Кларк Ворлдвайд, Инк. Анизотропный полимерный материал
KR101831079B1 (ko) * 2013-08-09 2018-02-21 킴벌리-클라크 월드와이드, 인크. 복수모드 포어 분포를 갖는 미세입자
BR112016025073B1 (pt) * 2014-06-06 2022-01-04 Kimberly-Clark Worldwide, Inc Artigo termoformado, e, método para termoformagem do mesmo
WO2016085709A1 (en) * 2014-11-26 2016-06-02 Kimberly-Clark Worldwide, Inc. Biaxially stretched porous film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223849A1 (ja) * 2022-05-16 2023-11-23 住友化学株式会社 ペレット、ペレットの製造方法、ペレットを用いた組成物/成形体の製造方法、及び、ペレット製造用の組成物

Also Published As

Publication number Publication date
KR102334602B1 (ko) 2021-12-06
BR112016002589B1 (pt) 2021-08-03
RU2016107693A (ru) 2017-09-07
US11434340B2 (en) 2022-09-06
AU2014304181B2 (en) 2017-08-17
EP3030605A1 (en) 2016-06-15
EP3030605A4 (en) 2017-03-22
EP3030605B1 (en) 2019-08-07
US20160177044A1 (en) 2016-06-23
WO2015019203A1 (en) 2015-02-12
CN105408403A (zh) 2016-03-16
CN105408403B (zh) 2018-12-21
MX2016001599A (es) 2016-05-05
BR112016002589A2 (pt) 2017-08-01
AU2014304181A1 (en) 2016-03-03
KR20160042974A (ko) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6128711B2 (ja) 多機能布帛
JP6128712B2 (ja) 多孔質ポリオレフィン繊維
US11084916B2 (en) Polymeric material with a multimodal pore size distribution
US9957369B2 (en) Anisotropic polymeric material
RU2632842C2 (ru) Полимерный материал для применения в теплоизоляции
US10857705B2 (en) Pore initiation technique
US9957366B2 (en) Technique for selectively controlling the porosity of a polymeric material
JP2016523293A (ja) 低密度を有するポリオレフィン材料
JP2016530345A (ja) エネルギー吸収部材
JP2016527375A (ja) 形状保持特性を持つ柔軟な高分子材料

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205