JP2016518601A - モジュール式マイクロ流体チャネルを有する流量センサおよび製造方法 - Google Patents

モジュール式マイクロ流体チャネルを有する流量センサおよび製造方法 Download PDF

Info

Publication number
JP2016518601A
JP2016518601A JP2016509150A JP2016509150A JP2016518601A JP 2016518601 A JP2016518601 A JP 2016518601A JP 2016509150 A JP2016509150 A JP 2016509150A JP 2016509150 A JP2016509150 A JP 2016509150A JP 2016518601 A JP2016518601 A JP 2016518601A
Authority
JP
Japan
Prior art keywords
channel
substrate
layer
parylene
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016509150A
Other languages
English (en)
Inventor
ジェイソン シー,
ジェイソン シー,
ドゥ ジアンガン,
ドゥ ジアンガン,
ブレイク アクセルロッド,
ブレイク アクセルロッド,
チャンリン パン,
チャンリン パン,
Original Assignee
ミニパンプス, エルエルシー
ミニパンプス, エルエルシー
ジェイソン シー,
ジェイソン シー,
ドゥ ジアンガン,
ドゥ ジアンガン,
ブレイク アクセルロッド,
ブレイク アクセルロッド,
チャンリン パン,
チャンリン パン,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミニパンプス, エルエルシー, ミニパンプス, エルエルシー, ジェイソン シー,, ジェイソン シー,, ドゥ ジアンガン,, ドゥ ジアンガン,, ブレイク アクセルロッド,, ブレイク アクセルロッド,, チャンリン パン,, チャンリン パン, filed Critical ミニパンプス, エルエルシー
Publication of JP2016518601A publication Critical patent/JP2016518601A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明は、マイクロ流体チャネルおよびその製造のための方法に関し、より具体的には、小型移植可能薬物送達デバイス等のマイクロ流体デバイスのために好適なチャネルに関する。リザーバから液体を伝導するためのモジュール式マイクロ流体チャネル構造が、それを通して流動する液体に関するパラメータ(流率または圧力等)を監視するためのセンサを含む。マイクロ流体チャネルは、概して、1つまたはそれを上回る材料(例えば、ガラス、溶融石英、パリレン、および/またはシリコーン等)から作製された熱絶縁基板を備える。

Description

(関連出願の引用)
本願は、米国仮出願第61/814,645号(2013年4月22日出願)および第61/898,681号(2013年11月1日出願)に対する優先権および利益を主張するものであり、それらの全体を参照によりここに援用するものであり、参照により、これらの出願の開示の全体が、本明細書中に援用される。
本発明は、マイクロ流体チャネルおよびその製造のための方法に関し、より具体的には、小型移植可能薬物送達デバイス等のマイクロ流体デバイスのために好適なチャネルに関する。
特に、医療現場における、さらに小型のポンプデバイスの必要性が増大し続けている。結果として、集積流量センサを伴うカニューレ等のますます小型の動作ポンプ構成要素の必要性も、同様に増大しており、従来の製造プロセスの制限に挑戦している。
薬物の投与を監視かつ制御することが、任意の状況において重大である。これは、特に、医師が、多くの場合、密に監視できない移植型薬物ポンプにおいて、重要である。したがって、ポンプは、適切な投薬と、ポンプの状態および性能の監視とを確実にするために、十分な自律安全装置を含有しなければならない。さらに、薬物のリザーバは、制限されたサイズである可能性が高く、その内容物は、タイムリーに補充または交換を確実にするために、監視されなければならない。
従来の流量センサの材料選択肢および構造上の構成は、長期移植年数の間、低流率を正確に測定し、小型移植可能デバイス内にロバスト機能性を維持する一方、十分に小さな設置面積において容易に展開されることはできない。したがって、信頼性があり、生体適合性があり、かつ容易に製造可能である実施可能なマイクロスケール逆止弁と、その再現可能な製造のための方法とが必要である。
種々の実施形態では、本発明は、例えば、移植型薬物ポンプによって分注される薬物の体積流率を測定するためのマイクロ流体チャネルを伴う流量センサを備える。センサは、分注を調整する閉ループフィードバックを駆動してもよい。リアルタイムで体積流率を測定することは、一定体積流率を維持すること、ならびに適切な用量が投薬されたときに薬物のポンプ輸送を終了することのために、薬物ポンプ能力の調節を可能にする。本明細書による流量センサは、100μL/分未満の流率を正確に測定する。いくつかの実施形態では、流率は、20μL/分を下回って正確に測定される。他の実施形態では、流率は、2μL/分を下回って正確に測定される。これらの低流率および超低流率精度は、通常、過度または不十分な送達の場合に有害事象を生じさせ得る高濃度かつ効力のある薬物の調合を含有する、多くの移植可能薬物送達デバイスにおいて必要である。
移植型薬物ポンプ内の構成要素としての役割を果たし得るように、人体の水分および昇温ならびに塩分濃度に暴露されながら、流量センサは、10年もの間の長期間、確実に動作させるように構成される。これらの条件は、典型的な電子および微小電気機械システム(MEMS)構成要素への腐食性および劣化影響をもたらす。本発明の実施形態は、厳しいインプラント条件に対処する製造の材料選択肢および方法を反映する。例えば、溶融石英は、その高純度、高力価、および低熱伝導率のために好適な基板材料である。アモルファス炭化シリコンは、その高熱伝導性、高力価、耐久性、および化学的不活性に起因して良好な誘電体材料である。
種々の実施形態では、本発明は、移植薬物送達ポンプのための多機能モジュール式マイクロ流体センサチャネルを提供する。チャネルの相補的ポケット内に受容され得るカニューレは、それ自体が、1つまたはそれを上回る一体型機能構成要素(例えば、流量センサ、圧力センサ、逆止弁、フィルタ等)を含むことができる。マイクロ流体チャネルのモジュールの性質は、他のマイクロ流体チャネルへのその便宜的組み込みを可能にし、必要に応じて冗長性を可能にする。
本発明の実施形態は、リザーバから液体を伝導するためのモジュール式マイクロ流体チャネルと、カニューレを通して流動する液体に関するパラメータ(流率または圧力等)を監視するためのセンサとを特徴とする。センサは、マイクロ流体チャネルの中に入る金属線に接続される接触パッドを介して、制御回路に電気的に接続されてもよい。マイクロ流体チャネルは、概して、1つまたはそれを上回る材料(例えば、ガラス、溶融石英、パリレン、および/またはシリコーン等)から作製された熱絶縁基板を備える。
したがって、一側面では、本発明は、マイクロ流体流動チャネルに関する。種々の実施形態では、流動チャネルは、電気的および熱的絶縁基板と、基板上に、少なくとも1つのセンサ要素と、それに電気的に接続される少なくとも2つの抵抗要素と、それぞれ、抵抗要素のうちの1つに電気的に接続される少なくとも2つの接触パッドとを含む、回路構成要素であって、センサ要素は、基板のチャネル領域内に配置される、回路構成要素と、回路構成要素上に配置される、誘電体層と、基板上に配置される、(i)基板のチャネル領域にわたるウェルと、(ii)チャネル領域を覆う少なくとも2つの開口と、(iii)それぞれ、その中に流体導管を受容するために構成される1対の受容ポケットとを画定する、少なくとも1つの層とを備える。受容ポケットは、それぞれ、その中に流体導管を受容するために構成され、チャネル領域と流体連通するが、相互に直接連通しない。
いくつかの実施形態では、ウェルは、(i)チャネル領域と同延である、それを通した開口部を有し、チャネル領域の垂直寸法を画定する、第1のパリレン層と、(ii)第1のパリレン層と接触する第2のパリレン層であって開口を含有する、第2のパリレン層とによって画定される。受容ポケットは、例えば、第2のパリレン層と接触するカバー内に形成されてもよい。他の実施形態では、ウェル、開口、およびポケットは、シリコーンの単一のブロックを備えるカバー内に形成される。一特定の実施形態では、カバーは、パリレンであって、誘電体層は、アモルファス炭化シリコンであって、基板は、溶融石英である。別の特定の実施形態では、カバーは、シリコーンであって、誘電体層は、アモルファス炭化シリコンであって、基板は、溶融石英である。代表的構成では、誘電体層は、約10μm〜約100μmの範囲の厚さを有し、開口部は、50μm〜1mmの範囲の最長寸法を有する。
典型的には、接触パッドは、チャネル領域から流体隔離される。センサ要素のうちの1つまたはそれを上回るものは、熱流センサであってもよい。代替として、または加えて、センサ要素のうちの1つまたはそれを上回るものは、飛行時間型センサであってもよい。いくつかの実施形態では、流動チャネルは、残骸を捕捉するためのチャネル領域内に複数の離間支柱を含む。
別の側面では、本発明は、マイクロ流体センサを加工する方法に関する。種々の実施形態では、本方法は、電気的および熱的絶縁基板を提供するステップと、基板に回路構成要素を適用するステップであって、前記回路構成要素は、少なくとも1つのセンサ要素と、それに電気的に接続される少なくとも2つの抵抗要素と、それぞれ、抵抗要素のうちの1つに電気的に接続される少なくとも2つの接触パッドとを含む、ステップと、基板上に、構造を加工するステップであって、前記構造は、(i)少なくとも1つの抵抗要素にわたるが、少なくとも2つの接触パッドから流体隔離される流体チャネルと、(ii)それぞれ、チャネルと流体連通するが、相互に直接連通しない1対の受容ポケットを含むカバーとを含む、ステップとを含む。
いくつかの実施形態では、本方法はさらに、流入管および流出管を受容ポケットの中に挿入するステップを含む。構造がシリコーンから作製される実施形態では、本方法はさらに、管が挿入される流体チャネルの端部をシリコーンで密封するステップを含んでもよい。構造がパリレンから作製される実施形態では、本方法はさらに、複数の機械的アンカで構造の少なくとも一部を基板に係留するステップを含んでもよい。例えば、加工するステップは、(i)ウェルを誘電体層の下にある基板にエッチングするステップと、(ii)中間層が適用されるにつれて、ウェルを充填させ、それによって、中間層を基板に係留するステップとを含んでもよい。カバーは、接着剤で中間層に取着されてもよく、受容ポケットは、キャッチウェルを形成する延在部を含み、浮遊接着剤を捕捉する。
構造は、その中にチャネルを画定する開口部を有するポリマー層と、ポリマー層とカバーとの間にある中間層とを備えてもよい。中間層は、ポケットと流体チャネルとの間で流体連通を可能にする、受容ポケットのぞれぞれの中に少なくとも1つの開口部を含んでもよい。開口部は、中間層を通して、またはポケットとポケットの間にある陥凹との間にあってもよく、陥凹は、チャネルの壁(すなわち、垂直寸法)および天井を形成する。いくつかの実施形態では、本方法はさらに、複数のフィルタ支柱をチャネル内に導入するステップを含む。
いくつかの実施形態では、電気化学プロセスが、欠陥に関してスクリーニングするために使用される。
本明細書で使用されるように、「実質的に」、または「およそ」という用語は、(例えば、重量で、または体積で)±10%、いくつかの実施形態では、±5%を意味する。「本質的に〜から成る」という用語は、本明細書で別様に定義されない限り、機能に寄与する他の材料を除外することを意味する。それでもなお、そのような他の材料が、集合的または個別に、微量で存在し得る。
本明細書の全体を通して「一実施例」、「実施例」、「一実施形態」、または「実施形態」という言及は、実施例と関連して説明される特定の特徴、構造、または特性が、本技術の少なくとも1つの実施例に含まれることを意味する。したがって、本明細書の全体を通した種々の場所での「一実施例では」、「実施例では」、「一実施形態」、または「実施形態」という語句の発生は、必ずしも全て同一の実施例を指しているわけではない。さらに、特定の特徴、構造、ルーチン、ステップ、または特性は、本技術の1つまたはそれを上回る実施例において、任意の好適な様式で組み合わせられてもよい。本明細書で提供される見出しは、便宜上のためにすぎず、請求された技術の範囲または意味を限定または解釈することを目的としていない。
前述のものは、特に、図面と併せて検討されるとき、本発明の以下の詳細な説明からより容易に理解されるであろう。
図1A、1B、および1Cは、それぞれ、一実施形態による、基本的な流量センサ構造の部分的分解図、斜視図、および平面図である。 図1A、1B、および1Cは、それぞれ、一実施形態による、基本的な流量センサ構造の部分的分解図、斜視図、および平面図である。 図1A、1B、および1Cは、それぞれ、一実施形態による、基本的な流量センサ構造の部分的分解図、斜視図、および平面図である。 図1Dは、例えば、シリコーン等の材料内に形成されるポケットを伴うシリコン炭化物基板から加工され得る、流量センサ実施形態の斜視図である。 図2A−2Dは、本発明の実施形態における使用のために好適な流量センサを概略的に例証する。 図3は、図1Aおよび1Bに示される実施形態の流路の拡大断面図である。 図4は、本発明の実施形態による、機械的アンカ構造の作成を例証する。 図5Aおよび5Bは、接着剤ウィッキングを制御する側面チャンバおよび/またはフェンスを含有する、ポケット構造の平面図である。 図6は、本発明の実施形態の流体チャネル内のフィルタ構造を概略的に例証する。 図7は、欠陥のスクリーニングを促進する製造技術を概略的に例証する。
1.基本的構造および動作
まず、本明細書によるマイクロ流体チャネルを伴う流量センサ100を例証する図1A−1Cを参照されたい。流量センサ100は、基板110と、生体適合性ポリマー(例えば、パリレン)層115と、誘電体層118(図4参照)と、中間層120と、カバー125とを含む。基板110の表面を例証する図1Cに最良に見られるように、基板は、127に代表的に示される一連の表面抵抗要素を含む。抵抗要素127は、流量センサ100への電気的接続を促進する、複数の接触パッド130に電気的に接続される。抵抗器127および接触パッド130は全て、基板110の表面上にめっきまたは別様に堆積されてもよい(例えば、熱または電子ビーム蒸発あるいは任意の他の好適な堆積技術によって)。抵抗要素127は、チャネル領域132内に位置する。
マイクロ流体チャネルは、パリレン層115内の開口部137によってデバイス100内に形成される。開口部137の壁は、ウェルを形成し、中間層120は、それにわたる天井を提供する。略長方形開口部137が、図に示されるが、これは、決して不可欠ではなく、開口部は、任意の好適な形状であってもよい。例えば、下記に説明されるように、開口部は、各端部に向かってラッパ状に広がってもよい。開口部137の壁の高さ(すなわち、パリレン層115の厚さ)は、典型的には、20μmである。いくつかの実施形態では、誘電体層118の厚さは、10μm〜100μmの範囲である。典型的なチャネル長が、150μmである。いくつかの実施形態では、チャネル長は、50μm〜1mmの範囲である。誘電体層118は、開口部内にない抵抗要素127の部分を流体から電気的に絶縁し、したがって、誘電体層118の完全性は、薬物溶媒、生理的緩衝液、および体液が全て、高イオン性であり、ひいては、電気的に伝導するため、薬物ポンプにおいて重要である。誘電体層118のための好適な材料は、炭化シリコン、窒化シリコン、二酸化シリコン、炭窒化シリコン、およびシリコンカーボオキサイドを含む。層118は、前述の材料のいずれかの2つまたはそれを上回る層から成る多層誘電体構造であってもよい。
中間層120は、典型的には、平面であり、カバー125および/または下部要素(すなわち、誘電体層118および/または基板110)に一致する(かつ、それらと整合)ように成形される。ジグおよび対応する整合切り欠きまたは孔が、整合目的のために、中間層120に組み込まれてもよい。中間層120およびカバー125は、パリレンおよび/またはシリコーン等の任意の様々な生体適合性材料から作製されてもよい。
中間層120およびカバー125は、継合されると、チャネル132に流体接続される流量制限器を形成してもよい。層120は、それを通して少なくとも2つの開口140、140を含む。これらの開口は、中間層120が、パリレン層115に継合されると、各開口がその対向端部において開口部137の一部を覆うように離間され、いくつかの実施形態では、開口は、ほぼチャネル132に及ぶように離間される。チャネルサイズに対する開口の直径ならびに中間層120の厚さは、流量制限の程度を判定する。いくつかの実施形態では、開口140は、多数であり、流量制限を低下させるが、実際には、流入流体の大粒子または集合体がマイクロ流体流動チャネルに流入することを防止するフィルタとして作用する多孔質膜を作り得る。これは、センサドリフトおよび弁機能性の障害等の問題を遅延または軽減させる、逆止弁等の流量センサ上および流体的に下流構成要素上の不要な蓄積を低下させる。
図3に示されるように、開口140はそれぞれ、カバー125内に形成される、ポケットまたはレセプタクル145、145の下にある。ポケット145は、動作時、流体が、開口140を通して入口カニューレから流体チャネル134の中へ、回路135を横断して、かつポケット145内に受容される出口カニューレによって受容される開口140から外に出て流動するように、流路内のカニューレまたは他の管類をしっかりと受容する。加工に関連する下記に議論される理由のために、図1A−1Cに例証される実施形態が、パリレンから作製され得る一方、下記にさらに詳細に説明される図1Dに示される実施形態は、シリコーンから作製されてもよい。
図1A−1Dに詳細に示されないのは、センサ回路135であり、これは、接触パッド130に電気的に接続され、抵抗要素127の流体的に上流または下流に位置し、最終的に、センサ回路からの信号から流率を判定するための制御回路に接続される。好適なセンサおよび流動回路は、当技術分野で周知であり、例えば、全開示が参照することによって本明細書に組み込まれる、米国出願第12/463,265号(2009年5月8日出願)に説明される。流量センサは、例えば、温度センサ、電気化学的パルスセンサ、および/または圧力センサ等の任意の好適なセンサタイプを組み込む、例えば、飛行時間型センサであってもよい。
一実施形態では、センサ135は、熱流センサである。本明細書による熱流センサは、ヒータと温度センサの両方として機能する流体チャネルと物理的に関連付けられる、単一のセンサ要素を含んでもよい。代替として、熱流センサは、ヒータと、流体チャネルと物理的に関連付けられる複数の独立温度センサ要素との両方を含んでもよい。流体チャネル内のヒータおよび温度センサの配向(上流および下流設置)を改変する多数の構成のいずれかが、採用されてもよい。加えて、異なる構成に従って、測定パラメータは、異なり得る。例えば、複数のセンサは、差温測定および方向流量測定を含む、付加的な細かな差異を可能にする。そのような変動は、異なってマイクロ流体チャネルの選択領域に影響を及ぼし得る、周辺温度変動のためのより良好な感度および可能である補償を可能にする。
種々の実施形態では、好適な制御回路(図示せず)が、1つまたはそれを上回るセンサ要素によって測定される熱パルスを作る、別々の電力パルスをヒータに印加させる。熱パルスは、流率から独立した拡散と、流率に依存した対流とによって、センサ要素に進行する。熱パルスは、制御回路によって検出され得る、局部加熱に比例して各センサの抵抗を増加させる。1つの回路オプションは、センサを定電圧で動かされるホイートストンブリッジの別個のアームにワイヤで結ぶことであり、ブリッジの出力は、差動増幅器に接続され、センサにわたるマイクロ流体チャネルを通して体積流率に比例する信号を発生させる。
例示的センサ構成は、図2A−2Dに例証される。図2Aを参照すると、熱流センサが、1つのヒータ(H)と、ヒータの下流に位置する単一の温度センサTS1とを含む。この実施形態では、制御回路は、ヒータを流れ過ぎる流体を加熱するために、電力を上流ヒータに印加し、下流温度センサによって感知される温度は、ますます高くなる順方向流率に伴って増加する。より具体的には、チャネル132内に流動する流体のためのますます高くなる順方向流率に伴って、加熱された流体は、下流温度センサに到達する前に、熱を消散する時間がほとんどなくなる。再度、図示されないが、流体チャネル132の外側の別の温度センサが、周辺温度変動を補償するために、制御回路によって使用されてもよい。
図2Bに示される構成は、単一のヒータHと、ヒータの下流に位置する第1の温度センサTS1と、ヒータの上流に位置する第2の温度センサTS2とを利用する。ここでも再度、制御回路は、電力をヒータに印加する。2つの温度センサの使用は、指向性流動感知を可能にする。例えば、順方向流動(すなわち、図2Bの流れ矢印の方向に流動する)の場合、下流温度センサTS1によって測定される温度は、増加するであろう一方、上流温度センサTS2によって測定される温度は、減少するであろう。逆のことが、逆流(すなわち、流れ矢印のものに対向する方向に流動する)に当てはまる。加えて、図示されないが、流体チャネル132の外側の別の温度センサもまた、周辺温度変動を補償するために、制御回路によって使用されてもよい。
別のアプローチでは、飛行時間型流量センサが、チャネル132内で流動する流体内にトレーサパルスを発生させ、次いで、このパルスがある距離を横断するためにかかる時間を測定する。この測定される時間は、「飛行時間」として定義され、体積流率に転換され得る、直線速度に対応する。図2Cに例証される実施形態は、加熱された液体のパルスをトレーサとして使用する。飛行時間の大きさは、ヒータおよび温度センサの空間ならびに流体チャネル132の寸法に依存する。図2Dに示される実施形態では、電気化学的パルスが、トレーサとして採用される。この実施形態では、1対の電極が、電気化学的パルスを検出するために使用されてもよい。
図2Cを参照すると、飛行時間型流量センサが、単一のヒータHと、ヒータの下流に位置する2つまたはそれを上回る温度センサTS1、TS2とを含む。再度、制御回路は、別々の電力パルスをヒータに印加してもよい。結果として生じる流体の熱パルスが、流れ矢印の下流方向に進行するにつれて、最初に、第1の温度センサTS1によって、次いで、第2のTS2によって検出される。電力パルスの発生とそれぞれの下流温度センサによる結果として生じる加熱された流体パルスの検出との間の遅滞時間のそれぞれが、流率の指標として使用されることができる。加えて、第1の温度センサを通過する熱パルスと次いで第2の温度センサを通過する熱パルスとの間の遅滞時間もまた、流率を判定するために使用されることができる。また、複数の下流温度センサの使用は、ヒータにより近接する温度センサがより遅い流率により適している(熱パルスが、より遠い下流センサに到達する前に、流体から消散し得るため)一方、より遠い下流の温度センサがより速い流率により良好に適している(熱パルスが、これらのより遠い下流センサに到達するとき、流体内に存在する可能性が依然として高いため)ため、流量センサの範囲が拡大されることを可能にする。
図2Dに示される構成では、飛行時間型流量センサは、上流電極E1、E2と、2つの下流電極E3、E4とを含む。電極のそれぞれは、チャネル132内に流動する流体と接触してもよい。この実施形態では、制御回路は、2つの上流電極E1、E2を使用して、電気化学的パルスを流体内に作ってもよい。より具体的には、別々の電圧パルスが、これらの電極に近接する流体を電気化学的に変化させるために、上流電極E1、E2を横断して印加され得る。概して、これらの電気化学的変化は、流体のイオン濃度またはpHの小さな変化である。電気化学的パルスは、次いで、流量に伴って下流に進行し、2つの下流電極E3、E4によって検出されてもよい。特に、制御回路は、下流電極を横断してインピーダンスを測定してもよい。一実施形態では、電気分解を防止するために、ACインピーダンス測定が、使用される。インピーダンスの変化が、電気化学的パルスの存在をシグナル伝達する。パルス発生の時間と電気化学的パルスの下流検出との間の遅滞は、飛行時間である。再度、流率が増加するにつれて、飛行時間は、減少する。
2.加工
本発明の実施形態に関するスケールにおける現在の加工技術は、典型的には、実質的時間がかかり得る連続的加工ステップにおいて、ウエハレベルで実施される。本明細書の実施形態は、効率的に達成され得る2つの主要なステップのみを利用する。第1のステップは、基板110を作るための平面ウエハの加工である。第2のステップは、チャネル壁および上部を作るチャネル加工である。この区画化加工プロセスは、組立全体に柔軟性および効率性を付与する。加えて、潜在的な製造障壁を除去し、交換可能構成要素(例えば、流量センサ、圧力センサ、逆止弁、フィルタ等の一体型機能構成要素を伴う基板)の使用を促進する。結果として生じる組立ラインモジュール方式ならびにマイクロ流体チャネルの角度、形状、および高さを改変する容易性は、効率的かつ柔軟性のある製造と、より安価な関連付けられたコストとに貢献する。
上記に説明されるように、流量センサは、ガラスまたは溶融石英等の電気的および熱的絶縁基板110上に加工された平面構造である。抵抗要素127は、チタン接着層を伴う白金等の金属から作製されてもよい。抵抗要素127を接触パッド130に接続するワイヤは、金等のより導電性の高い金属の厚い層を含んでもよい。これらの金属は、蒸発(例えば、熱または電子ビーム)またはスパッタリング技術によって堆積されることができる。金属は、リフトオフまたはエッチング技術によってパターン化されることができる。
材料および平面ウエハ構成の選択は、移植使用が可能である流量センサを作るために重要である。溶融石英は、特に、高純度、高力価、および流量センサの動作に影響を及ぼし得る周辺温度の変動からチャネルを絶縁することに役立つ低熱伝導率に起因して、基板材料として好ましい。比較として、従来のシリコン基板は、あまりに脆弱であって、本明細書に想定されるインビボでの使用が可能である薄型流量センサを作ることができない可能性が高いであろう。アモルファス炭化シリコンは、その高熱伝導性、高力価、耐久性、および化学的不活性に起因して、良好な誘電体材料である。化学的不活性流体チャネルは、ポンプが分注された薬物の薬理学的特性を改変するべきではないため、移植可能薬物ポンプにおいて重大であり得る。腐食に対して保護するために層を堆積させる等、材料抵抗を改善する従来の方法は、堆積された材料層が、長期間にわたって剥離し、薬理学的媒体と混合し、可能性として、逆止弁等の下流構造を詰まらせる傾向を有するため、移植使用を充足しない可能性が高いであろう。同様に、自立構造または絶縁空洞を作ることは、流量センサの脆弱性ならびに流量センサの高さを増加させ、それによって、長期移植のためにあまり望ましくないものにさせるであろう。
小さな流動チャネルが、センサの設置面積を最小限にし、ヒータおよびセンサのサイズを最小限にするため、流量センサ電力消費を低下させ、薬理学的流体が捕捉されたままである(投薬の間の数週間または数カ月と、センサ上流の主要薬物リザーバの補充の間の数カ月または数年とであり得る)死空間を減少させ、それによって、薬物が送達される標的物理的場所から可能である汚染物質の体積を最小限にする。
留意されるように、チャネルは、任意の所望の形状、角度、およびサイズを有することができ、これは、中間層のための金型を変化させることによって、迅速に改変されることができる。このモジュール方式は、加工されたマイクロ流体流量センサが様々なMEMSデバイスの異なる構成に容易に一体化されることを可能にする。下記は、2つの一般的に使用される加工材料と、このモジュールプロセスに合わせられた製造ステップとの記述的実施例である。当業者は、他の材料および当分野で既知である材料特有のプロセスが、代替として、採用され得ることを認識するであろう。さらに、チャネルがセンサダイ全体のサイズ未満である具体的な形状に成型されるため、結合パッドおよび電気的接続は、流路から十分に絶縁され、移植可能医療デバイスへのより単純な一体化を促進する。全開示が、参照することによって本明細書に組み込まれる、米国仮出願第61/821,039号(2013年5月8日出願)は、所望の経路に追従し、センサの入口および出口ポケット内に嵌合するように、管を製造する種々の方法について議論する。
図1Dを参照すると、図1A−1Cに例証されるカバー125は、バルク構造を形成するために、金型にわたって鋳造されるシリコーンから加工されることができる。ポケット145は、硬化され、金型から除去され、随意に、構造から任意の未硬化シリコーンを除去するために、1つまたはそれを上回る溶媒(ヘプタン、ヘキサン、キシレン、エチルエーテル、アセトン、またはイソプロパノール等)で処理される、成型されたシリコーンのブロック内に形成される。金型から硬化シリコーンを除去するために、これらの溶媒のうちの任意の1つの拡張効果を使用することは、有用または必要であり得る。この実施形態では、パリレン115および中間層120は、チャネルの壁(すなわち、垂直寸法)がポケット145間のシリコーンカバー125の本体内の陥凹によって画定され得るという点から、省略されてもよい。
シリコーンチャネル構造は、誘電体とシリコーン表面との両方を酸素プラズマに暴露する(両方の表面上に多くのシラノール基を残し、次いで、表面を接触させる)ことによって、シリコン含有誘電体層(炭化シリコン、窒素シリコーンまたは二酸化シリコーン、炭窒化シリコンまたはシリコンカーボオキサイド、あるいはこれらの材料のうちの2つまたはそれを上回るものから作製される多層誘電体構造等)に共有結合される。シリコーン−Si−O−O−Si−誘電体およびシリコーン−Si−O−Si−誘電体を作る反応における表面結合が、副産物としての水と結合する。結合プロセスは、数時間(例えば、2〜24時間)、それらを適度な温度(例えば、60〜100℃)に接触させた後に、部片を焼成することによって、加速かつ強化されることができる。図1Dに例証されるように、圧力下でシリコーンチャネルの変形を減少させ、かつそれを防止するために、剛性上面層160でシリコーンチャネルを補強することが有益となり得る。これは、酸素プラズマで薄いガラスまたは溶融石英片160を成型されたシリコーンブロックの上部に結合することによって、達成され得る。流入管および流出管が、シリコーンブロック内の開口部145の中に挿入され、未硬化シリコーンで密封され、シリコーンを硬化させるために焼成され、それによって、流体隔離をもたらし得る。流量センサ基板110上の下部誘電体への封管シリコーンの結合を強化するために、オクテニル含有化合物が、管を挿入かつ密封する前に、適用されることができる。例えば、7−オクテニルジメチルクロロシラン、7−オクテニルトリクロロシラン、または7−オクテニルトリメトキシシランが、誘電体上に蒸着されることができる。
図1A−1Cに例証される実施形態に戻ると、パリレンカバー120は、シリコーンよりも、剛性であり、不活性であり、かつ気体および液体に対して不浸透性であるが、しかしながら、同一の酸素プラズマ技術を用いて、誘電体層115に結合されることができない。代わりに、パリレンは、例えば、Liger et al.,「Robust parylene−to−silicone mechanical anchoring」,Proceedings of the IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems(2003)(全開示が、参照することによって本明細書に組み込まれる)に説明される方法を使用して、メタクリロキシ含有接着促進剤を用いて増強される機械的アンカで基板に係留されてもよい。
図4に示されるように、好適なアンカは、まず、基板110を暴露するために、誘電体層118内の開口部200をエッチングし、次いで、誘電体層118の下に空洞を開放するために、基板110を選択的かつ等方的にエッチングする(但し、誘電体はエッチングしない)ことによって、加工されてもよい。溶融石英基板110上の炭化シリコン誘電体層118を使用するとき、これらの2つのエッチングは、炭化シリコンをエッチングするためにフッ素ベースのプラズマを使用した後に、溶融石英を等方的にエッチングするフッ酸エッチングが続いて実施される。パリレン層120は、蒸着され、ひいては、デバイス表面に一致するようにコーティングし、機械的相互係止を形成し、パリレンの除去を防止するように、連続層内の誘電体層118の下の空洞200を充填する。
メタクリロキシ接着促進剤(例えば、A174)が、堆積されたパリレン層115の表面に塗布され、パリレン層が、ウエハを横断して堆積される(20μmは、チャネル壁を画定するパリレン層に関する典型的な厚さである)。チャネルは、次いで、金属エッチングマスク(典型的には、アルミニウム)を使用して、酸素プラズマでパリレンをエッチングすることによって画定される。金属エッチングマスクを除去した後に、中間層120およびカバー125が、適用される。カバー125は、入口および出口ポケット145を含む金型にわたりパリレンを堆積させ、カバーの範囲を画定するために金属エッチングマスクを用いて酸素プラズマ中で堆積されたパリレンをエッチングし、金型からパリレンを離型することによって形成されてもよい。パリレンカバー125は、エポキシ樹脂を使用して、パリレン中間層120に結合されてもよい。同様に、流入管および流出管は、エポキシ樹脂を使用して、パリレンチャネルポケット145に結合されてもよい。
管接続部およびチャネルを通る流量に干渉し得るポケットの中への接着剤の侵入を防止するために、1つまたはそれを上回るキャッチウェルが、カバー125の中に導入されてもよい。これらのキャッチウェルは、隆起され、ポケット145の流体延在部は、過度の接着剤を受容する。それらは、接着剤侵入の予期される程度に応じて、数および高さが変動する可能性があるが、典型的には、接着剤のウィッキングを助長するために、ポケットそれ自体よりもはるかに低い高さである。図5Aは、ポケット145の管腔の中に貫入する2つのキャッチウェル215を伴う構成を示す。この設計は、キャッチウェルが、ポケット145内で管留置に干渉することを回避するために十分に浅い場合、または第1のキャッチウェルが、さらなる管挿入を防止する停止部として作用する付加的目的を果たす場合、有用である。図5Bに示されるキャッチウェル220は、ポケット145から離れるように延在し、ひいては、その中で管留置に干渉しない。付加的キャッチウェル215はまた、チャネル137に到達することに先立って、薬物のタンパク質の塊を捕らえる役割を果たし得る。再度、2つのキャッチウェルが、例証的目的のために図に示されるが、最適数は、設計者によって簡単に選択される。
濃縮タンパク質溶液は、塊になる傾向がある。塊のサイズが流体システムにおける最小限チャネル寸法に近づくとき、流動チャネルの閉塞を生じる可能性がある。チャネル内の収縮部の上流に留置されるフィルタが、フィルタの特徴によって判定される、あるサイズを上回るタンパク質または他の微粒子の塊を封鎖し、ひいては、流動チャネルの閉塞を防止することができる。
図6に例証される一実施形態では、流量センサ100は、流動チャネル132内にフィルタ150を含む。フィルタは、あるサイズにおける、かつそれを上回る粒子を捕らえるために選択された直径および空間を有する支柱またはカップのアレイから成る。例えば、直径15μmおよび離間距離15μmの4列の支柱は、より小粒子および塊にならない溶液が通過することを可能にしながら、15μmを上回る粒子を濾過するであろう。いくつかの実施形態では、チャネル132は、フィルタ支柱を伴う端部に向かって外向きに広がり、残骸が支柱の間に蓄積するにつれて、流動への干渉を最小限にしてもよい。
フィルタ支柱が、パリレン層115ケースの中に成型されてもよい。すなわち、アンカが、基板にフィルタ要素を係留するように作られる。パリレンが、蒸着される。金属エッチングマスクが、パリレンの上部に堆積され、パターン化される。金属エッチングマスクは、パリレンチャネルとフィルタ要素との両方を画定する。フィルタおよびチャネルは、酸素プラズマ中でパリレンをエッチングすることによって画定される。
モジュール設計を活用するために、誘電体層の製造における欠点を検出するスクリーニング方法が、実装されてもよい。抵抗要素を液体から分離する誘電体層の完全性は、適切な流量センサ動作には重大である。薬物溶媒、生理的緩衝液、および体液は、高イオン性であり、ひいては、電気的に伝導する。流体を通した抵抗要素の間の電気的接続は、雑音およびドリフトの増加をもたらす。特に、長期インプラントに関してより問題となるのは、イオン溶液への電流通過金属の暴露が、経時的に金属の腐食およびエッチングをもたらすであろうことである。これは、特に、その劣化が流量センサの故障をもたらすであろう抵抗要素の場合、有害である。したがって、故障につながり得る、ピン孔および誘電体内の他の欠陥に関して各流量センサをスクリーニングすることが重要である。
図7は、電気めっき溶液を利用するスクリーニング技術を例証する。電気めっきは、電極にわたって固体金属コーティングを形成するように、電流を使用し、溶解性金属カチオンを低下させる、プロセスである。電気めっき溶液を使用してピン孔をスクリーニングするために、電気化学セル300が、利用される。加工の完了に先立って、その上に回路要素およびそれに結合される誘電体層118を伴う基板110は、セル300内の電気めっき溶液310中に導入される。試験される流量センサ抵抗要素は、作用電極としての役割を果たし、電気めっき溶液はまた、対電極320、典型的には、白金コーティングウエハまたは白金ワイヤのメッシュを含有する。昇温が、多くの場合、電気めっきプロセスを加速させるために使用される。電流または電圧源330が、電極を駆動する。抵抗要素にわたって誘電体内においてピン孔または弱点がある場合、金属は、これらの欠陥にわたってめっきするであろう。十分な時間および電流を前提として、欠陥にわたるめっき金属は、光学顕微鏡下、容易に観察され得るまで、サイズを増大するであろう。したがって、誘電体ピン孔または弱所を伴う流量センサは、容易に識別かつ廃棄されることができる。
このスクリーニングプロセスは、回路要素(例えば、接触パッド)を画定する電気めっきステップの一部として実施されることができ、または回路要素が加工された後に、スクリーニングステップとして、分離して実施されることができる。そのアプローチは、少なくとも2つの主要な利点をもたらす。第1に、ウエハ内の全ての流量センサが、電気的に接続される場合、ウエハ全体が、一度にスクリーニングされることができる。第2に、欠陥デバイスが可視の金属地点で効果的に標識化されるため、それらは、ピン孔スクリーニングプロセスの間、追跡または除去される必要はない。
本明細書に説明されるような薄型かつコンパクトサイズの流量センサに起因して、2つまたはそれを上回る流量センサが、移植可能デバイス内で並列接続されてもよい。これは、高い流量測定精度を維持しながら、合計流率の増加を可能にするだけでなく、流路のうちの1つまたはそれを上回るものが薬物集合体または他の材料によって詰まる場合、冗長性をも作る。
本発明の種々の実施形態が、上記に説明される。しかしながら、本明細書に開示される概念を組み込む他の実施形態も、本発明の精神および範囲から逸脱することなく、使用され得ることは当業者に明白であろう。したがって、上記の説明は、例証のみであり、制限されないことが意図される。

Claims (23)

  1. マイクロ流体流動チャネルであって、
    電気的および熱的絶縁基板と、
    前記基板上に、少なくとも1つのセンサ要素と、それに電気的に接続される少なくとも2つの抵抗要素と、それぞれ、前記抵抗要素のうちの1つに電気的に接続される少なくとも2つの接触パッドとを含む、回路構成要素であって、前記少なくとも1つのセンサ要素は、前記基板のチャネル領域内に配置される、回路構成要素と、
    前記回路構成要素上に配置される、誘電体層と、
    前記基板上に配置される、(i)前記基板のチャネル領域にわたるウェルと、(ii)前記チャネル領域を覆う少なくとも2つの開口と、(iii)それぞれ、その中に流体導管を受容するために構成される1対の受容ポケットとを画定する、少なくとも1つの層であって、前記受容ポケットは、それぞれ、その中に流体導管を受容するために構成され、前記受容ポケットは、前記チャネル領域と流体連通するが、相互に直接連通しない、少なくとも1つの層と、
    を備える、流動チャネル。
  2. 前記ウェルは、(i)前記チャネル領域と同延である、それを通した開口部を有し、前記チャネル領域の垂直寸法を画定する、第1のパリレン層と、(ii)前記第1のパリレン層と接触する第2のパリレン層であって、前記開口を含有する、第2のパリレン層とによって画定される、請求項1に記載の流動チャネル。
  3. 前記受容ポケットは、前記第2のパリレン層と接触するカバー内に形成される、請求項2に記載の流動チャネル。
  4. 前記ウェル、前記開口、および前記ポケットは、シリコーンの単一のブロックを備えるカバー内に形成される、請求項1に記載の流動チャネル。
  5. 前記接触パッドは、前記チャネル領域から流体隔離される、請求項1に記載の流動チャネル。
  6. 前記少なくとも1つのセンサ要素の各々は、熱流センサである、請求項1に記載の流動チャネル。
  7. 前記少なくとも1つのセンサ要素の各々は、飛行時間型センサである、請求項1に記載の流動チャネル。
  8. 前記カバーは、パリレンであって、前記誘電体層は、アモルファス炭化シリコンであって、前記基板は、溶融石英である、請求項3に記載の流動チャネル。
  9. 前記誘電体層は、アモルファス炭化シリコンであって、前記基板は、溶融石英である、請求項4に記載の流動チャネル。
  10. 残骸を捕捉するために、前記チャネル領域内に複数の離間支柱をさらに備える、請求項1に記載の流動チャネル。
  11. 前記誘電体層は、約10μm〜約100μmの範囲の厚さを有し、前記開口部は、50μm〜1mmの範囲の最長寸法を有する、請求項1に記載の流動チャネル。
  12. マイクロ流体センサを加工する方法であって、前記方法は、
    電気的および熱的絶縁基板を提供するステップと、
    前記基板に、回路構成要素を適用するステップであって、前記回路構成要素は、少なくとも1つのセンサ要素と、それに電気的に接続される少なくとも2つの抵抗要素と、それぞれ、前記抵抗要素のうちの1つに電気的に接続される少なくとも2つの接触パッドとを含む、ステップと、
    前記基板上に構造を加工するステップであって、前記構造は、(i)前記少なくとも1つの抵抗要素にわたるが、前記少なくとも2つの接触パッドから流体隔離される流体チャネルと、(ii)それぞれ、前記チャネルと流体連通するが、相互に直接連通しない、1対の受容ポケットを含むカバーとを含む、ステップと、
    を含む、方法。
  13. 流入管および流出管を前記受容ポケットの中に挿入するステップをさらに含む、請求項12に記載の方法。
  14. 前記構造は、シリコーンから作製され、管が挿入される前記流体チャネルの端部をシリコーンで密封するステップをさらに含む、請求項12に記載の方法。
  15. 前記構造は、パリレンから作製され、複数の機械的アンカで前記構造の少なくとも一部を前記基板に係留するステップをさらに含む、請求項12に記載の方法。
  16. 前記構造は、その中に前記チャネルを画定する開口部を有するポリマー層と、前記ポリマー層と前記カバーとの間にある中間層とを備える、請求項12に記載の方法。
  17. 前記中間層は、前記ポケットと前記流体チャネルとの間で流体連通を可能にする、前記受容ポケットのぞれぞれの中に少なくとも1つの開口部を含む、請求項16に記載の方法。
  18. 複数のフィルタ支柱を前記チャネル内に導入するステップをさらに含む、請求項12に記載の方法。
  19. 前記加工するステップは、前記カバーをシリコーンから成型するステップを含む、請求項12に記載の方法。
  20. 前記加工するステップは、前記カバーをパリレンから成型するステップを含む、請求項12に記載の方法。
  21. 前記加工するステップは、(i)ウェルを前記誘電体層の下にある前記基板にエッチングするステップと、(ii)前記中間層が適用されるにつれて、前記ウェルを充填させ、それによって、前記中間層を前記基板に係留するステップとを含む、請求項16に記載の方法。
  22. 前記カバーは、接着剤で前記中間層に取着され、前記受容ポケットは、キャッチウェルを形成する延在部を含み、浮遊接着剤を捕捉する、請求項16に記載の方法。
  23. 欠陥に関して電気化学的にスクリーニングするステップをさらに含む、請求項12に記載の方法。
JP2016509150A 2013-04-22 2014-04-22 モジュール式マイクロ流体チャネルを有する流量センサおよび製造方法 Pending JP2016518601A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361814645P 2013-04-22 2013-04-22
US61/814,645 2013-04-22
US201361898681P 2013-11-01 2013-11-01
US61/898,681 2013-11-01
PCT/US2014/034975 WO2014176250A1 (en) 2013-04-22 2014-04-22 Flow sensors with modular microfluidic channels and methods of manufacture

Publications (1)

Publication Number Publication Date
JP2016518601A true JP2016518601A (ja) 2016-06-23

Family

ID=50983110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016509150A Pending JP2016518601A (ja) 2013-04-22 2014-04-22 モジュール式マイクロ流体チャネルを有する流量センサおよび製造方法

Country Status (7)

Country Link
US (1) US10400759B2 (ja)
EP (1) EP2989430B1 (ja)
JP (1) JP2016518601A (ja)
CN (1) CN105683720A (ja)
AU (1) AU2014257234B2 (ja)
CA (1) CA2910126A1 (ja)
WO (1) WO2014176250A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061462B2 (ja) * 2014-12-04 2022-04-28 ベクトン・ディキンソン・アンド・カンパニー 液体低体積検出および閉塞検知のための力検知抵抗器、ならびに流体送達デバイス内の流体経路に沿った流れ検知のための方法および装置
US10900921B2 (en) * 2015-01-20 2021-01-26 Masco Corporation Multi-functional water quality sensor
CA2975420A1 (en) 2015-01-30 2016-08-04 Hewlett-Packard Development Company, L.P. Microfluidic sensing
JP6460431B2 (ja) 2015-01-30 2019-01-30 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 流体試験チップ及びカセット
JP6539458B2 (ja) * 2015-02-23 2019-07-03 サーパス工業株式会社 熱式流量計
JP6563211B2 (ja) 2015-02-23 2019-08-21 サーパス工業株式会社 熱式流量計およびその製造方法
US20180221874A1 (en) * 2015-08-07 2018-08-09 President And Fellows Of Harvard College Fluidic devices incorporating functional muscle tissue and methods of use
US11384328B2 (en) 2015-11-18 2022-07-12 President And Fellows Of Harvard College Cartridge-based system for long term culture of cell clusters
US20190117170A1 (en) * 2016-07-19 2019-04-25 Eccrine Systems, Inc. Sweat conductivity, volumetric sweat rate and galvanic skin response devices and applications
US10317962B2 (en) 2016-08-16 2019-06-11 International Business Machines Corporation Inducing heterogeneous microprocessor behavior using non-uniform cooling
US10558249B2 (en) * 2016-09-27 2020-02-11 International Business Machines Corporation Sensor-based non-uniform cooling
US10274353B2 (en) * 2017-03-22 2019-04-30 A. O. Smith Corporation Flow sensor with hot film anemometer
FR3065281B1 (fr) * 2017-04-18 2019-06-14 Centre National De La Recherche Scientifique Dispositif de mesure de vitesse ou de debit de gaz
US11629318B2 (en) 2017-10-20 2023-04-18 President And Fellows Of Harvard College Methods for producing mature adipocytes and methods of use thereof
US10928624B2 (en) * 2017-12-29 2021-02-23 Texas Instruments Incorporated Microelectromechanical system (MEMS) structure and method of formation
US11547998B2 (en) 2018-02-12 2023-01-10 Hewlett-Packard Development Company, L.P. Devices to measure flow rates with movable elements
WO2019156687A1 (en) 2018-02-12 2019-08-15 Hewlett-Packard Development Company, L.P. Microfluidic flow sensor
WO2019211407A1 (en) 2018-05-02 2019-11-07 Cequr Sa Devices and methods for providing a bolus dose in a microfluidic circuit of a pump
WO2020198318A1 (en) * 2019-03-25 2020-10-01 Flo Technologies, Inc. Thin film thermal mass flow sensors in fluid applications
US11965762B2 (en) 2019-10-21 2024-04-23 Flusso Limited Flow sensor
CN111122981B (zh) * 2019-12-25 2022-02-18 杭州电子科技大学 用于测量液体介电常数的高灵敏度微流体传感器
FR3110568A1 (fr) * 2020-05-20 2021-11-26 Université De Rennes 1 Puce microfluidique tridimensionnelle, procede de fabrication d’une telle puce et utilisation pour la separation de particules dans des solutions colloïdales
EP4372325A1 (en) 2022-11-15 2024-05-22 Flusso Limited Method and controller for controlling a fluid-flow sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515081A (ja) * 2002-01-24 2005-05-26 エヌシーエスアール“デモクリトス”−インスティテュート オブ マイクロエレクトロニクス 多孔質シリコンで封止するエアキャビティ技術またはマイクロチャネル技術を用いた低電力シリコン熱センサ及びマイクロ流体デバイス
JP2011519696A (ja) * 2008-05-08 2011-07-14 リプレニッシュ パンプス, エルエルシー 埋込型ポンプおよびそのためのカニューレ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548078A (en) 1982-09-30 1985-10-22 Honeywell Inc. Integral flow sensor and channel assembly
US5354695A (en) * 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US6635226B1 (en) * 1994-10-19 2003-10-21 Agilent Technologies, Inc. Microanalytical device and use thereof for conducting chemical processes
US7258003B2 (en) * 1998-12-07 2007-08-21 Honeywell International Inc. Flow sensor with self-aligned flow channel
US20080044939A1 (en) 2002-01-24 2008-02-21 Nassiopoulou Androula G Low power silicon thermal sensors and microfluidic devices based on the use of porous sealed air cavity technology or microchannel technology
US7666285B1 (en) * 2004-02-06 2010-02-23 University Of Central Florida Research Foundation, Inc. Portable water quality monitoring system
WO2009029236A1 (en) * 2007-08-24 2009-03-05 Siargo, Inc. Configuration and methods for manufacturing time-of-flight mems mass flow sensor
EP2282180A1 (en) 2007-09-20 2011-02-09 Yamatake Corporation Flow sensor and manufacturing method therefor
US7703336B2 (en) 2008-01-08 2010-04-27 Fluonic Inc. Multi-sensor mass flow meter along with method for accomplishing same
JP5895006B2 (ja) * 2012-01-18 2016-03-30 日立オートモティブシステムズ株式会社 熱式流量計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515081A (ja) * 2002-01-24 2005-05-26 エヌシーエスアール“デモクリトス”−インスティテュート オブ マイクロエレクトロニクス 多孔質シリコンで封止するエアキャビティ技術またはマイクロチャネル技術を用いた低電力シリコン熱センサ及びマイクロ流体デバイス
JP2011519696A (ja) * 2008-05-08 2011-07-14 リプレニッシュ パンプス, エルエルシー 埋込型ポンプおよびそのためのカニューレ

Also Published As

Publication number Publication date
CA2910126A1 (en) 2014-10-30
US20140311912A1 (en) 2014-10-23
EP2989430A1 (en) 2016-03-02
AU2014257234A1 (en) 2015-11-12
US10400759B2 (en) 2019-09-03
WO2014176250A1 (en) 2014-10-30
EP2989430B1 (en) 2019-07-03
CN105683720A (zh) 2016-06-15
AU2014257234B2 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP2016518601A (ja) モジュール式マイクロ流体チャネルを有する流量センサおよび製造方法
US8132455B2 (en) Robust micromachined thermal mass flow sensor with double side passivated polyimide membrane
US20030107386A1 (en) Apparatus for and method of making electrical measurements of objects
US20080264181A1 (en) Flow sensor chip
JP2002541573A (ja) モノリシック高性能小形流量調節ユニット
JP2008511836A (ja) 自己整合流れチャネルを有する流量センサ
US10508941B2 (en) Flow sensor
JP4617356B2 (ja) 組み合わされた流量、気泡、および閉塞の検出器
JP2006017724A (ja) 非対称デザインを有する熱式流量センサ
US20230031763A1 (en) Device for delivering medication including interposer
JP3893381B2 (ja) 生体試料が発する電気信号を測定するための測定デバイスおよび測定方法
US9423336B2 (en) Systems and methods for particle sensing and characterization
JP2021073460A (ja) 溶液中の電気活性種の存在又は流れを検出する電気信号の測定
Baldwin et al. An electrochemical-based thermal flow sensor
JP2009109349A (ja) フローセンサ
JP2016004009A (ja) センサ
KR20240007188A (ko) 유체를 제어하거나 측정하기 위한 디바이스
JP2015194428A (ja) フローセンサおよびフローセンサの製造方法
JP6219769B2 (ja) フローセンサおよびフローセンサの製造方法
JP2015141948A (ja) 回路基板およびセンサ
US20150316425A1 (en) Pump provided with an assembly for measuring the temperature or flow rate of a fluid
JP2016527513A (ja) ストローク体積変位流量センサ及び流量調整方法
Tanaka et al. Thermal micro flow sensor
JP2015194425A (ja) フローセンサおよびフローセンサの製造方法
JP2005164586A (ja) 流過流測定及び質量流測定を行なうためのたわみビームセンサ並びに流過流測定を行なうためのたわみビームセンサを製造する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180706