JP2016515291A - 電気化学セルスタックのためのクランプ装置 - Google Patents

電気化学セルスタックのためのクランプ装置 Download PDF

Info

Publication number
JP2016515291A
JP2016515291A JP2016500562A JP2016500562A JP2016515291A JP 2016515291 A JP2016515291 A JP 2016515291A JP 2016500562 A JP2016500562 A JP 2016500562A JP 2016500562 A JP2016500562 A JP 2016500562A JP 2016515291 A JP2016515291 A JP 2016515291A
Authority
JP
Japan
Prior art keywords
plate
cell stack
electrochemical cell
clamping device
coupling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016500562A
Other languages
English (en)
Other versions
JP6524053B2 (ja
Inventor
ジェニス・ターロン・テキシドール
スティーブン・ダブリュ・シャンク
ベンジャミン・ヨン・パク
ラビ・バチア・ゾーク
Original Assignee
エネヴェート・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エネヴェート・コーポレーション filed Critical エネヴェート・コーポレーション
Publication of JP2016515291A publication Critical patent/JP2016515291A/ja
Application granted granted Critical
Publication of JP6524053B2 publication Critical patent/JP6524053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電気化学セルスタックのためのクランプ装置が提供される。クランプ装置は、第1プレート及び第2プレートを含んでいる。第2プレートは、第1プレートと第2プレートとの間の空間が電気化学セルスタックを収容するサイズとされるように第1プレートに対して位置決め可能である。また、装置は、第1プレートを前記第2プレートに結合させる結合部材を含んでいる。第1プレート及び第2プレートの少なくとも一方が、他方のプレートから離れるように移動可能である。結合部材が、第1終端部分及び第2終端部分を有している。装置は、第1終端部分と第2終端部分との間に配置された弾性部材をさらに含んでいる。

Description

本開示は、全体としてクランプ装置に関する。特に、本開示は、電気化学セルスタックのためのクランプ装置に関する。
リチウムイオンバッテリーは、概して、アノードとカソードとの間にセパレータ及び/又は電解質を含んでいる。バッテリーのいくつかでは、セパレータ、カソード及びアノード材料は、個々に、シート又はフィルムに形成される。その後、カソード、セパレータ及びアノードのシートは、セパレータがカソードとアノード(例えば電極)とを分離して積み重ねられるか又は巻かれ、これによりバッテリーを形成する。カソード、セパレータ及びアノードが巻かれるために、各シートは、クラックのような故障、破損、機械的故障などがなく巻かれるために、十分に変形可能であるか又は可撓性を有しなければならない。代表的な電極は、導電性金属(例えばアルミニウム及び銅)上に電気化学的活物質層を含んでいる。例えば、炭素は、不活性バインダー材料とともに電流コレクタ(例えば銅シート)上に堆積される。炭素は、優れた電気化学的特性を有し且つ導電性も有するので、しばしば使用される。電極は、巻かれるか、又はピースに切断され、ピースは、その後、スタックに重ねられる。スタックは、電気化学的活物質の間のセパレータと交互の電気化学的活物質からなる。
リチウムイオンバッテリーの体積及び質量エネルギー密度を増大させるために、シリコンが、負極のための活物質として提案されてきた。しかしながら、サイクル中に、アノード活物質中のシリコン粒子は、充電時に膨張する。この膨張は、電流コレクタとして使用される金属箔を変形させる可能性がある。セルスタックの層が狭い領域に閉じ込められているので、膨張は、金属箔のゆがみ又は変形をもたらし、従ってバッテリースタックにおける層の間の接触面積を減少させる可能性がある。結果として、バッテリーが電荷を受容し且つ解放する能力は、大幅に影響を与えられるかもしれない。従って、電極が変形することを防止することが、不可逆容量を減少させ且つサイクル寿命を向上させることに役立つ。
ある実施形態では、電気化学セルスタックのためのクランプ装置が提供される。クランプ装置は、第1プレートと、第1プレートと第2プレートとの間の空間が電気化学セルスタックを収容するサイズとされるように第1プレートに対して位置決め可能な第2プレートと、を含むことができる。また、クランプ装置は、第1プレートを第2プレートに結合させる結合部材を含むことができる。第1プレート及び第2プレートの少なくとも一方が、他方のプレートから離れるように移動可能である。また、結合部材が、第1終端部分及び第2終端部分を有することができる。さらに、クランプ装置は、第1終端部分と第2終端部分との間に配置された弾性部材を含むことができる。
いくつかの実施形態では、第1プレートと第2プレートとの間の距離の変化が、電気化学セルスタックの膨張と相関する。結合部材の第1終端部分及び第2終端部分の少なくとも一方が、電気化学セルスタックに付与される圧力を設定するように構成されることができる。また、クランプ装置は、充電時に電気化学セルスタック内の電極の変形を減少させるように構成されることができる。さらに、弾性部材が、電気化学セルスタックの充電中に圧縮されるように構成され、それにより、第1プレート及び第2プレートによって与えられる電気化学セルスタックへの圧力の増大を減少させることができる。圧力の増大を減少させることが、電気化学セルスタックに実質的に一定の圧力をもたらすことができる。
いくつかの実施形態では、弾性部材が、電気化学セルスタックの充電中に圧縮されるように構成され、それにより、電気化学セルスタックの膨張に起因する電気化学セルスタックへの圧力の変化を減少させる。弾性部材が、バネ、プランジャ、弾性バンド、空気圧式ピストン又は発泡体を含むことができる。結合部材が、留め具、バネクランプ又はC−クランプを含むことができる。第1終端部分又は第2終端部分の少なくとも一方が、複数のナット又は複数の留め具ヘッドを備えることができる。
さらなる実施形態では、電気化学セルスタック内の電極の変形を減少させる方法が提供される。方法は、第1プレートと第2プレートとの間に電気化学セルスタックを位置決めするステップと、電気化学セルスタックに付与される圧力を設定するために、結合部材の終端部分を調節するステップと、を含む。
いくつかの実施形態では、方法は、電気化学セルスタックを充電するステップを含むことができる。また、電気化学セルスタックが、第1時間の間電気化学セルスタックを充電する前に、第1プレートと第2プレートとの間に位置決めされることができる。方法は、セル形成又はセル予処理の後に、電気化学セルスタックを取り除くステップをさらに含むことができる。
本明細書で説明されるある実施形態に従った電気化学セルスタックのための例示的なクランプ装置の写真である。 図1に示される例示的なクランプ装置の概略図である。 一定間隙型クランプ装置に設置された電気化学セルスタックのセル膨張の関数としての電気化学セルスタックへの力のプロットである。 本明細書で説明されるある実施形態のクランプ装置に設置された電気化学セルスタックのセル膨張の関数としての電気化学セルスタックへの力のプロットである。 電気化学セルスタック内で反ったアノードの写真である。 本明細書で説明されるある実施形態のクランプ装置に設置された電気化学セルスタックの反っていないアノードの写真である。 電気化学セルスタック内の電極の変形を減少させる例示的な方法を示す。
再充電可能なリチウムイオンセルで現在使用されているアノード電極は、概して、1グラム当たりおよそ200ミリアンペア時の特別な容量を有している(金属箔電流コレクタ、導電性添加剤及びバインダー材料を含む)。ほとんどのリチウムイオンバッテリーアノードで使用されている活物質であるグラファイトは、1グラム当たり372ミリアンペア時(mAh/g)の理論的エネルギー密度を有している。比較すると、シリコンは、4200mAh/gの高い理論的容量を有している。しかしながら、シリコンは、リチウム挿入時に300%を超えて膨張する。この膨張の理由から、シリコンを含むアノードは、シリコン粒子の間の電気的接触を維持する一方で膨張が可能とされるべきである。しかしながら、電気化学セルスタックが膨張するときに、膨張は均一ではなく、セルスタックの厚さの変化及び変形をもたらす。
この開示は、充電時にセルスタック内で膨張する電極の変形を減少させるように構成された電気化学セルスタックのためのクランプ装置のある実施形態を説明する。セルスタックは、グラファイト、シリコンベースの、スズベースの又は他の合金ベースの電極を含むことができる。例えば、クランプ装置は、第1プレート及び第2プレートを備えることができる。第2プレートは、第1プレートと第2プレートとの間の空間が電気化学セルスタックを収容するサイズとされるように、第1プレートに対して位置決め可能である。また、クランプ装置は、第1プレートを第2プレートに結合する結合部材を備えることができる。第1プレート及び第2プレートの少なくとも一方は、他方のプレートから離れるように移動可能である。例えば、第1プレート及び第2プレートの少なくとも一方は、結合部材周りで移動可能である。
第1プレート及び第2プレートの少なくとも一方が他方のプレートから離れるように移動可能でなかった場合、第1プレート及び第2プレートは、充電中のセルスタックの膨張時にセルスタックに、増大する圧力を与える可能性がある。放置されたままとされると、十分に高い圧力に達した場合、セルスタックが損傷し、例えばセルスタックをショートさせる。しかしながら、ある実施形態では、第1プレート及び第2プレートの少なくとも一方が他方のプレートから離れるように移動可能であるので、第1プレート及び第2プレートによってセルスタックに与えられる圧力のいくらかは軽減され、また制御されることができる。
例えば、いくつかの実施形態では、第1プレート及び第2プレートの一方のみが、セルスタックが膨張するときに移動可能である。他の実施形態では、双方のプレートが、セルスタックが膨張するときに移動可能である。第1プレートと第2プレートとの間の距離の変化は、セルスタックの膨張と相関する。
いくつかの実施形態では、結合部材は、第1終端部分及び第2終端部分を有している。クランプ装置は、第1終端部分と第2終端部分との間に配置された弾性部材をさらに含んでいる。結合部材の第1終端部分及び第2終端部分の少なくとも一方は、セルスタックに付与される圧力を設定するように構成される。例えば、弾性部材は、セルスタックの充電中に圧縮されるように構成される。弾性部材が圧縮されると、第1プレート及び第2プレートによって与えられるセルスタックへの圧力の増大が、減少されることができる。いくつかの例では、第1プレート及び第2プレートによる圧力の減少された増大は、セルスタックへの圧力の若干の変化(又は実質的に一定の圧力)をもたらし、それにより、不均一な膨張に起因するセルスタックの厚さの変化及び/又は変形を減少させる。
本明細書で説明されるように、クランプ装置のある実施形態は、第1プレート及び第2プレートを含んでいる。いくつかの実施形態では、第1プレートは、第2プレートと実質的に同じ材料から製造することができる。他の実施形態では、第1プレートは、第2プレートと異なる材料から製造することができる。材料は、金属(例えばカーボンスチール又はアルミニウム)及び/又はポリマー(例えばポリプロピレン又はエポキシ)を含むことができる。また、材料は、絶縁材を含むことができる。第1プレート及び第2プレートの少なくとも一方の断面形状は、正方形、矩形、円形、卵形又は多角形(例えば五角形、六角形、八角形など)であってもよい。第2プレートは、第1プレートと第2プレートとの間に空間があるように第1プレートに対して位置決めすることが可能である。空間が、電気化学セルスタックを収容するサイズとされるので、第1プレート及び第2プレートの寸法は、第1プレートと第2プレートとの間にセルスタックを収納することができるようなサイズとされて成形されている。従って、第1プレート及び第2プレートの寸法は、セルスタックのサイズ及び形状に依存する。さらに、第1プレート及び第2プレートの厚さは、セルスタックの充電時に第1プレート及び第2プレートの曲げを減少させるようなサイズとされてもよい。例えば、第1プレート及び第2プレートの厚さは、約0.5cmから約0.8cmの間、例えば約0.6cm、約0.65cm又は約0.7cmであってもよい。いくつかの実施形態では、第1プレートの形状及び寸法は、第2プレートの形状及び寸法と実質的に同じであってもよい。他の実施形態では、第1プレートの形状及び寸法は、第2プレートの形状及び寸法と異なっていてもよい。
いくつかの実施形態では、第1プレートと第2プレートとの間の空間は、1つよりも多いセルスタックを収容するようなサイズとされている。例えば、複数のセルスタックが並んで配置されるか、又は第1プレートと第2プレートとの間で互いの頂部上に積み重ねられてもよい。このような実施形態では、多数のセルスタックが、同じクランプ装置(例えば、セルスタックに、類似するか又は実質的に同じ設定圧力を維持するための同じ弾性部材)を利用することができる。さらに、クランプ装置は、第1プレート及び第2プレートよりも多いプレート、例えば互いの頂部上に積み重ねられる多数のプレートを含んでもよい。2つのプレートの間の空間は、少なくとも1つのセルスタックをそれぞれ収容するようなサイズとされることができる。このような実施形態では、いくつかのセルスタックは、同じ弾性部材を利用することができる。従って、複数のセルスタックが、追加的なプレート及び/又はスペーサを有して又は有することなく、第1プレートと第2プレートとの間に配置されてもよい。
いくつかの実施形態では、結合部材が、第1プレート及び/又は第2プレートにおける孔を通って延在している。例えば、結合部材は、第1プレートと第2プレートとを結合することができる長手方向の長さを有する任意の延在構造体である。いくつかの実施形態では、結合部材は、第1プレート又は第2プレート内に固定されるか又は取り付けられてもよい。例えば、結合部材は、一端が第1プレート又は第2プレートに固定された柱/ロッドであるか、又は結合部材は、第1プレート又は第2プレート内に直接螺合されたネジ部分を有するネジ又は柱である。他の実施形態では、結合部材は、第1プレートの第1孔及び第2プレートの第2孔を通って延在している。いくつかの実施形態では、結合部材は、留め具、例えばネジ、ボルト又はロッド/柱である。いくつかの実施形態では、ロッド/柱は、ネジ部分又は凹凸部分を含むか又は含まなくてもよい。他の実施形態では、結合部材は、クランプ、例えばC−クランプを備えている。いくつかの実施形態では、クランプ装置は、1つ以上の結合部材を備えている。
いくつかの実施形態では、第1終端部分及び第2終端部分は、独立して、ナット、ヘッド(例えばネジヘッド、ボルトヘッド又は同等のもの)、柱クランプ、プレート(例えば第1プレートもしくは第2プレート又は追加的な第3プレート)又はC−クランプのパーツである。また、第1終端部分及び第2終端部分は、可動プレートが結合部材から結合解除されることを防止するように構成されている。いくつかの実施形態では、第1終端部分及び第2終端部分は、第1プレートと第2プレートとの間のセルスタックに付与される圧力を設定するように構成されている。例えば、設定圧力は、セルスタックの不均一な厚さの変化を補償することを支援することを考慮する。複数の結合部材が使用される実施形態では、1つの結合部材によって設定される圧力は、別の結合部材によって設定される圧力と異なることができる。
クランプ装置は、第1終端部分と第2終端部分との間に配置された弾性部材をさらに備えることができる。弾性部材は、第1プレートと第1終端部分との間、第2プレートと第2終端部分との間、又は第1プレートと第2プレートとの間に配置されてもよい。弾性部材は、バネ定数を有し、且つ伸張部材又は圧縮部材であってもよい。弾性部材が第1プレートと第1終端部分との間及び/又は第2プレートと第2終端部分との間に配置されているいくつかの実施形態では、弾性部材は、第1プレート又は第2プレートを第1終端部分又は第2終端部分それぞれから離すように押圧するように構成された圧縮部材である。弾性部材が第1プレートと第2プレートとの間に配置されるいくつかの実施形態では、弾性部材は、伸張部材であり、伸張部材は、第1プレート及び第2プレートを互いに向かって引くか、又は第1プレート及び第2プレートを互いに向かって押し付けさせるために2つのプレートに力を与えるように構成されている。いくつかの実施形態では、弾性部材は、バネ(伸張バネ及び圧縮バネを含む)、プランジャ、弾性バンド、空気圧式ピストン又は発泡体を含んでもよい。いくつかの実施形態では、弾性バンド(例えばゴムバンド)は、第1プレート及び第2プレートの周囲に配置される。弾性バンドは、第1プレート及び第2プレートの少なくとも一方が、電気化学セルスタックの膨張時に他方のプレートから離れるように移動することを可能にするように構成されている。第1プレート又は第2プレートの少なくとも一方は、セルスタックに付与される圧力を設定するために弾性バンドを圧縮するように構成することができる。
別の実施形態では、終端部分は、2つのプレートを互いに対して一定距離で保持するC−クランプのパーツを含むことができる。第3プレート及び弾性部材は、2つの固定されたプレートの間に挿入することができる。
図1は、本明細書で説明されるある実施形態に従った例示的なクランプ装置の写真である。図2は、サイクル中にセルスタックを閉じ込めてセルスタックに圧力を与えるために使用される、図1に示される例示的なクランプ装置の概略図である。クランプ装置200は、第1プレート210及び第2プレート220を含んでいる。第2プレート220は、第1プレート210と第2プレート220との間の空間230が電気化学セルスタック240を収容するサイズとされるように、第1プレート210に対して位置決め可能である。また、クランプ装置200は、第1プレート210を第2プレート220に結合する結合部材250(例えばネジボルト)を含んでいる。第1プレート210及び第2プレート220の少なくとも一方は、他方のプレートから離れるように移動可能である。例えば、第2プレート220は、セルスタック240が膨張するときに結合部材250に沿って上方に移動することができる。いくつかの実施形態では、第1プレート210は、結合部材250周りで移動可能であってもよい。例えば、第1プレート210は、セルスタック240が膨張するときに結合部材250に沿って下方に移動してもよい。
結合部材250は、(符号255と反対の終端部分に)第1終端部分及び第2終端部分255(例えばボルトヘッド)を有している。クランプ装置200は、第1終端部分と第2終端部分255との間に配置された弾性部材260(例えばバネ)をさらに含んでいる。サイクル時にセルスタック240がクランプ装置200内で膨張するときに、弾性部材260は、第2プレート220が結合部材250に沿って第1プレート210に対して所定距離に移動することを可能にする。第1プレート210と第2プレート220との間の距離の変化は、セルスタック240の膨張と相関する。
クランプ装置200の第2終端部分255は、弾性部材260を圧縮するように構成されている。従って、結合部材250の第2終端部分255は、例えばボルトヘッドを締めること又は緩めることによって、セルスタック240に付与される圧力を設定するように構成されている。図2に示される例示的なクランプ装置200では、結合部材250は、4つのボルト255を備えている。各ボルト255は、独立して締められるか又は緩めることができる。従って、各弾性部材260は、セルスタック240に付与される圧力を設定するために独立して圧縮され、これにより、例えば、第1プレート210及び第2プレート220によって与えられるセルスタック240に付与される圧力の増大を減少させ、且つ/又はセルスタック240の膨張に起因するセルスタック240への圧力の変化を減少させる。
膨張時の厚さの変化を考慮する圧力を付与することによって、より安定した電気化学的挙動が生じる。いくつかの実施形態では、圧力の変化は、付与される圧力が若干変化するか又は実質的に一定であるように減少される。図5は、本明細書で説明されるある実施形態のクランプ装置内に設置された電気化学セルスタック内で反っていないアノードの写真である。
さまざまな実施形態では、図2の例示的な実施形態で示されるように、結合部材250は、複数の結合部材を含むことができる。例えば、結合部材250は、少なくとも第2プレート220のコーナーにおいて孔215を通って延在する4つのネジボルト251を含んでいる。第1プレート210はネジ山が付けられ、結合部材250は第1プレート210内に直接進んでもよい。いくつかの実施形態では、ボルトは、第1プレート210よりも下に配置されてもよい。第1プレート210は、結合部材250上で移動可能であってもよい。本明細書で説明されるように、他の結合部材250が考えられてもよい。
さらに、図1及び図2に示されるクランプ装置200は、第1プレート210のコーナーに配置され且つ第2プレート220の孔を通って延在する4つの個別の結合部材250を含んでいるが、結合部材250は、第1プレート210及び第2プレート220の任意の場所の周囲に配置された(例えば必ずしもコーナーではない)、4つよりも少ない(例えば3つ、2つ又は1つの)結合部材又は4つよりも多い(例えば5つ、6つ、7つ、8つなどの)結合部材を含むことができる。一例として、追加的な結合部材250が、第1プレート210及び第2プレート220のコーナー内に加えて又はコーナー内の代わりに、第1プレート210及び第2プレート220の1つ以上の縁部に沿って配置されてもよい。他の実施形態では、4つよりも少ない結合部材250、例えば2つの結合部材250が互いから反対側に配置されている。このようないくつかの実施形態では、結合部材250は、第1プレート210及び第2プレート220の寸法(例えば長さ)と実質的に類似する寸法(例えば幅又は主要軸)を有してもよい。さまざまな構成が可能である。
図1及び図2は、複数のバネを備える弾性部材260を示している。バネは、第1終端部分と第2終端部分との間に配置されている。また、この例では、バネは、第2終端部分255(例えばボルトヘッド)と第2プレート220との間に配置されている。サイクル中にセルスタック240がクランプ装置200内で膨張するときに、バネは、第2プレート220が結合部材250(例えばボルト)に沿って(セルスタック240の膨張と相関する)所定距離移動することを可能にする。ボルトヘッドは、バネを圧縮するように構成することができる。例えば、バネへの力の荷重は、ボルトヘッドを締めること又は緩めることによってセルスタック240に付与される圧力を設定するために調節することができる。いくつかの実施形態では、ボルトヘッドは、バネが所望の長さに達するまで締められ、これは、セルスタック240に付与される圧力と相関する。弾性部材260を圧縮することによって、第1プレート210に対する第2プレート220の位置も調節されることができる。ある実施形態では、付与される圧力は、2つ以上の結合部材250に対して異なっている。また、第1プレート210に対する第2プレート220の調節された位置は、膨張前と同じ位置である必要はない。いくつかの実施形態では、各バネの長さは、例えば安定性を増大させるためにノギスにより測定される。
本明細書で説明されるように、第1プレート210及び第2プレート220によって与えられるセルスタック240への圧力の増大は、調節することができる。いくつかの実施形態では、圧力の減少された増大は、セルスタック240に付与される圧力が若干変化するか又は実質的に一定であることをもたらす。いくつかの実施形態では、付与される圧力が極めて高い(例えば約400psiよりも大きい)場合、電解質が、セルスタック240から押し出される可能性がある。また、セルスタック240のショートを含むさらなる損傷がセルスタック240の構成要素に発生する可能性がある。逆に、いくつかの実施形態では、付与される圧力が極めて低い(あるパウチセルに対して約10psiから40psiの間の圧力よりも小さい)場合、電流コレクタの反りが抑制されず、電流コレクタの電極箔が変形する可能性がある。さまざまな実施形態では、セルスタック240に付与される圧力は、約10psiから約400psiの間、約20psiから約400psiの間、約30psiから約400psiの間、約40psiから約300psiの間、約50psiから約300psiの間、約60psiから約300psiの間、約70psiから約300psiの間、約80psiから約300psiの間、約90psiから約300psiの間又は約100psiから約200psiの間である。
また、ある実施形態に従ったクランプ装置200は、第1プレート210と第2プレート220との間に界面材料(図示せず)を含むことができる。例えば、界面材料は、セルスタック240と、第1プレート210及び第2プレート220の少なくとも一方と、の間に設置されることができる。界面材料は、セルスタック240の表面に一致し、且つポリエチレンシート、ポリプロピレンシート、PTFEシート、紙、板紙、天然ゴム、シリコンゴム、発泡体又はフェルトから製造することができる。界面材料は、より均等に圧力を広げることを支援することができる。さらに、界面材料は、セルスタックの最も厚い部分で圧縮する弾性部材260の力によって引き起こされる損傷を減少させ、且つ/又は実質的に取り除くことができる。また、この界面材料は、さらなる調節が、サイクル中に不均一な圧力をもたらすセル厚さの変化を考慮することを可能にする。
付与される圧力調節を可能にするクランプ装置(すなわち調節可能なクランプ装置)の利点は、調節可能なクランプ装置内でサイクルされた電気化学セルを、一定間隙型クランプ装置内でサイクルされたセルと比較することで分かる。一定間隙型クランプ装置が使用されると、セルスタックは一定空間内に閉じ込められる。セルスタックがサイクル中に膨張するので、セルスタックに与えられる力/圧力は、膨張が増大するとともに急速に増大する。サイクル中の膨張は、概して、均一ではなく、セルスタックの厚さ変化をもたらし、このことは、セルスタックに与えられる不均一な圧力をもたらす。例えば、一定間隙型クランプ装置でサイクルするセルのグループは、それらの放電能力が約12%の標準偏差であった一方で、本明細書で説明されるある実施形態に従ったクランプ装置200でサイクルするセルのグループは、それらの放電能力が約3%の標準偏差であった。
調節可能なクランプ内でのサイクル中のセル膨張の関数としてのセルへの力(従って付与される圧力)は、一定間隙型クランプと比較することができる。図3Aは、一定間隙型クランプ装置内でのセル膨張の関数としての電気化学セルスタックへの力のプロットである。図3Aに示されるように、セルスタックがサイクル中に膨張すると、クランプ装置によってセルスタックに与えられる力(従って圧力)は、膨張時に急速に増大する(顕著に変化する)。例示された実施形態では、力の増大は、線形ではなく、実質的に指数関数的である。セルの部分への高圧力は、セルを損傷させ、故障、例えばセルのショート及び/又は破裂を引き起こす可能性がある。
図3Bは、調節可能なクランプ装置内でのセル膨張の関数としての電気化学セルスタックへの力のプロットを示している。セルが充電中に膨張すると、セルスタックに与えられる力の増大は、一定間隙型クランプ装置内でのセルと比較すると、非常によりゆっくりである(若干変化する)。いくつかの実施形態では、力の増大は、緩やかな傾斜を有するが、実質的に線形である。他の実施形態では、セルスタックへの力は、セル膨張中に実質的に一定である。
本明細書で説明されるように、2つのプレートによってセルスタック240に付与される圧力の増大を減少させることは、セルスタック240に付与される圧力が、膨張時にセルスタック240の厚さ変化を考慮することをもたらす。いくつかの例では、セルスタック240に付与される圧力の増大は、付与される圧力がセル膨張時に若干変化するか又は実質的に一定となるように減少させることができる。付与される圧力の増大の減少は、より安定した電気化学的挙動をもたらすことができる。
本明細書で説明されるように、クランプ装置200のさまざまな実施形態が、第1プレート210及び第2プレート220によって与えられる増大を減少/停滞させることによって、且つ/又はセルスタック240の膨張に起因する付与される圧力の変化を減少させることによって、電極又は電流コレクタ箔の反り及び変形の量を減少させる。図4から分かるように、銅箔は、セルスタックのサイクルの後に、皺が作られるか又は変形させられる。銅箔の皺又は変形の量は、図5から分かるように、セルスタックがクランプ装置200内でサイクルさせられると、大いに最小化させられる。さらに、ある実施形態のクランプ装置200は、実質的にセルスタック240のサイクル寿命に影響を与えることなく、セルスタック240に装着したままとすることができる。ある実施形態は、シリコンベースの電極を含む電気化学セルと、グラファイト電気化学セルと、にテストされた。
図6は、電気化学セルスタック内での電極又は電流コレクタの変形を減少させる例示的な方法を説明する。例示的な方法300では、ブロック310で示されるように、方法300はクランプ装置200を提供するステップを含む。クランプ装置200は、図1及び図2に示され且つ本明細書で説明されたクランプ装置200である。また、方法300は、第1プレート210と第2プレート220との間に電気化学セルスタック240を位置決めするステップを含む。さらに、方法300は、電気化学セルスタック240に付与される圧力を設定するために結合部材250の終端部分255を調節するステップを含むことができる。一例として、電気化学セルスタック240に付与される圧力は、セルスタック240の充電中に不均一な厚さ変化を補償することを支援するために設定されることができる。結果として、電流コレクタの反り及び変形の量は、減少させられることができる。例えば図5を参照。
いくつかの方法では、クランプ装置200を使用するタイミングが重要である。例えば、電極又は電流コレクタ箔変形を減少させるために、セルスタック240は、(例えば形成充電としても公知な)第1充電が生じる前にクランプされてもよい。クランプ装置200が、第1形成充電が生じた後に第1時間の間使用されると、電流コレクタ箔は、不可逆的に変形される可能性がある(例えばその初期の形状に戻せない可能性がある)。従って、ある実施形態では、方法300は、第1時間の間セルスタック240を充電する前に、第1プレート210と第2プレート220との間にセルスタック240を位置決めするステップをさらに含んでいる。
(例えばセルがその寿命にわたって良好に機能することを支援するために)セルを強化した後にセルが処理されると、セル形成が生じる。何度も、セル形成は、セルの第1充電に言及する。いくつかの例では、セル形成手順は、より複雑とすることができる。例えば、セル形成が、C/20の比率でセルを充電することと、C/2の比率で充電によって3回セルをサイクルすることと、電流がC/20に落ちるまで充電電圧(例えば4.2V)で電圧を保持することと、その後、C/5の比率で放電することと、を含むことができる。これらのタイプの手順は、本明細書で説明されたある実施形態によりセルがクランプされる間に、なされることができる。良好なポリマー接着技術によるパウチ又はカンセルに対しては、クランプ装置は、セルの予処理が終了した後に取り除くことができる。十分なポリマー接着技術のないパウチ又はカンセルに対しては、クランプ装置は、セル上にとどまり、例えば、付与される圧力は、予処理中のものと同じであるか、又は減少されてもよい。クランプ装置を取り除く前に行われてもよい他のセル予処理状態が、加熱、押圧並びに/又は加熱及び押圧を含む、セルへの処理を含む。
いくつかの実施形態では、第1プレート210と第2プレート220との間にセルスタック240を位置決めするステップは、シリコンを有する電極を含むセルスタック240を位置決めするステップを含むことができる。他の実施形態では、第1プレート210と第2プレート220との間にセルスタック240を位置決めするステップは、グラファイトを有する電極を含むセルスタック240を位置決めするステップを含むことができる。追加的に、クランプ装置200ごとに1つよりも多いセルスタック240を含むことが可能である。例えば、1つよりも多いセルスタック240は、セルスタック240への圧力が維持されるのであれば、並んで又は多数の層で配置されることができる。従って、第1プレート210と第2プレート220との間にセルスタック240を位置決めするステップは、第1プレート210と第2プレート220との間に第2セルスタックを位置決めするステップを含むことができる。
さまざまな実施形態が上述された。本発明が、これらの特別な実施形態を参照して説明されたが、説明は、実例となるよう意図されており、限定するものと意図されていない。さまざまな修正及び利用が、添付の特許請求の範囲において規定される本発明の精神及び権利範囲から逸脱することなく当業者には想起されるであろう。
200 クランプ装置、210 第1プレート、220 第2プレート、230 空間、240 電気化学セルスタック、250 結合部材、255 第2終端部分、260 弾性部材

Claims (25)

  1. 電気化学セルスタックのためのクランプ装置であって、
    第1プレートと、
    前記第1プレートと第2プレートとの間の空間が電気化学セルスタックを収容するサイズとされるように前記第1プレートに対して位置決め可能な第2プレートと、
    前記第1プレートを前記第2プレートに結合させる結合部材であって、前記第1プレート及び前記第2プレートの少なくとも一方が、他方のプレートから離れるように移動可能であり、且つ前記結合部材が、第1終端部分及び第2終端部分を有する、結合部材と、
    前記第1終端部分と前記第2終端部分との間に配置された弾性部材と、
    を備えていることを特徴とするクランプ装置。
  2. 前記第1プレート及び前記第2プレートの少なくとも一方が、前記結合部材周りで移動可能であることを特徴とする請求項1に記載のクランプ装置。
  3. 前記第1プレートと前記第2プレートとの間の距離の変化が、前記電気化学セルスタックの膨張と相関することを特徴とする請求項1又は2に記載のクランプ装置。
  4. 前記結合部材の前記第1終端部分及び前記第2終端部分の少なくとも一方が、前記電気化学セルスタックに付与される圧力を設定するように構成されていることを特徴とする請求項1から3のいずれか一項に記載のクランプ装置。
  5. 前記クランプ装置が、充電時に前記電気化学セルスタック内の電極の変形を減少させるように構成されていることを特徴とする請求項1から4のいずれか一項に記載のクランプ装置。
  6. 前記弾性部材が、前記電気化学セルスタックの充電中に圧縮されるように構成され、それにより、前記第1プレート及び前記第2プレートによって与えられる前記電気化学セルスタックへの圧力の増大を減少させることを特徴とする請求項1から5のいずれか一項に記載のクランプ装置。
  7. 圧力の増大を減少させることが、前記電気化学セルスタックに実質的に一定の圧力をもたらすことを特徴とする請求項6に記載のクランプ装置。
  8. 前記弾性部材が、前記電気化学セルスタックの充電中に圧縮されるように構成され、それにより、前記電気化学セルスタックの膨張に起因する前記電気化学セルスタックへの圧力の変化を減少させることを特徴とする請求項1から7のいずれか一項に記載のクランプ装置。
  9. 前記弾性部材が、バネ、プランジャ、弾性バンド、空気圧式ピストン又は発泡体を備えることを特徴とする請求項1から8のいずれか一項に記載のクランプ装置。
  10. 前記結合部材が、留め具、バネクランプ又はC−クランプを備えることを特徴とする請求項1から9のいずれか一項に記載のクランプ装置。
  11. 前記第1終端部分又は前記第2終端部分の少なくとも一方が、複数のナット又は複数の留め具ヘッドを備えていることを特徴とする請求項1から10のいずれか一項に記載のクランプ装置。
  12. 前記第1プレート及び前記第2プレートが、前記電気化学セルスタックの充電時に前記第1プレート及び前記第2プレートの曲げを減少させるサイズとされていることを特徴とする請求項1から11のいずれか一項に記載のクランプ装置。
  13. 前記第1プレート及び前記第2プレートが、約0.5cmから約0.8cmの間の厚さを有していることを特徴とする請求項12に記載のクランプ装置。
  14. 前記第1プレート及び前記第2プレートの少なくとも一方が、金属又は絶縁体を含むことを特徴とする請求項1から13のいずれか一項に記載のクランプ装置。
  15. 前記第1プレートと前記第2プレートとの間の界面材料をさらに含み、前記界面材料が、前記電気化学セルスタックの表面に一致するように構成されていることを特徴とする請求項1から14のいずれか一項に記載のクランプ装置。
  16. 前記界面材料が、紙、板紙、発泡体、ゴム又はシリコンゴムを含むことを特徴とする請求項15に記載のクランプ装置。
  17. 前記付与される圧力が、約10psiから約400psiの間であることを特徴とする請求項4に記載のクランプ装置。
  18. 前記付与される圧力が、約40psiから約300psiの間であることを特徴とする請求項17に記載のクランプ装置。
  19. 前記付与される圧力が、約100psiから約200psiの間であることを特徴とする請求項18に記載のクランプ装置。
  20. 電気化学セルスタック内の電極の変形を減少させる方法であって、
    請求項1に記載のクランプ装置を提供するステップと、
    前記第1プレートと前記第2プレートとの間に前記電気化学セルスタックを位置決めするステップと、
    前記電気化学セルスタックに付与される圧力を設定するために、前記結合部材の前記終端部分を調節するステップと、
    を含むことを特徴とする方法。
  21. 前記電気化学セルスタックを充電するステップをさらに含むことを特徴とする請求項20に記載の方法。
  22. 前記電気化学セルスタックが、第1時間の間前記電気化学セルスタックを充電する前に、前記第1プレートと前記第2プレートとの間に位置決めされることを特徴とする請求項20又は21に記載の方法。
  23. 電気化学セルスタックを位置決めするステップが、前記第1プレートと前記第2プレートとの間に第2電気化学セルスタックを位置決めするステップを含むことを特徴とする請求項20から22のいずれか一項に記載の方法。
  24. 前記電気化学セルスタックが、シリコンを含む電極を備えることを特徴とする請求項20から23のいずれか一項に記載の方法。
  25. セル形成又はセル予処理の後に、前記電気化学セルスタックを取り除くステップをさらに含むことを特徴とする請求項20から24のいずれか一項に記載の方法。
JP2016500562A 2013-03-14 2014-03-03 電気化学セルスタックのためのクランプ装置 Active JP6524053B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361785728P 2013-03-14 2013-03-14
US61/785,728 2013-03-14
PCT/US2014/020026 WO2014158768A1 (en) 2013-03-14 2014-03-03 Clamping device for an electrochemical cell stack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019084034A Division JP2019140115A (ja) 2013-03-14 2019-04-25 電気化学セルスタックのためのクランプ装置

Publications (2)

Publication Number Publication Date
JP2016515291A true JP2016515291A (ja) 2016-05-26
JP6524053B2 JP6524053B2 (ja) 2019-06-05

Family

ID=50439477

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016500562A Active JP6524053B2 (ja) 2013-03-14 2014-03-03 電気化学セルスタックのためのクランプ装置
JP2019084034A Pending JP2019140115A (ja) 2013-03-14 2019-04-25 電気化学セルスタックのためのクランプ装置
JP2021032495A Pending JP2021099998A (ja) 2013-03-14 2021-03-02 電気化学セルスタックのためのクランプ装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019084034A Pending JP2019140115A (ja) 2013-03-14 2019-04-25 電気化学セルスタックのためのクランプ装置
JP2021032495A Pending JP2021099998A (ja) 2013-03-14 2021-03-02 電気化学セルスタックのためのクランプ装置

Country Status (6)

Country Link
US (5) US9620809B2 (ja)
JP (3) JP6524053B2 (ja)
KR (1) KR102193268B1 (ja)
CN (2) CN109148935A (ja)
HK (1) HK1218807A1 (ja)
WO (1) WO2014158768A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085895A (ja) * 2014-10-28 2016-05-19 株式会社日立製作所 リチウムイオン二次電池モジュール
WO2019054666A1 (ko) 2017-09-18 2019-03-21 주식회사 엘지화학 지그 그레이딩을 포함하는 파우치형 전지셀 제조방법
WO2019054837A1 (ko) 2017-09-18 2019-03-21 주식회사 엘지화학 지그를 이용한 고정 과정을 포함하는 파우치형 전지셀 제조방법
US11561152B2 (en) 2017-01-24 2023-01-24 Lg Energy Solution, Ltd. Apparatus for predicting deformation of battery module
WO2023099931A1 (ja) * 2021-12-01 2023-06-08 日産自動車株式会社 二次電池
JP7466546B2 (ja) 2019-01-08 2024-04-12 テスラ,インコーポレイテッド リチウム金属およびアノードフリーセルのためのジフルオロ(オキサラト)ホウ酸リチウムおよびテトラフルオロホウ酸リチウム塩を有する電解質

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020701A1 (en) 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
US10957898B2 (en) 2018-12-21 2021-03-23 Enevate Corporation Silicon-based energy storage devices with anhydride containing electrolyte additives
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10978739B2 (en) 2017-12-07 2021-04-13 Enevate Corporation Silicon-based energy storage devices with carboxylic ether, carboxylic acid based salt, or acrylate electrolyte containing electrolyte additives
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10603867B1 (en) 2011-05-24 2020-03-31 Enevate Corporation Carbon fibers and methods of producing the same
JP6524053B2 (ja) 2013-03-14 2019-06-05 エネヴェート・コーポレーション 電気化学セルスタックのためのクランプ装置
CN107710474B (zh) 2015-05-15 2021-06-29 复合材料技术公司 改进的高容量充电电池
CN106340685B (zh) * 2015-07-13 2018-09-14 宁德时代新能源科技股份有限公司 二次电池用夹具
KR102106108B1 (ko) * 2016-01-29 2020-04-29 주식회사 엘지화학 이차 전지용 물성 시험 장치
US11171375B2 (en) 2016-03-25 2021-11-09 Enevate Corporation Stepped electrochemical cells with folded sealed portion
US10374271B2 (en) * 2016-07-21 2019-08-06 Ford Global Technologies, Llc Battery cell assembly support structure
CN109562950B (zh) 2016-09-01 2020-05-19 复合材料技术公司 用于LIB阳极的阀金属基底上的纳米级/纳米结构Si涂层
DE102017211086A1 (de) 2017-06-29 2019-01-03 Sgl Carbon Se Neuartiges Kompositmaterial
KR102171344B1 (ko) * 2017-07-18 2020-10-28 주식회사 엘지화학 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
US10350550B2 (en) 2017-07-19 2019-07-16 Pall Corporation Fluid treatment assembly and method of use
US11567048B2 (en) 2017-11-17 2023-01-31 Lg Energy Solution, Ltd. Jig for pressing gas analysis monocell, and gas analysis device including same
US11283069B2 (en) 2017-12-07 2022-03-22 Enevate Corporation Silicon-based energy storage devices with fluorinated cyclic compound containing electrolyte additives
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11411249B2 (en) 2017-12-07 2022-08-09 Enevate Corporation Silicon-based energy storage devices with cyclic carbonate containing electrolyte additives
US10763538B2 (en) 2017-12-07 2020-09-01 Enevate Corporation Methods of forming electrochemical cells
WO2019113526A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with fluorinated polymer containing electrolyte additives
WO2019113534A1 (en) 2017-12-07 2019-06-13 Enevate Corporation A prelithiated and methods for prelithiating an energy storage device
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
WO2019113530A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with ether containing electrolyte additives
EP3721489B1 (en) 2017-12-07 2024-05-29 Enevate Corporation Composite comprising silicon carbide and carbon particles
US11479129B2 (en) * 2018-03-30 2022-10-25 Sanyo Electric Co., Ltd. Power supply device and electric vehicle provided with power supply device
KR102624999B1 (ko) 2018-07-16 2024-01-12 유미코아 수명 특성이 개선된 충전식 리튬 이온 배터리
US11165099B2 (en) 2018-12-21 2021-11-02 Enevate Corporation Silicon-based energy storage devices with cyclic organosilicon containing electrolyte additives
US10950846B2 (en) 2019-01-03 2021-03-16 GM Global Technology Operations LLC Method for in situ growth of axial geometry carbon structures in electrodes
US20200280109A1 (en) 2019-03-01 2020-09-03 Ses Holdings Pte. Ltd. Rechargeable Battery
KR102395889B1 (ko) * 2019-04-30 2022-05-09 주식회사 엘지에너지솔루션 X 선 이용 전지 측정 장치
US11398641B2 (en) 2019-06-05 2022-07-26 Enevate Corporation Silicon-based energy storage devices with silicon containing electrolyte additives
US20210194041A1 (en) * 2019-12-20 2021-06-24 Enevate Corporation Pressure regulation system for silicon dominant anode lithium-ion cell
CN111180815B (zh) * 2019-12-31 2022-02-18 江西安驰新能源科技有限公司 一种方形动力电池加压化成夹具
CN111933991A (zh) * 2020-07-23 2020-11-13 东莞市红木棉电子科技有限公司 一种电池夹持化成机
KR20220060807A (ko) 2020-11-05 2022-05-12 주식회사 엘지에너지솔루션 스토퍼를 포함하는 파우치형 전지 실링 장치 및 이를 이용한 파우치형 전지 실링 방법
US11631900B2 (en) 2020-11-16 2023-04-18 Ford Global Technologies, Llc Lithium-ion battery formation process
CN112864464B (zh) * 2021-01-08 2022-06-24 国联汽车动力电池研究院有限责任公司 一种提升软包锂离子电池循环性能的方法及装置
CN113097667A (zh) * 2021-04-09 2021-07-09 芜湖天弋能源科技有限公司 一种改善锂离子电池化成界面的方法
CN112903790B (zh) * 2021-05-08 2021-07-30 国家电投集团氢能科技发展有限公司 膜电极参数测量夹具
DE102021207410A1 (de) 2021-07-13 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Batteriemoduls und Batteriemodul
DE102021207408A1 (de) 2021-07-13 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriemodul und Verfahren zur Herstellung eines solchen
DE102021207407A1 (de) 2021-07-13 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriemodul und Verfahren zur Herstellung eines solchen
DE102021207406A1 (de) 2021-07-13 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriemodul und Verfahren zur Herstellung eines solchen
US11563253B1 (en) * 2021-07-15 2023-01-24 Enevate Corporation Method and system for formation of cylindrical and prismatic can cells
CN115863730B (zh) * 2021-09-27 2023-12-15 宁德时代新能源科技股份有限公司 夹具、夹持电池的方法、加热系统、电池加热及冷压方法
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
US20230299328A1 (en) * 2022-03-17 2023-09-21 Factorial Inc. Compression Means for Li-Metal Anode Electrochemical Cells
KR20240113249A (ko) * 2023-01-13 2024-07-22 주식회사 엘지에너지솔루션 실험용 지그

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183045A (ja) * 1993-02-17 1995-07-21 Electrosource Inc バッテリープレート圧縮ケースの組立構造
JP2006252831A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 二次電池の製造方法、二次電池の制限治具、二次電池の充放電装置、及び二次電池の充電装置
JP2011065908A (ja) * 2009-09-18 2011-03-31 Nissan Motor Co Ltd 電池モジュール
US20110177377A1 (en) * 2010-01-15 2011-07-21 Boulder Electric Vehicle Expandable battery pack containment device for pouch battery cells

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114804A (en) * 1981-08-13 1992-05-19 Moli Energy Limited Battery and method of making the battery
US5484666A (en) * 1994-09-20 1996-01-16 Ballard Power Systems Inc. Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
US5916515A (en) * 1997-02-27 1999-06-29 Valence Technology, Inc. Two-stage lamination process
JP3183270B2 (ja) * 1998-02-19 2001-07-09 松下電器産業株式会社 有機電解質電池の製造法
CA2314310C (en) * 1999-07-23 2005-08-30 Nec Corporation Method for producing film packed battery
US6376126B1 (en) * 1999-10-13 2002-04-23 Johnson Controls Technology Company Composite battery container with integral flexible ribs
JP4127985B2 (ja) * 2001-07-23 2008-07-30 松下電器産業株式会社 電池パック
US7037618B2 (en) * 2002-06-05 2006-05-02 Lynntech, Inc. Apparatus and method for compressing a stack of electrochemical cells
JP2004030939A (ja) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd リチウム二次電池の製造方法
JP3972885B2 (ja) * 2003-10-10 2007-09-05 日産自動車株式会社 組電池
GB2424991B (en) * 2004-02-12 2007-10-17 Avl List Gmbh Device & Method For Determining The Operating Parameters Of Individual Cells Or Short Stacks Of Fuel Cells
KR100612393B1 (ko) * 2004-11-30 2006-08-16 삼성에스디아이 주식회사 이차 전지 모듈
NO20053220D0 (no) * 2005-06-29 2005-06-29 Norsk Hydro As Kompresjon av en PEM cellestakk i en trykktank.
GB0601319D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
JP2010514144A (ja) * 2006-12-20 2010-04-30 アール. ダーン,ジェフリー リチウムバッテリー電解質で使用するためのフッ素化化合物
JP2009104902A (ja) * 2007-10-23 2009-05-14 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池の製造方法
US8012648B2 (en) * 2008-05-06 2011-09-06 GM Global Technology Operations LLC Side spring compression retention system
JP2010009978A (ja) * 2008-06-27 2010-01-14 Toyota Motor Corp 二次電池の電極体ガス排出方法、及び、二次電池構造体
TWI381573B (zh) * 2008-12-04 2013-01-01 Ind Tech Res Inst 燃料電池組
US20100255376A1 (en) 2009-03-19 2010-10-07 Carbon Micro Battery Corporation Gas phase deposition of battery separators
JP5097158B2 (ja) * 2009-04-01 2012-12-12 東海ゴム工業株式会社 燃料電池用セルアセンブリの製造方法、および燃料電池の製造方法
US20110020701A1 (en) 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
WO2011052533A1 (ja) * 2009-10-30 2011-05-05 第一工業製薬株式会社 リチウム二次電池
NZ599908A (en) 2009-11-30 2014-01-31 Ericsson Telefon Ab L M Method and apparatus for supporting mismatch detection
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10978739B2 (en) 2017-12-07 2021-04-13 Enevate Corporation Silicon-based energy storage devices with carboxylic ether, carboxylic acid based salt, or acrylate electrolyte containing electrolyte additives
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US20140170498A1 (en) 2010-01-18 2014-06-19 Enevate Corporation Silicon particles for battery electrodes
US9178208B2 (en) * 2010-01-18 2015-11-03 Evevate Corporation Composite materials for electrochemical storage
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
JP5348139B2 (ja) * 2010-03-08 2013-11-20 トヨタ自動車株式会社 非水電解液二次電池の処理装置および製造方法
US20110274989A1 (en) * 2010-04-30 2011-11-10 Massachusetts Institute Of Technology Catalysts for oxygen reduction and evolution in metal-air electrochemical cells
KR101101062B1 (ko) * 2010-08-19 2011-12-30 삼성에스디아이 주식회사 충방전 장치
US9368830B2 (en) * 2010-11-04 2016-06-14 Samsung Sdi Co., Ltd. Battery
JP5908251B2 (ja) * 2010-11-17 2016-04-26 フルイディック,インク.Fluidic,Inc. 階層型アノードのマルチモード充電
CN201868527U (zh) * 2010-11-29 2011-06-15 安徽金能锂电股份有限公司 一种超薄聚合物锂离子电池化成和测容装置
KR101304870B1 (ko) * 2010-12-02 2013-09-06 주식회사 엘지화학 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀
US9397338B2 (en) 2010-12-22 2016-07-19 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
CN202094235U (zh) * 2011-05-24 2011-12-28 珠海市鹏辉电池有限公司 软包装锂离子电池化成夹具
DE102011077061A1 (de) * 2011-06-07 2012-12-13 Siemens Aktiengesellschaft Energiewandlungseinheit zur elektrochemischen Energiewandlung und Verfahren unter deren Verwendung
WO2013036802A1 (en) * 2011-09-07 2013-03-14 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
CN202534743U (zh) * 2012-05-02 2012-11-14 上海贯裕能源科技有限公司 锂离子电池注液化成一体夹具
JP6524053B2 (ja) 2013-03-14 2019-06-05 エネヴェート・コーポレーション 電気化学セルスタックのためのクランプ装置
US20180287129A1 (en) 2017-03-28 2018-10-04 Enevate Corporation Methods of forming carbon-silicon composite material on a current collector
US9911951B2 (en) * 2014-09-30 2018-03-06 Johnson Controls Technology Company Battery module compressed cell assembly
US11171375B2 (en) 2016-03-25 2021-11-09 Enevate Corporation Stepped electrochemical cells with folded sealed portion
US20190355966A1 (en) 2017-03-28 2019-11-21 Enevate Corporation Methods of forming carbon-silicon composite material on a current collector
WO2019113530A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with ether containing electrolyte additives
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11283069B2 (en) 2017-12-07 2022-03-22 Enevate Corporation Silicon-based energy storage devices with fluorinated cyclic compound containing electrolyte additives
US10763538B2 (en) 2017-12-07 2020-09-01 Enevate Corporation Methods of forming electrochemical cells
US20190181431A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Solid film as binder for battery electrodes
EP3721489B1 (en) 2017-12-07 2024-05-29 Enevate Corporation Composite comprising silicon carbide and carbon particles
US11411249B2 (en) 2017-12-07 2022-08-09 Enevate Corporation Silicon-based energy storage devices with cyclic carbonate containing electrolyte additives
US20190178944A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Battery fuel gauges, battery management systems, and methods of managing battery life cycle
WO2019113534A1 (en) 2017-12-07 2019-06-13 Enevate Corporation A prelithiated and methods for prelithiating an energy storage device
WO2019113526A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with fluorinated polymer containing electrolyte additives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183045A (ja) * 1993-02-17 1995-07-21 Electrosource Inc バッテリープレート圧縮ケースの組立構造
JP2006252831A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 二次電池の製造方法、二次電池の制限治具、二次電池の充放電装置、及び二次電池の充電装置
JP2011065908A (ja) * 2009-09-18 2011-03-31 Nissan Motor Co Ltd 電池モジュール
US20110177377A1 (en) * 2010-01-15 2011-07-21 Boulder Electric Vehicle Expandable battery pack containment device for pouch battery cells

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085895A (ja) * 2014-10-28 2016-05-19 株式会社日立製作所 リチウムイオン二次電池モジュール
US11561152B2 (en) 2017-01-24 2023-01-24 Lg Energy Solution, Ltd. Apparatus for predicting deformation of battery module
WO2019054666A1 (ko) 2017-09-18 2019-03-21 주식회사 엘지화학 지그 그레이딩을 포함하는 파우치형 전지셀 제조방법
WO2019054837A1 (ko) 2017-09-18 2019-03-21 주식회사 엘지화학 지그를 이용한 고정 과정을 포함하는 파우치형 전지셀 제조방법
KR20190031847A (ko) 2017-09-18 2019-03-27 주식회사 엘지화학 지그를 이용한 고정 과정을 포함하는 파우치형 전지셀 제조방법
KR20190031856A (ko) 2017-09-18 2019-03-27 주식회사 엘지화학 지그 그레이딩을 포함하는 파우치형 전지셀 제조방법
US11075419B2 (en) 2017-09-18 2021-07-27 Lg Chem, Ltd. Method of manufacturing pouch-shaped battery cell comprising jig grading
US11108074B2 (en) 2017-09-18 2021-08-31 Lg Chem, Ltd. Method of manufacturing pouch-shaped battery cell including fixing process using jig
JP7466546B2 (ja) 2019-01-08 2024-04-12 テスラ,インコーポレイテッド リチウム金属およびアノードフリーセルのためのジフルオロ(オキサラト)ホウ酸リチウムおよびテトラフルオロホウ酸リチウム塩を有する電解質
WO2023099931A1 (ja) * 2021-12-01 2023-06-08 日産自動車株式会社 二次電池

Also Published As

Publication number Publication date
HK1218807A1 (zh) 2017-03-10
US20210194037A1 (en) 2021-06-24
WO2014158768A1 (en) 2014-10-02
US20170170510A1 (en) 2017-06-15
US20200303762A1 (en) 2020-09-24
CN109148935A (zh) 2019-01-04
US20140266066A1 (en) 2014-09-18
JP2021099998A (ja) 2021-07-01
US9620809B2 (en) 2017-04-11
US10680274B2 (en) 2020-06-09
US10985397B2 (en) 2021-04-20
JP6524053B2 (ja) 2019-06-05
CN105229818B (zh) 2018-10-30
JP2019140115A (ja) 2019-08-22
US20230123972A1 (en) 2023-04-20
US11532833B2 (en) 2022-12-20
KR102193268B1 (ko) 2020-12-23
CN105229818A (zh) 2016-01-06
KR20150141966A (ko) 2015-12-21

Similar Documents

Publication Publication Date Title
US11532833B2 (en) Clamping device for an electrochemical cell stack
JP2008300288A (ja) 組電池
US20210202981A1 (en) Pressure Regulation System For Silicon Dominant Anode Lithium-Ion Cell
JPH1197054A (ja) 積層体の締付構造及び締付方法
US20050250005A1 (en) Retaining apparatus for electrochemical generator
CN203242710U (zh) 加压夹具
US20190207265A1 (en) Battery Cell Having Structure For Prevention of Swelling
EP3726638B1 (en) Secondary battery capacity recovery method and secondary battery capacity recovery apparatus
KR20130103372A (ko) 이차 전지 및 이차 전지의 제조 방법
US20050164077A1 (en) Pressure producing apparatus for an electrochemical generator
JPH04294071A (ja) リチウム電池
JP6977599B2 (ja) 全固体電池システム
KR100876253B1 (ko) 폴리머 전지팩
US20230124344A1 (en) Clamping device and interface for an electrochemical cell stack
KR20160061123A (ko) 이차 전지의 충방전용 지그, 이를 이용한 이차전지용 충방전 장치 및 시스템 및, 이차 전지의 충방전용 지그의 배치 방법
KR102032814B1 (ko) 이차전지의 젤리롤 양단 압축 성형장치
CN109273774A (zh) 一种快速装夹的锂电池化成装置
CN113484559A (zh) 一种软包电池测试夹具及其夹持方法
KR20180068342A (ko) 가이드 지그를 포함하는 전지셀 클램핑 장치
JP3518962B2 (ja) リチウムイオン電池用アルミニウム電極柱
EP4274054A1 (en) Gripper assembly for charging/discharging secondary battery, and charging/discharging device comprising same
CN215728297U (zh) 一种软包电池测试夹具
KR20230071750A (ko) 이차전지 충방전용 그리퍼 조립체 및 이를 포함하는 충방전 장치
WO2023178025A2 (en) Compression means for li-metal anode electrochemical cells
KR20170073168A (ko) 이차 전지 셀의 가압장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180921

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6524053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250