JP2016512395A - 基板上の三次元構造の層のnh3含有プラズマ窒化 - Google Patents

基板上の三次元構造の層のnh3含有プラズマ窒化 Download PDF

Info

Publication number
JP2016512395A
JP2016512395A JP2016500578A JP2016500578A JP2016512395A JP 2016512395 A JP2016512395 A JP 2016512395A JP 2016500578 A JP2016500578 A JP 2016500578A JP 2016500578 A JP2016500578 A JP 2016500578A JP 2016512395 A JP2016512395 A JP 2016512395A
Authority
JP
Japan
Prior art keywords
layer
substrate
plasma
nitrogen
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016500578A
Other languages
English (en)
Other versions
JP2016512395A5 (ja
JP6749834B2 (ja
Inventor
テレサ クレーマー グアリーニ,
テレサ クレーマー グアリーニ,
ウェイ リウ,
ウェイ リウ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2016512395A publication Critical patent/JP2016512395A/ja
Publication of JP2016512395A5 publication Critical patent/JP2016512395A5/ja
Application granted granted Critical
Publication of JP6749834B2 publication Critical patent/JP6749834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本書では、窒素含有層を形成するための方法及び装置が提供されている。いくつかの実施形態では、方法は、第1層が上に配置されている基板を、処理チャンバの基板支持体上に載置することと、基板を第1温度に加熱することと、第1層を窒素含有層へと変換するために、第1層を、アンモニア(NH3)を含む処理ガスから形成されたRFプラズマに曝露することとを含み、プラズマは約8eVを下回るイオンエネルギーを有する。【選択図】図1

Description

本発明の実施形態は概して、半導体処理に関し、より具体的には、窒素含有層を形成するための方法に関する。
ダイナミックランダムアクセスメモリ(DRAM)、論理デバイスなどの半導体デバイスのスケーリングは、ゲートリーク(J)によって限定されうる。例えば、ゲート誘電体層の厚みがスケーリングされる時に、チャネルとトランジスタデバイスのゲートとの間に電流が漏出して、デバイス障害を引き起こしうる。誘電体層に窒素をゲート取り込むことによって、ゲートリークは低減しうる。例えば、32nmノードのゲート誘電体層は、酸窒化ケイ素(SiON)を含んでよく、窒素の存在がデバイスにおけるゲートリークを低減させる。
典型的には、ゲートリークの低減を提供するかわりに、例えばフラットバンド電圧(Vfb)、閾値電圧(V)、及び可動性といった他の所望の特性を犠牲にするプラズマ窒化プロセスによって、窒素はゲート誘電体層に取り込まれる。例えば、ゲート誘電体層における窒素含有量の増加は、Vの望ましくない増加、及び可動性の過減少をもたらしうる。更に、酸素は、典型的な処理条件の下でゲート誘電体層から拡散し、ひいては、例えばゲート誘電体層の誘電体特性の劣化によって、デバイス性能を更に減少させうる。
また更に、半導体構造での使用のために半導体ウエハ上の誘電体層を窒化することは、プラズマ窒化又は熱窒化を使用して、平面の半導体構造に窒素を添加することを伴う。しかし、FinFETデバイスなどのような3次元(「3D」)半導体構造の使用により、3D半導体構造の上面上に取り込まれた窒素の量が3D半導体構造の側壁に沿って取り込まれた窒素の量に実質的に等しい状態(本書では「共形性」と称される)の、窒化された層が、3D半導体構造を包み込むために必要とされる。共形性は、3D半導体構造の側壁に沿った深さに伴う窒素降下の割合として算出される。
窒化された層を形成する1つの方法は、アンモニア(NH)を使用する熱窒化によるものである。アンモニア(NH)を使用する熱窒化は、好適な共形性を提供する一方で、そのプロセスは、誘電体層の上面において所望の窒素プロファイルを提供することができない。窒化された層を形成する別の方法は、窒素ガス(N)から形成されたイオンを用いる誘導結合プラズマ窒化を使用することである。この手法は誘電体膜内に所望の窒素プロファイルを提供するが、結果として得られる共形性が不十分である。遠隔プラズマ窒化という別の方法は、好適な共形性を提供することが可能であるが、そのプロセスは、摂氏約600度から摂氏約1000度を超過する温度を必要とし、結果として、ゲートスタックにおける酸化物層の厚みを過剰かつ望ましくないものにする。
従って発明者は、向上した共形性を有する窒素含有層を形成する方法を提供している。
本書では、窒素含有層を形成するための方法及び装置が提供される。いくつかの実施形態では、方法は、第1層が上に配置されている基板を、処理チャンバの基板支持体上に載置することと、基板を第1温度に加熱することと、第1層を窒素含有層に変換するために、第1層を、アンモニア(NH)を含む処理ガスから形成されたRFプラズマに曝露することとを含み、プラズマは約8eVを下回るイオンエネルギーを有する。
いくつかの実施形態では、窒素含有層を形成する方法は、第1層が上に配置されている基板を、処理チャンバの基板支持体上に載置することを含み、第1層は3次元構造であり、基板を、摂氏約250度から摂氏約500度の第1温度に加熱することと、第1層を窒素含有層に変換するために、第1層を、アンモニア(NH)を含む処理ガスから形成されたRFプラズマに曝露することとを含み、処理ガスは、全ガス流に基づいて約0.5%から約99.5%のアンモニア(NH)を含み、その残部は希ガスであり、かつ、プラズマは約8eVを下回るイオンエネルギーを有する。
上記の概要は、本発明の範囲を限定することを意図するものではない。本発明の他の実施形態及び更なる実施形態について、以下で説明する。
本発明の上述の特徴を詳細に理解しうるように、上記で簡単に要約されている本発明のより詳細な説明が、実施形態を参照することによって得られ、実施形態の一部は付随する図面に示されている。しかし、本発明は他の等しく有効な実施形態も許容しうることから、付随する図面はこの発明の典型的な実施形態のみを例示しており、従って発明の範囲を限定すると見なすべきではないことに、留意されたい。
本発明のいくつかの実施形態による、窒素含有層を形成する方法を示すフロー図である。 図2A〜図2Cは、本発明のいくつかの実施形態による、ゲート誘電体層を製造する段階を示す。 本発明のいくつかの実施形態による使用に好適なプラズマ窒化リアクタを示す。 本発明のいくつかの実施形態による、プラズマ窒化リアクタにおける使用に好適な基板支持体を示す。 理解を容易にするために、図に共通する同一の要素を指し示すために、可能な場合には、同一の参照番号を使用した。図は縮尺どおりには描かれておらず、明確性のために簡略化されていることがある。一実施形態の要素及び特徴は、更なる記述がなくとも、他の実施形態に有益に組み込まれうると想定される。
本書では、窒素含有層を形成するための方法及び装置が提供される。本発明の方法及び装置は、有利には、例えば窒素含有量の増加、及び、ターゲット層(第1層など)とポリシリコンゲート等の別のデバイス層との間の界面における酸素保持の向上を促進することによって、ターゲット層の窒化の向上を提供しうる。本発明の方法及び装置はまた、有利には、3D半導体構造上の窒化された誘電体膜の共形性を向上させうる。
図1は、本発明のいくつかの実施形態による、窒素含有層を形成するための方法110を示す。通常、方法110は、第1層が上に配置されている基板を含む、部分的に製造された半導体構造を提供することを含む。半導体構造は、部分的に製造された、論理デバイス、DRAMデバイス、又はフラッシュメモリデバイスのような半導体デバイスでありうる。このプロセスによって形成された窒素含有層は、ゲート誘電体層、トンネル酸化物層、スペーサ層、又は、例えば接合リーク、ゲートリークなどを低減させるように窒化による恩恵を受けうる、半導体構造の任意の好適な層、のうちの一又は複数でありうる。
基板の上に形成された第1層を含む半導体構造の製造の段階をそれぞれ示す、図2Aから図2Dの部分的に製造された半導体構造に関連して、方法110を本書で説明する。例えば誘導結合プラズマ又は遠隔プラズマなどを提供するよう構成されたリアクタといった、本書で開示されているような、低エネルギープラズマを提供することが可能な任意の好適なプラズマリアクタ内で、方法110は実行されうる。本発明の方法と共に利用されうる好適なプラズマリアクタの実施形態を、図3に関連して以下で説明する。プラズマリアクタは、単独で利用されるか、又はより典型的には、カリフォルニア州サンタクララのApplied Materials,Inc.から入手可能なCENTURA(登録商標)DPN Gate Stack一体型半導体ウエハ処理システムのような、一体型の半導体基板処理システム又はクラスタツールの処理モジュールとして、利用されうる。他の製造業者から入手可能なものを含む、他のツールも使用されうる。
方法110は、図2Aに示すように、窒化されるべき第1層が上に配置されている基板202が提供される、102において始まる。基板202及び第1層204は、完全に又は部分的に製造された半導体デバイス200の部分でありうる。第1層204は、3次元構造すなわち3D構造であるか、又はかかる3D構造の一部でありうる。本書で使用する場合、3次元(又は3D)構造とは、主にゲートの下に導電チャネルを形成する従来型の2D平面トランジスタと比較して、垂直構造の3つの辺にトランジスタが導電チャネルを形成する、半導体構造を表す。基板202は、直径200又は300mmのウエハ、並びに長方形又は正方形のパネルなどの、様々な寸法を有しうる。基板202は、結晶シリコン(例えばSi<100>又はSi<111>)、酸化ケイ素、ストレインドシリコン(IBMが開発したもの)、シリコンゲルマニウム、ドープされた又はドープされていないポリシリコン、ドープされた又はドープされていないシリコンウエハ、パターン化された又はパターン化されていないウエハ、シリコンオンインシュレータ(SOI)、炭素がドープされた酸化ケイ素、窒化ケイ素、ドープされたシリコン、ゲルマニウム、ヒ化ガリウム、ガラス、サファイアなどといった材料を含みうる。
半導体デバイス200は、基板202上で完全に又は部分的に形成されてよく、少なくとも、窒化されるべき第1層204を含む。半導体デバイス200は(完成時には)、例えば、電界効果トランジスタ(FET)、ダイナミックランダムアクセスメモリ(DRAM)、フラッシュメモリデバイス、3D FINFETデバイスなどになりうる。第1層204は、例えば、トランジスタデバイスのゲート誘電体層、フラッシュメモリデバイスのトンネル酸化物層、ゲート構造上のスペーサ層、フラッシュメモリデバイスのポリ間誘電体(IPD)層などとして、利用されうる第1層204は、第1層204が利用されうる特定の応用に従って、任意の好適な厚みを有しうる。例えば、第1層204は、約0.5から約10nmの厚みを有しうる。第1層204は、酸化ケイ素(SiO)、酸化ハフニウム(HfO)、ハフニウムシリケート(HfSiO)、又は、半導体デバイスにおいて使用され、かつ窒化を必要とする任意の好適な酸化物層のような、酸化物層を備えうる。例えば、いくつかの実施形態では、酸化物層は、自然酸化物層であるか、又は、以下で論じる酸化プロセスを含む任意の好適な酸化プロセスによって形成されうる。第1層204は酸化物層に必ずしも限定されず、他の好適な層も、本書で開示されている本発明の方法による恩恵を受けうる。例えば、第1層204の他の好適な実施形態は、シリコン(Si)、ゲルマニウム(Ge)、シリコンゲルマニウム(SiGe)、炭化ケイ素(SiC)、III−V化合物といった他の好適な半導体材料、或いは、タングステン(W)、チタン(Ti)、タンタル(Ta)、窒化チタン(TiN)、窒化タンタル(TaN)、酸化チタン(TiO)、酸化アルミニウム(Al)などのような金属、金属窒化物又は金属酸化物を含みうる。第1層204はまた、SiOの第1副層とHfOの第2副層、又は、SiOの第1副層とHfSiOの第2副層などのような、層の積み重ねでありうる。
次に104において、基板202は窒化の前に、及び窒化中に加熱されうる。基板202の加熱により、第1層204内の窒素含有量の増加、及びデバイス特性の向上の提供が促進される。例えば、基板202を少なくとも摂氏約250度、又は少なくとも摂氏約350度の温度に加熱することにより、第1層204における窒素含有量の増加(例えば約5から約35の原子パーセント含有量)が促進される。基板は、いくつかの実施形態では摂氏約250から約550度の温度に、又はいくつかの実施形態では摂氏約350から約450度の温度に、加熱されうる。いくつかの実施形態では、基板は、摂氏約400度の温度に加熱されうる。実際の最高基板温度は、ハードウェア限度及び/又は処理される基板の熱収支に基づいて変動しうる。
第1層204が酸化物層である実施形態では、有利には、温度の上昇により、層からの酸素の発生が抑制され(例えば約20%を下回る)、更に、第1層204と基板202との界面における酸素の蓄積が促進されうる。いくつかの実施形態では、基板202は、摂氏約250から約550度の温度に加熱される。第1層204が酸化物層であるいくつかの実施形態では、基板202は、摂氏約300から約550度、又は摂氏約350から約500度の温度に加熱されうる。
いくつかの実施形態では、基板202は、例えば基板202と方法110の最中に基板202が上に置かれる基板支持体との間に、基板への熱伝達が最大化するように、リアクタ内で位置付けられうる。そのため、基板202は、電動チャック(ESC)、真空チャック、又は他の好適な装置のようなチャック装置を使用して基板支持体に固定されうる。基板202をチャックすることにより、有利には、たとえ、約4mTorrから約1Torrというような低圧下(プロセス圧力領域)でも、或いは、約10から約80mTorr、約10から約40mTorr、又は約10から約20mTorrにおいても、再現可能な熱伝達が促進されうる。任意には、基板202を固定するために電動チャックが提供される実施形態では、基板がチャックされている時に基板温度の安定化を促進するために、基板202の上に第2プラズマが形成されうる。例えば、第2プラズマは、基板202を基板支持体にチャックし、プラズマを消滅させる際に、プロセス変動及び/又はウエハ破壊をもたらしかねない温度の劇的変化が基板202に起こらないように、基板202を予備加熱するために、アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、キセノン(Xe)などのうちの少なくとも1つを含む非反応性ガスから形成されうる。本書で使用する場合、非反応性ガスとは、基板と実質的に反応しない(例えば、実質的に基板上に堆積しないか、又は基板をエッチングしない)ガスを含む。
基板202は、基板温度を摂氏約250度かそれ以上、又は、いくつかの実施形態では摂氏約350度かそれ以上に上昇させ、維持することが可能な、任意の好適な加熱機構によって加熱されうる。好適な加熱機構は、抵抗加熱、放射加熱などを含みうる。例えば下記で論じるように、リアクタ300の実施形態では、基板202に熱を提供するために、基板支持体内に一又は複数の抵抗ヒータが配置されうる。代替的には、例えば、基板202の上及び/又は下に配置された一又は複数のランプ、又は他のエネルギー源によって、基板が加熱されうる。
一加熱手法においては、静電チャック内にヒータ要素が埋設され、それにより、基板は静電チャックから直接加熱される。かかる手法により、いくつかの利点が発現しうる。(1)基板がチャックされている限り、たとえプロセス圧力が4mTorrにまで低くなっても、プロセス全体にわたり基板は一定した温度に維持されうる。(2)プロセス中の基板温度の厳格な制御により、プロセス結果(窒素供与量及び取り込まれた窒素の質量パーセント(N%))が基板毎に再現可能でありうる。(3)静電チャックのヒータ要素における慎重に設計された加熱均一性パターンによって、又は、個別制御を有するマルチゾーンのヒータ要素を提供することによって、基板内窒化の均一性パターンを変化させる(例えば補償する)ことが可能である。
静電チャックヒータを使用する場合、チャック/加熱プロセスの特質により、基板温度の上昇が、最大で毎秒摂氏約30度というように、非常に迅速になりうる。かかる高速の加熱速度の下では、ウエハの全ての部分が同一の速度で加熱されることにならない可能性があり、それにより、ある時点で、基板内の温度の相違が、(半導体ウエハのような)基板に亀裂を引き起こしかねない限界値(例えば>摂氏75度)に到達しうる。かかる障害を防止するために、基板をチャックする前に予備加熱のステップが実施されうる。予備加熱ステップは、基板が静電チャックヒータの表面上に配置されているがチャックされてはいない状態で、静電チャックヒータを所望の温度(例えば摂氏約400度)に維持しつつ、約1〜10Torr(例えば約8Torr)の圧力下で、約20から約60秒間又はそれ以上(例えば約50秒間)にわたり、約400sccmから毎分約4リットルの速度で、窒素(N2)又はヘリウム(He)などのような非反応性ガスを流すことを含みうる。予備加熱ステップにより、チャックする前の、基板温度の静電チャック温度への接近(例えば、基板のターゲット温度から摂氏約150度以内)、ひいては、基板をチャックする際の基板への熱衝撃の発生可能性の低減が促進される。いくつかの実施形態では、小接点静電チャック(約5%以下の接点領域を有する静電チャックなど)が、基板を支持するために利用され、裏側ガスがウエハを予備加熱するために利用されうる。いくつかの実施形態では、基板は、例えば接触法又は非接触法(ランプなど)によって、処理チャンバ内へと搬送される前に予備加熱されうる。
任意には、第1層204の窒化の前に、処理チャンバは、処理容積内の残留酸素含有量を低減するよう事前設定されうる。例えば、湿気、水(HO)等によるものなどの残留酸素含有量は、結果として、基板202又は第1層204の望ましくない寄生酸化をもたらしうる。これが発生することを防止するために、処理チャンバの内部(蓋、側壁、及びペデスタル又はチャックを含む)は、事前設定ガスから形成された事前設定プラズマを用いて事前設定されうる。事前設定ガスは、例えば窒素(N)、アンモニア(NH)、又は、アンモニア(NH)とアルゴン(Ar)などの不活性ガス、或いは任意の好適なガス、及び/又は、含水量を低減し、かつチャンバ内部を乾燥させうるガスの組み合わせを含みうる。いくつかの実施形態では、事前設定ガスは、窒素(N)、又はアンモニア(NH)、又は、アンモニア(NH)とアルゴン(Ar)などの不活性ガスで構成されうるか、或いは基本的にそれらで構成されうる。いくつかの実施形態では、事前設定は、チャックする(例えばチャックに基板を固定する)前に、又はチャック中に実行されうる。いくつかの実施形態では、事前設定は、基板を加熱する前に、又は第1層204を窒化する前に、実行されうる。
次に106において、第1層204は、アンモニア(NH)で構成された、又は基本的にアンモニア(NH)で構成された、或いはアンモニア(NH)を含む処理ガスから形成された、高周波(RF)プラズマに曝露されうる。いくつかの実施形態では、図2Cに示すように、窒素含有層208を形成するために、処理チャンバを約5mTorrから約500mTorr、又は、約10から約80mTorr、又は、約10mTorrから約40mTorr、又は、約10mTorrから約20mTorrの圧力に維持しつつ、第1層204はRFプラズマに曝露されうる。例えば、いくつかの実施形態では、処理ガスは純粋アンモニア(NH)であるか、又は、アンモニア(NH)と希ガスとの混合物でありうる。希ガスは、例えばアルゴン(Ar)でありうる。いくつかの実施形態では、処理ガスはアンモニア(NH)及びアルゴン(Ar)を含む。いくつかの実施形態では、処理ガスはアンモニアとアルゴンのみで構成されうる。いくつかの実施形態では、処理ガスは主にアンモニア及びアルゴンから成るか、又は、基本的にアンモニアとアルゴンで構成されうる。
いくつかの実施形態では、処理ガスは、約100から約1000sccm、又は、約400sccmの全ガス流で供給されうる(ただし、処理チャンバの応用及び構成に応じて他の流量も使用されうる)。いくつかの実施形態では、処理ガスは、約10〜100パーセントのNH(例えば約10〜1000sccmのNH3の流れ)、その残部は基本的にアルゴン(Ar)等の希ガスである(例えば約0〜約90パーセントの希ガス割合)。いくつかの実施形態では、処理ガスは、約0.5〜99パーセントのNHを含んでよく(例えば約0.5〜990sccmのNHの流れ)、その残部は基本的にアルゴン(Ar)等の希ガスである(例えば約1〜約99.5パーセントの希ガス割合)。いくつかの実施形態では、処理ガスは、約1.5〜50パーセントのNHを含んでよく(例えば約15〜500sccmのNHの流れ)、その残部は基本的にアルゴン(Ar)等の希ガスである(例えば約50〜約98.5パーセントの不活性ガス割合)。いくつかの実施形態では、処理ガスは、約10〜99パーセントの希ガスを含みうる(例えば約100〜990sccm希ガスの流れ)。いくつかの実施形態では、処理ガスは、約80〜99パーセントの希ガスを含みうる(例えば約800〜990sccm希ガスの流れ)。
処理ガスは、プラズマリアクタ300のようなプラズマリアクタ内へと導入され、プラズマ206を形成するために使用されうる。いくつかの実施形態では、プラズマ密度は約1010から約1012イオン/cmでありうる。プラズマ206は、RFソース電力を使用することによって形成されうる。いくつかの実施形態では、形成されたプラズマ206は8eVを下回るイオンエネルギーを有する。いくつかの実施形態では、形成されたプラズマ206は4eVを下回るイオンエネルギーを有する。いくつかの実施形態では、形成されたプラズマ206は約1eVから約4eVのイオンエネルギーを有する。いくつかの実施形態では、RFソース電力は、最大2500ワット、又はそれを上回るワット数を発生させることが可能である。RFソース電力は、任意の好適なRF周波数で提供されうる。例えば、いくつかの実施形態では、RFソース電力は、約2から約60MHz、例えば13.56MHzの周波数で提供されうる。
プラズマ206は、パルスにされるか、又は、最大約1000ワットの有効電力で常時適用されうる。例えば、プラズマ206は、約10から約400秒、又は約100秒の期間にわたり、最大約400ワットで常時適用されうる。期間は、半導体デバイス200への損傷を限定するために調整(例えば短縮)されうる。代替的には、プラズマ206は、約4kHzから約15kHzのパルス周波数でパルスにされうる。パルスにされたプラズマは、最大2500ワットのピーク電力で、約2%から約30%のデューティサイクルを有してよく、デューティサイクル及び/又はソース電力は、半導体デバイス200への損傷を限定するために調整されうる。いくつかの実施形態では、プラズマ206は、最大2000ワットのピーク電力で、最大20%のデューティサイクルでパルスにされうる。いくつかの実施形態では、プラズマ206は、最大2000ワットのピーク電力で、約5%から約10%のデューティサイクルでパルスにされうる。
NH*ラジカルで構成された、例えば8eVを下回るイオンエネルギーを有する低イオンエネルギープラズマ206内での、アンモニア(NH)か希ガス内で希釈されたアンモニア(NH)のいずれかで基本的に構成される処理ガスの使用により、有利には、窒素含有層208の上面210に取り込まれた窒素の量が窒素含有層208の側壁214に沿って取り込まれた窒素の量に実質的に等しくなるように、酸化ハフニウム(HfO)層のような第1層204がより共形的に窒化されることを、発明者は認めている。
純粋なものであれ、例えばアルゴン内で希釈されたものであれ、アンモニアガス(NH)の、低イオンエネルギープラズマ206の形成における使用は、アンモニア(NH)形成プラズマ206内のNHラジカルがプラズマシース全体にわたるフィールドの影響を受けないことから、典型的な窒化プロセスよりも有利である。その結果として、NHラジカルは、第1層204に望ましくない厚み付けをせずに第1層204を共形的に窒化するために、いかなる優先的な方向付けもなく基板202に到達して、第1層204の上面210及び側壁214などの、いかなる配向の基板表面とも反応する。
いくつかの実施形態では、基板202の曝露された表面は、プラズマ206への曝露を防止するため(例えば、プラズマへの曝露を基板202及び/又は第1層204の所望の部分に限定するため)のマスキング層のような犠牲層(図示せず)で、少なくとも部分的に覆われうる。いくつかの実施形態では、プラズマリアクタ内の圧力は、第1層204のプラズマ206への曝露中に、最大で約80mTorrか、約10mTorrから約80mTorrか、約10mTorrから約40mTorrか、又は、約10から約30mTorrでありうる。
上述のような、第1層204のプラズマ206への曝露により形成された窒素含有層208は、例えば、トランジスタデバイスのゲート誘電体層、フラッシュメモリデバイスのトンネル酸化物層、ゲート構造上のスペーサ層として、フラッシュメモリデバイスのポリ間誘電体(IPD)層において、などに利用されうる窒素含有層208は、約0.3から約10nmの厚みを有しうる。窒素含有層208は、約3から約25原子パーセントの窒素含有量を有しうる。窒素含有層208は、酸化ケイ素(SiO2)、酸化ハフニウム(HfON)、窒化されたハフニウムシリケート(HfSiOx)、又は、半導体デバイスにおいて使用され、かつ窒化を必要とする任意の好適な酸化物層のような、酸化物層を備えうる。窒素含有層208は酸化物層に必ずしも限定されず、他の好適な層も、本書で開示されている本発明の方法による恩恵を受けうる。例えば、他の好適な実施形態では、窒素含有層208は、SiCN又は他のシリコン(Si)含有化合物、酸化チタン又は窒化チタン、酸化タンタル又は窒化タンタル、酸化アルミニウム又は窒化アルミニウムなどの金属含有化合物を含みうるか、又はそれらに置換されうる。
窒素含有層208を形成すると、方法110は通常終了し、半導体デバイス200及び/又は基板202上の他のデバイス(図示せず)の製造を完了するために、追加のプロセスステップ(図示せず)が実行されうる。
本書で説明されている本発明の方法、例えば方法110は、プラズマリアクタ内で実行されうる。例えば、図3は、本書で論じているような本発明の実施形態を実践するために使用されるよう適合している、発明のプラズマリアクタ300の概略図を示している。リアクタ300は、単独で利用されるか、又はより典型的には、カリフォルニア州サンタクララのApplied Materials,Inc.から入手可能なCENTURA(登録商標)DPN Gate Stack一体型半導体ウエハ処理システムのような、一体型の半導体基板処理システム又はクラスタツールの処理モジュールとして、利用されうる。
リアクタ300は、導電体(壁)330の中に配置された基板支持体316を有する処理チャンバ310と、コントローラ340とを含む。いくつかの実施形態では、基板支持体(カソード)316は、第1マッチングネットワーク324を通じて、バイアス電源322に結合される。バイアス電源322は通常、常時電力かパルス電力のいずれかを発生させることが可能なおよそ13.56MHzの周波数での、最大500Wの電源である。他の実施形態では、電源322は、直流電源、又はパルス直流電源でありうる。いくつかの実施形態では、バイアス電力は提供されない。
いくつかの実施形態では、処理チャンバ310は、処理チャンバ310の内部表面を覆うために、ライナ(図示せず)を含みうる。いくつかの実施形態では、ライナは、例えば冷却剤を流通させるためにライナの中に提供された冷却剤チャネルを用いて、冷却されうる。いくつかの実施形態では、処理チャンバ310(及び、処理中にプラズマに曝露される他の構成要素)は、プラズマに耐性を有する材料でコーティングされうる。例えば、いくつかの実施形態では、処理チャンバ310は、プラズマによる腐食に耐性を有する材料でコーティングされうる。いくつかの実施形態では、コーティングは、石英、又は、酸化イットリウム(Y)ベースのセラミック組成物のようなセラミック材料、酸化アルミニウムなどを含みうる。本発明の実施形態により、有利には窒化速度を維持しつつ、水素ラジカルによるチャンバ構成要素の腐食が、有利には、本書で説明されるような処理中に低減されうる。
チャンバ310は、実質的に平坦な誘電体天井部320と共に供給されうる。チャンバ310の他の修正形態は、例えばドーム形の天井部又は他の形状などの、他の種類の天井部を有しうる。少なくとも1つの誘導コイルアンテナ312が、天井部320の上に配置される(外側コイル312と内側コイル312とを含むデュアル同軸アンテナ312を図3に示す)。各アンテナ312は、第2マッチングネットワーク319を通じて、RF電源318に結合される。RF電源318は、典型的には、2MHzから13.56MHzの範囲内の調節可能な周波数で、最大約5000Wを発生させることが可能であり、常時プラズマかパルスにされたプラズマのいずれかを発生させうる。典型的には、壁330は電気接地334に結合されうる。
いくつかの実施形態では、電力分配器304が、外側コイル312及び内側コイル312をRF電源318に結合するライン内に配置されうる。電力分配器304は、各アンテナコイルに提供されるRF電力の量を制御する(それによって、内側コイル及び外側コイルに対応するゾーン内のプラズマ特性の制御を促進する)ために利用されうる。デュアルコイルアンテナ構成は、有利には、方法110において上述したように、例えば第1層204への、各ゾーンの中での窒素供与量の制御を向上させる。
任意には、アンテナ312のいずれか及び/又は両方は、チルトされ、かつ/又は、天井部320に対して上昇し下降しうる。アンテナ312の位置及び/又は角度の変化は、例えば、処理チャンバ内で形成されたプラズマの、均一性のような特性を変えるために利用されうる。
更に、かつ任意には、方法110において上述したように、例えば第1層204の窒化の制御の向上を提供するために、プラズマシールド/フィルタが基板支持体の上に含まれうる。プラズマシールド/フィルタは、石英のような材料を含み、かつ、処理チャンバ内で形成されたプラズマからイオン核種を除去するために、チャンバ310に接地されうる。例えば、イオンラジカルシールド327が、チャンバ310内の基板支持体316の上に配置されうる。イオンラジカルシールド327は、チャンバ壁330及び基板支持体316から電気的に隔離されており、通常、複数の開孔329を有する実質的に平坦なプレート331を含む。図3に示す実施形態では、イオンラジカルシールド327は、複数の脚部325によって、チャンバ310内のペデスタルの上に支持される。開孔329は、処理チャンバ310の上部処理容積378内で形成されたプラズマから、イオンラジカルシールド327と基板314との間に位置する下部処理容積380へと通過するイオンの分量を制御する、イオンラジカルシールド327の表面における所望の開区域を画定する。開区域が広くなるほど、多くのイオンがイオンラジカルシールド327を通過しうる。そのため、開孔329のサイズ及び分布が、プレート331の厚みと共に、容積380内のイオン濃度を制御する。結果的に、シールド328はイオンフィルタとなる。本発明による恩恵を受けるよう適合しうる好適なシールドの一例が、「フォトマスクプラズマエッチングのための方法及び装置(METHOD AND APPARATUS FOR PHOTOMASK PLASMA ETCHING)」と題された、Kumar氏等によって2004年6月30日に出願された米国特許出願第10/882,084号で説明されている。ウエハ表面近辺のイオン濃度を変えることによって、イオン/ラジカル比を制御することが可能であり、ひいては、窒化プロファイルを制御することが可能になる。
いくつかの実施形態では、基板支持体316は、処理中に基板314を支持体のペデスタルに固定するためのチャック装置317を含みうる。例えば、チャック装置317は、静電チャック又は真空チャックを含みうる。チャック装置317は、基板314と、基板支持体316内に配置された一又は複数の抵抗ヒータ321との間の熱伝達の向上を促進しうる。図示するように、一又は複数の抵抗ヒータ321は、基板支持体316内の、通常は基板314の位置の下に配置され、かつ、複数のゾーンにおいて基板314の加熱の制御を促進するよう構成されうる。いくつかの実施形態では、基板支持体316は、静電チャックを含み、かつ、静電チャックの中又は下に配置された一又は複数の抵抗ヒータを含む。いくつかの実施形態では、基板支持体316は、静電チャックを含まないが、基板支持体の支持体表面の近位に配置された一又は複数の抵抗ヒータを有しうる。かかる実施形態では、抵抗ヒータを有する基板支持体は、例えば窒化アルミニウムの表面コーティングを有しうる(例えば、基板支持体は窒化アルミニウムなどから製造されうるか、又は、窒化アルミニウムなどの外側コーティングを有しうる)。
いくつかの実施形態では、図4に示すように、基板支持体316は、静電チャックを有さずに、抵抗ヒータを含むことがある。図4に示す基板支持体316は、基板314の温度を調節するよう構成された抵抗ヒータ321を含む。ヒータ321は、一又は複数のゾーンに含まれうる(図4に示す外側ゾーン402及び内側ゾーン404)。ヒータ321は、電源412に結合され、かつ、基板314を最高で摂氏約500度の温度に維持することが可能である。いくつかの実施形態では、基板314が基板支持体316の表面416に固着することを防止するために、接地メッシュ406が、一又は複数のヒータ321と基板支持体316の上部表面416との間に配置されうる。上述の不活性コーティングは、基板支持体316の表面416にも適用されうる。
静電チャックをヒータと共に使用する場合、窒素供与量及びN%(例えば、窒素含有層208を形成するために第1層204内に取り込まれた窒素の質量パーセント)は、プラズマプロセス中のウエハ温度に正比例することが実証された。そのため、ウエハ上の窒素供与量及びN%の均一性を制御し、かつ/又は調節するために、2つの手法が利用可能である。(1)ウエハの温度均一性パターンがプラズマ均一性パターンを補償するように、ヒータ要素のための電力密度の事前設定されたパターンを用いる、固定的ゾーン加熱、又は、(2)プラズマ均一性パターンを補償するためにウエハ温度均一性が調節されうるように、種々のヒータゾーンための調節可能な電力供給を用いる、調節可能複数ゾーン加熱、である。いずれの手法においても、ウエハ内窒化均一性の向上、及び/又は、基板における所望の窒素供与量パターンの提供を達成するための手がかりとして、温度が利用されうる。いくつかの実施形態では、窒素供与量パターンは実質的に均一でありうる(例えば約1パーセントの範囲内)。
運動アセンブリ410が、処理中に基板支持体316の、従って基板314の上昇を制御するために提供されうる。運動アセンブリ410は、可撓性ベローズ408を使用して、密封するようにチャンバ本体330に結合される。代替的には、又は組み合わせにおいて、運動アセンブリ410は、基板支持体316を回転させるよう構成されうる。
図3に立ち戻るに、代替的には、又は組み合わせにおいて、基板314を加熱するために、ランプ323のような一又は複数の放射源が提供されうる。ランプ323は、急速熱処理チャンバ内で利用される放射ランプと同様に構成されうる。上方から基板を加熱することを含む他の加熱方法又は設計も使用されうる。
基板314の温度は、基板支持体316の温度を安定化させることによって制御されうる。ガス源348からの熱伝達ガスが、基板314の背面によって形成されたチャネル、及び、支持体表面及び/又はチャック装置317内の溝(図示せず)へと、ガス導管349を介して提供される。熱伝達ガスは、基板支持体316と基板314との間の熱伝達を促進するために使用される。処理中に、基板支持体316は、一又は複数の抵抗ヒータ321によって定常状態温度に加熱されてよく、次いで、熱伝達ガスは、基板314の均一加熱を促進する。かかる熱制御を使用して、基板314は、摂氏約0度から摂氏約550度の温度で維持されうる。
いくつかの実施形態では、基板支持体316は、例えば急速冷却のための基板ダイへの熱衝撃を防止するために、低熱質量を有しうる。例えば、基板支持体316は、ヒートシンク又はそれに結合された冷却プレートなしで構成されてよく、それによって、基板支持体316から熱が除去されうる速度を限定しうる。
典型的な工程においては、基板314(例えば基板202)は、基板支持体316上に載置されてよく、天井部320内に配置され、かつ基板314の上方の中心にある入口ポート326を通じて、ガスパネル338から処理ガスが供給される。いくつかの実施形態では、ガスパネル338は、アンモニア(NH)又は水素(H)のような処理ガスを供給するよう構成される。処理ガスは、窒素(N)、ヘリウム(He)又はアルゴン(Ar)のような追加のガスと組み合わされ、入口ポート326を介してチャンバ310へ流入しうる。入口ポート326は、基板314に向けて垂直に、かつ処理チャンバ310の中へと放射状に進むように処理ガスを提供しうる、例えばバッフル又は同様のガス入口装置を含みうる。入口ポート326を介して処理チャンバ310に入る際に、処理ガスは混合ガス350を形成する。混合ガス350は、RF電源318からアンテナ312へと電力を印加することによって、チャンバ310内で強熱されてプラズマ355になる。任意には、バイアス電源322からの電力も基板支持体316に提供されうる。チャンバ310の内部の圧力は、スロットルバルブ362及び真空ポンプ336を使用して制御される。チャンバ壁330の温度は、壁330を通過する液体含有導管(図示せず)を使用して制御される。
コントローラ340は、中央処理装置(CPU)344と、メモリ342と、CPU344のためのサポート回路346とを備え、本書で論じているように、窒化処理チャンバ310の構成要素の制御、従って窒化プロセスの制御を促進する。コントローラ340は、様々なチャンバ及びサブプロセッサを制御するための工業環境で使用されうる任意の形態の汎用コンピュータプロセッサのうちの1つでありうる。CPU344のメモリ又はコンピュータ可読媒体342は、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、フロッピーディスク、ハードディスク、又は任意の他の形態のローカルデジタルストレージ或いは遠隔デジタルストレージなどの、容易に入手可能なメモリのうちの一又は複数でありうる。サポート回路346は、従来型の様態でプロセッサをサポートするためにCPU344に連結される。これらの回路は、キャッシュ、電力供給装置、クロック回路、入出力回路、及びサブシステムなどを含む。本発明の方法は、ソフトウェアルーチンとしてメモリ342に記憶され、上述された様態で実行さるか、又は発動されうる。ソフトウェアルーチンはまた、CPU344によって制御されるハードウェアの遠隔に位置する第2のCPU(図示せず)によって記憶され、かつ/又は実行されうる。
ゆえに、本書では、窒素含有層を形成するための方法及び装置が提供された。本発明の方法及び装置は、有利には、層の厚み付けの低減を伴う窒素含有量の増加、及び、ターゲット層(第1層など)とポリシリコンゲート等の別のデバイス層との間の界面における酸素保持の向上を促進することによって、ターゲット層の窒化の向上を提供しうる。
上記は本発明の実施形態を対象とするが、本発明の基本的な範囲から逸脱することなく、本発明の他の実施形態及び更なる実施形態が考案されうる。

Claims (15)

  1. 窒素含有層を形成する方法であって、
    第1層が上に配置されている基板を、処理チャンバの基板支持体上に載置することと、
    前記基板を第1温度に加熱することと、
    前記第1層を前記窒素含有層へと変換するために、前記第1層を、アンモニア(NH)を含む処理ガスから形成されたRFプラズマに曝露することとを含み、前記プラズマは約8eVを下回るイオンエネルギーを有する、方法。
  2. 前記第1層は3次元構造である、請求項1に記載の方法。
  3. 前記プラズマは約4eVを下回るイオンエネルギーを有する、請求項1に記載の方法。
  4. 前記処理ガスは希ガスを含む、請求項1に記載の方法。
  5. 前記処理ガスは、全ガス流に基づいて約0.5%から約99.5%のアンモニア(NH)を含み、その残部は希ガスである、請求項4に記載の方法。
  6. 前記希ガスはアルゴンである、請求項4に記載の方法。
  7. 前記アンモニア(NH)は約15sccmから約500sccmで流される、請求項1から6のいずれか一項に記載の方法。
  8. 前記第1温度は摂氏約250度から摂氏約500度である、請求項1から6のいずれか一項に記載の方法。
  9. 前記処理チャンバを約5mTorrから約500mTorrの圧力に維持しつつ、前記第1層を高周波(RF)プラズマに曝露することを更に含む、請求項1から6のいずれか一項に記載の方法。
  10. 約13.56MHzの周波数を有するパルスにされたRF電源を使用して、RFプラズマを形成することを更に含む、請求項1から6のいずれか一項に記載の方法。
  11. 前記パルスにされたRF電源は、最大30%のデューティサイクルで最大2000ワットの電力を供給する、請求項10に記載の方法。
  12. 前記パルスにされたRF電源は、約5%から約10%のデューティサイクルで電力を供給する、請求項10に記載の方法。
  13. 前記第1層は、半導体材料、金属、又は金属酸化物を含む、請求項1から6のいずれか一項に記載の方法。
  14. 前記第1層はシリコン(Si)、ゲルマニウム(Ge)、シリコンゲルマニウム(SiGe)、III−V化合物、タングステン(W)、チタン(Ti)、窒化チタン(TiN)、タンタル(Ta)、又は窒化タンタル(TaN)、二酸化チタン(TiO)、或いは、酸化アルミニウム(Al)である、請求項13に記載の方法。
  15. 指令が記憶されている非一時的コンピュータ可読媒体であって、前記指令は、実行されると、処理チャンバに、窒素含有層を形成する方法を実行させ、前記方法は、
    第1層が上に配置されている基板を、処理チャンバの基板支持体上に載置することと、
    前記基板を第1温度に加熱することと、
    前記第1層を前記窒素含有層へと変換するために、前記第1層を、アンモニア(NH)を含む処理ガスから形成されたRFプラズマに曝露することとを含み、前記プラズマは約8eVを下回るイオンエネルギーを有する、非一時的コンピュータ可読媒体。
JP2016500578A 2013-03-15 2014-03-04 基板上の三次元構造の層のnh3含有プラズマ窒化 Active JP6749834B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361790444P 2013-03-15 2013-03-15
US61/790,444 2013-03-15
US14/195,273 US9177787B2 (en) 2013-03-15 2014-03-03 NH3 containing plasma nitridation of a layer of a three dimensional structure on a substrate
US14/195,273 2014-03-03
PCT/US2014/020130 WO2014149656A1 (en) 2013-03-15 2014-03-04 Nh3 containing plasma nitridation of a layer of a three dimensional structure on a substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019035770A Division JP2019125798A (ja) 2013-03-15 2019-02-28 基板上の三次元構造の層のnh3含有プラズマ窒化

Publications (3)

Publication Number Publication Date
JP2016512395A true JP2016512395A (ja) 2016-04-25
JP2016512395A5 JP2016512395A5 (ja) 2017-04-13
JP6749834B2 JP6749834B2 (ja) 2020-09-02

Family

ID=51529015

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016500578A Active JP6749834B2 (ja) 2013-03-15 2014-03-04 基板上の三次元構造の層のnh3含有プラズマ窒化
JP2019035770A Pending JP2019125798A (ja) 2013-03-15 2019-02-28 基板上の三次元構造の層のnh3含有プラズマ窒化

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019035770A Pending JP2019125798A (ja) 2013-03-15 2019-02-28 基板上の三次元構造の層のnh3含有プラズマ窒化

Country Status (6)

Country Link
US (1) US9177787B2 (ja)
JP (2) JP6749834B2 (ja)
KR (1) KR102244381B1 (ja)
CN (1) CN105009259B (ja)
TW (1) TWI618152B (ja)
WO (1) WO2014149656A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9355820B2 (en) 2013-09-12 2016-05-31 Applied Materials, Inc. Methods for removing carbon containing films
US9312145B2 (en) * 2014-03-07 2016-04-12 Globalfoundries Inc. Conformal nitridation of one or more fin-type transistor layers
WO2016104292A1 (ja) * 2014-12-25 2016-06-30 株式会社日立国際電気 半導体装置の製造方法、記録媒体及び基板処理装置
JP2019504481A (ja) * 2015-12-07 2019-02-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 静電チャックを使用した基板の固定と開放のための方法及び装置
US10103027B2 (en) 2016-06-20 2018-10-16 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
US10510545B2 (en) 2016-06-20 2019-12-17 Applied Materials, Inc. Hydrogenation and nitridization processes for modifying effective oxide thickness of a film
US10971357B2 (en) 2018-10-04 2021-04-06 Applied Materials, Inc. Thin film treatment process
CN111326470A (zh) * 2018-12-17 2020-06-23 夏泰鑫半导体(青岛)有限公司 静电夹盘及半导体设备
WO2021150625A1 (en) 2020-01-23 2021-07-29 Applied Materials, Inc. Method of cleaning a structure and method of depositiing a capping layer in a structure
CN116031141A (zh) * 2022-12-25 2023-04-28 北京屹唐半导体科技股份有限公司 工件处理方法、工件处理设备及半导体器件
CN115863151B (zh) * 2022-12-25 2023-10-27 北京屹唐半导体科技股份有限公司 工件处理方法、工件处理设备及半导体器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530341A (ja) * 2002-06-12 2005-10-06 アプライド マテリアルズ インコーポレイテッド 基板を処理するためのプラズマ方法及び装置
WO2011112823A2 (en) * 2010-03-10 2011-09-15 Applied Materials, Inc. Apparatus and methods for cyclical oxidation and etching
WO2012061232A2 (en) * 2010-11-04 2012-05-10 Tokyo Electron Limited Method of depositing dielectric films using microwave plasma
JP2012256900A (ja) * 2003-05-28 2012-12-27 Applied Materials Inc 振幅変調された高周波エネルギーを使用してゲート誘電体をプラズマ窒化するための方法及び装置
US20130012032A1 (en) * 2011-07-05 2013-01-10 Applied Materials, Inc. Nh3 containing plasma nitridation of a layer on a substrate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397491B2 (ja) * 1999-11-30 2010-01-13 財団法人国際科学振興財団 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
US6610615B1 (en) * 2000-11-15 2003-08-26 Intel Corporation Plasma nitridation for reduced leakage gate dielectric layers
JP2004335980A (ja) 2003-05-12 2004-11-25 Sumitomo Electric Ind Ltd シリコン窒化膜を形成する方法及び半導体装置の製造方法
CN100461341C (zh) * 2003-05-28 2009-02-11 应用材料有限公司 使用调幅射频能量的栅极介电层的等离子体氮化方法和设备
JP2005150637A (ja) 2003-11-19 2005-06-09 Canon Inc 処理方法及び装置
KR101028625B1 (ko) * 2005-03-31 2011-04-12 도쿄엘렉트론가부시키가이샤 기판의 질화 처리 방법 및 절연막의 형성 방법
US8318554B2 (en) * 2005-04-28 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of forming gate insulating film for thin film transistors using plasma oxidation
EP1898456A4 (en) * 2005-06-08 2009-11-18 Univ Tohoku PLASMA NITRURATION METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND PLASMA PROCESSING APPARATUS
JP5078617B2 (ja) * 2005-09-22 2012-11-21 東京エレクトロン株式会社 選択的プラズマ処理方法およびプラズマ処理装置
KR101216199B1 (ko) * 2006-03-09 2012-12-27 어플라이드 머티어리얼스, 인코포레이티드 낮은 에너지 플라즈마 시스템을 이용하여 하이 유전상수 트랜지스터 게이트를 제조하기 위한 방법 및 장치
US8158535B2 (en) * 2006-12-28 2012-04-17 Tokyo Electron Limited Method for forming insulating film and method for manufacturing semiconductor device
CA2703499A1 (en) * 2007-08-17 2009-02-26 Epispeed Sa Apparatus and method for producing epitaxial layers
US8481433B2 (en) 2009-03-31 2013-07-09 Applied Materials, Inc. Methods and apparatus for forming nitrogen-containing layers
US20110001169A1 (en) * 2009-07-01 2011-01-06 International Business Machines Corporation Forming uniform silicide on 3d structures
JP2011077321A (ja) * 2009-09-30 2011-04-14 Tokyo Electron Ltd 選択的プラズマ窒化処理方法及びプラズマ窒化処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530341A (ja) * 2002-06-12 2005-10-06 アプライド マテリアルズ インコーポレイテッド 基板を処理するためのプラズマ方法及び装置
JP2012256900A (ja) * 2003-05-28 2012-12-27 Applied Materials Inc 振幅変調された高周波エネルギーを使用してゲート誘電体をプラズマ窒化するための方法及び装置
WO2011112823A2 (en) * 2010-03-10 2011-09-15 Applied Materials, Inc. Apparatus and methods for cyclical oxidation and etching
WO2012061232A2 (en) * 2010-11-04 2012-05-10 Tokyo Electron Limited Method of depositing dielectric films using microwave plasma
US20130012032A1 (en) * 2011-07-05 2013-01-10 Applied Materials, Inc. Nh3 containing plasma nitridation of a layer on a substrate

Also Published As

Publication number Publication date
US20140273517A1 (en) 2014-09-18
KR102244381B1 (ko) 2021-04-26
CN105009259A (zh) 2015-10-28
TW201445641A (zh) 2014-12-01
CN105009259B (zh) 2018-11-16
TWI618152B (zh) 2018-03-11
JP2019125798A (ja) 2019-07-25
US9177787B2 (en) 2015-11-03
WO2014149656A1 (en) 2014-09-25
JP6749834B2 (ja) 2020-09-02
KR20150132529A (ko) 2015-11-25

Similar Documents

Publication Publication Date Title
US9054048B2 (en) NH3 containing plasma nitridation of a layer on a substrate
JP6749834B2 (ja) 基板上の三次元構造の層のnh3含有プラズマ窒化
US8546273B2 (en) Methods and apparatus for forming nitrogen-containing layers
TWI406337B (zh) 用於半導體裝置之氧化的方法
KR102419980B1 (ko) 금속 실리사이드 배선 나노와이어 구조를 형성하기 위한 방법들
TWI587389B (zh) 基板處理方法
US20100267248A1 (en) Post Treatment Methods for Oxide Layers on Semiconductor Devices
TW201333247A (zh) 共形的氮碳化矽及氮化矽薄膜之低溫電漿輔助化學氣相沉積
US20110189860A1 (en) Methods for nitridation and oxidation
JP2016512395A5 (ja)
US11264460B2 (en) Vertical transistor fabrication for memory applications
JP2024020242A (ja) メモリ用途のための垂直トランジスタの作製
TW202040799A (zh) 用於3d nand應用之記憶體單元製造
US20200111659A1 (en) Thin film treatment process
JP6424249B2 (ja) シリコン及びゲルマニウムを含む基板におけるシリコンの優先的酸化のための方法
TWI716441B (zh) 用於製造對於半導體應用的水平環繞式閘極裝置的奈米線的方法
JP2008060412A (ja) 半導体デバイスの製造方法
US9355820B2 (en) Methods for removing carbon containing films
JP2008311460A (ja) 半導体装置の製造方法
TWI442474B (zh) 用於在半導體裝置上形成共形氧化層的方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190307

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6749834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250