JP2008311460A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2008311460A
JP2008311460A JP2007158277A JP2007158277A JP2008311460A JP 2008311460 A JP2008311460 A JP 2008311460A JP 2007158277 A JP2007158277 A JP 2007158277A JP 2007158277 A JP2007158277 A JP 2007158277A JP 2008311460 A JP2008311460 A JP 2008311460A
Authority
JP
Japan
Prior art keywords
silicon
film
plasma
substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007158277A
Other languages
English (en)
Inventor
Akito Hirano
晃人 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2007158277A priority Critical patent/JP2008311460A/ja
Publication of JP2008311460A publication Critical patent/JP2008311460A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】シリコン酸化膜とシリコン基板のシリコン表面との間の窒素濃度の制御を可能とし、この間にリーク電流に対応する窒素濃度の境界膜を形成する。
【解決手段】プラズマ窒化によってシリコン基板10の表面にシリコン窒化膜14を形成するプラズマ窒化工程と、プラズマ酸化によって前記シリコン窒化膜14の表面にシリコン酸化膜20を形成することにより当該シリコン酸化膜20とシリコン基板10のシリコン表面との間に、シリコン窒化膜からなる境界膜21を形成するプラズマ酸化工程と、を含み、前記プラズマ窒化工程では前記シリコン酸化膜分の厚みに前記境界膜分の厚みを加えた膜厚のシリコン窒化膜を形成する。
【選択図】図2

Description

本発明は、半導体装置の製造方法に関するものである。
半導体装置、特に、DRAM、フラッシュメモリ(不揮発性メモリ)等のMOS−FETの電気的特性はゲート絶縁膜を構成しているシリコン酸化膜とシリコン基板のシリコン表面との間の界面構造やシリコン酸化膜内部の物理化学的性質の影響を受けやすく、次のような現象が発生することがある。
(1)シリコン酸化膜とシリコン基板のシリコン表面との間の界面の凹凸やシリコン酸化膜中に局在する欠陥は、電界及び電流の集中をもたらし、ひいては絶縁破壊を引き起こす。
(2)また、不揮発性メモリのトンネル酸化膜においては、動作時に、8MV/cm以上の高電界が印加されるため、欠陥によるリーク電流の増加や絶縁破壊耐圧の低下が著しい。
(3)また、シリコン酸化膜とシリコン基板の表面との間の化学的欠陥は、界面準位や電荷の捕獲をもたらし、デバイスの長期的信頼性に影響を与える。
このようにMOS−FETではシリコン酸化膜とシリコン基板のシリコン表面との間の界面近傍でのキャリア捕獲による特性の変動を抑制する必要があり、そのために、シリコン酸化膜中に窒素を導入し、シリコン酸化膜とシリコン基板のシリコン表面との間の界面やその近傍に局在する未結合のSi及び弱いSi−O結合をより安定な原子で終端ないしは置換することが必要になる。
このため、シリコン酸化膜とシリコン基板のシリコン表面との間に窒素を導入することが試みられている。
このような窒素の導入方法には、大別して二つの方法が知られている。
一つは、NOガスもしくはNOガスによってアニールし、不可僻的に窒素を導入する方法であり、もう一つは、NOもしくはNOガスを酸化剤として、直接、シリコン酸化膜とシリコン基板のシリコン表面との間を酸窒化する方法である。
しかし、これらの方法では、シリコン酸化膜が窒素導入の妨げとなり、窒素濃度の最大値は数atoms%と低くなる。このため、未結合のSiや弱いSi−Oを窒素原子によって充分に置換することができず、界面準位密度の低減効果は不十分となる。従って、これらの方法はシリコン酸化膜とシリコン基板のシリコン表面との間、すなわち、界面に窒素を十分に導入する方法として適していない。
また、特許文献1に開示されているように、シリコン基板の表面にプラズマ酸化によりシリコン酸化膜を形成した後、プラズマ窒化によりシリコン酸化膜の表面を窒化することにより、結果的に、シリコン酸化膜とシリコン基板のシリコン表面との間の界面に窒素を導入することが想定される。
特開2004−266040号公報
しかし、シリコン酸化膜を形成した後にシリコン酸化膜を窒化する方法でもシリコン酸化膜が妨げとなってシリコン酸化膜とシリコン基板のシリコン表面との間及びその付近に
充分な量の窒素を導入することができず、窒素導入による界面準位密度の低減効果を得ることはできない。
本発明は、シリコン酸化膜とシリコン基板のシリコン表面との間の窒素濃度の制御を可能とし、この間にリーク電流に対応する窒素濃度の境界膜を形成することを目的とする。
本発明の好ましい態様は、プラズマ窒化によってシリコン基板の表面にシリコン窒化膜を形成するプラズマ窒化工程と、プラズマ酸化によって前記シリコン窒化膜の表面にシリコン酸化膜を形成することにより当該シリコン酸化膜とシリコン基板のシリコン表面との間に、シリコン窒化膜からなる境界膜を形成するプラズマ酸化工程と、を含み、前記プラズマ窒化工程では前記シリコン酸化膜分の厚みに前記境界膜分の厚みを加えた膜厚のシリコン窒化膜であって前記境界膜分の厚みを前記プラズマ酸化の際の境界膜とシリコン基板との界面への酸素の到達を遮る厚みとしたシリコン窒化膜を形成する半導体装置の製造方法を提供する。
このような製造方法によれば、境界膜の窒素濃度の制御が可能となり、実質的に、シリコンとの境界、その近傍の未結合のSiや弱いSi−Oを窒素原子に置換又は終端することが可能となる。このため、シリコン酸化膜とシリコン基板のシリコン表面との間の界面及びその近傍でのキャリア捕獲による特性の変動と電界及び電流の集中とが抑制され、これを原因とする絶縁破壊が防止される。さらに、プラズマ酸化とプラズマ窒化により欠陥の極めて少ない緻密な構造が得られるので、半導体装置の長期的信頼性も大幅に向上する。
以下、添付図面を参照して本発明を実施するための最良の形態を説明する。
なお、本実施の形態では、まず、酸化プラズマ、窒化プラズマにより被処理基板を処理するための基板処理炉について説明し、次に、本発明に係る半導体装置の製造方法について説明する。
基板処理炉は、電界と磁界により高密度プラズマを生成できる変形マグネトロン型プラズマ源(Modified Magnetron Typed Plasma Source)を搭載している(以下、MMT装置と称する)。
MMT装置は、気密性が確保された処理室に被処理基板を設置し、処理室をある一定の圧力に保持しながら放電用電極(筒状電極)に高周波電力を供給して電界と磁界とを形成することによってマグネトロン放電を発生させ、シャワーヘッドを介して処理室に導入する処理ガスを活性種としてプラズマ処理を行う。MMT装置では、放電用電極から放出された電子はドリフトしながらサイクロイド運動を続けて周回することにより長寿命となって電離生成率を高めるので、高密度プラズマを生成することができる。従って、MMT装置は、反応ガスを励起分解させて基板表面の酸化、窒化等の拡散処理、基板表面に薄膜を形成する処理、基板表面をエッチングする処理等、各種のプラズマ処理に使用することが可能となる。
<MMT装置>
図1は半導体装置の製造に用いるMMT装置の解説図である。
MMT装置は処理容器202を有する。この処理容器202は、第1の容器であるドーム型の上側容器210と第2の容器である碗型の下側容器211で形成されており、下側容器211と上側容器210は、互いの接合面が突き合わされた状態で相互に一体に且つ気密に連結されている。
そして、上側容器210は酸化アルミニウム又は石英等の非金属材料で形成され、下側容器211はアルミニウムで形成されている処理容器202には、後述するヒータ一体型の基板保持具(基板保持手段)であるサセプタ217が設けられている。本実施の形態では、前記サセプタ217は窒化アルミニウムやセラミックス又は石英等の非金属材料で構成しているが、金属や他の材料で形成してもよい。
サセプタ217を窒化アルミニウムやセラミックス又は石英で構成した場合は、処理の際に膜中に取り込まれる金属汚染を低減することができる。
シャワーヘッド236は、処理室201の上部に設けられ、キャップ状の蓋体233と、ガス導入口234と、バッファ室237と、開口238と、遮蔽プレート240と、ガス吹出口239とを備えている。
バッファ室237は、ガス導入口234より導入されたガスを分散するための分散空間として設けられる。
ガス導入口234は、ガスを供給するガス供給管232が接続されており、ガス供給管232は、開閉弁であるバルブ243a、流量制御器(流量制御手段)であるマスフローコントローラ241を介して反応ガス230のガスボンベ(図示せず)に接続されている。処理ガスとしての反応ガス230はシャワーヘッド236から処理室201に供給される。
また、サセプタ217の周囲から処理室201の底方向へ基板処理後のガスが流れるように下側容器211の側壁にガスを排気するガス排気口235が設けられている。
ガス排気口235にはガスを排気するガス排気管231が接続されており、ガス排気管231は、圧力調整器であるAPC242、開閉弁であるバルブ243bを介して減圧排気装置としての真空ポンプ246に接続されている。
そして、MMT装置には、反応ガス230を励起させる放電機構(放電手段)として、筒状、例えば円筒状に形成された第1の電極である筒状電極215が設けられる。
筒状電極215は処理容器203(上側容器210)の外周に設置され、処理室201内のプラズマ生成領域224を外側より同心円状に取り囲んでいる。
筒状電極215にはインピーダンスの整合を行う整合器272を介して高周波電力を印加する高周波電源273が接続されている。
また、筒状、例えば円筒状に形成された磁界形成機構(磁界形成手段)である筒状磁石216は筒状の永久磁石で構成され、筒状電極215の外表面の上下端近傍に配置される。
上下の筒状磁石216は、処理室201の半径方向に沿った両端(内周端と外周端)に磁極を持ち、上下の筒状磁石216の磁極の向きが逆向きに設定されている。
つまり、内周部の磁極同士が異極となっており、これにより、筒状電極215の内周面に沿って円筒軸方向に磁力線を形成されるようになっている。筒状電極215は、整合器272を介して高周波電源273に接続される。
高周波電源273は、例えば13.56MHzの周波数を持つ高周波電力を発生し、制御装置121からの制御信号に応じて電力の大きさが調整される。
処理室201の底側中央には、被処理基板10を保持するための基板保持具(基板保持手段)としてサセプタ217が配置されている。
サセプタ217は、例えば窒化アルミニウムやセラミックス、又は石英等の非金属材料で形成され、サセプタ217の内部には加熱機構(加熱手段)としてのヒータ(図示せず)が一体的に埋め込まれており、被処理基板10を熱伝導及び輻射により加熱するようになっている。
このヒータは電力が印加されて被処理基板10を所定温度、例えば、500℃程度にまで加熱できるようになっている。
また、サセプタ217の内部には、さらにインピーダンスを変化させるための電極である第2の電極(図示せず)も装備されており、この第2の電極がインピーダンス可変機構274を介して接地されている。
このインピーダンス可変機構274は、コイルや可変コンデンサから構成され、前述した制御装置121からの制御信号により、コイルのパターン数や可変コンデンサの容量値を制御することによって、前記電極及びサセプタ217を介してサセプタ217のインピーダンスを調整し、被処理基板10の電位を制御できるようになっている。
このように被処理基板10をマグネトロン型プラズマ源でのマグネトロン放電により処理するための処理炉は、少なくとも処理室201、処理容器202、サセプタ217、筒状電極215、筒状磁石216、シャワーヘッド236、及びガス排気口235を備えており、処理室201で被処理基板10をプラズマ処理することが可能となっている。
また、MMT装置には、筒状電極215及び筒状磁石216の周囲には、この筒状電極215及び筒状磁石216が形成する電界や磁界を外部環境や他処理炉等の装置に悪影響を及ぼさないように、電界や磁界を有効に遮蔽する遮蔽板223が設けられている。
前記サセプタ217は下側容器211と絶縁され、サセプタ217を昇降させるサセプタ昇降機構(昇降手段)268が設けられている。
またサセプタ217には貫通孔217aが設けられ、下側容器211底面には被処理基板10を突上げるためのウエハ突上げピン266が少なくとも3箇所に設けられている。
そして、サセプタ昇降機構268によりサセプタ217が下降させられたときにはウエハ突上げピン266がサセプタ217と非接触な状態で貫通孔217aを突き抜けるような位置関係となるよう、貫通孔217a及びウエハ突上げピン266が配置される。
また、下側容器211の側壁には仕切弁となるゲートバルブ244が設けられている。ゲートバルブ244が開いている時には図中省略の搬送機構(搬送手段)により処理室201に対して被処理基板10を搬入、または搬出することができ、閉まっている時には処理室201を気密に閉じることができる。
また、制御部(制御手段)121としてのコントローラは、信号線Aを通じてAPC(自動コンダクタンスバルブ)242、バルブ243b、真空ポンプ246を、信号線Bを通じてサセプタ昇降機構268を、信号線Cを通じてゲートバルブ244を、信号線Dを通じて整合器272、高周波電源273を、信号線Eを通じてマスフローコントローラ241、バルブ243aを、さらに図示しない信号線を通じてサセプタ217に埋め込まれたヒータやインピーダンス可変機構274の他、ランプ加熱ユニット267を制御するよう構成されている。
なお、被処理基板10の温度は非接触式の温度センサ(図示せず)により検出され、処理室の圧力は、圧力センサ(図示せず)により検出される。また、前記サセプタ217は均一な面内処理のため回転自在に設けられている。
次に、MMT装置を用いた被処理基板10の一例について概略的に説明する。
まず、サセプタ217のインピーダンスの調節により、サセプタ217の電位を調節し、窒素活性種が被処理基板10に引き付けられる際のイオンの突入エネルギを調節する。次に、処理時間、被処理基板10の温度、圧力を設定する。
次に、被処理基板10、すなわち、シリコン基板(ウエハともいう)をサセプタ217に支持し、処理容器202内の雰囲気ガスを排気口235から排気して処理容器202内
を処理に適した圧力に減圧する。続いて、サセプタ217をヒータにより加熱する。
なお、ランプ加熱ユニット267は必要に応じてヒータと併用する。
処理ガス(例えば、原料ガス)をガス導入口234から導入すると、処理ガスは、バッファ室237で拡散した後、所定の圧力で遮蔽プレート(シャワー板部ともいう)240のガス吹出口239から処理室201に供給される。処理ガスの供給と同時に高周波電源273から筒状電極215に高周波電力を供給する。
このとき、処理室201においては、上下の筒状磁石216からなる磁力線形成手段により磁力線(磁界)が形成されており、筒状電極216により高周波電界が形成されるので、サセプタ217上の被処理基板10はプラズマによって発生した活性種によって処理される。
所定の処理時間を経過した後は、高周波電源273からの高周波電力の供給を停止し、バルブ243bを開として真空ポンプ246の排気によって処理容器202内の処理済みガスを排気口235から排気し、その後、サセプタ217上の被処理基板10を処理室201から取り出してこの工程を終了する。
<本実施の形態に係る半導体装置の製造方法>
次に、図1及び図2を参照して本実施の形態に係る半導体装置の製造方法について説明する。
図2は本実施の形態に係る半導体装置の製造方法の一例を示す工程図を示し、図2(A)は処理すべき被処理基板を示す図、図2(B)は素子分離領域の形成工程を示す図、図2(C)はプラズマ窒化処理工程を示す図、図2(D)はプラズマ酸化工程を示す図、図2(E)は電極の形成工程を示す図である。なお、この実施の形態に係る製造方法は、特に、DRAM、フラッシュメモリのMOS−FETの製造に適しているが、他の半導体装置の製造にも適用してもよい。
<素子分離工程>
素子分離領域の形成工程では、シリコン基板からなる被処理基板10上にLOCOS(Local Oxidation of Silicon)プロセスまたはSTI(Shallow Trench Isolation)プロセス等の周知方法によって、図2(B)に示すように、素子分離領域12を形成する。
続いて、周知の方法で、ウェルイオン注入、チャンネルストップイオン注入、閾値調整イオン注入等を行う。これらの操作を終了すると、プラズマ窒化工程に移り、プラズマ窒化処理を行う。
<プラズマ窒化工程>
この工程では、プラズマ窒化専用のMMT装置を使用する。
まず、準備工程として、被処理基板10の温度、処理室201の圧力、プラズマ窒化時間、サセプタ217の電位を設定し、プラズマ窒化工程の窒化力を調節する。この場合、窒化力とは、被処理基板10の温度、処理室201の圧力、プラズマ窒化膜(SiN)14を形成するためのエネルギ、プラズマ窒化時間をパラメータとして決定される総合的な窒化力のことをいう。
本実施の形態では、被処理基板10の温度、処理室201の圧力、プラズマ窒化時間、サセプタ217の電位の設定により、シリコン窒化膜14の厚みを、次工程であるプラズマ酸化工程でのシリコン酸化膜20分の厚みに、境界膜21分の厚みを加えた厚みとする。また、境界膜21分の厚みがシリコン表面(界面)23への酸素の到達を妨げる厚みとなるように、窒化力を設定する。
また、被処理基板10の温度は400〜800℃、例えば、700℃に設定し、処理室201の圧力は1〜130pa、例えば、50Paに設定し、また、プラズマ窒化時間を30sec〜5minに設定する。
なお、窒化力の変更や調節は、温度や圧力の変更によっても可能であるが、この実施の形態では、簡便のため、サセプタ217側の電位を調節することにより窒化力を調節する。なお、この場合に、必要に応じて位相差を調節する。
プラズマ窒化処理では、被処理基板10を高温に加熱するほどシリコン窒化膜14の緻密さが向上するので、シリコン窒化膜14中、及びシリコン表面23との間、すなわち、界面の凹凸などの物理的欠陥が減少し、これに起因する電界及び電流の集中やこれを原因とする絶縁破壊を防止することが可能となる。しかし、被処理基板10の温度が400℃未満となると、シリコン窒化膜の粗密さが顕著となり、800℃を越えると、反応室の高温化による金属汚染が発生し、好ましくない。
従って、プラズマ窒化に際し、被処理基板10の温度は、400〜800℃の温度範囲内の温度とするのが好ましい。
また、処理室201の圧力を1〜130Paの範囲内の圧力に設定すると、シリコン窒化膜14を厚く形成することが可能となるが、処理室201の圧力が130Paを超えてしまうと、厚膜の形成が困難になり、処理室の圧力を1Pa未満とすると、プラズマの高密度化により、金属汚染が発生し、好ましくない。従って、プラズマ窒化に際し、処理室201の圧力は、1〜130Paとするのが好ましい。
なお、被処理基板10の温度を500℃以上に加熱する場合は、前記したようにランプ加熱ユニット267を併用した被処理基板10の加熱が行われる。
設定を終了すると、素子分離工程にて素子分離領域12を形成した被処理基板10をMMT装置の処理室201に搬入する。そして、ゲートバルブ244によって処理炉201を閉じた状態で制御装置121によるプラズマ酸化処理を開始する。
被処理基板10の温度が、設定温度700℃、設定圧力が50Paとなると、窒化ガス供給源がガス導入口234に連通され、処理室201に窒化ガスが導入される。この場合、窒化ガスとしては、N(窒素)ガス、NOガス又はNOガスの少なくとも一種が供給される。
窒化ガスの導入を開始すると、同時に、高周波電源273から筒状電極215に高周波電力が供給される。この状態では、図2(C)に示すように、処理室201内に窒化プラズマ18が生成され、被処理基板10の表面に窒素活性種と被処理基板10との反応による設定厚みのシリコン窒化膜(SiN)14が形成される。ここで、シリコン窒化膜14の厚みは、次工程でのシリコン酸化膜20分の厚みに境界膜21分の厚みを加えた厚みとなるようにする。
プラズマ窒化処理時間が経過しプラズマ窒化処理を終了すると、次にプラズマ酸化工程に移行する。
<プラズマ酸化工程>
プラズマ酸化工程では、素子分離工程及びプラズマ窒化工程で使用したMMT装置を使用せずプラズマ酸化処理専用のMMT装置を使用してシリコン酸化膜20を形成する。なお、プラズマ酸化工程で使用するMMT装置も構成は前記した構成のMMT装置である。
シリコン酸化工程では、まず、準備工程として、プラズマ酸化に際し、被処理基板10の温度、処理室201の圧力、プラズマ酸化時間、サセプタ217の電位を設定し、プラズマ酸化工程の酸化力を調節する。この場合、酸化力とは、被処理基板10の温度、処理室201の圧力、プラズマ酸化膜(SiO)20を形成するためのエネルギ、プラズマ酸化時間をパラメータとして決定される総合的な酸化力を意味している。
本実施の形態では、被処理基板10の温度、処理室201の圧力、プラズマ酸化時間、サセプタ217の電位の設定により、シリコン酸化膜20の厚みを決定し、シリコン酸化膜20の形成により、残りのシリコン窒化膜を境界膜21とする。
また、被処理基板10の温度は400〜800℃、例えば、700℃に設定し、処理室201の圧力は1〜130pa、例えば、50Paに設定し、また、プラズマ酸化時間を30sec〜5minに設定する。
なお、酸化力の変更や調節は、温度や圧力の変更によっても可能であるが、簡便のため、インピーダンスの調節によりサセプタ217の電位を調節するとよい。
プラズマ酸化処理では、被処理基板10を高温に加熱するほどシリコン酸化膜20や酸窒化膜、及びこれら膜間の界面の緻密さが向上するので、物理的欠陥が減少し、これに起因する電界及び電流の集中やこれを原因とする絶縁破壊の防止が可能となるが、被処理基板10の温度が400℃未満となると、プラズマ窒化と同様に、シリコン酸化膜や酸窒化膜の粗密さが顕著となり、800℃を越えると、反応室の高温化による金属汚染が発生し、好ましくない。従って、プラズマ酸化に際し被処理基板10の温度は400〜800℃の温度範囲内の温度とするのが好ましい。
また、処理室201の圧力を1〜130Paの範囲内の圧力に設定すると、シリコン酸化膜20の厚みを厚くすることが可能となるが、処理室201の圧力が130Paを超えてしまうと、厚膜の形成が困難となる。また、処理室の圧力を1Pa未満とすると、プラズマの高密度化により金属汚染が発生し、好ましくない。
従って、プラズマ酸化に際し処理室201の圧力は1〜130Paとするのが好ましい。
なお、被処理基板10の温度を500℃以上に加熱する場合は、前記したようにランプ加熱ユニット267を併用する。
設定を終了すると、プラズマ処理工程で処理した被処理基板10を処理室201のサセプタ217に支持し、ゲートバルブ244を閉とした状態で制御装置121によるプラズマ酸化処理を実行する。
処理室201の圧力が、設定圧力、例えば、50paの圧力となり、被処理基板10の温度が設定温度、例えば、700℃となると、制御装置121により、ガス導入口234に酸化ガスの供給源(図示せず)が接続(連通)され、処理室201に酸化ガスとして、例えば、Oを含むKr(クリプトン)が導入される。そして、酸化ガスの導入の際は、同時に高周波電源273から筒状電極216に高周波電力が供給される。この状態では、図4(D)に示すように、処理室201内に酸化プラズマ19が発生し、酸素活性種と被処理基板10のシリコン窒化膜14との反応によりシリコン窒化膜14の表面にシリコン酸化膜20が形成される。
シリコン酸化膜20は、シリコン窒化膜14表面のN(窒素)がO(酸素)に置換されることにより形成される。
プラズマ酸化が終了すると、シリコン酸化膜20とシリコンSiとの間、すなわち、境界に、シリコン窒化膜からなる境界膜21が形成され、境界膜21中への酸素の侵入によって、境界膜21中にO(酸素)、N(窒素)、Si(シリコン)が結合した酸窒化膜(SiON)が形成される。境界膜21は、シリコン表面(界面)23への到達が遮断される厚さ、例えば、4nm以上とする。
このように、本実施の形態では、シリコン窒化膜14を先に形成し、次に、シリコン窒化膜14の表面にシリコン酸化膜20を形成することにより、シリコン酸化膜20とシリコンSiとの間に、シリコン窒化膜からなる境界膜21を形成する。つまり、窒素をシリコンに導入する際に、従来の方法のようにシリコン酸化膜が障害となることがないので、シリコン表面(界面)23近傍への窒素の導入量を制御することができる。窒素をリーク電流の遮断に対応した量を導入すると、シリコン酸化膜20及び境界膜21によって、リーク電流を遮断ないし大幅に減少させることができる。
なお、プラズマ酸化処理及びプラズマ窒化処理は、一つの処理室201で順次的に実施
することも可能であるが、処理室に残留する酸素や窒素の影響(メモリ効果)を排除することにより再現性をよくするには、本実施の形態で説明したように、プラズマ酸化処理及びプラズマ窒化処理をそれぞれ個別のMMT処理装置で行うようにするとよい。
<電極形成工程>
この工程では、CVD等の周知の方法により、図2(E)に示すように、ポリシリコン等からなるゲート電極22をシリコン酸化膜20の上に形成する。
このゲート電極22には、不純物としてボロン原子(B)が含まれる。
その後、例えばワード線やキャパシタを形成し、例えばDRAMを構成する。
このようにすると、ゲート電極22を形成した後に種々の熱処理工程により、ボロン原子(B)が拡散して被処理基板10まで到達しようとするが、酸窒化膜21の存在によって防止される。
なお、特許文献1の技術では、リーク電流及びモビリティ(半導体素子の電流駆動能力としての移動度)の両方を満足するために、シリコン基板の側への窒素導入を避けているので、この方法では必要な量の窒素を導入することができない。
以下、実施の形態と同じ符号を用いて本発明に係る実施例について説明する。
前記MMT装置を用い、第1のプロセス(プラズマ酸化)として、処理室201のガス置換後、プラズマ窒化処理することによってシリコン基板からなる被処理基板10の表面に、厚みが6nmのシリコン窒化膜を形成した。このシリコン窒化膜14の厚みには、2nmの境界膜21分の厚みが加えられている。
被処理基板10の温度は、700℃、処理室の圧力は50Paとした。窒化時間は、5minとした。
最終的な窒化力はサセプタ46のインピーダンスの調節によって調節した。なお、熱窒化では、4nm以上の圧膜の形成は困難であり、物理化学的な緻密な構造とすることも困難なので、VthやTDDBを抑制することができない。また、緻密性が低いとリーク電流が流れやすいという問題が発生する。
図3(A)はSIMSにより得られた被処理基板10の窒素、酸素、シリコンに関するプロファイルを示す。
図示されるように、窒素濃度は、深さによって変化し、所定深さでピークに到達した後、減少する。リーク電流に対する実用的な窒素濃度は10atoms%以上であるが、図3(A)の結果では、表面から凡そ6nm深さに10〜20atoms%の窒素が導入されている。
次に、第2のプロセスとして、シリコン窒化膜14を形成した後、被処理基板10を別のMMT装置の処理室202に移し、シリコン窒化工程と同じ、温度、圧力の下でプラズマ酸化を行った。
このとき、プラズマ酸化時間は2minとし、シリコン酸化膜20に対する最終的な酸化力は、サセプタ217のインピーダンスの設定によって調節した。
図3(B)はSIMSにより得られたプラズマ酸化処理後の被処理基板10の窒素、酸素、シリコンに関するフロファイルを示す。
同図に示すように、シリコン酸化膜20と半導体基板10のシリコン表面23との間、すなわち、境界膜21中には、プラズマ酸化により、酸窒化膜が形成されている。この酸窒化膜の厚みは、4〜6nmの範囲に及んでおり、4.5〜6nmの範囲に10〜20atoms%の窒素が導入されている。酸窒化膜の窒素量のピークは20atoms%である。
このため、酸化力を調節すると、酸窒化膜の膜厚の調節、及び境界膜の窒素濃度を10
〜20atoms%の範囲で最適化することが可能となる。
以下、本発明の実施形態における好ましい態様を付記する。
<実施の態様1>
プラズマ窒化によってシリコン基板の表面にシリコン窒化膜を形成するプラズマ窒化工程と、プラズマ酸化によってシリコン窒化膜の表面にシリコン酸化膜を形成することにより当該シリコン酸化膜とシリコン基板のシリコン表面との間に、シリコン窒化膜からなる境界膜を形成するプラズマ酸化工程と、を含み、プラズマ窒化工程ではシリコン酸化膜分の厚みに境界膜分の厚みを加えた膜厚のシリコン窒化膜を形成する半導体装置の製造方法を提供する。また、境界膜分の厚みをプラズマ酸化の際の境界膜とシリコン基板との界面への酸素の到達を遮る厚みとしたシリコン窒化膜とする。
このように、先に、シリコン窒化膜を形成し、次に、シリコン窒化膜の表面にシリコン酸化膜を形成することにより、シリコン酸化膜と前記シリコン基板のシリコン表面との間に、シリコン窒化膜からなる境界膜を形成すると、境界面への窒素導入とその導入量の制御が可能となり、境界膜にリーク電流に対応する量の窒素を導入することが可能となる。
また、シリコン窒化膜とシリコン酸化膜の形成にプラズマを用い、窒素活性種と、酸素活性種とを生成すると、物理化学的に欠陥のない厚膜の形成が可能となり、物理化学的な欠陥に起因する絶縁膜の破壊への対応が可能となり、しきい値電圧(Vth)やTDDB(Time Dependent Dielectric Breakdown(経時絶縁破壊))特性への対応が可能となる。
よって、プラズマ窒化工程でのシリコン窒化膜の厚みを、シリコン酸化膜となる部分の膜厚と、境界膜となる部分の膜厚とを加えた膜厚とし、プラズマ窒化工程で、シリコン窒化膜を形成した後、プラズマ酸化によりシリコン窒化膜の表面にシリコン酸化膜を形成すると、シリコン酸化膜とシリコン窒化膜からなる境界膜から成る絶縁膜によってリーク電流が遮断ないし抑制される。また、境界膜となるシリコン窒化膜の膜厚を、プラズマ酸化の際にシリコン基板のシリコン表面への酸素(酸素活性種)の到達を抑制できる膜厚とする。
<実施の態様2>
実施の態様1の半導体装置の製造方法であって、プラズマ窒化工程のプラズマ窒化処理時間を30sec〜5minとし、プラズマ酸化工程のプラズマ酸化処理時間を30sec〜5minとする半導体装置の製造方法を提供する。
プラズマ窒化処理の処理時間、プラズマ酸化の際の処理時間が、前記の範囲を外れると、それぞれシリコン窒化膜、シリコン酸化膜の厚みが変動し、所定の膜厚とすることができない。
<実施の態様3>
実施の態様1又は2の半導体装置の製造方法であって、前記プラズマ窒化工程のプラズマ窒化処理、前記プラズマ酸化工程の圧力をそれぞれ1〜130Paの範囲内の圧力とする半導体装置の製造方法を提供する。
プラズマ窒化処理、プラズマ酸化処理の際の圧力がそれぞれ高すぎるとシリコン窒化膜、シリコン酸化膜の厚みを厚くすることができない。1〜130Paの圧力とすると、実施の態様1の目標とする厚みにシリコン窒化膜、シリコン酸化膜の厚みを調節することができる。
<実施の態様4>
実施の態様1乃至3のいずれかの半導体装置の製造方法であって、シリコン基板の温度を400〜800℃として前記プラズマ窒化工程のプラズマ窒化処理、前記プラズマ酸化工程のプラズマ酸化処理を行う半導体装置の製造方法を提供する。
シリコン基板の温度を400〜800℃としてプラズマを利用したプラズマ窒化処理とプラズマ酸化処理とを実施すると、シリコン窒化膜、シリコン酸化膜、境界膜及びこれら膜間の界面の物理化学的構造が一層、緻密になる。
<実施の態様5>
実施の態様1乃至4のいずれかの半導体装置の製造方法であって、プラズマ窒化により当該シリコン基板の表面に所定厚みのシリコン窒化膜が形成された後、プラズマ酸化によりシリコン窒化膜の表面にシリコン酸化膜が形成されることにより、シリコン窒化膜と前記シリコン基板のシリコン表面との間にシリコン窒化膜からなる境界膜が形成された半導体装置を提供する。さらに、前記境界膜の厚みが前記シリコン表面への酸素の浸透を遮断する厚みに定められた半導体装置を提供する。
このような半導体装置では、シリコン酸化膜と境界膜によって、リーク電流に対する絶縁膜が構成される。
また、この半導体装置のシリコン基板のシリコン、シリコン酸化膜、境界膜及びこれらの膜間の界面構造が緻密で欠陥が大幅に減少するので、経時的な絶縁破壊(TDDB)、しきい値電圧(Vth)に対する耐性や信頼性が向上する。また、シリコン表面を超えてシリコン内に酸素が浸透しないので、半導体装置としての歩留まりも向上する。
なお、プラズマ窒化によってシリコン基板の表面にシリコン酸窒化膜を形成した後、プラズマ酸化によって前記シリコン酸窒化膜の表面にシリコン酸化膜を形成することにより当該シリコン酸化膜とシリコン基板のシリコン表面との間に、シリコン酸窒化膜からなる境界膜を形成し、前記プラズマ窒化工程では、前記シリコン酸化膜分の厚みに前記境界膜分の厚みを加えた膜厚のシリコン酸窒化膜であって前記境界膜分の厚みを前記プラズマ酸化の際のシリコン表面への酸素の到達を遮る厚みとしたシリコン酸窒化膜を形成するようにしてもよい。
このように、本発明は種々の改変が可能であり、この改変された発明に本発明が及ぶことは当然である。
本発明の一実施形態に係るMMT装置の構成を示す解説図である。 本発明の実施形態に係る半導体装置の製造方法の一例を示す工程図である。 本発明の実施の形態に係る半導体装置の製造後の窒素、酸素、シリコンに関するSIMSのプロファイルを示す解説図である。
符号の説明
10 被処理基板
14 プラズマ窒化膜
20 プラズマ酸化膜
21 境界膜

Claims (3)

  1. プラズマ窒化によってシリコン基板の表面にシリコン窒化膜を形成するプラズマ窒化工程と、プラズマ酸化によって前記シリコン窒化膜の表面にシリコン酸化膜を形成することにより当該シリコン酸化膜とシリコン基板のシリコン表面との間に、シリコン窒化膜からなる境界膜を形成するプラズマ酸化工程と、を含み、前記プラズマ窒化工程では前記シリコン酸化膜分の厚みに前記境界膜分の厚みを加えた膜厚のシリコン窒化膜を形成する半導体装置の製造方法。
  2. プラズマ窒化工程のプラズマ窒化処理時間を30sec〜5minとし、プラズマ酸化工程のプラズマ酸化処理時間を30〜50secとする請求項1記載の半導体装置の製造方法。
  3. 前記プラズマ窒化工程のプラズマ窒化処理、前記プラズマ酸化工程の圧力をそれぞれ1〜130Paの範囲内の圧力とする請求項1又は2記載の半導体装置の製造方法。
JP2007158277A 2007-06-15 2007-06-15 半導体装置の製造方法 Pending JP2008311460A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158277A JP2008311460A (ja) 2007-06-15 2007-06-15 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158277A JP2008311460A (ja) 2007-06-15 2007-06-15 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2008311460A true JP2008311460A (ja) 2008-12-25

Family

ID=40238811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158277A Pending JP2008311460A (ja) 2007-06-15 2007-06-15 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2008311460A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228685A (ja) * 2016-06-23 2017-12-28 富士通株式会社 半導体装置及び半導体装置の製造方法
JP2020514529A (ja) * 2016-12-21 2020-05-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Cvdによる共形密封膜堆積

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049423A1 (ja) * 2002-11-26 2004-06-10 Hitachi Kokusai Electric Inc. 半導体装置の製造方法
JP2005150637A (ja) * 2003-11-19 2005-06-09 Canon Inc 処理方法及び装置
JP2008270380A (ja) * 2007-04-18 2008-11-06 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049423A1 (ja) * 2002-11-26 2004-06-10 Hitachi Kokusai Electric Inc. 半導体装置の製造方法
JP2005150637A (ja) * 2003-11-19 2005-06-09 Canon Inc 処理方法及び装置
JP2008270380A (ja) * 2007-04-18 2008-11-06 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228685A (ja) * 2016-06-23 2017-12-28 富士通株式会社 半導体装置及び半導体装置の製造方法
JP2020514529A (ja) * 2016-12-21 2020-05-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Cvdによる共形密封膜堆積

Similar Documents

Publication Publication Date Title
TWI390675B (zh) A gate insulating film forming method, a semiconductor device, and a computer recording medium
KR101939584B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
KR101965154B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR20130032281A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR101080116B1 (ko) 반도체 디바이스의 제조 방법 및 기판 처리 장치
JP4745247B2 (ja) 半導体装置の製造方法
JP2008311460A (ja) 半導体装置の製造方法
KR20090089818A (ko) 반도체 디바이스의 제조 방법 및 반도체 디바이스 제조 장치 및 반도체 디바이스 제조 시스템
JP2008060412A (ja) 半導体デバイスの製造方法
JP5134223B2 (ja) 半導体装置の製造方法及び基板処理装置
JP2011023730A (ja) 半導体デバイスの製造方法及び基板処理装置
JP2009224755A (ja) 半導体デバイスの製造方法及び基板処理装置
US20090253272A1 (en) Method for manufacturing semiconductor device and substrate processing apparatus
JP2011165743A (ja) 半導体装置の製造方法
KR101245423B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
US20020139304A1 (en) Semiconductor manufacturing apparatus
JP2005057163A (ja) 半導体装置の製造方法
JP2008091667A (ja) 基板処理方法
JP2008182194A (ja) 半導体装置の製造方法
JP2006229070A (ja) 半導体装置の製造方法
KR20090106990A (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
JP2011071353A (ja) 半導体装置の製造方法
US20080206968A1 (en) Manufacturing method of semiconductor device
JP2010135659A (ja) 半導体装置の製造方法及び基板処理装置
JP2007208169A (ja) 基板処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Effective date: 20120201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529