JP2016225552A - High heat-resistant solder bonded semiconductor device and manufacturing method thereof - Google Patents

High heat-resistant solder bonded semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2016225552A
JP2016225552A JP2015112726A JP2015112726A JP2016225552A JP 2016225552 A JP2016225552 A JP 2016225552A JP 2015112726 A JP2015112726 A JP 2015112726A JP 2015112726 A JP2015112726 A JP 2015112726A JP 2016225552 A JP2016225552 A JP 2016225552A
Authority
JP
Japan
Prior art keywords
solder
semiconductor element
semiconductor device
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015112726A
Other languages
Japanese (ja)
Other versions
JP6590336B2 (en
Inventor
良孝 菅原
Yoshitaka Sugawara
良孝 菅原
大貫 仁
Hitoshi Onuki
仁 大貫
玉橋 邦裕
Kunihiro Tamahashi
邦裕 玉橋
千葉 秋雄
Akio Chiba
秋雄 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibaraki University NUC
Original Assignee
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibaraki University NUC filed Critical Ibaraki University NUC
Priority to JP2015112726A priority Critical patent/JP6590336B2/en
Publication of JP2016225552A publication Critical patent/JP2016225552A/en
Application granted granted Critical
Publication of JP6590336B2 publication Critical patent/JP6590336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having high heat resistance and high reliability.SOLUTION: In a high heat-resistant solder bonded semiconductor device, a semiconductor element and a substrate are bonded with a solder that expresses super plasticity. The high heat-resistant solder bonded semiconductor device is characterized in that the solder is protruded to the outside from an end of the semiconductor element while the solder is kept in a semi-molten state to prevent the solder from flowing out and the solder is to be swelled to an upper side than a lower face of the semiconductor element, and then, the solder is allowed to express super plasticity, and stress strain at the interface between the solder and the semiconductor element and stress strain at the interface between the solder and the substrate are suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、基板と半導体素子とを高耐熱ハンダで接合した半導体装置に関する。   The present invention relates to a semiconductor device in which a substrate and a semiconductor element are joined with high heat-resistant solder.

パワーデバイスは、ハイブリッド自動車や太陽光発電用のインバータなどに使用される電力制御用の半導体素子であり、パワーエレクトロニクスの中心となる電子部品である。パワーデバイスには、整流ダイオード、パワーMOSFET(金属酸化膜・電界効果トランジスタ)、IGBT(絶縁ゲートバイポーラトランジスタ)、サイリスタなどがあり、パワーデバイスの基板への接合には、ハンダが使用される。ハンダは、Pb(鉛)とSn(錫)の合金のものが使用されてきたが、人体に有害であり、自然環境にも悪影響を及ぼすため、鉛フリーハンダも開発されている。   A power device is a semiconductor element for power control used in a hybrid vehicle, an inverter for solar power generation, and the like, and is an electronic component that is the center of power electronics. Examples of power devices include rectifier diodes, power MOSFETs (metal oxide film / field effect transistors), IGBTs (insulated gate bipolar transistors), thyristors, and the like, and solder is used to join the power device to the substrate. Pb (lead) and Sn (tin) alloys have been used as solder, but lead-free solder has also been developed because it is harmful to the human body and adversely affects the natural environment.

特許文献1には、鉛フリーで高い融点を持ち、かつ固相状態で接合が可能なZn(亜鉛)−Al(アルミニウム)共析系合金接合材を用いた半導体装置が開示されている。鉛フリーハンダは、ボイドと呼ばれる微細な空隙を作りやすいが、特許文献1に記載の発明では、超塑性現象を利用して対象物を固相状態で接合することにより、ボイドフリーにすることができる。   Patent Document 1 discloses a semiconductor device using a Zn (zinc) -Al (aluminum) eutectoid alloy bonding material that is lead-free, has a high melting point, and can be bonded in a solid phase. Lead-free solder tends to create fine voids called voids, but in the invention described in Patent Document 1, it is possible to make void-free by joining the objects in a solid state using a superplastic phenomenon. it can.

特開2009−113050号公報JP 2009-1113050 A

しかしながら、特許文献1に記載の発明の場合、基板が熱などによって反ったりした際に、半導体素子の端部に応力が掛かり、半導体素子と基板との間のハンダ接合部に亀裂が発生し、極端な場合、半導体素子が基板から剥離してしまうこともある。ハンダ接合部に亀裂が生じると、電気伝導や熱伝導が悪くなるので、高い耐熱性のある信頼性の高い半導体装置が求められる。   However, in the case of the invention described in Patent Document 1, when the substrate is warped by heat or the like, stress is applied to the end of the semiconductor element, and a crack is generated in the solder joint between the semiconductor element and the substrate. In extreme cases, the semiconductor element may be peeled off from the substrate. When cracks occur in the solder joints, electrical conduction and thermal conduction are deteriorated, so a highly reliable semiconductor device with high heat resistance is required.

そこで、本発明は、高耐熱で信頼性の高い半導体装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly heat-resistant and highly reliable semiconductor device.

上記課題を解決するために、第一の発明である高耐熱ハンダ接合半導体装置は、半導体素子と基板とを超塑性を発現するハンダで接合した高耐熱ハンダ接合半導体装置であって、前記ハンダが流れ出ないように半溶融状態にして、前記ハンダを前記半導体素子の端部より外側にはみ出させ、かつ前記半導体素子の下面よりも上方に盛り上がらせた後、前記ハンダに超塑性を発現させ、前記ハンダと前記半導体素子との界面、及び前記ハンダと前記基板との界面の応力歪を抑制する、ことを特徴とする。   In order to solve the above problems, a high heat-resistant solder-bonded semiconductor device according to the first aspect of the present invention is a high-heat-resistant solder-bonded semiconductor device in which a semiconductor element and a substrate are bonded with solder that expresses superplasticity. In a semi-molten state so as not to flow out, the solder protrudes outward from the end of the semiconductor element and rises above the lower surface of the semiconductor element, and then the solder exhibits superplasticity, It is characterized by suppressing stress strain at the interface between the solder and the semiconductor element and at the interface between the solder and the substrate.

また、第一の発明は、接合した前記半導体素子の端部のうち少なくとも何れか一の端部において、前記ハンダが前記半導体素子の端部より外側にはみ出しており、かつ前記半導体素子の下面よりも上方に盛り上がっている、ことを特徴とする。   According to a first aspect of the present invention, the solder protrudes outward from the end of the semiconductor element at at least one of the ends of the bonded semiconductor elements, and from the lower surface of the semiconductor element. Is also raised upward.

また、第一の発明において、前記ハンダは、超塑性を発現する組成、すなわちAlが22〜68質量%で、Znが78〜32質量%の割合である、ことを特徴とする。   In the first invention, the solder is characterized in that it exhibits a superplasticity, that is, Al is 22 to 68% by mass and Zn is 78 to 32% by mass.

また、第一の発明において、前記ハンダは、Alが22〜68質量%、不純物が2質量%以下、残りがZnの割合である、ことを特徴とする。   In the first invention, the solder is characterized in that Al is 22 to 68% by mass, impurities are 2% by mass or less, and the balance is Zn.

また、第一の発明において、前記ハンダは、Znが78〜32質量%、不純物が2質量%以下、残りがAlの割合である、ことを特徴とする。   In the first invention, the solder is characterized in that Zn is 78 to 32 mass%, impurities are 2 mass% or less, and the balance is Al.

また、第一の発明は、前記ハンダと、前記半導体素子のpn接合との最短距離が、前記pn接合の空乏層の幅よりも大きい、ことを特徴とする。   The first invention is characterized in that the shortest distance between the solder and the pn junction of the semiconductor element is larger than the width of the depletion layer of the pn junction.

さらに、第二の発明である高耐熱ハンダ接合半導体装置の製造方法は、超塑性を発現するAlとZnで組成されたハンダを準備するハンダ準備工程と、前記ハンダを介して、半導体素子を基板に設置する半導体素子設置工程と、前記ハンダを加熱し、前記ハンダが流れ出ない半溶融にする加熱工程と、前記ハンダを加圧し、前記ハンダの周縁部をZnリッチ、中心部をAlリッチにすることで、前記半導体素子の端部より外側に前記周縁部をはみ出させ、かつ前記半導体素子の下面よりも上方に前記周縁部を盛り上がらせる加圧工程と、前記ハンダを冷却し、前記ハンダに超塑性を発現させ、前記ハンダと前記半導体素子との界面、及び前記ハンダと前記基板との界面の応力歪を抑制しつつ前記半導体素子と前記基板とをハンダ接合する降温・接合工程と、を有する、ことを特徴とする。   Furthermore, a method for manufacturing a high heat-resistant solder-bonded semiconductor device according to a second aspect of the present invention includes a solder preparation step of preparing a solder composed of Al and Zn that exhibits superplasticity, and a semiconductor element as a substrate through the solder. A semiconductor element installation step, a heating step for heating the solder so that the solder does not flow out, and semi-melting, and pressurizing the solder so that the peripheral portion of the solder is Zn-rich and the center portion is Al-rich. Thus, the pressurizing step of protruding the peripheral edge outside the edge of the semiconductor element and raising the peripheral edge above the lower surface of the semiconductor element, cooling the solder, and exceeding the solder Decreasing temperature at which the semiconductor element and the substrate are solder-bonded while exhibiting plasticity and suppressing stress strain at the interface between the solder and the semiconductor element and the interface between the solder and the substrate It has a bonding step, and wherein the.

本発明によれば、高耐熱で信頼性の高い半導体装置を提供することができる。   According to the present invention, a highly heat-resistant and highly reliable semiconductor device can be provided.

本発明の実施例1に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置の断面を撮影した画像である。It is the image which image | photographed the cross section of the semiconductor device which concerns on Example 1 of this invention. 本発明の実施例1に係る半導体装置のハンダ接合部に掛かる応力を示す図であり、(a)は本発明のハンダ接合部であり、(b)は従来のハンダ接合部である。It is a figure which shows the stress concerning the solder joint part of the semiconductor device which concerns on Example 1 of this invention, (a) is a solder joint part of this invention, (b) is a conventional solder joint part. 本発明の実施例2に係る半導体の接合方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the joining method of the semiconductor which concerns on Example 2 of this invention. 本発明の実施例2に係る半導体の接合方法の各工程を示す図であり、(a)は加熱の工程であり、(b)は加圧の工程である。It is a figure which shows each process of the joining method of the semiconductor which concerns on Example 2 of this invention, (a) is a heating process, (b) is a pressurization process. 本発明の実施例2に係る半導体の接合方法の降温・接合の工程を示す図である。It is a figure which shows the process of temperature fall and joining of the semiconductor bonding method which concerns on Example 2 of this invention. 本発明の実施例2に係る半導体の接合方法の各工程におけるハンダの状態を示すグラフである。It is a graph which shows the state of the solder in each process of the joining method of the semiconductor which concerns on Example 2 of this invention. 本発明の実施例3に係る半導体の接合方法の各工程におけるハンダの状態を示すグラフである。It is a graph which shows the state of the solder in each process of the joining method of the semiconductor which concerns on Example 3 of this invention. 本発明の実施例4に係る半導体装置の高耐圧化するためのハンダの条件を示す図である。It is a figure which shows the conditions of the solder for raising the withstand voltage of the semiconductor device which concerns on Example 4 of this invention. 本発明の実施例4に係る半導体装置の高耐圧化を示す図であり、(a)は半導体素子を絶縁樹脂で覆った場合であり、(b)はハンダの表面に酸化膜を形成させた場合である。It is a figure which shows the high withstand voltage | pressure of the semiconductor device which concerns on Example 4 of this invention, (a) is a case where a semiconductor element is covered with insulating resin, (b) formed the oxide film on the surface of solder | pewter Is the case.

以下に、本発明の実施形態について図面を参照して詳細に説明する。なお、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する場合がある。   Embodiments of the present invention will be described below in detail with reference to the drawings. In addition, what has the same function attaches | subjects the same code | symbol, and the repeated description may be abbreviate | omitted.

まず、本発明である高耐熱ハンダ接合半導体装置について説明する。図1は、半導体装置100の断面図であり、図2は、半導体装置100の断面を撮影した画像である。また、図3(a)は、半導体装置100のハンダ接合部に掛かる応力を示す図であり、図3(b)は、従来の半導体装置110のハンダ接合部に掛かる応力を示す図であって、本発明と従来技術を比較するための図である。   First, the high heat-resistant solder junction semiconductor device according to the present invention will be described. FIG. 1 is a cross-sectional view of the semiconductor device 100, and FIG. 2 is an image obtained by photographing the cross section of the semiconductor device 100. 3A is a diagram showing the stress applied to the solder joint portion of the semiconductor device 100, and FIG. 3B is a diagram showing the stress applied to the solder joint portion of the conventional semiconductor device 110. FIG. 5 is a diagram for comparing the present invention with the prior art.

図1に示すように、半導体装置100は、半導体素子200と基板300とを高耐熱のハンダ400で接合したものである。なお、半導体装置100は、その製造工程における前工程及び後工程を経て製造されるが、ここでは後工程において、半導体素子200を実装する段階のものであり、半導体素子200と基板300とをハンダ400を使用してハンダ接合する。   As shown in FIG. 1, the semiconductor device 100 is obtained by bonding a semiconductor element 200 and a substrate 300 with a high heat-resistant solder 400. The semiconductor device 100 is manufactured through a pre-process and a post-process in the manufacturing process. Here, in the post-process, the semiconductor element 200 is mounted and the semiconductor element 200 and the substrate 300 are soldered. 400 is used for soldering.

半導体素子200は、前工程において、半導体に電極を設ける等して製造した電子部品であり、前工程で製造されたウエハを各チップに切り離した状態のものである。半導体の材料としては、従来のSi(シリコン、ケイ素)に代わり、それより高性能なSiC(シリコンカーバイド、炭化ケイ素)などが使用される。なお、SiCの他にGaN(窒化ガリウム)やダイヤモンド等の高性能な化合物半導体材料を使用しても良い。   The semiconductor element 200 is an electronic component manufactured by providing an electrode on a semiconductor in the previous process, and is a state in which the wafer manufactured in the previous process is separated into chips. As a semiconductor material, SiC (silicon carbide, silicon carbide) or the like having higher performance is used instead of conventional Si (silicon, silicon). In addition to SiC, a high-performance compound semiconductor material such as GaN (gallium nitride) or diamond may be used.

半導体素子200には、各種デバイスを使用することができる。半導体素子200の例として、BJT(バイポーラ・トランジスタ)を図1に示す。BJTは、n型半導体201とp型半導体202とn型半導体203を交互にpn接合し、n型半導体201にエミッタ電極204、p型半導体202にベース電極205、n型半導体203にコレクタ電極206を設けたものであり、電流増幅やスイッチング機能などを有する。   Various devices can be used for the semiconductor element 200. As an example of the semiconductor element 200, a BJT (bipolar transistor) is shown in FIG. In the BJT, an n-type semiconductor 201, a p-type semiconductor 202, and an n-type semiconductor 203 are alternately pn-junctioned, an emitter electrode 204 is formed on the n-type semiconductor 201, a base electrode 205 is formed on the p-type semiconductor 202, and a collector electrode 206 is formed on the n-type semiconductor 203. And has a current amplification and switching function.

基板300は、銅板302と配線となる銅板301との間に、SiN(シリコンナイトライド、窒化ケイ素)などを絶縁膜303として積層し、銅板301の表面にNi(ニッケル)メッキなどの被膜304を施したものである。配線に厚みを持たせることにより許容電流が大きくなるので、パワーデバイスを搭載するのに適している。なお、基板300は、その他の構成のものを使用しても良い。   In the substrate 300, SiN (silicon nitride, silicon nitride) or the like is laminated as an insulating film 303 between the copper plate 302 and the copper plate 301 to be a wiring, and a coating 304 such as Ni (nickel) plating is formed on the surface of the copper plate 301. It has been applied. Since the allowable current is increased by increasing the thickness of the wiring, it is suitable for mounting a power device. Note that the substrate 300 may have another structure.

ハンダ400は、鉛が含まれていないAl−Znハンダを使用する。Al−Znハンダは、AlとZnが所定の割合で配合された合金であり、ある範囲の温度まで加熱すると超塑性を発現する。超塑性は、高温域にある固体に力を加えたときに、通常よりも飛躍的に伸びるようになる現象である。ハンダ400が超塑性状態になることで、接合対象物表面の微小な凹凸部に入り込みやすくなり、ハンダ400に掛かる応力も緩和される。ハンダ400は、さらに加熱すると半溶融状態となる。すなわち、低融点のZnのみが溶融し、より高融点のAlは溶融していない状態になる。そして、さらにAlの融点まで加熱すると液体となる。なお、ハンダ400は、所定の温度域で超塑性現象が発現するものであれば、他の材質のものでも良い。   The solder 400 uses Al—Zn solder that does not contain lead. Al—Zn solder is an alloy in which Al and Zn are blended at a predetermined ratio, and develops superplasticity when heated to a certain range of temperature. Superplasticity is a phenomenon in which, when a force is applied to a solid in a high temperature range, the plasticity grows more rapidly than usual. When the solder 400 is in a superplastic state, it becomes easy to enter minute uneven portions on the surface of the object to be joined, and stress applied to the solder 400 is relieved. When the solder 400 is further heated, it becomes a semi-molten state. That is, only the low melting point Zn is melted and the higher melting point Al is not melted. Further, when heated to the melting point of Al, it becomes liquid. The solder 400 may be made of other materials as long as the superplastic phenomenon appears in a predetermined temperature range.

ハンダ400は、使用前においては、所定の厚さ、例えば約100μm程度の厚さの薄板状のハンダ板を、平面形状が半導体素子200とほぼ同じ形状にしておく。なお、若干小さくても良いし、若干はみ出す大きさでも良い。基板300の上に半導体素子200を載せてハンダ400で接合した際に、半導体素子200と基板300の間に介したハンダ400の周縁部402は、図1に示すように、半導体素子200とハンダ400の接触面よりも盛り上がった状態となる。   Before use, the solder 400 is a thin solder plate having a predetermined thickness, for example, about 100 μm, and has a planar shape substantially the same as that of the semiconductor element 200. The size may be slightly smaller or may be slightly larger. When the semiconductor element 200 is placed on the substrate 300 and bonded with the solder 400, the peripheral portion 402 of the solder 400 interposed between the semiconductor element 200 and the substrate 300 is connected to the semiconductor element 200 and the solder as shown in FIG. It will be in the state where it swelled from 400 contact surfaces.

ハンダ400を加熱したとき、溶融して液体となったものが基板300上に流れ出す訳ではなく、液体となる前の半溶融の状態で半導体素子200の外側に盛り上がる。半溶融とは、合金の場合に、融点の高い金属(Al)が固体のままで、融点が低い金属(Zn)が溶けて液体状に分散して存在している状態のことである。なお、半導体素子200が矩形状である場合、ハンダ400も半導体素子200の四方の端部から外周側へ少し出る程度のサイズの矩形状とするが、ハンダ400の四辺の少なくとも一辺は盛り上がる必要がある。なお、ハンダ400の全ての辺において盛り上がっていることが好ましい。   When the solder 400 is heated, the melted liquid does not flow out onto the substrate 300 but rises outside the semiconductor element 200 in a semi-molten state before becoming a liquid. In the case of an alloy, semi-molten is a state in which a metal (Al) having a high melting point remains solid and a metal (Zn) having a low melting point is dissolved and dispersed in a liquid state. In the case where the semiconductor element 200 is rectangular, the solder 400 is also a rectangular shape with a size that slightly protrudes from the four ends of the semiconductor element 200 to the outer peripheral side, but at least one of the four sides of the solder 400 needs to rise. is there. In addition, it is preferable that all the sides of the solder 400 are raised.

図2に示すように、半導体素子200と基板300の間にハンダ400の中心部401が挟まれており、半導体素子200の端部からハンダ400の周縁部402がはみ出し、さらに上方に盛り上がっている。なお、黒い点線が基板300とハンダ400の境界を示し、白い点線が半導体素子200の端部を示す。   As shown in FIG. 2, the center portion 401 of the solder 400 is sandwiched between the semiconductor element 200 and the substrate 300, and the peripheral portion 402 of the solder 400 protrudes from the end portion of the semiconductor element 200 and further rises upward. . A black dotted line indicates the boundary between the substrate 300 and the solder 400, and a white dotted line indicates the end of the semiconductor element 200.

周縁部402が盛り上がっているハンダ400のメリットについて、従来のハンダ410と比較することにより説明する。基板300を湾曲状にしならせる、又は基板300に振動を与える等することによって、半導体素子200の端部に応力900、910を加えたときに、ハンダ400、410への亀裂の生じやすさを比較する。   The merit of the solder 400 with the raised peripheral edge 402 will be described by comparing with the conventional solder 410. By causing the substrate 300 to be curved or applying vibration to the substrate 300, when stress 900 or 910 is applied to the end of the semiconductor element 200, the likelihood of cracks in the solder 400 or 410 is increased. Compare.

図3(a)に示すように、本発明においては、半導体素子200と基板300とを接合した後に、半導体素子200の各端部からはみ出たハンダ400に関して注目すると、ハンダ400の表面が半導体素子200の下面よりも上に盛り上がっている。すなわち、ハンダ400と半導体素子200とが接触している面よりも上方向に山のように盛り上がっても良いし、ハンダ400と半導体素子200とが接触している面より外側に向かって斜め上方向に盛り上がっても良い。   As shown in FIG. 3A, in the present invention, when the semiconductor element 200 and the substrate 300 are joined and then attention is paid to the solder 400 protruding from each end of the semiconductor element 200, the surface of the solder 400 is the semiconductor element. It swells above the lower surface of 200. In other words, it may rise like a mountain above the surface where the solder 400 and the semiconductor element 200 are in contact, or obliquely above the surface where the solder 400 and the semiconductor element 200 are in contact. It may be raised in the direction.

半導体素子200とハンダ400とが接触している端部に掛かる応力900は、端部から半導体素子200の側面に沿った垂直成分901と、端部からハンダ400の盛り上がった表面に沿った接線成分902とから導出される。図3(a)に示すように、応力900は、垂直に近い角度寄りになる。すなわち、応力900は、ハンダ400を縦断する向きに近くなり、ハンダ400の周縁部402に近いところまで侵入するだけであり、ハンダ400の中心部401の奥にまでは侵入しにくい。   The stress 900 applied to the end where the semiconductor element 200 and the solder 400 are in contact with each other includes a vertical component 901 along the side surface of the semiconductor element 200 from the end and a tangential component along the raised surface of the solder 400 from the end. 902. As shown in FIG. 3A, the stress 900 is close to an angle close to vertical. That is, the stress 900 is close to the direction in which the solder 400 is vertically cut, and only penetrates to the vicinity of the peripheral portion 402 of the solder 400, and hardly penetrates to the back of the center portion 401 of the solder 400.

図3(b)に示すように、従来においては、半導体素子200と基板300とを接合した後に、半導体素子200の各端部からはみ出たハンダ410に関して注目すると、ハンダ410の表面が半導体素子200の下面よりも上に盛り上がらない。すなわち、ハンダ410の表面がほぼ水平になっている場合もあれば、溶融して流れている場合もある。なお、ハンダ400については、半導体素子200側を表面とし、基板300側を裏面とする。   As shown in FIG. 3B, in the related art, when the semiconductor element 200 and the substrate 300 are joined and then attention is paid to the solder 410 protruding from each end of the semiconductor element 200, the surface of the solder 410 is the semiconductor element 200. It does not rise above the lower surface of. That is, the surface of the solder 410 may be substantially horizontal, or may be melted and flowing. For the solder 400, the semiconductor element 200 side is the front surface and the substrate 300 side is the back surface.

半導体素子200とハンダ410とが接触している端部に掛かる応力910は、端部から半導体素子200の側面に沿った垂直成分911と、端部からハンダ410のほぼ水平な表面に沿った接線成分912とから導出される。図3(b)に示すように、応力910は、応力900よりも水平に近い角度寄りになる。すなわち、応力910は、ハンダ410を水平に切る向きに近くなり、ハンダ410の周縁部402からハンダ410の中心部401の奥まで進入しやすくなる。   The stress 910 applied to the end where the semiconductor element 200 and the solder 410 are in contact with each other includes a vertical component 911 along the side surface of the semiconductor element 200 from the end and a tangent along the substantially horizontal surface of the solder 410 from the end. And derived from the component 912. As shown in FIG. 3B, the stress 910 is closer to the horizontal angle than the stress 900. That is, the stress 910 is close to the direction of cutting the solder 410 horizontally, and easily enters from the peripheral edge 402 of the solder 410 to the back of the central portion 401 of the solder 410.

図3(b)に示す従来においては、半導体素子200の端部に応力910が掛かったとき、ハンダ410の中心部401に向かって深く進入するので、半導体装置100の稼働による熱応力の繰り返しにより、ハンダ410を水平方向に切断しやすくなる。それに対して、図3(a)に示す本発明においては、半導体素子200の端部に応力900が掛かったとき、ハンダ400の周縁部402の付近から浅くしか進入しないので、半導体装置100の稼働による熱応力の繰り返しによってもハンダ400は水平方向に切断されにくくなる。すなわち、本発明によれば、高耐熱で信頼性の高い半導体装置100を提供することができる。   In the prior art shown in FIG. 3B, when stress 910 is applied to the end portion of the semiconductor element 200, the semiconductor device 200 enters deeply toward the center portion 401 of the solder 410. It becomes easy to cut the solder 410 in the horizontal direction. On the other hand, in the present invention shown in FIG. 3A, when stress 900 is applied to the end portion of the semiconductor element 200, the semiconductor device 100 operates only shallowly from the vicinity of the peripheral portion 402 of the solder 400. The solder 400 is less likely to be cut in the horizontal direction even by repeated thermal stress due to the above. That is, according to the present invention, it is possible to provide the semiconductor device 100 with high heat resistance and high reliability.

上記のSiC半導体装置を製造するために、ハンダによる半導体素子の接合方法について説明する。図4は、半導体の接合方法の流れを示すフローチャートである。さらに、図5(a)は、加熱の工程を示す図であり、図5(b)は、加圧の工程を示す図であり、図6は、降温・接合の工程を示す図である。また、図7は、半導体の接合方法の各工程におけるハンダの状態を示すグラフである。   In order to manufacture the SiC semiconductor device described above, a method for bonding semiconductor elements by solder will be described. FIG. 4 is a flowchart showing a flow of a semiconductor bonding method. 5A is a diagram showing a heating process, FIG. 5B is a diagram showing a pressurizing process, and FIG. 6 is a diagram showing a temperature lowering / joining process. FIG. 7 is a graph showing the state of solder in each step of the semiconductor bonding method.

図4に示すように、半導体素子の接合方法500は、ハンダ準備510、半導体素子設置520、加熱530、加圧540、降温・接合550等の工程を有する。なお、半導体素子の接合方法500において、複数の工程を一つにまとめても良いし、他の工程を追加しても良い。また、二つの工程の順番が入れ替え可能であれば、入れ替えても良い。さらに、一部の工程を省略しても支障のない場合は省略しても良い。   As shown in FIG. 4, the semiconductor element bonding method 500 includes steps of solder preparation 510, semiconductor element installation 520, heating 530, pressurization 540, temperature drop / bonding 550, and the like. Note that in the semiconductor element bonding method 500, a plurality of processes may be combined into one, or another process may be added. Moreover, if the order of two processes is interchangeable, they may be interchanged. Furthermore, if there is no problem even if some steps are omitted, they may be omitted.

本実施例においても、半導体素子210には、各種デバイスを使用可能であるが、例として、DMOS(二重拡散金属酸化膜)構造のパワーMOSFETを図5及び図6に示す。パワーMOSFETは、まずn型不純物濃度の高いn型半導体214を基板とし、その上にn型不純物濃度の低いn型半導体213をエピタキシャル成長により形成し、さらに、その表面側に低濃度のp型半導体212と高濃度のn型半導体211をイオン打ち込みにより形成したものである。   Also in this embodiment, various devices can be used as the semiconductor element 210. As an example, a power MOSFET having a DMOS (double diffusion metal oxide film) structure is shown in FIGS. In the power MOSFET, an n-type semiconductor 214 having a high n-type impurity concentration is used as a substrate, an n-type semiconductor 213 having a low n-type impurity concentration is formed thereon by epitaxial growth, and a low-concentration p-type semiconductor is further formed on the surface side. 212 and a high-concentration n-type semiconductor 211 are formed by ion implantation.

半導体素子210の上面のソース電極216を設け、さらにSiO(二酸化ケイ素)などでゲート酸化膜218を形成した上でゲート電極215を設ける。また、n型半導体214の下面にドレイン電極217を設ける。ドレイン電極217とソース電極216の間を順バイアスした状態でゲート電極215に正の電圧を印加すると、ゲート酸化膜218の下にチャネル219(電子の層)が誘起され、電流が流れるようになる。 A source electrode 216 on the upper surface of the semiconductor element 210 is provided, and a gate oxide film 218 is formed with SiO 2 (silicon dioxide) or the like, and then a gate electrode 215 is provided. A drain electrode 217 is provided on the lower surface of the n-type semiconductor 214. When a positive voltage is applied to the gate electrode 215 with a forward bias applied between the drain electrode 217 and the source electrode 216, a channel 219 (electron layer) is induced under the gate oxide film 218, and a current flows. .

ハンダ準備510の工程では、半導体装置のベースとなる基板300、基板300に設置する半導体素子210、半導体素子210を基板300に接合するためのハンダ420、その他半導体素子の設置における位置精度を上げるための治具類等を必要に応じて準備する。基板300は、パワーデバイスに適した厚銅基板などを用いる。半導体素子210は、耐熱性などに優れたSiCを材料としたもの等を用いる。ハンダ420には、所定の温度域で超塑性を発現するものを用いる。例えば、Alが約22質量%で、Znが約78質量%の合金を用いる。   In the step of solder preparation 510, in order to increase the positional accuracy in installing the semiconductor device, the substrate 300, the semiconductor element 210 installed on the substrate 300, the solder 420 for bonding the semiconductor element 210 to the substrate 300, and other semiconductor elements. Prepare jigs as needed. As the substrate 300, a thick copper substrate suitable for a power device is used. As the semiconductor element 210, a material made of SiC having excellent heat resistance or the like is used. As the solder 420, one that exhibits superplasticity in a predetermined temperature range is used. For example, an alloy containing about 22 mass% Al and about 78 mass% Zn is used.

なお、図7に示すように、Alの融点は約660度であり、Znの融点は約420度である。ハンダ420中のAlとZnの割合が変わると融点も曲線に示すように変動する。また、AlとZnの融点が異なることから、融点の高いAlは固体のままで、融点の低いZnが先に液体化している半溶融の状態となる領域も存在する。半溶融状態から、Alの結晶が多いアルファ(Al)の領域を経て、結晶が成長した後に固体となる。   As shown in FIG. 7, the melting point of Al is about 660 degrees, and the melting point of Zn is about 420 degrees. When the ratio of Al and Zn in the solder 420 changes, the melting point also changes as shown in the curve. In addition, since Al and Zn have different melting points, there is a region in which Al having a high melting point remains solid and Zn having a low melting point is in a semi-molten state in which it is first liquefied. From the semi-molten state, it passes through the alpha (Al) region where there are many Al crystals, and then becomes solid after the crystals grow.

半導体素子設置520の工程では、基板300に対して所定の位置に半導体素子210を設置する。なお、基板300と半導体素子210の間には板状のハンダ420を挟む。ハンダ420は、所定の厚さで、半導体素子210と同程度の大きさにする。ハンダ420の上面は、半導体素子210の下面と単に接触しているだけであり、ハンダ420の下面は、基板300の上面と単に接触しているだけの状態である。   In the process of semiconductor element installation 520, the semiconductor element 210 is installed at a predetermined position with respect to the substrate 300. Note that a plate-like solder 420 is sandwiched between the substrate 300 and the semiconductor element 210. The solder 420 has a predetermined thickness and is as large as the semiconductor element 210. The upper surface of the solder 420 is simply in contact with the lower surface of the semiconductor element 210, and the lower surface of the solder 420 is simply in contact with the upper surface of the substrate 300.

加熱530の工程では、図5(a)に示すように、半導体装置を加熱し、ハンダ420を半溶融状態にする。図7に示すように、Alが約22%でZnが約78%のハンダ420の場合、半溶融温度は、約430〜480度である。すなわち、約430度より低いと固体であり、約430〜480度では、Alは固体のままだが、Znは液体となって分散している状態であり、約480度を超えると完全に溶けて液体となる。なお、本実施例においては、約450度まで加熱したとする。   In the step of heating 530, as shown in FIG. 5A, the semiconductor device is heated to bring the solder 420 into a semi-molten state. As shown in FIG. 7, in the case of the solder 420 having about 22% Al and about 78% Zn, the semi-melting temperature is about 430 to 480 degrees. That is, when it is lower than about 430 degrees, it is solid, and when it is about 430 to 480 degrees, Al remains solid, but Zn is dispersed as a liquid, and when it exceeds about 480 degrees, it is completely dissolved. Become liquid. In this embodiment, it is assumed that the heating is performed up to about 450 degrees.

加圧540の工程では、図5(b)に示すように、半導体装置を加圧することで、ハンダ420の周縁部422を半導体素子210に端部よりも外側に押し出し、さらに周縁部422を半導体素子210の下面よりも上方に盛り上がらせる。なお、本実施例においては、約10〜20MPaの圧力を加えたとする。   In the step of pressing 540, as shown in FIG. 5B, by pressing the semiconductor device, the peripheral portion 422 of the solder 420 is pushed outward from the end portion of the semiconductor element 210, and the peripheral portion 422 is further transferred to the semiconductor. Raise above the lower surface of the element 210. In this embodiment, it is assumed that a pressure of about 10 to 20 MPa is applied.

半溶融状態のハンダ420においては、先に溶解したZnが圧力によって中心部421よりも周縁部422に移動しやすくなる。その結果、ハンダ420の周縁部422はZnが多く含まれるようになったZnリッチ状態となり、中心部421はZnが少なくなったAlリッチ状態となる。図7に示すように、中心部421におけるAlとZnの割合が変わっていき、Alが約38%でZnが約62%となったときに、半溶融状態からZnが固体に戻り始める。   In the solder 420 in a semi-molten state, Zn that has been dissolved earlier is more likely to move to the peripheral portion 422 than to the central portion 421 due to pressure. As a result, the peripheral portion 422 of the solder 420 is in a Zn-rich state in which a large amount of Zn is contained, and the central portion 421 is in an Al-rich state in which the amount of Zn is reduced. As shown in FIG. 7, when the ratio of Al and Zn in the central portion 421 changes, and when Al becomes about 38% and Zn becomes about 62%, Zn begins to return to a solid state from the semi-molten state.

降温・接合550の工程では、図6に示すように、Znリッチとなった周縁部422が外側にはみ出して盛り上がり、中心部421がAlリッチとなったところで、半導体装置を冷却して温度を下げていく。図7に示すように、中心部421において、Alが約38%でZnが約62%の場合、約340〜275度の範囲内で圧力が加わると、ハンダ420に超塑性現象が発現する。この現象により、ハンダ420とその上側の半導体素子200との界面、及びハンダ420とその下側の基板300との界面における応力歪が緩和される。   In the temperature lowering / joining 550 process, as shown in FIG. 6, the Zn-rich peripheral portion 422 protrudes to the outside and rises, and when the central portion 421 becomes Al-rich, the semiconductor device is cooled to lower the temperature. To go. As shown in FIG. 7, when Al is about 38% and Zn is about 62% in the center portion 421, a superplastic phenomenon appears in the solder 420 when pressure is applied within a range of about 340 to 275 degrees. This phenomenon relieves stress strain at the interface between the solder 420 and the upper semiconductor element 200 and at the interface between the solder 420 and the lower substrate 300.

半導体素子210と基板300とをハンダ接合する際に、AlとZnを所定の割合にすることで超塑性を発現するハンダ420を使用することでハンダ接合部の応力歪を抑制し、電気及び熱の伝導性を良くすることができる。また、半溶融状態にしたハンダ420の周縁部422を盛り上がらせることにより、応力が垂直に近い角度で掛かるようになり、水平方向に亀裂が発生するのを抑制することができる。   When the semiconductor element 210 and the substrate 300 are soldered together, the stress strain of the solder joint is suppressed by using the solder 420 that expresses superplasticity by making Al and Zn into a predetermined ratio, and the electrical and thermal The conductivity of the can be improved. Further, by raising the peripheral edge portion 422 of the solder 420 in a semi-molten state, the stress is applied at an angle close to vertical, and the occurrence of cracks in the horizontal direction can be suppressed.

ハンダ420の中心部421はAlの組成分が周縁部422より多くなり、ハンダ420の周縁部422はZnの組成分が中心部421よりも多くなる。半導体素子210の直下のハンダ接合部においては、Alの組成分が多いので、熱伝導度が良く、高耐熱を達成することができる。すなわち、半導体素子210に大きな電流を流すことができ、高出力かつ高信頼性を達成することができる。   The central portion 421 of the solder 420 has a higher Al composition than the peripheral portion 422, and the peripheral portion 422 of the solder 420 has a higher Zn composition than the central portion 421. In the solder joint portion directly under the semiconductor element 210, since the Al component is large, the thermal conductivity is good and high heat resistance can be achieved. That is, a large current can flow through the semiconductor element 210, and high output and high reliability can be achieved.

次に、AlとZnの割合が異なるハンダ420を使用した場合で説明する。図8は、半導体の接合方法の各工程におけるハンダの状態を示すグラフである。図8に示すように、本実施例では、ハンダ準備510の工程において、Alが約38質量%で、Znが約62質量%のハンダ420を用いる。半導体素子設置520の工程において、間にハンダ420を介して半導体素子210を基板300に設置する。   Next, a case where solder 420 having different ratios of Al and Zn is used will be described. FIG. 8 is a graph showing the state of solder in each step of the semiconductor bonding method. As shown in FIG. 8, in this embodiment, in the step of preparing the solder 510, the solder 420 having about 38 mass% Al and about 62 mass% Zn is used. In the process of semiconductor element installation 520, the semiconductor element 210 is installed on the substrate 300 via the solder 420 therebetween.

加熱530の工程において、半導体装置を約528度に加熱し、ハンダ420を半溶融の状態にする。加圧540の工程において、半導体装置を約10〜20MPaの圧力下に置く。ハンダ420の周縁部422がZnリッチ状態となって外側にはみ出して盛り上がり、中心部421はAlリッチ状態となる。中心部421におけるAlとZnの割合が変わっていき、Alが約68%でZnが約32%となったときに、ハンダ420が半溶融状態から固体に戻り始める。   In the step of heating 530, the semiconductor device is heated to about 528 degrees to make the solder 420 in a semi-molten state. In the process of pressurization 540, the semiconductor device is placed under a pressure of about 10 to 20 MPa. The peripheral portion 422 of the solder 420 becomes Zn-rich and protrudes outward and rises, and the central portion 421 becomes Al-rich. The ratio of Al and Zn in the central portion 421 changes, and when the Al content is about 68% and the Zn content is about 32%, the solder 420 starts to return from a semi-molten state to a solid.

Znリッチとなった周縁部422が外側にはみ出したとき、周縁部422の先端は上方に盛り上がるが、加圧540の工程において半溶融の状態である時間が長いと、図6に示すように、湾曲状に盛り上がった状態になる場合もある。なお、半導体素子210を平面で見たとき、少なくとも何れか一方にはみ出しており、半導体素子210を正面又は側面から見たとき、ハンダ420は少なくとも半導体素子210の下面よりも上側に盛り上がる。   When the peripheral portion 422 that has become rich in Zn protrudes to the outside, the tip of the peripheral portion 422 rises upward, but if the time of the semi-molten state is long in the process of pressurization 540, as shown in FIG. In some cases, it may be raised in a curved shape. Note that, when the semiconductor element 210 is viewed in a plan view, it protrudes to at least one of the surfaces, and when the semiconductor element 210 is viewed from the front or side, the solder 420 rises at least above the lower surface of the semiconductor element 210.

降温・接合550の工程において、温度を約275度に下げたところで、半導体装置に掛かる圧力によって、ハンダ420に超塑性現象が発現する。AlとZnからなるハンダ420を用いる場合は、超塑性現象を発現させる必要があることから、図7及び図8に示すように、Alが22〜68質量%で、Znが78〜32質量%の割合にする。   In the temperature lowering / joining 550 process, when the temperature is lowered to about 275 degrees, a superplastic phenomenon appears in the solder 420 due to the pressure applied to the semiconductor device. When the solder 420 made of Al and Zn is used, it is necessary to develop a superplastic phenomenon. Therefore, as shown in FIGS. 7 and 8, Al is 22 to 68 mass% and Zn is 78 to 32 mass%. To the ratio.

なお、Cu(銅)やMg(マグネシウム)等の不純物が混入した場合や、半導体素子210の性能を向上させるために不純物を添加した場合などを考慮すると、Alが22〜68質量%、不純物が2質量%以下、残りがZnの割合や、Znが78〜32質量%、不純物が2質量%以下、残りがAlの割合にすることが好ましい。Alの結晶が多い領域から完全に固体に変わる過程において、ハンダ420が固体の状態でも通常以上に伸びるようになる。これにより、ハンダ接合部の応力歪を抑制しながら、半導体素子210と基板300とをハンダ接合することができる。   In consideration of the case where impurities such as Cu (copper) and Mg (magnesium) are mixed or the case where impurities are added to improve the performance of the semiconductor element 210, Al is 22 to 68 mass%, impurities are included. It is preferable that the ratio is 2% by mass or less, the balance is Zn, Zn is 78 to 32% by mass, impurities are 2% by mass or less, and the remainder is Al. In the process of changing from a region with a lot of Al crystals to a complete solid, the solder 420 becomes longer than usual even in a solid state. Thereby, the semiconductor element 210 and the board | substrate 300 can be soldered, suppressing the stress distortion of a soldering part.

上記の半導体素子の接合方法によってハンダの周縁部を盛り上がらせた状態で製造した半導体装置の耐圧について説明する。図9は、半導体装置の高耐圧化するためのハンダの条件を示す図である。また、図10(a)は、半導体素子を絶縁樹脂で覆って高耐圧化した場合であり、図10(b)は、ハンダの表面に酸化膜を形成させて高耐圧化した場合である。   The breakdown voltage of the semiconductor device manufactured with the peripheral edge of the solder raised by the above semiconductor element bonding method will be described. FIG. 9 is a diagram illustrating soldering conditions for increasing the breakdown voltage of the semiconductor device. FIG. 10A shows the case where the semiconductor element is covered with an insulating resin to increase the breakdown voltage, and FIG. 10B shows the case where the oxide film is formed on the surface of the solder to increase the breakdown voltage.

本実施例の半導体装置101は、半導体素子の接合方法500に基づき、半導体素子220と基板300とを、超塑性を発現するハンダ430を用いてハンダ接合することにより、製造したものである。本実施例においても、半導体素子220には、各種デバイスを使用可能である。   The semiconductor device 101 of this embodiment is manufactured by solder bonding the semiconductor element 220 and the substrate 300 using a solder 430 that exhibits superplasticity, based on the semiconductor element bonding method 500. Also in this embodiment, various devices can be used for the semiconductor element 220.

例として、BJTとMOSFETを複合化したIGBTを図9及び図10に示す。IGBTは、まずp型不純物濃度の高いp型半導体224を基板とし、その上にn型不純物濃度の低いn型半導体223をエピタキシャル成長により形成し、さらに、その表面側に低濃度のp型半導体222と高濃度のn型半導体221をイオン打ち込みで形成したものである。半導体素子220の上面にエミッタ電極226を設け、さらにゲート酸化膜228を形成した上でゲート電極225を設ける。また、p型半導体224の下面にコレクタ電極227を設ける。   As an example, FIGS. 9 and 10 show an IGBT in which BJT and MOSFET are combined. In the IGBT, first, a p-type semiconductor 224 having a high p-type impurity concentration is used as a substrate, an n-type semiconductor 223 having a low n-type impurity concentration is formed thereon by epitaxial growth, and a low-concentration p-type semiconductor 222 is further formed on the surface side. And a high concentration n-type semiconductor 221 is formed by ion implantation. An emitter electrode 226 is provided on the upper surface of the semiconductor element 220, a gate oxide film 228 is further formed, and then a gate electrode 225 is provided. A collector electrode 227 is provided on the lower surface of the p-type semiconductor 224.

オン状態では、チャネルを介してn型半導体221がn型半導体223に繋がり、n型半導体223には、n型半導体221から電子が供給され、p型半導体224から正孔が供給される。オフ状態では、電子はコレクタ電極227側に抜け、正孔はエミッタ電極226側に抜け、空乏層230が、エミッタ電極226側のpn接合から、コレクタ電極227側のpn接合に向かって延伸する。   In the on state, the n-type semiconductor 221 is connected to the n-type semiconductor 223 through the channel, and electrons are supplied from the n-type semiconductor 221 and holes are supplied from the p-type semiconductor 224 to the n-type semiconductor 223. In the off state, electrons pass to the collector electrode 227 side, holes pass to the emitter electrode 226 side, and the depletion layer 230 extends from the pn junction on the emitter electrode 226 side toward the pn junction on the collector electrode 227 side.

ハンダ430は、半導体素子220の下面よりも上方に盛り上がっているので、半導体素子220の端部に近接した場合、空乏層230と短絡して絶縁が破壊される可能性がある。そこで、半導体220のpn接合と、ハンダ430との距離とが、一定以上離れるようにすることで、絶縁破壊を防止する。具体的には、半導体220の全てのpn接合において、ハンダ430の先端と最も近接する位置との最短距離が、各pn接合における空乏層230の幅よりも大きくする。   Since the solder 430 is raised above the lower surface of the semiconductor element 220, if the solder 430 is close to the end of the semiconductor element 220, there is a possibility that the insulation is broken due to a short circuit with the depletion layer 230. Therefore, the dielectric breakdown is prevented by keeping the distance between the pn junction of the semiconductor 220 and the solder 430 at a certain distance or more. Specifically, in all the pn junctions of the semiconductor 220, the shortest distance between the tip of the solder 430 and the closest position is made larger than the width of the depletion layer 230 in each pn junction.

さらに、ハンダ430と半導体220との間の絶縁耐圧を維持するために効果的な方法を示す。図10(a)に示すように、半導体装置102は、絶縁樹脂431でポッティング(樹脂盛り)する等して、半導体素子220の全体をコーティングしたものである。絶縁樹脂431としては、高耐熱のシリコン樹脂などを使用可能である。また、図10(b)に示すように、半導体装置103は、ハンダ430の表面にSiOなどの酸化膜432を形成させる。なお、当該二つの応用例以外の絶縁手段を施しても良い。 Further, an effective method for maintaining the withstand voltage between the solder 430 and the semiconductor 220 will be described. As shown in FIG. 10A, the semiconductor device 102 is formed by coating the entire semiconductor element 220 by potting (resin-filling) with an insulating resin 431. As the insulating resin 431, a high heat-resistant silicon resin or the like can be used. Further, as shown in FIG. 10B, the semiconductor device 103 forms an oxide film 432 such as SiO 2 on the surface of the solder 430. Insulating means other than the two application examples may be provided.

このように、ハンダ430の盛り上がった部分と、半導体素子220との間に一定距離の絶縁空間を確保することにより、又は、絶縁樹脂431や酸化膜432などの絶縁体を介すことにより、ハンダ430と半導体素子220との間の絶縁耐圧を、半導体素子220の絶縁耐圧以上に高くすることができ、半導体装置101、102、103として高耐圧を維持することができる。   In this way, by securing an insulating space of a certain distance between the raised portion of the solder 430 and the semiconductor element 220, or by interposing an insulator such as the insulating resin 431 and the oxide film 432, the solder. The withstand voltage between 430 and the semiconductor element 220 can be made higher than the withstand voltage of the semiconductor element 220, and the high withstand voltage can be maintained as the semiconductor devices 101, 102, and 103.

以上、本発明の実施例を述べたが、これらに限定されるものではない。例えば、半導体素子の素材としてSiCを用いたが、それ以外の半導体素材を用いても良い。また、鉛フリーのハンダとしてAl−Znハンダを用いたが、超塑性現象を発現するものであれば、AlとZnの割合を変えても良いし、Al及びZn以外の合金を用いても良い。   As mentioned above, although the Example of this invention was described, it is not limited to these. For example, SiC is used as the material for the semiconductor element, but other semiconductor materials may be used. Moreover, although Al-Zn solder was used as lead-free solder, the ratio of Al and Zn may be changed or an alloy other than Al and Zn may be used as long as it exhibits a superplastic phenomenon. .

本発明は、鉛フリーかつボイドフリーのハンダを用いて製造したパワーデバイスを提供するものであり、ハイブリッド自動車、電機自動車、ロボット、太陽光発電用のインバータなどの大きい電流を制御する回路や電気的負荷の大きい装置に利用することができる。   The present invention provides a power device manufactured using lead-free and void-free solder, such as a hybrid vehicle, an electric vehicle, a robot, a circuit for controlling a large current such as an inverter for photovoltaic power generation, and an electrical device. It can be used for a heavy load device.

100:半導体装置
101:半導体装置
102:半導体装置
103:半導体装置
110:半導体装置
200:半導体素子
201:n型半導体
202:p型半導体
203:n型半導体
204:エミッタ電極
205:ベース電極
206:コレクタ電極
210:半導体素子
211:n型半導体
212:p型半導体
213:n型半導体
214:n型半導体
215:ゲート電極
216:ソース電極
217:ドレイン電極
218:ゲート酸化膜
219:チャネル
220:半導体素子
221:n型半導体
222:p型半導体
223:n型半導体
224:p型半導体
225:ゲート電極
226:エミッタ電極
227:コネクタ電極
228:ゲート酸化膜
230:空乏層
300:基板
301:銅板
302:銅板
303:絶縁膜
304:被膜
400:ハンダ
401:中心部
402:周縁部
410:ハンダ
420:ハンダ
421:中心部
422:周縁部
423:接合部
430:ハンダ
431:絶縁樹脂
432:酸化膜
500:半導体素子の接合方法
510:ハンダ準備
520:半導体素子設置
530:加熱
540:加圧
550:降温・接合
900:応力
901:垂直成分
902:接線成分
910:応力
911:垂直成分
912:接線成分
DESCRIPTION OF SYMBOLS 100: Semiconductor device 101: Semiconductor device 102: Semiconductor device 103: Semiconductor device 110: Semiconductor device 200: Semiconductor element 201: N-type semiconductor 202: P-type semiconductor 203: N-type semiconductor 204: Emitter electrode 205: Base electrode 206: Collector Electrode 210: Semiconductor element 211: n-type semiconductor 212: p-type semiconductor 213: n-type semiconductor 214: n-type semiconductor 215: gate electrode 216: source electrode 217: drain electrode 218: gate oxide film 219: channel 220: semiconductor element 221 : N-type semiconductor 222: p-type semiconductor 223: n-type semiconductor 224: p-type semiconductor 225: gate electrode 226: emitter electrode 227: connector electrode 228: gate oxide film 230: depletion layer 300: substrate 301: copper plate 302: copper plate 303 : Insulating film 304: Film 400: Solder 401: Center part 402: Peripheral part 410: Solder 420: Solder 421: Center part 422: Peripheral part 423: Joining part 430: Solder 431: Insulating resin 432: Oxide film 500: Joining method of semiconductor element 510: Solder preparation 520: Semiconductor device installation 530: Heating 540: Pressurization 550: Temperature drop / joining 900: Stress 901: Vertical component 902: Tangent component 910: Stress 911: Vertical component 912: Tangent component

Claims (7)

半導体素子と基板とを超塑性を発現するハンダで接合した高耐熱ハンダ接合半導体装置であって、
前記ハンダが流れ出ないように半溶融状態にして、前記ハンダを前記半導体素子の端部より外側にはみ出させ、かつ前記半導体素子の下面よりも上方に盛り上がらせた後、
前記ハンダに超塑性を発現させ、前記ハンダと前記半導体素子との界面、及び前記ハンダと前記基板との界面の応力歪を抑制する、
ことを特徴とする高耐熱ハンダ接合半導体装置。
A high heat-resistant solder-bonded semiconductor device in which a semiconductor element and a substrate are bonded with solder that expresses superplasticity,
After being in a semi-molten state so that the solder does not flow out, the solder protrudes outward from the end of the semiconductor element, and rises above the lower surface of the semiconductor element,
Superplasticity is expressed in the solder, and the stress strain at the interface between the solder and the semiconductor element and the interface between the solder and the substrate is suppressed.
A highly heat-resistant solder-bonded semiconductor device.
接合した前記半導体素子の端部のうち少なくとも何れか一の端部において、
前記ハンダが前記半導体素子の端部より外側にはみ出しており、かつ前記半導体素子の下面よりも上方に盛り上がっている、
ことを特徴とする請求項1に記載の高耐熱ハンダ接合半導体装置。
At least one of the bonded end portions of the semiconductor element,
The solder protrudes outward from the end of the semiconductor element, and rises above the lower surface of the semiconductor element;
The high heat-resistant solder junction semiconductor device according to claim 1.
前記ハンダは、超塑性を発現する組成、すなわちAlが22〜68質量%で、Znが78〜32質量%の割合である、
ことを特徴とする請求項1又は2に記載の高耐熱ハンダ接合半導体装置。
The solder is a composition that expresses superplasticity, that is, Al is 22 to 68 mass%, Zn is 78 to 32 mass%,
The high heat-resistant solder junction semiconductor device according to claim 1 or 2.
前記ハンダは、Alが22〜68質量%、不純物が2質量%以下、残りがZnの割合である、
ことを特徴とする請求項3に記載の高耐熱ハンダ接合半導体装置。
The solder is 22 to 68% by mass of Al, 2% by mass or less of impurities, and the balance is Zn.
The high heat-resistant solder junction semiconductor device according to claim 3.
前記ハンダは、Znが78〜32質量%、不純物が2質量%以下、残りがAlの割合である、
ことを特徴とする請求項3に記載の高耐熱ハンダ接合半導体装置。
In the solder, Zn is 78 to 32% by mass, impurities are 2% by mass or less, and the balance is Al.
The high heat-resistant solder junction semiconductor device according to claim 3.
前記ハンダと、前記半導体素子のpn接合との最短距離が、前記pn接合の空乏層の幅よりも大きい、
ことを特徴とする請求項1乃至5の何れか一に記載の高耐熱ハンダ接合半導体装置。
The shortest distance between the solder and the pn junction of the semiconductor element is larger than the width of the depletion layer of the pn junction;
The high heat-resistant solder junction semiconductor device according to claim 1, wherein:
超塑性を発現するAlとZnで組成されたハンダを準備するハンダ準備工程と、
前記ハンダを介して、半導体素子を基板に設置する半導体素子設置工程と、
前記ハンダを加熱し、前記ハンダが流れ出ない半溶融にする加熱工程と、
前記ハンダを加圧し、前記ハンダの周縁部をZnリッチ、中心部をAlリッチにすることで、前記半導体素子の端部より外側に前記周縁部をはみ出させ、かつ前記半導体素子の下面よりも上方に前記周縁部を盛り上がらせる加圧工程と、
前記ハンダを冷却し、前記ハンダに超塑性を発現させ、前記ハンダと前記半導体素子との界面、及び前記ハンダと前記基板との界面の応力歪を抑制しつつ前記半導体素子と前記基板とをハンダ接合する降温・接合工程と、を有する、
ことを特徴とする高耐熱ハンダ接合半導体装置の製造方法。
A solder preparation step of preparing a solder composed of Al and Zn that exhibits superplasticity;
A semiconductor element installation step of installing the semiconductor element on the substrate via the solder;
A heating step of heating the solder and semi-melting the solder from flowing out;
By pressurizing the solder, the peripheral portion of the solder is Zn-rich and the central portion is Al-rich so that the peripheral portion protrudes beyond the end of the semiconductor element and above the lower surface of the semiconductor element Pressurizing step for raising the peripheral edge to
The solder is cooled, the super-plasticity is developed in the solder, and the semiconductor element and the substrate are soldered while suppressing the stress strain at the interface between the solder and the semiconductor element and the interface between the solder and the substrate. A temperature lowering / joining process for joining
A method for manufacturing a high heat-resistant solder-bonded semiconductor device.
JP2015112726A 2015-06-03 2015-06-03 High heat-resistant solder junction semiconductor device and manufacturing method thereof Active JP6590336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015112726A JP6590336B2 (en) 2015-06-03 2015-06-03 High heat-resistant solder junction semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015112726A JP6590336B2 (en) 2015-06-03 2015-06-03 High heat-resistant solder junction semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016225552A true JP2016225552A (en) 2016-12-28
JP6590336B2 JP6590336B2 (en) 2019-10-16

Family

ID=57748548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015112726A Active JP6590336B2 (en) 2015-06-03 2015-06-03 High heat-resistant solder junction semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6590336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074146A1 (en) * 2016-10-21 2018-04-26 国立研究開発法人産業技術総合研究所 Semiconductor device and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823002A (en) * 1994-07-05 1996-01-23 Hitachi Ltd Semiconductor device and manufacturing method
JPH11222643A (en) * 1998-02-06 1999-08-17 Kobe Steel Ltd Zinc-aluminum alloy for earthquake damping and its production
WO2008026335A1 (en) * 2006-09-01 2008-03-06 Murata Manufacturing Co., Ltd. Electronic part device and method of manufacturing it and electronic part assembly and method of manufacturing it
JP2009113050A (en) * 2007-11-02 2009-05-28 Ibaraki Univ Zn-al eutectoid-base alloy joining material, method for manufacturing zn-al eutectoid-base alloy joining material, joining method using zn-al eutectpoid-base alloy joining material, and semiconductor device using zn-al eutectpoid-base alloy joining material
JP2013030607A (en) * 2011-07-28 2013-02-07 Nissan Motor Co Ltd Method of manufacturing semiconductor apparatus and semiconductor apparatus
JP2013146764A (en) * 2012-01-20 2013-08-01 Hitachi Cable Ltd Connecting material and soldered product using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823002A (en) * 1994-07-05 1996-01-23 Hitachi Ltd Semiconductor device and manufacturing method
JPH11222643A (en) * 1998-02-06 1999-08-17 Kobe Steel Ltd Zinc-aluminum alloy for earthquake damping and its production
WO2008026335A1 (en) * 2006-09-01 2008-03-06 Murata Manufacturing Co., Ltd. Electronic part device and method of manufacturing it and electronic part assembly and method of manufacturing it
JP2009113050A (en) * 2007-11-02 2009-05-28 Ibaraki Univ Zn-al eutectoid-base alloy joining material, method for manufacturing zn-al eutectoid-base alloy joining material, joining method using zn-al eutectpoid-base alloy joining material, and semiconductor device using zn-al eutectpoid-base alloy joining material
JP2013030607A (en) * 2011-07-28 2013-02-07 Nissan Motor Co Ltd Method of manufacturing semiconductor apparatus and semiconductor apparatus
JP2013146764A (en) * 2012-01-20 2013-08-01 Hitachi Cable Ltd Connecting material and soldered product using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074146A1 (en) * 2016-10-21 2018-04-26 国立研究開発法人産業技術総合研究所 Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JP6590336B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP2023040253A (en) Power semiconductor device and manufacturing method thereof
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP6300386B2 (en) Semiconductor device
JP2008545279A (en) Schottky diode with improved surge capability
JP5605095B2 (en) Semiconductor device
JP2016086006A (en) Semiconductor device and method of manufacturing the same
WO2018061517A1 (en) Power module, method for producing same and electric power converter
WO2013172394A1 (en) Semiconductor device
JP2019016738A (en) Semiconductor device
WO2021132144A1 (en) Semiconductor device
JP6590336B2 (en) High heat-resistant solder junction semiconductor device and manufacturing method thereof
JP5866075B2 (en) Bonding material manufacturing method, bonding method, and power semiconductor device
JP2019212808A (en) Manufacturing method of semiconductor device
WO2017175426A1 (en) Semiconductor device for power
US11652023B2 (en) Semiconductor device including a semiconductor element with a gate electrode on only one surface
JP6316221B2 (en) Semiconductor device
JP2012209469A (en) Power semiconductor device
CN104821330A (en) Semiconductor device
CN114467165A (en) Semiconductor device with a plurality of semiconductor chips
US20230028808A1 (en) Semiconductor device
JP2019110280A (en) Method of manufacturing semiconductor device
WO2018020640A1 (en) Semiconductor device
JP2013009014A (en) Semiconductor device
US20230223317A1 (en) Resin-sealed semiconductor device
WO2020184304A1 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190910

R150 Certificate of patent or registration of utility model

Ref document number: 6590336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250