JP2008545279A - Schottky diode with improved surge capability - Google Patents

Schottky diode with improved surge capability Download PDF

Info

Publication number
JP2008545279A
JP2008545279A JP2008519694A JP2008519694A JP2008545279A JP 2008545279 A JP2008545279 A JP 2008545279A JP 2008519694 A JP2008519694 A JP 2008519694A JP 2008519694 A JP2008519694 A JP 2008519694A JP 2008545279 A JP2008545279 A JP 2008545279A
Authority
JP
Japan
Prior art keywords
diode
die
heat sink
package
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008519694A
Other languages
Japanese (ja)
Inventor
カルタ,ロッサーノ
メルリン,ルイージ
ラッフォ,ディエーゴ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies Americas Corp
Original Assignee
International Rectifier Corp USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Rectifier Corp USA filed Critical International Rectifier Corp USA
Publication of JP2008545279A publication Critical patent/JP2008545279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73151Location prior to the connecting process on different surfaces
    • H01L2224/73153Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

SiC又はSiのショットキーダイオード・ダイは、そのエピタキシャルアノード面(アノードコンタクト25の露出面)がデバイスパッケージ内の最良のヒートシンク(パッケージの金属リードフレーム30の頂面)に接続させるようにしてマウントされる。これにより、デバイスのサージ電流能力が実質的に増大される。  The SiC or Si Schottky diode die is mounted so that its epitaxial anode surface (exposed surface of the anode contact 25) connects to the best heat sink in the device package (the top surface of the package metal lead frame 30). The This substantially increases the surge current capability of the device.

Description

本発明は半導体デバイスに関し、より具体的には、ショットキーダイオードのサージ能力を向上させる構造に関する。   The present invention relates to a semiconductor device, and more particularly to a structure for improving the surge capability of a Schottky diode.

炭化ケイ素(SiC)ショットキーダイオードは周知であり、シリコン(Si)の場合の対応部分と比較して、低いスイッチング損失、高い降伏電圧、及び小容積且つ軽量という特性を有する。故に、このデバイスは、例えばコンバータ/インバータやモータ駆動などの数多くの用途において、Siショットキーダイオードを置き換えるものである。   Silicon carbide (SiC) Schottky diodes are well known and have the characteristics of low switching loss, high breakdown voltage, and small volume and light weight compared to their counterparts in silicon (Si). Thus, this device replaces the Si Schottky diode in many applications such as converter / inverter and motor drive.

しかしながら、例えば定格600Vのような高電圧SiCショットキーダイオードは、等価なSiデバイスよりサージ能力が低い。斯くして、サージ耐性が重要である例えばAC/DC力率補正回路などの用途において、従来のSiCショットキーダイオードのサージ能力は等価なSiショットキーダイオードと比較して1/4に低下してしまっていた。   However, a high voltage SiC Schottky diode with a rating of 600 V, for example, has a lower surge capability than an equivalent Si device. Thus, in applications where surge resistance is important, such as AC / DC power factor correction circuits, the surge capability of conventional SiC Schottky diodes is reduced to ¼ compared to equivalent Si Schottky diodes. I was sorry.

本発明は、サージ能力が向上されたショットキーダイオードを提供することを目的とする。   An object of the present invention is to provide a Schottky diode with improved surge capability.

本発明に従って、SiCショットキー・ダイ、又は更にはシリコン(Si)ショットキー・ダイは、該ダイの最も熱い側であるエピタキシャルアノード側から熱を一層効率的に除去し、それにより“自己加熱”の影響を抑制するように構成されたパッケージ内に搭載される。この自己加熱はSiCショットキーダイオード及びそれに等価なSiショットキーダイオードのサージ能力を低下させる原因であると、本発明の発明者によって認識されたものである。   In accordance with the present invention, a SiC Schottky die, or even a silicon (Si) Schottky die, more efficiently removes heat from the hottest side of the die, the epitaxial anode side, thereby “self-heating”. It is mounted in a package configured to suppress the influence of This self-heating has been recognized by the inventor of the present invention as a cause of reducing the surge capability of SiC Schottky diodes and equivalent Si Schottky diodes.

これは、ダイのアノード側を導電性ヒートシンク面に十分に結合させてダイをマウントすることによって達成される。故に、SiCダイ又はSiダイはその通常の向きから裏返しにされ、アクティブ領域を囲むガードリングは、ガードリングを短絡させることなくアクティブなアノード領域がヒートシンク面にはんだ付け、あるいは導電性接着剤で固定され得るように、十分に絶縁される。支持面はTO−220型パッケージ等で使用される従来からのリードフレームであってもよいし、DirectFET(登録商標)型の外囲器の導電性の“缶(can)”の内面であってもよい。このDirectFET(登録商標)型の外囲器又はパッケージは、米国特許第6624522号明細書に示されている。なお、この特許明細書の開示内容全体は参照することによりここに組み込まれる。   This is accomplished by mounting the die with the anode side of the die well bonded to the conductive heat sink surface. Therefore, the SiC die or Si die is flipped from its normal orientation, and the guard ring surrounding the active area is soldered to the heat sink surface or fixed with conductive adhesive without short circuiting the guard ring Well insulated so that it can be done. The support surface may be a conventional lead frame used in TO-220 type packages or the like, or the inner surface of a conductive “can” of a DirectFET® type envelope. Also good. This DirectFET® type envelope or package is shown in US Pat. No. 6,624,522. The entire disclosure of this patent specification is incorporated herein by reference.

ヒートシンク面へのアノードの良好な電気的且つ/或いは熱的な接続を確保するため、同時継続中の米国特許出願第11/255021号(出願日:2005年10月20日)に示されている種類の、はんだ付け可能な頂部金属が、特にはSiCダイである、ダイのアノード面上に形成される。なお、この米国特許出願の開示内容全体は参照することによりここに組み込まれる。   To ensure good electrical and / or thermal connection of the anode to the heat sink surface, it is shown in co-pending US patent application Ser. No. 11 / 255,021 (filing date: October 20, 2005). A kind of solderable top metal is formed on the anode face of the die, in particular a SiC die. The entire disclosure of this US patent application is hereby incorporated by reference.

本発明の発明者によって、SiCショットキーダイオードの熱解析及び電気解析が行われ、等価なSiデバイスに対するサージ能力の低下は、ダイが生成熱を効率的に放散することができないときの、大電流で比較的長いパルス条件下でのダイの“自己発熱”に関係していることが突き止められた。このことは、大電流では正の温度係数がデバイス破壊に至る電圧降下を熱的に低下させるので、順方向導通状態でのデバイス性能に限界をもたらす。   The inventors of the present invention have performed thermal and electrical analysis of SiC Schottky diodes and the reduced surge capability for equivalent Si devices is a large current when the die cannot efficiently dissipate the generated heat. And was found to be related to die “self-heating” under relatively long pulse conditions. This places a limit on device performance in the forward conduction state, since at high currents a positive temperature coefficient thermally reduces the voltage drop leading to device breakdown.

これは、(例えば4H、3C、6H等の様々なポリタイプの何れかを有する)SiCの特性に起因するものであり、特に、典型的なSiCデバイスの頂部エピタキシャル成長層において通常見受けられるような低濃度にドープされた材料を有するとき、温度に大きく依存する。   This is due to the properties of SiC (eg, having any of a variety of polytypes such as 4H, 3C, 6H, etc.), especially as low as typically found in the top epitaxial growth layers of typical SiC devices. When having a highly doped material, it is highly temperature dependent.

故に、図1に示されるように計算とシミュレーションとにより、自己発熱(Rth=2.5K/W)に起因して温度が順電圧及び順電流に強く影響することが本発明の発明者によって認識された。図1において、電流の飽和がはっきりと見て取れる。 Therefore, the calculation and simulation as shown in FIG. 1 show that the temperature strongly affects the forward voltage and forward current due to self-heating (R th = 2.5 K / W). Recognized. In FIG. 1, the saturation of the current can be clearly seen.

この影響は低濃度ドープされた材料(すなわち、アノードのショットキーコンタクトを担持するエピタキシャル層)に強く依存する。故に、この層における移動度は温度とともに、
μ(T)=μ[T/300]−2.5
という公式に従って低下する。ここで、μ=400である。
This effect is strongly dependent on the lightly doped material (ie, the epitaxial layer carrying the anode Schottky contact). Therefore, the mobility in this layer, along with the temperature,
μ (T) = μ 0 [T / 300] −2.5
It decreases according to the formula. Here, μ 0 = 400.

以上より、高い接合部温度Tでの低い移動度は、高い抵抗率、高い順電圧V、及び乏しいサージ能力をもたらすことが理解される。なお、同じ分析がSiCショットキー・ダイとSiショットキー・ダイとに当てはまり、本発明の利益はこれらに同等に適用され得るものである。 From the above, it can be seen that low mobility at high junction temperature T j results in high resistivity, high forward voltage V f , and poor surge capability. It should be noted that the same analysis applies to SiC Schottky dies and Si Schottky dies, and the benefits of the present invention can be equally applied to these.

本発明に従って、また上記の理解に従って、ダイのエピタキシャルシリコン側(アノード)はダイの最も温度が高い側であるので、このエピタキシャル側の冷却を改善することが極めて重要である。故に、ダイのエピタキシャル側は、該ダイのパッケージ内で利用可能な最良の熱放散面に接触するべきである。この面は、プラスチックパッケージにおけるダイを支持するリードフレームであり、あるいは、DirectFET(登録商標)型パッケージにおける缶内部の頂面である。   In accordance with the present invention and in accordance with the above understanding, it is very important to improve the cooling of this epitaxial side, since the epitaxial silicon side (anode) of the die is the hottest side of the die. Thus, the epitaxial side of the die should contact the best heat dissipation surface available in the die package. This surface is the lead frame that supports the die in the plastic package, or the top surface inside the can in the DirectFET® type package.

このため、SiC又はその他のダイは、エピタキシャル層が標準パッケージのカソードの位置に来るように裏返されなければならない。エピタキシャル面の頂部金属は好ましくは、はんだ付け可能なものであり、例えば、先述の米国特許出願第11/255021にて開示されているはんだ付け可能な頂部金属が用いられる。ここではダイのカソード側であるデバイスの背面側の金属は、好適な如何なる接合可能な金属であってもよい。   For this reason, the SiC or other die must be turned over so that the epitaxial layer is at the cathode location of the standard package. The top metal of the epitaxial surface is preferably solderable, for example the solderable top metal disclosed in the aforementioned US patent application Ser. No. 11/255021 is used. The metal on the back side of the device, here the cathode side of the die, can be any suitable bondable metal.

裏返されたダイが用いられるとき、デバイスの終端領域がリードフレームに接触することを防止するために特別な保護が必要である。理解されるように、好適なエポキシ樹脂の保護マスク等が用いられ得る。   When flipped dies are used, special protection is required to prevent the device termination area from contacting the lead frame. As will be appreciated, a suitable epoxy resin protective mask or the like may be used.

続いて、図4を参照するに、従来技術に係るSiCショットキーダイオードデバイス20と該デバイスのパッケージの少なくとも一部とが示されている。ショットキー・ダイはダイ21として示されており、基板22及び頂部エピ層23を有している。SiCの抵抗率及び厚さは、例えば600Vといった要求遮断電圧に基づく。障壁金属(バリアメタル)界面24はエピ層23の頂面であり、Al又は何らかの接合可能な金属であり得る好適なアノードコンタクト25を受けている。デバイスのアクティブ領域は、拡散された終端ガードリング26によって終端処理されており、ガードリング26は酸化物とし得る好適な絶縁層27によって保護されている。なお、Siショットキー・ダイにおいても同様の構造が存在する。   With continued reference to FIG. 4, a prior art SiC Schottky diode device 20 and at least a portion of the package of the device are shown. The Schottky die is shown as die 21 and has a substrate 22 and a top epi layer 23. The resistivity and thickness of SiC are based on the required cut-off voltage, for example 600V. The barrier metal (barrier metal) interface 24 is the top surface of the epi layer 23 and receives a suitable anode contact 25 which can be Al or some bondable metal. The active area of the device is terminated by a diffused termination guard ring 26, which is protected by a suitable insulating layer 27, which can be an oxide. A similar structure exists in the Si Schottky die.

基板22のカソード側は、例えばCrNiAgの三層構造又は何らかの好適なはんだ付け可能金属とし得るカソード電極28を受けている。   The cathode side of the substrate 22 receives a cathode electrode 28, which can be, for example, a three layer structure of CrNiAg or any suitable solderable metal.

ダイ21のパッケージは、例えば図4の金属リードフレーム30等のヒートシンク面を含んでいる。パッケージに含まれるその他の如何なる金属層もダイ21の良好なヒートシンクとして機能する。図4において、ダイ22は、良好な熱的接続が得られるように、リードフレーム30にはんだ付けされるか、導電性の接合剤又はエポキシ樹脂によって固定されるかしている。ヒートシンク30は、しばしば、パッケージのカソードコンタクトとしても機能する。   The package of the die 21 includes a heat sink surface such as the metal lead frame 30 of FIG. Any other metal layer included in the package functions as a good heat sink for die 21. In FIG. 4, the die 22 is either soldered to the lead frame 30 or fixed with a conductive bonding agent or epoxy resin so as to obtain a good thermal connection. The heat sink 30 often also functions as the package cathode contact.

そして、パッケージはダイ21を完全に収容するための何らかの好適手法にて完成される。   The package is then completed in any suitable manner for fully accommodating the die 21.

上述のように、この構造は予想外に乏しいサージ能力をもたらす。   As mentioned above, this structure results in unexpectedly poor surge capability.

本発明によれば、図4のダイ21は、該ダイのエピ側23がパッケージの最良のヒートシンク面と接触するように裏返される。   In accordance with the present invention, the die 21 of FIG. 4 is turned over so that the epi side 23 of the die contacts the best heat sink surface of the package.

図5において、図4の要素と相等しい要素は同一の参照符号を有している。しかしながら、ガードリング26が不意に金属体30に接触することを防止するため、コンタクト25の端部の周囲と終端保護27の下方とにエポキシ樹脂から成る保護体40が追加されている。また、アノードコンタクト25をヒートシンク30に熱的且つ電気的に接続するため、はんだペースト41が用いられている。   In FIG. 5, elements that are the same as those in FIG. 4 have the same reference numerals. However, in order to prevent the guard ring 26 from inadvertently contacting the metal body 30, a protective body 40 made of an epoxy resin is added around the end of the contact 25 and below the terminal protection 27. A solder paste 41 is used to connect the anode contact 25 to the heat sink 30 thermally and electrically.

図2は、25℃にした図4のデバイスに関して、様々な電流値の0.5msパルスに対する順電圧を時間の関数として示している。図示された複数の曲線は、15A(最も下の曲線)から40A(最も上の曲線)までのパルスに対するものであり、中間のパルス電流は17,20、22、25、27、30、32、35及び37Aである。37A及び40Aのレベルでは急激な順電圧の増加が見られる。   FIG. 2 shows the forward voltage as a function of time for 0.5 ms pulses of various current values for the device of FIG. 4 at 25.degree. The curves shown are for pulses from 15A (bottom curve) to 40A (top curve), with intermediate pulse currents of 17, 20, 22, 25, 27, 30, 32, 35 and 37A. There is a rapid increase in forward voltage at the 37A and 40A levels.

図3は、新規な発明を包含する図5のダイに関して、図2と同様の曲線を示している。順電圧は実質的に低下されており、故に、より大きい電流値のパルスでのダイの加熱が抑制されている。   FIG. 3 shows a similar curve to FIG. 2 for the die of FIG. 5 that includes the novel invention. The forward voltage is substantially reduced, so that heating of the die with higher current pulses is suppressed.

本発明はその具体的な実施形態に関連して説明されてきたが、この他の数多くの変形及び改良、並びにこの他の適用が当業者には明らかになるであろう。故に、本発明はここで開示された具体例によって限定されるものではない。   Although the present invention has been described with reference to specific embodiments thereof, many other variations and modifications and other applications will become apparent to those skilled in the art. Accordingly, the present invention is not limited by the specific examples disclosed herein.

様々な温度におけるSiCショットキーダイオードの順電圧及び順電流を示す図である。It is a figure which shows the forward voltage and forward current of a SiC Schottky diode in various temperature. 図4の従来技術に係るパッケージで25℃にした場合の、様々な電流値の0.5msパルスに対する順電圧の測定値を、時間の関数として示す図である。FIG. 5 is a diagram showing measured values of forward voltage as a function of time for a 0.5 ms pulse of various current values when the package according to the related art of FIG. 図5に示されるように本発明に従ったショットキー・ダイがマウントされた場合の、順電圧の低下を示す図2と同様の図である。FIG. 6 is a view similar to FIG. 2 showing the drop in forward voltage when a Schottky die according to the present invention is mounted as shown in FIG. アノード層、すなわち、エピタキシャル成長層がパッケージのメインヒートシンクから離れた側にある従来技術に係るSiCショットキーダイオードを示す断面図である。FIG. 2 is a cross-sectional view showing a prior art SiC Schottky diode with an anode layer, ie, an epitaxially grown layer, on the side of the package away from the main heat sink. 図4の構造においてダイが裏返され、より熱い側であるダイのエピ面側が、デバイスのパッケージ又は組立体のメインヒートシンクに面し、且つそれに熱的に結合された構造を示す断面図である。FIG. 5 is a cross-sectional view showing a structure in which the die is turned over in the structure of FIG. 4 and the hotter side of the die faces the main heat sink of the device package or assembly and is thermally coupled thereto.

Claims (11)

本体領域と、該本体領域上のエピタキシャル形成領域とを有する半導体ウェハ;
前記エピタキシャル形成領域上のアノードコンタクト、及び前記本体領域の底面に接するカソード電極;及び
前記ウェハ用の外囲器;
を有するショットキーダイオードであって、
前記外囲器は、表面を有する主ヒートシンクを含み;
前記アノードコンタクトは、前記ウェハのアノード側からの熱の除去を最大化し、それにより当該ダイオードのサージ能力を実質的に向上させるように、前記主ヒートシンクの前記表面に熱的に接続され且つ固定されている;
ダイオード。
A semiconductor wafer having a body region and an epitaxial formation region on the body region;
An anode contact on the epitaxial formation region, and a cathode electrode in contact with a bottom surface of the body region; and an envelope for the wafer;
A Schottky diode having
The envelope includes a main heat sink having a surface;
The anode contact is thermally connected and secured to the surface of the main heat sink to maximize heat removal from the anode side of the wafer and thereby substantially improve the surge capability of the diode. ing;
diode.
少なくとも前記本体領域はシリコン又は炭化ケイ素から成る、請求項1に記載のダイオード。   The diode of claim 1, wherein at least the body region comprises silicon or silicon carbide. 前記アノードコンタクトははんだ付け可能な材料である、請求項2に記載のダイオード。   The diode of claim 2, wherein the anode contact is a solderable material. 前記エピタキシャル形成領域の頂部内にあり、且つ前記アノードコンタクトを取り囲むガードリングの拡散層;及び前記ガードリングと前記主ヒートシンクの前記表面との間の絶縁体リング;を更に含む請求項2に記載のダイオード。   The guard ring diffusion layer in the top of the epitaxial formation region and surrounding the anode contact; and an insulator ring between the guard ring and the surface of the main heat sink. diode. 前記エピタキシャル形成領域の頂部内にあり、且つ前記アノードコンタクトを取り囲むガードリングの拡散層;及び前記ガードリングと前記主ヒートシンクの前記表面との間の絶縁体リング;を更に含む請求項3に記載のダイオード。   The guard ring diffusion layer in the top of the epitaxial formation region and surrounding the anode contact; and an insulator ring between the guard ring and the surface of the main heat sink. diode. 前記主ヒートシンクはリードフレームである、請求項2に記載のダイオード。   The diode of claim 2, wherein the main heat sink is a lead frame. 前記主ヒートシンクはリードフレームである、請求項3に記載のダイオード。   The diode of claim 3, wherein the main heat sink is a lead frame. 前記主ヒートシンクはリードフレームである、請求項5に記載のダイオード。   6. The diode of claim 5, wherein the main heat sink is a lead frame. パッケージはダイを受け入れる浅いカップを有するDirectFET型のパッケージであり;且つアノード電極は前記カップの頂部の内面に接続されている、請求項2に記載のダイオード。   The diode of claim 2, wherein the package is a DirectFET type package having a shallow cup to receive the die; and the anode electrode is connected to the inner surface of the top of the cup. パッケージはダイを受け入れる浅いカップを有するDirectFET型のパッケージであり;且つアノード電極は前記カップの頂部の内面に接続されている、請求項3に記載のダイオード。   4. The diode of claim 3, wherein the package is a DirectFET type package having a shallow cup to receive the die; and the anode electrode is connected to the top inner surface of the cup. パッケージはダイを受け入れる浅いカップを有するDirectFET型のパッケージであり;且つアノード電極は前記カップの頂部の内面に接続されている、請求項5に記載のダイオード。   6. The diode of claim 5, wherein the package is a DirectFET type package having a shallow cup to receive a die; and the anode electrode is connected to the top inner surface of the cup.
JP2008519694A 2005-07-05 2006-07-05 Schottky diode with improved surge capability Pending JP2008545279A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69663405P 2005-07-05 2005-07-05
PCT/US2006/026002 WO2007005844A2 (en) 2005-07-05 2006-07-05 Schottky diode with improved surge capability

Publications (1)

Publication Number Publication Date
JP2008545279A true JP2008545279A (en) 2008-12-11

Family

ID=37605140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008519694A Pending JP2008545279A (en) 2005-07-05 2006-07-05 Schottky diode with improved surge capability

Country Status (4)

Country Link
EP (1) EP1902466A4 (en)
JP (1) JP2008545279A (en)
CN (1) CN101223638A (en)
WO (1) WO2007005844A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177537A (en) * 2007-01-19 2008-07-31 Cree Inc Low-voltage diode with reduced parasitic resistance, and manufacturing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030015708A1 (en) 2001-07-23 2003-01-23 Primit Parikh Gallium nitride based diodes with low forward voltage and low reverse current operation
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
DE102006001195A1 (en) 2006-01-10 2007-07-12 Sms Demag Ag Casting-rolling process for continuous steel casting involves coordinating roll speeds and temperatures to provide higher end temperature
US7804147B2 (en) 2006-07-31 2010-09-28 Cree, Inc. Light emitting diode package element with internal meniscus for bubble free lens placement
US7769066B2 (en) 2006-11-15 2010-08-03 Cree, Inc. Laser diode and method for fabricating same
US7813400B2 (en) 2006-11-15 2010-10-12 Cree, Inc. Group-III nitride based laser diode and method for fabricating same
US7999283B2 (en) 2007-06-14 2011-08-16 Cree, Inc. Encapsulant with scatterer to tailor spatial emission pattern and color uniformity in light emitting diodes
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US9287469B2 (en) 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
CN104124217B (en) * 2014-07-17 2017-12-29 西安电子科技大学 A kind of high-temperature carborundum power device packaging structure and preparation method thereof
CN108538924A (en) * 2018-05-16 2018-09-14 捷捷半导体有限公司 A kind of plastic packaging SiC Schottky diode device and its manufacturing method
KR102038525B1 (en) * 2018-09-27 2019-11-26 파워큐브세미(주) SiC SBD with ESD protection
CN113540257A (en) * 2021-06-16 2021-10-22 先之科半导体科技(东莞)有限公司 Schottky diode with high surge capacity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158363A (en) * 2000-11-17 2002-05-31 Matsushita Electric Ind Co Ltd Electrode structure of schottky barrier diode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206540A (en) * 1978-06-02 1980-06-10 International Rectifier Corporation Schottky device and method of manufacture using palladium and platinum intermetallic alloys and titanium barrier
DE10002362A1 (en) * 2000-01-20 2001-08-02 Infineon Technologies Ag Semiconducting component enables heat to be easily conducted away - has diode with two connections connected to two carrier arrangement connecting parts via current and heat conducting connecting parts
US7119447B2 (en) * 2001-03-28 2006-10-10 International Rectifier Corporation Direct fet device for high frequency application
US6777800B2 (en) * 2002-09-30 2004-08-17 Fairchild Semiconductor Corporation Semiconductor die package including drain clip
US7109520B2 (en) * 2003-10-10 2006-09-19 E. I. Du Pont De Nemours And Company Heat sinks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158363A (en) * 2000-11-17 2002-05-31 Matsushita Electric Ind Co Ltd Electrode structure of schottky barrier diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177537A (en) * 2007-01-19 2008-07-31 Cree Inc Low-voltage diode with reduced parasitic resistance, and manufacturing method

Also Published As

Publication number Publication date
EP1902466A2 (en) 2008-03-26
WO2007005844A2 (en) 2007-01-11
CN101223638A (en) 2008-07-16
WO2007005844A3 (en) 2007-10-04
EP1902466A4 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP2008545279A (en) Schottky diode with improved surge capability
US20070007614A1 (en) Schottky diode with improved surge capability
JP4988784B2 (en) Power semiconductor device
JP6897141B2 (en) Semiconductor devices and their manufacturing methods
US11127853B2 (en) Power transistor device including first and second transistor cells having different on-resistances for improved thermal stability
JPWO2005024941A1 (en) Semiconductor device
JP2011243839A (en) Power semiconductor device
US20030006471A1 (en) Semiconductor device having silicon carbide layer of predetermined conductivity type and module device having the same
JP2007157835A (en) Mounting substrate
US10601307B1 (en) Semiconductor device and method for manufacturing the same
WO2005069381A1 (en) Semiconductor device module structure
WO2020012958A1 (en) Semiconductor element and semiconductor device
JP2018022892A (en) Power semiconductor module
WO2021132144A1 (en) Semiconductor device
JP4096741B2 (en) Semiconductor device
JP6303776B2 (en) Semiconductor device
JP5724415B2 (en) Semiconductor module
JP3644161B2 (en) Power semiconductor module
JP6167825B2 (en) Semiconductor device
JP7495225B2 (en) Semiconductor Device
JP7415413B2 (en) semiconductor equipment
KR100809940B1 (en) Surface mounting type diode and manufacturing method the same
JP2024505028A (en) Packaged electronic device with substrate with thermally conductive adhesive layer
JPH09275186A (en) Semiconductor device
JP2024018279A (en) Semiconductor chip and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018