JP2016222492A - 微粒子化ペロブスカイト膜及びそれを用いた機能性素子 - Google Patents

微粒子化ペロブスカイト膜及びそれを用いた機能性素子 Download PDF

Info

Publication number
JP2016222492A
JP2016222492A JP2015110392A JP2015110392A JP2016222492A JP 2016222492 A JP2016222492 A JP 2016222492A JP 2015110392 A JP2015110392 A JP 2015110392A JP 2015110392 A JP2015110392 A JP 2015110392A JP 2016222492 A JP2016222492 A JP 2016222492A
Authority
JP
Japan
Prior art keywords
perovskite
ionic liquid
film
solvent
perovskite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015110392A
Other languages
English (en)
Other versions
JP6501303B2 (ja
Inventor
哲也 當摩
Tetsuya Toma
哲也 當摩
シャヒドゥザマン モハマド
Shahiduzzaman Mohammad
シャヒドゥザマン モハマド
晃平 山本
Kohei Yamamoto
晃平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2015110392A priority Critical patent/JP6501303B2/ja
Publication of JP2016222492A publication Critical patent/JP2016222492A/ja
Application granted granted Critical
Publication of JP6501303B2 publication Critical patent/JP6501303B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】ハイブリット型の薄膜太陽電池の光発電材料に用いるナノレベルに微粒子化された機能性の高いペロブスカイト型結晶膜の提供。【解決手段】ペロブスカイト型結晶を生成する前駆体物質とイオン液体とを溶媒に溶解した溶液を塗布及び乾燥することで得られる、微粒子化ペロブスカイト膜。前駆体物質はハロゲン化アルキルアミンとハロゲン化金属の混合物、イオン液体はイミダゾリウム塩、溶媒はアミド系溶媒である。前駆体物質を溶媒に溶解した溶液にイオン液体を加えることで、このイオン液体が溶媒の急激な揮発するのを抑えつつ、従来のペロブスカイト結晶膜に比較して光学特性等が大きく変化した機能性の高い結晶膜となる微粒子化ペロブスカイト膜の製造方法。【選択図】図1

Description

本発明はペロブスカイト型結晶膜に関し、特にナノサイズレベルに微粒子化された結晶膜に係る。
光吸収の機能に有機と無機の材料を組み合わせたハイブリッド型の薄膜太陽電池の分野において、ペロブスカイト型結晶を光発電材料に用いた例が報告されている(非特許文献1)。
この分野において光発電変換効率のさらなる向上や安定した性能、耐久性等の改善が要求されている。
特許文献1には溶液中でナノ粒子を形成するのにイオン液体を用いた例が開示されているが、この技術は溶液中でナノ粒子を形成するためのものであり、結晶膜の形成過程でナノ微粒子化を図ったものではない。
宮坂力,「ペロブスカイト型太陽電池の登場」,現代化学2014年3月号,P24−29
特表2008−515746号公報
本発明は、ナノレベルに微粒子化された機能性の高いペロブスカイト型結晶膜の提供を目的とする。
本発明に係る微粒子化ペロブスカイト膜は、ペロブスカイト型結晶を生成する前駆体物質とイオン液体とを溶媒に溶解した溶液を塗布及び乾燥することで得られることを特徴とする。
ここで、ペロブスカイト型結晶を生成する前駆体物質とは、それらが含まれる溶液を基材等に塗布及び乾燥させる過程において、ペロブスカイト(灰チタン石)と同じ結晶構造を有する結晶形が得られる物質をいう。
ペロブスカイト結晶構造を、CHNHPbIの例で模式化した図を図3に示す。
立方晶の各頂点にA:CHNH ,体心にB:Pbを有し、X:Iが立方晶の各面心に有する。
このようなBX型の八面体は相互の影響を受けやすく、容易に歪みが生じ、大きく物性が変化することが知られている。
例えば、光発電材料においては(110)結晶面が電荷輸送面となる。
本発明において、前記前駆体物質は、ハロゲン化アルキルアミンとハロゲン化金属との混合物が例として挙げられる。
例えば、CHNHIとPbIとを溶媒に溶解する例が挙げられる。
本発明において、前記イオン液体は、イミダゾリウム塩、ピリジニウム塩、アンモニウム塩、ピロリジニウム塩、ホスホニウム塩、スルホニウム塩等が例として挙げられる。
イミダゾリウム塩を形成するイミダゾリウムカチオンには、1-Hexyl-3-methylimidazolium,1-Butyl-3-methylimidazolium,1-Ethyl-2,3-dimethylimidazolium,1-Dodecyl-3-methylimidazolium等が例として挙げられる。
塩としてはそれらの、halide,tetrafluoroborate,hexafluorophosphate,acetate,hydrogensulfate,alkylsulfate,tosylate,methanesulfonate等が例として挙げられる。
溶媒としてはアミド系溶媒,ブチロラクトン,ジメチルスルホキシド(DMSO)が例として挙げられ、アミド系溶媒には、ジメチルホルムアミド(DMF),ジエチルホルムアミド(DEF),ジエチルアセトアミド(DMAC),N−メチルピロリドン(MPD),テトラメチルユリア(TMU),ヘキサメチルホスホリックトリアミド(HMPA)等が例として挙げられる。
このようにして得られたペロブスカイト膜は、径が1μm以下のナノサイズレベルの微粒子化された結晶構造を有し、光発電変換素子、圧電変換素子、熱電変換素子等の各種機能性素子への応用が期待される。
本発明に係るペロブスカイト結晶膜は、前駆体物質を溶媒に溶解した溶液にイオン液体を加えることで、このイオン液体が溶媒の急激な揮発するのを抑えつつ、結晶の急激な成長を抑えることでナノ微粒子化するものと推定され、従来のペロブスカイト結晶膜に比較して光学特性等が大きく変化した機能性の高い結晶膜となる。
本発明に係る微粒子化ペロブスカイト膜の製造プロセスを模式的に示す。 イオン液体を加えた結晶膜と加えない結晶膜の比較を模式的に示す。 CHNHPbIの結晶構造を模式的に示す。 (a),(b),(c)はイオン液体を加えない場合の構造膜のSEM像を示し、(d),(e),(f)はイオン液体を1wt%加えた場合の膜構造のSEM像を示す。 (a)はペロブスカイト膜を生成させるための溶液をスピンコートする前の基材(TiOxfilm)のAFM像を示し、(b)はイオン液体を加えないペロブスカイト膜、(c)はイオン液体1wt%加えたペロブスカイト膜のAFM像を示す。 ペロブスカイト膜の生成用溶液をスピンコートした後のアニーリング温度とその膜のXRDパターンを示す。 図6に示した膜のAFM像を示し、(a)はRT,(b)は70℃,(c)は100℃,(d)は130℃でそれぞれ10分間実施したものである。 イオン液体の有無によるペロブスカイト膜の吸光度比較を示す。 イオン液体の有無によるペロブスカイト膜のFTIRスペクトル比較を示す。 イオン液体の添加量を変化させた際の微粒子変化のSEM像を示す。(a)は3wt%、(b)は7wt%、(c)は10wt%である。 イオン液体の添加量とそれにより得られたペロブスカイト膜の吸光度比較をグラフに示す。
以下、ペロブスカイト膜としてCHNHPbIを例に説明するが本発明はこれに限定されない。
溶媒としてDMF(ジメチルホルムアミド)を用い、前駆体物質CHNHIとPbIとを溶解した(濃度25wt%)。
これにイオン溶液として1-Hexyl-3-methylimidazoliumchloride(HMImCl)を1wt%加えた、この状態では図2に示すように透明な液体(溶液)であった。
これをTiOx/ITO基材の表面にスピンコートし、図1にプロセスを模式的に示すように、常温で30分保持後に所定の温度でアニーリング処理した。
比較のためにイオン液体を加えないものも製作した。
生成された膜のSEM像を図4にAFM像を図5に示す。
図4(a)〜(c)及び図5(b)は、イオン液体を加えない場合であり、リボン状の構造膜になっているのに対して本発明によるイオン溶液を加えたものは、図4(d)〜(f),図5(c)に示すように1μm以下のナノサイズレベルの微粒子が集合した膜構造になっていた。
図6にアニーリング温度を変化させた際のXRDチャートを示し、図7にそのAFM像を示す。
図7(a)はRT,(b)は70℃,(c)は100℃,(d)は130℃で、それぞれ10分間の処理である。
アニーリング処理にて、微粒子化されたペロブスカイト膜が得られていることが分かる。
図8,図9にイオン液体の有無による吸光度比較したグラフを示す。
イオン液体の添加により光学特性が変化していることがわかる。
図10,図11にはイオン液体の添加量の影響を調査した結果を示す。
図10で(a)はイオン液体の添加量3wt%,(b)は7wt%,(c)は10wt%のSEM像である。
これによりイオン液体の添加量も膜構造に影響を与え、本実施例に用いたイオン液体の場合は7wt%以下が好ましいことが分かる。
また、ペロブスカイト膜構造は従来のイオン液体の加えないものがリボン構造であったのに対して、イオン液体を加えることにより、膜構造がナノ微粒子構造になることで特性が大きく変化することが明らかになり、従来のペロブスカイト結晶を光発電材料に用いた薄膜太陽電池の変換効率向上が期待される。

Claims (5)

  1. ペロブスカイト型結晶を生成する前駆体物質とイオン液体とを溶媒に溶解した溶液を塗布及び乾燥することで得られる、微粒子化ペロブスカイト膜。
  2. 前記前駆体物質は、ハロゲン化アルキルアミンとハロゲン化金属との混合物であることを特徴とする請求項1記載の微粒子化ペロブスカイト膜。
  3. 前記イオン液体は、イミダゾリム塩、ピリジニウム塩、アンモニウム塩、ピロリジニウム塩、ホスホニウム塩、スルホニウム塩のうち、いずれか1つ以上であることを特徴とする請求項1又は2記載の微粒子化ペロブスカイト膜。
  4. 前記溶媒は、アミド系溶媒、ブチロラクトン、ジメチルスルホキシドのうちいずれかであることを特徴とする請求項1〜3のいずれかに記載の微粒子化ペロブスカイト膜。
  5. 請求項1〜4のいずれかに記載の微粒子化ペロブスカイト膜を用いたことを特徴とする機能性素子。
JP2015110392A 2015-05-29 2015-05-29 微粒子化ペロブスカイト膜及びそれを用いた機能性素子 Active JP6501303B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110392A JP6501303B2 (ja) 2015-05-29 2015-05-29 微粒子化ペロブスカイト膜及びそれを用いた機能性素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015110392A JP6501303B2 (ja) 2015-05-29 2015-05-29 微粒子化ペロブスカイト膜及びそれを用いた機能性素子

Publications (2)

Publication Number Publication Date
JP2016222492A true JP2016222492A (ja) 2016-12-28
JP6501303B2 JP6501303B2 (ja) 2019-04-17

Family

ID=57747395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110392A Active JP6501303B2 (ja) 2015-05-29 2015-05-29 微粒子化ペロブスカイト膜及びそれを用いた機能性素子

Country Status (1)

Country Link
JP (1) JP6501303B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109326709A (zh) * 2018-10-10 2019-02-12 业成科技(成都)有限公司 感测膜及其制备方法、电子装置
CN109817810A (zh) * 2019-01-22 2019-05-28 西北工业大学深圳研究院 一种掺杂三唑离子液体的钙钛矿太阳能电池及制备方法
CN110224069A (zh) * 2019-06-13 2019-09-10 天合光能股份有限公司 一种具有防水功能的钙钛矿太阳能电池及其制备方法
JP2020025059A (ja) * 2018-08-09 2020-02-13 国立大学法人九州工業大学 熱電変換素子
CN111710780A (zh) * 2020-06-18 2020-09-25 西北工业大学 阴极原位修饰的无电子传输层钙钛矿太阳能电池的制备方法
CN112071987A (zh) * 2020-09-02 2020-12-11 西北工业大学 一种离子液体钙钛矿介质及制备方法
JP2022511773A (ja) * 2018-11-28 2022-02-01 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 長期安定光電子デバイス
US20220310929A1 (en) * 2019-06-11 2022-09-29 Oxford University Innovation Limited Optoelectronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044016A (ja) * 2011-08-24 2013-03-04 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
WO2013171517A1 (en) * 2012-05-18 2013-11-21 Isis Innovation Limited Optoelectronic devices with organometal perovskites with mixed anions
JP2015092563A (ja) * 2013-09-30 2015-05-14 積水化学工業株式会社 有機無機複合薄膜太陽電池
WO2015099412A1 (ko) * 2013-12-23 2015-07-02 한국화학연구원 무/유기 하이브리드 페로브스카이트 화합물 전구물질
WO2016083783A1 (en) * 2014-11-28 2016-06-02 Cambridge Enterprise Limited Electroluminescent device
JP2016207967A (ja) * 2015-04-28 2016-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044016A (ja) * 2011-08-24 2013-03-04 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
WO2013171517A1 (en) * 2012-05-18 2013-11-21 Isis Innovation Limited Optoelectronic devices with organometal perovskites with mixed anions
JP2015092563A (ja) * 2013-09-30 2015-05-14 積水化学工業株式会社 有機無機複合薄膜太陽電池
WO2015099412A1 (ko) * 2013-12-23 2015-07-02 한국화학연구원 무/유기 하이브리드 페로브스카이트 화합물 전구물질
WO2016083783A1 (en) * 2014-11-28 2016-06-02 Cambridge Enterprise Limited Electroluminescent device
JP2016207967A (ja) * 2015-04-28 2016-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU, HANFENG, CHEM. COMMUN., vol. 51, JPN7018003883, 19 February 2015 (2015-02-19), pages 5910 - 5913, ISSN: 0003918403 *
MOORE, DAVID T. ET AL., CHEM. MATER., JPN6018044670, 20 April 2015 (2015-04-20), pages 3197 - 3199, ISSN: 0003918402 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025059A (ja) * 2018-08-09 2020-02-13 国立大学法人九州工業大学 熱電変換素子
JP7244044B2 (ja) 2018-08-09 2023-03-22 国立大学法人九州工業大学 熱電変換素子
CN109326709A (zh) * 2018-10-10 2019-02-12 业成科技(成都)有限公司 感测膜及其制备方法、电子装置
CN109326709B (zh) * 2018-10-10 2022-05-13 业成科技(成都)有限公司 感测膜及其制备方法、电子装置
JP2022511773A (ja) * 2018-11-28 2022-02-01 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 長期安定光電子デバイス
CN109817810A (zh) * 2019-01-22 2019-05-28 西北工业大学深圳研究院 一种掺杂三唑离子液体的钙钛矿太阳能电池及制备方法
CN109817810B (zh) * 2019-01-22 2020-09-22 西北工业大学深圳研究院 一种掺杂三唑离子液体的钙钛矿太阳能电池及制备方法
US20220310929A1 (en) * 2019-06-11 2022-09-29 Oxford University Innovation Limited Optoelectronic device
CN110224069A (zh) * 2019-06-13 2019-09-10 天合光能股份有限公司 一种具有防水功能的钙钛矿太阳能电池及其制备方法
CN110224069B (zh) * 2019-06-13 2023-04-18 天合光能股份有限公司 一种具有防水功能的钙钛矿太阳能电池及其制备方法
CN111710780A (zh) * 2020-06-18 2020-09-25 西北工业大学 阴极原位修饰的无电子传输层钙钛矿太阳能电池的制备方法
CN112071987A (zh) * 2020-09-02 2020-12-11 西北工业大学 一种离子液体钙钛矿介质及制备方法

Also Published As

Publication number Publication date
JP6501303B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP2016222492A (ja) 微粒子化ペロブスカイト膜及びそれを用いた機能性素子
Saliba et al. How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures
Cao et al. Identifying the molecular structures of intermediates for optimizing the fabrication of high-quality perovskite films
Jeong et al. Perovskite cluster-containing solution for scalable D-bar coating toward high-throughput perovskite solar cells
Bu et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules
Dastidar et al. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide
Dong et al. Pseudohalide‐induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells
Dou et al. Roll-to-roll printing of perovskite solar cells
Cao et al. A review of the role of solvents in formation of high-quality solution-processed perovskite films
Chiang et al. A method for the preparation of highly oriented MAPbI3 crystallites for high-efficiency perovskite solar cells to achieve an 86% fill factor
Wu et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
Zhang et al. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots
Zhong et al. Blade-coated hybrid perovskite solar cells with efficiency> 17%: an in situ investigation
Petrov et al. New insight into the formation of hybrid perovskite nanowires via structure directing adducts
Stoumpos et al. The renaissance of halide perovskites and their evolution as emerging semiconductors
Liu et al. Controlling CH3NH3PbI3–x Cl x film morphology with two-step annealing method for efficient hybrid perovskite solar cells
Grancini et al. The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics
Pellet et al. Transforming hybrid organic inorganic perovskites by rapid halide exchange
Fedeli et al. Influence of the synthetic procedures on the structural and optical properties of mixed-halide (Br, I) perovskite films
Yantara et al. Unravelling the effects of Cl addition in single step CH3NH3PbI3 perovskite solar cells
Zabihi et al. Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC)
Chang et al. Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells
WO2017002643A1 (ja) 光電変換素子、およびこれを用いた太陽電池
Wu et al. Stability Issue of Perovskite Solar Cells under Real‐World Operating Conditions
JP6106130B2 (ja) 光電変換素子および太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190314

R150 Certificate of patent or registration of utility model

Ref document number: 6501303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250