JP2016216608A - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
JP2016216608A
JP2016216608A JP2015103227A JP2015103227A JP2016216608A JP 2016216608 A JP2016216608 A JP 2016216608A JP 2015103227 A JP2015103227 A JP 2015103227A JP 2015103227 A JP2015103227 A JP 2015103227A JP 2016216608 A JP2016216608 A JP 2016216608A
Authority
JP
Japan
Prior art keywords
mass
cellulose fiber
modified cellulose
rubber
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015103227A
Other languages
English (en)
Other versions
JP6378130B2 (ja
Inventor
澄子 宮崎
Sumiko Miyazaki
澄子 宮崎
顕哉 渡邊
Kenya Watanabe
顕哉 渡邊
良 宮森
Ryo Miyamori
良 宮森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2015103227A priority Critical patent/JP6378130B2/ja
Priority to US15/135,831 priority patent/US10017634B2/en
Priority to EP16166785.2A priority patent/EP3095816B1/en
Priority to CN201610265938.5A priority patent/CN106167561B/zh
Publication of JP2016216608A publication Critical patent/JP2016216608A/ja
Application granted granted Critical
Publication of JP6378130B2 publication Critical patent/JP6378130B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

【課題】 ゴム中でのセルロース繊維の分散性を改善することで、優れた剛性及び破断特性と低いエネルギーロスとが両立された変性セルロース繊維含有ゴム組成物を用いて、操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れる空気入りタイヤを提供する。【解決手段】 セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含有する変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも1種を有する空気入りタイヤ。【選択図】なし

Description

本発明は、特定部材を有する空気入りタイヤに関する。
セルロース繊維等のミクロフィブリル化植物繊維を充填剤としてゴム組成物に配合することで、ゴム組成物を補強し、モジュラス(複素弾性率)を向上させることができる。しかしながら、ミクロフィブリル化植物繊維は、自己凝集力が強く、ゴム成分との相溶性も悪いため、ゴム練り時における分散性が低い。そのため、配合しても破断特性や低燃費性が悪化する場合があり、ミクロフィブリル化植物繊維の分散性を向上させる方法が求められている。
また、セルロース繊維は、水分散体から乾燥させると凝集してしまい、そのままではゴムと混合時にナノレベルで分散しないという課題がある。このため、破壊強度向上や転がり抵抗の低減が困難であった。この課題に対して、セルロース繊維をゴム中に分散させるために、セルロース繊維を一旦水に分散させてから、そこへゴムラテックスを投入し撹拌して、その後乾燥する、という処理方法が提案されている(例えば、特許文献1参照)。
その他にも、セルロース繊維のゴム中での分散性を改善する目的で、相溶化剤を用いたり、セルロース繊維を変性したり、あるいは解繊用樹脂を用いたりする試みがなされている。
例えば、特許文献2には、ミクロフィブリルセルロースを化学変性することで、ゴムとミクロフィブリルセルロースとの相溶性を改善する方法が開示されている。
また、特許文献3には、セルロース繊維を変性してビニル基を導入し、ビニル基を介してセルロース繊維とゴム成分との間に架橋関係を生じさせることで両者の親和性を高め、ゴム成分中でのセルロース繊維の分散性を良好にする方法が開示されている。
特開2013−204010号公報 特開2009−084564号公報 特開2010−254925号公報
上述のように、ゴム中でのセルロース繊維の分散性を改善する方法について種々検討が行われている。しかしながら、例えば、特許文献1の手法はセルロース繊維を分散させるのには有効であるが、使用するゴム種がラテックスに限られてしまうという問題があった。また、特許文献2及び3の方法では、補強性やコスト等の面で、カーボンブラック等の従来の充填剤に代えてセルロース繊維を使用する優位性がないという点で改善の余地があった。
このように、ゴム中でのセルロース繊維の分散性を改善し、破断特性に優れ、かつ、エネルギーロスの少ないゴム組成物を得るためには更なる改善の余地があった。
本発明は、前記課題を解決し、ゴム中でのセルロース繊維の分散性を改善することで、優れた剛性及び破断特性と低いエネルギーロスとが両立された変性セルロース繊維含有ゴム組成物を用いて、操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れる空気入りタイヤを提供することを目的とする。
本発明は、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含有する変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも1種を有する空気入りタイヤに関する。
前記環状多塩基酸無水物(a)は、酸無水基含有石油系樹脂及び酸無水基含有石炭系樹脂からなる群より選択される少なくとも一種であることが好ましい。
前記分散用高分子(B)は、石油系樹脂及び石炭系樹脂からなる群より選択される少なくとも一種であることが好ましい。
前記ゴム成分(C)は、天然ゴム、改質天然ゴム、合成ゴム、及び変性合成ゴムからなる群より選択される少なくとも一種であることが好ましい。
前記変性セルロース繊維(A)の含有量は、前記ゴム成分(C)100質量部に対して0.01〜30質量部であることが好ましい。
前記変性セルロース繊維含有ゴム組成物は、前記変性セルロース繊維(A)と分散用高分子(B)とを混練して混練物を得、その後、該混練物とゴム成分(C)とを混練して得られるものであることが好ましい。
本発明によれば、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含有する変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも1種を有する空気入りタイヤであるので、変性セルロース繊維含有ゴム組成物において、ゴム中でのセルロース繊維の分散性が改善され、優れた剛性及び破断特性と低いエネルギーロスとが両立されることから、操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れる空気入りタイヤとなる。そして更には、通常、セルロース繊維をゴム組成物に配合すると押出し方向(タイヤ周方向)にセルロース繊維が配列することから、押出し方向の剛性は向上するが、押出し方向に直交する方向(タイヤ径方向)の剛性はあまり向上しないところ、本発明によれば、タイヤ周方向の剛性だけでなくタイヤ径方向の剛性についても優れたものとすることができ、操縦安定性に非常に優れた空気入りタイヤを得ることができる。これは、ゴム中でのセルロース繊維の分散性が良好なことに起因するものと考えられる。
なお、本明細書において、タイヤ周方向、タイヤ径方向とは、具体的には特開2009−202865号公報の図1などに記載の方向である。
本発明の空気入りタイヤは、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含有する変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも1種の部材を有する。
まず、部材を作製するための変性セルロース繊維含有ゴム組成物について説明する。
本発明における変性セルロース繊維含有ゴム組成物は、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含有する。
本発明で用いる変性セルロース繊維(A)は、疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)(以降、単に「環状多塩基酸無水物(a)」や、「酸無水物(a)」とも称する)をセルロース繊維へ付加して得られる。
前記変性セルロース繊維(A)を得るために用いることが出来るセルロース繊維は、特に限定されないが、例えば、木材、竹、麻、ジュート、ケナフ、綿、ビートなどに含まれる植物由来の繊維、前記植物由来の繊維から得られるパルプ、マーセル化を施したセルロース繊維、レーヨンやセロファン、リヨセル等の再生セルロース繊維、酸無水物変性セルロースなどが挙げられる。これらの中でも、好ましいセルロース繊維原料としては木材が挙げられ、例えば、シトカスプルース、スギ、ヒノキ、ユーカリ、アカシアなどが挙げられる。そして、これらを原料として得られるパルプや紙、あるいは古紙を解繊したものがセルロース繊維として好適に用いられる。セルロース繊維は、1種単独で用いてもよく、これらから選ばれた2種以上を用いてもよい。
前記パルプとしては、例えば、前記植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等が挙げられる。
前記セルロース繊維は、疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)との反応性や置換度、ゴムに対する相溶性などに大きな影響を与えず、所望の特性を有するゴム組成物を得るのに差支えない範囲であれば、水酸基のエステル化やカルボキシル基などの官能基により一部水酸基が置換されたものを用いても構わない。また、疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)との反応を阻害しないよう、予めセルロース繊維に含まれる水をトルエンやN−メチルピロリドンなどの溶媒で置換しておくことが好ましい。
本発明で用いる疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)は、環状の多塩基酸無水物の主鎖および/または側鎖に疎水性基を有し、炭素数が15以上のものであれば特に限定されないが、20以上が好ましい。炭素数が15未満であると、変性セルロース繊維(A)のゴムに対する相溶性を良好なものとすることができず、その結果、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができない。また、前記疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)における炭素数の上限としては、特に限定されないが、例えば、1500が好ましく、200がより好ましく、30が更に好ましい。炭素数が1500を超えると、得られる変性セルロース繊維(A)の分散用高分子(B)やゴム成分(C)との混練が行い難く、変性セルロース繊維(A)の分散が不十分となり、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。
前記環状多塩基酸無水物(a)は、環状の多塩基酸無水物の主鎖および/または側鎖に、疎水性基を有する。
前記環状の多塩基酸無水物としては、多塩基酸の同一分子内で、又は二個以上の多塩基酸間で、脱水縮合が起こり、環状構造が形成された多塩基酸無水物であれば特に限定されない。なかでも、多塩基酸の同一分子内で脱水縮合が起こり、環状構造が形成された多塩基酸無水物が好ましい。
前記多塩基酸としては、アコニット酸、トリメリット酸等の三塩基酸;コハク酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸等の二塩基酸等が挙げられる。なかでも、二塩基酸が好ましく、コハク酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸等のジカルボン酸がより好ましく、コハク酸、マレイン酸が更に好ましい。
前記環状の多塩基酸無水物としては、例えば、無水コハク酸、無水マレイン酸、無水シトラコン酸、無水イタコン酸等の炭素数4〜10(好ましくは4〜6)の環状カルボン酸無水物などが挙げられる。これらの中でも、多塩基酸無水物自身の単独重合性に乏しく、疎水性基との反応のし易さの観点から、無水コハク酸、無水マレイン酸が好適に用いられる。
前記環状多塩基酸無水物(a)が有する疎水性基としては、疎水性を有する限り特に限定されないが、例えば、炭化水素基、石油系樹脂、石炭系樹脂等が挙げられる。
前記炭化水素基は、直鎖状であってもよいし、分岐鎖状であってもよいが、環状多塩基酸無水物(a)の疎水性の観点から直鎖状であることが好ましい。
前記炭化水素基の炭素数は、好ましくは11以上、より好ましくは15以上である。該炭化水素基の炭素数は、好ましくは1500以下、より好ましくは200以下、更に好ましくは30以下である。該炭化水素基の炭素数が上記範囲内であると環状多塩基酸無水物(a)に適度な疎水性を付与できるため、本発明の効果がより好適に得られる。
前記炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。なかでも、環状多塩基酸無水物(a)に適度な疎水性を付与できるという理由から、アルケニル基がより好ましい。
前記アルケニル基としては、ドデセニル基、ヘキサデセニル基、オクタデセニル基等が挙げられる。なかでも、環状多塩基酸無水物(a)に適度な疎水性を付与できるという理由から、ヘキサデセニル基、オクタデセニル基が好ましい。
一方、環状多塩基酸無水物(a)が有する疎水性基が石油系樹脂である場合とは、環状多塩基酸無水物(a)が酸無水基含有石油系樹脂である場合を意味する。また、環状多塩基酸無水物(a)が有する疎水性基が石炭系樹脂である場合とは、環状多塩基酸無水物(a)が酸無水基含有石炭系樹脂である場合を意味する。石油系樹脂、酸無水基含有石油系樹脂、石炭系樹脂、酸無水基含有石炭系樹脂については、後述する。
前記疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)としては、例えば、ドデセニルコハク酸無水物、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物、などの炭化水素基を有する炭素数が15以上の環状カルボン酸無水物;酸無水基含有石油系樹脂;酸無水基含有石炭系樹脂等が挙げられる。
なお、用いる疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)の種類としては、本発明における変性セルロース繊維含有ゴム組成物に用いられるゴム成分(C)の種類に応じて適宜好適なものを選択すればよいが、環状多塩基酸無水物(a)が、酸無水基含有石油系樹脂及び酸無水基含有石炭系樹脂からなる群より選択される少なくとも一種であることもまた、本発明の好適な実施形態の1つであり、更には、酸無水基含有石油系樹脂であることがより好ましい。
前記酸無水基含有石油系樹脂は、環状の多塩基酸無水物を石油系樹脂にグラフトして得られる酸無水環を有する石油系樹脂であって炭素数が15以上のものであり、公知のグラフト反応により得られる。また、前記酸無水基含有石炭系樹脂は、環状の多塩基酸無水物を石炭系樹脂にグラフトして得られる酸無水環を有する石炭系樹脂であって炭素数が15以上のものであり、同様に公知のグラフト反応により得られる。
例えば、石油系樹脂又は石炭系樹脂と環状の多塩基酸無水物(例えば、無水マレイン酸)とを、有機過酸化物を用いてグラフトさせ、精製して得ることができる。グラフト反応に際しては、環状の多塩基酸無水物との反応が起きない有機溶媒を用いても良い。反応前の石油系樹脂又は石炭系樹脂に対する反応精製後の酸価の変化から、酸無水基含有石油系樹脂又は酸無水基含有石炭系樹脂であることを確認できる。
前記石油系樹脂としては、C5系石油樹脂、C9系石油樹脂、C5C9系石油樹脂、ジシクロペンタジエン樹脂、及びこれらの水素化物などが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。中でも、C5C9系石油樹脂が特に好ましい。
前記石炭系樹脂としては、クマロン樹脂、クマロンインデン樹脂、及びこれらの水素化物などが挙げられ、これらの1種又は2種以上を組み合わせて用いることができる。
また、前記酸無水基含有石油系樹脂又は酸無水基含有石炭系樹脂を得るために用いられる環状の多塩基酸無水物としては、石油系樹脂又は石炭系樹脂にグラフトさせて酸無水環を有する石油系樹脂又は石炭系樹脂が得られる限り特に制限されず、グラフト反応を進行させるため、炭素−炭素不飽和結合を有するものであればよいが、例えば、無水マレイン酸、無水シトラコン酸、無水イタコン酸等の炭素数4〜10(好ましくは4〜6)の炭素−炭素不飽和結合含有環状カルボン酸無水物などが挙げられる。これらの中でも、石油系樹脂、石炭系樹脂とのグラフト反応性の観点から、無水マレイン酸が好適に用いられる。
更に、前記有機過酸化物としては、例えば、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート、t−ブチルパーオキシ−2−エチルヘキサネート、ジベンゾイルパーオキサイド、t−ブチルパーオキシラウレート、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイドなどを用いることができ、中でも、ジアルキルパーオキサイド、ジクミルパーオキサイドが好適に用いられる。また、前記有機溶媒としては、例えば、ヘキサン、へプタン、オクタン等の飽和脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロへプタン、メチルシクロヘプタン等の飽和脂環式炭化水素類、トルエン、キシレン、エチルベンゼン等のエチレン性の二重結合を含まない芳香族炭化水素類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどのアルキレングリコールアルキルエーテルアルキレート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのジアルキレングリコールアルキルエーテルアルキレート、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチルなどのアルキルアルキレートなどを用いることができ、中でも、アルキルアルキレート、アルキレングリコールアルキルエーテルアルキレート、ジアルキレングリコールアルキルエーテルアルキレートが好適に用いられる。
前記酸無水基含有石油系樹脂、酸無水基含有石炭系樹脂の分子量としては特に限定されないが、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算重量平均分子量で400〜20000が好ましく、より好ましくは500〜9000、更に好ましくは600〜6000である。重量平均分子量が400未満であると、変性セルロース繊維(A)のゴムに対する相溶性を良好なものとすることができず、その結果、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。また、重量平均分子量が20000を超えると、通常樹脂の粘度は高くなるため、得られる変性セルロース繊維(A)の分散用高分子(B)やゴム成分(C)との混練が行い難く、変性セルロース繊維(A)の分散が不十分となり、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。
前記変性セルロース繊維(A)は、疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)をセルロース繊維に付加してエステル化すること(変性反応)により得られるが、当該エステル化反応の方法としては特に限定されず、エステル化反応を行う方法として通常行われる方法により行うことができ、例えば次のいずれかの方法で行うことができる。得られた変性セルロース繊維(A)は、通常、濾過、水洗等洗浄して溶媒や触媒などを除去して変性セルロース繊維含有ゴム組成物の製造に使用することができる。
(I)予め溶媒置換されたセルロース繊維を分散させた分散液中に、疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を逐次あるいは一括で添加し、反応させる。
(II)溶融した疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)とセルロース繊維を混合し、反応させる。
前記酸無水物(a)のセルロース繊維に対する付加率は、付加効率とゴム親和性を考慮すると5〜150質量%が好ましく、10〜100質量%がより好ましい。
なお、酸無水物(a)のセルロース繊維に対する付加率は、後述する実施例において行われる算出方法により算出することができる。
本発明で用いる分散用高分子(B)は、JIS K2207に準拠した環球式試験における軟化点が135℃以下である。軟化点が135℃を超えると、変性セルロース繊維含有ゴム組成物を調製する際のマトリクスとなるゴム成分(C)への変性セルロース繊維(A)の混練が行い難く、分散が不十分となり、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができない。また、軟化点が40℃未満の場合、ゴム組成物自身の軟化点が低下し、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。前記分散用高分子(B)の軟化点としては、120℃以下が好ましく、110℃以下がより好ましい。一方、該軟化点としては、分散性の観点から、40℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。
前記分散用高分子(B)の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算重量平均分子量で400〜20000が好ましく、より好ましくは500〜9000、更に好ましくは600〜6000である。重量平均分子量が400未満であると、ゴム組成物の可塑化や成形加工時の気泡の発生の原因となり、その結果、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。また、重量平均分子量が20000を超えると、通常樹脂の粘度は高くなるため、分散用高分子(B)の組成によっては、変性セルロース繊維(A)やゴム成分(C)との混練が行い難く、変性セルロース繊維(A)の分散が不十分となり、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。
前記分散用高分子(B)としては、前記軟化点を有する高分子であれば特に限定されず、例えば、石油系樹脂、石炭系樹脂、テルペン系樹脂、ロジン系樹脂などが挙げられるが、中でも、石油系樹脂及び石炭系樹脂からなる群より選択される少なくとも一種であることが好ましい。変性セルロース繊維(A)とゴムとを混合する際に、分散用高分子として石油系樹脂及び石炭系樹脂からなる群より選択される少なくとも一種である特定の樹脂を用いることにより、ゴム中でのセルロース繊維の分散性をより改善することができ、結果、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとをより好適に両立させることが可能となる。特に好ましくは、石油系樹脂である。
前記石油系樹脂としては、例えば、C5系石油樹脂、C9系石油樹脂、C5C9系石油樹脂、ジシクロペンタジエン樹脂、及びこれらの水素化物、及びこれらへ環状の多塩基酸無水物(例えば、無水マレイン酸)を(グラフト)付加した変性物が挙げられる。中でも、C9系石油樹脂が好ましい。
前記石炭系樹脂としては、例えば、クマロン樹脂、クマロンインデン樹脂、及びこれらの水素化物、及びこれらへ環状の多塩基酸無水物(例えば、無水マレイン酸)を(グラフト)付加した変性物が挙げられる。
前記テルペン系樹脂としては、例えば、α−ピネン樹脂、β−ピネン樹脂、テルペンフェノール樹脂、芳香族変性テルペン樹脂、及びこれらの水素化物、及びこれらへ無水マレイン酸を付加した変性物が挙げられる。
前記ロジン系樹脂としては、例えば、ガムロジン、ウッドロジン、トールロジンや、前記ロジンを原料とした水添ロジン、不均化ロジン、マレイン酸変性ロジン、フマル酸変性ロジン、(メタ)アクリル酸変性ロジン、アルコールと縮合したエステル化ロジン、フェノール変性ロジンが挙げられる。
これらの中でも、分散用高分子(B)としては特に石油系樹脂が好ましく、本発明における変性セルロース繊維含有ゴム組成物としては、相溶性の観点から、変性セルロース繊維(A)として酸無水基含有石油系樹脂により変性した変性セルロース繊維を、分散用高分子(B)として石油系樹脂を含むものが最も好ましい。
本発明で用いるゴム成分(C)としては、特に制限されず、ゴム工業において用いられる一般的なゴムを使用することができるが、例えば、天然ゴム(NR)、改質天然ゴムや、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)などのジエン系ゴム、ハロゲン化ブチルゴム(X−IIR)、ブチルゴム(IIR)などのブチル系ゴムといった合成ゴム等が挙げられる。なお、当該合成ゴムは変性された変性合成ゴムであってもよい。また、前記改質天然ゴムとしては、エポキシ化天然ゴム(ENR)、水素化天然ゴムなどを例示できる。これらゴム成分は1種を用いてもよいし、2種以上を併用してもよい。
すなわち、前記ゴム成分(C)が、天然ゴム、改質天然ゴム、合成ゴム、及び変性合成ゴムからなる群より選択される少なくとも一種であることもまた、本発明の好適な実施形態の1つである。
前記天然ゴムとしては特に限定されず、例えば、SIR20、RSS#3、TSR20等、タイヤ工業において一般的なものを使用できる。
本発明における変性セルロース繊維含有ゴム組成物中の、前記変性セルロース繊維(A)の含有量は、前記ゴム成分(C)100質量部に対して0.01〜30質量部であることが好ましい。本発明における変性セルロース繊維含有ゴム組成物中の、変性セルロース繊維(A)の含有量が、前記ゴム成分(C)100質量部に対して0.01質量部未満であると、本発明の効果を十分に発揮できないおそれがある。他方、前記ゴム成分(C)100質量部に対して30質量部を超えて配合した場合、ゴム組成物中での変性セルロース繊維(A)の分散性が極端に低下し、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。本発明における変性セルロース繊維含有ゴム組成物中の、変性セルロース繊維(A)の含有量は、前記ゴム成分(C)100質量部に対して、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましい。他方、20質量部以下がより好ましく、15質量部以下が更に好ましく、10質量部以下が最も好ましい。
本発明における変性セルロース繊維含有ゴム組成物中の、前記分散用高分子(B)の含有量は、前記ゴム成分(C)100質量部に対して0.01〜30質量部であることが好ましい。本発明における変性セルロース繊維含有ゴム組成物中の、分散用高分子(B)の含有量が、前記ゴム成分(C)100質量部に対して0.01質量部未満であると、本発明の効果を十分に発揮できないおそれがある。他方、前記ゴム成分(C)100質量部に対して30質量部を超えて配合した場合、ゴム組成物中での分散用高分子(B)の割合が過度に大きくなり、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとを両立させることができないおそれがある。本発明における変性セルロース繊維含有ゴム組成物中の、分散用高分子(B)の含有量は、前記ゴム成分(C)100質量部に対して、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましく、3質量部以上が特に好ましい。他方、20質量部以下がより好ましく、15質量部以下が更に好ましく、10質量部以下が最も好ましい。
また、本発明における変性セルロース繊維含有ゴム組成物中の、変性セルロース繊維(A)に対する分散用高分子(B)の含有割合は、変性セルロース繊維(A)と分散用高分子(B)との合計含有量100質量%に対して30〜70質量%であることが好ましい。変性セルロース繊維(A)に対する分散用高分子(B)の含有割合がこのような範囲であることにより、ゴム中でのセルロース繊維の分散性をより改善することができ、結果、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとをより好適に両立させることが可能となる。該変性セルロース繊維(A)に対する分散用高分子(B)の含有割合は、変性セルロース繊維(A)と分散用高分子(B)との合計含有量100質量%に対して35〜65質量%であることがより好ましく、40〜60質量%であることが更に好ましい。
本発明における変性セルロース繊維含有ゴム組成物は、変性セルロース繊維(A)と、分散用高分子(B)と、ゴム成分(C)と、必要に応じて後述するその他の配合剤とを、例えば、ゴム用混練機等を用いて従来公知の方法、条件で混練することにより得られるが、特には、ゴム成分(C)やその他の配合剤と混練する前に、予め変性セルロース繊維(A)と分散用高分子(B)とを混練しておき、得られる混練物(樹脂組成物)とゴム成分(C)やその他の配合剤とを混練するのが好ましい。このように、事前に変性セルロース繊維(A)と分散用高分子(B)とを混練して樹脂組成物を調製することで、変性セルロース繊維(A)をより微細化することができ、結果、ゴム中へのセルロース繊維の分散性がより向上し、ゴム組成物において優れた剛性及び破断特性と低いエネルギーロスとをより高いレベルで両立させることが可能となり、また、タイヤ周方向の剛性に加えてタイヤ径方向の剛性についても特に優れたものとすることができ、更には加工性をより向上させることができる場合がある。すなわち、本発明における変性セルロース繊維含有ゴム組成物が、変性セルロース繊維(A)と分散用高分子(B)とを混練して混練物(樹脂組成物)を得、その後、該混練物とゴム成分(C)とを混練して得られるものであることもまた、本発明の好適な実施形態の1つである。
また、変性セルロース繊維(A)、分散用高分子(B)、及びゴム成分(C)を含有する変性セルロース繊維含有ゴム組成物を製造する方法であって、前記変性セルロース繊維(A)は、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化して得られ、前記分散用高分子(B)は、軟化点が135℃以下であり、前記製造方法は、前記変性セルロース繊維(A)と分散用高分子(B)とゴム成分(C)とを混練する工程を含むことを特徴とする変性セルロース繊維含有ゴム組成物の製造方法もまた、本発明の1つである。そして更には、前記製造方法が、前記変性セルロース繊維(A)と分散用高分子(B)とを混練して混練物を得る工程、及び、得られた混練物とゴム成分(C)とを混練して変性セルロース繊維含有ゴム組成物を得る工程を含むこともまた、本発明の好適な実施形態の1つである。
なお、上述したように、本発明における変性セルロース繊維含有ゴム組成物は、変性セルロース繊維(A)と分散用高分子(B)とを混練して混練物(樹脂組成物)を得、その後、該混練物とゴム成分(C)とを混練して得られるものであることが好ましいが、本発明における変性セルロース繊維含有ゴム組成物に含まれる変性セルロース繊維(A)100質量%に対して上記樹脂組成物由来の変性セルロース繊維(A)の割合が40質量%以上であることがより好ましく、60質量%以上が更に好ましく、80質量%以上が特に好ましい。また、上限は特に限定されず、100質量%であってもよい。一方、本発明における変性セルロース繊維含有ゴム組成物に含まれる分散用高分子(B)100質量%に対して上記樹脂組成物由来の分散用高分子(B)の割合が40質量%以上であることがより好ましく、60質量%以上が更に好ましく、80質量%以上が特に好ましい。また、上限は特に限定されず、100質量%であってもよい。
上述のように、予め変性セルロース繊維(A)と分散用高分子(B)とを混練する場合の、変性セルロース繊維(A)と分散用高分子(B)とを混練する工程は、変性セルロース繊維(A)と分散用高分子(B)とを混練するものであれば特に制限されず、通常行われる混練方法により行うことができるが、例えば、混練機内で、変性セルロース繊維(A)が分散用高分子(B)中に分散し、強いせん断力を受けながら撹拌混合され、変性セルロース繊維(A)が微細化される工程であることが好ましい。前記混練工程で使用することのできる混練機としては、2本ロールミル、3本ロールミル、単軸押出混練機、2軸押出混練機、バンバリーミキサー、加圧ニーダー等が挙げられる。1種単独または2種以上を組み合わせて使用できるが、これらに限定されない。変性セルロース繊維(A)の微細化を促進させるためには、2軸押出混練機、バンバリーミキサー、加圧ニーダーを使用することが好ましい。
なお、前記変性セルロース繊維(A)と分散用高分子(B)との混練工程における混練温度、混練時間等の混練条件は、変性セルロース繊維(A)と分散用高分子(B)とが十分混練され、変性セルロース繊維(A)が微細化できるよう適宜設定すればよい。
また、前記変性セルロース繊維(A)と分散用高分子(B)との混練工程においては、変性セルロース繊維(A)及び分散用高分子(B)に加えて、変性セルロース繊維(A)の微細化促進を阻害しない範囲で、本発明における変性セルロース繊維含有ゴム組成物に配合できるその他の配合剤の一部や、ステアリン酸等の滑剤、酸化防止剤などを配合してもよいが、該混練工程により得られる混練物(樹脂組成物)100質量%中、変性セルロース繊維(A)及び分散用高分子(B)の合計の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、93質量%以上が更に好ましく、95質量%以上が特に好ましい。他方、上限は特に制限されず、100質量%であってもよい。
本発明の効果に影響を及ぼさない範囲で、前記滑剤を配合することで、変性セルロース繊維(A)と分散用高分子(B)との混練物が混練機や金型から剥離し易くなり、成型性や作業性が向上する場合がある。前記滑剤としては、特に制限されず、例えば、パラフィンワックスやポリエチレンワックスなどの炭化水素系滑剤、ステアリン酸、ベヘニン酸、12−ヒドロキシステアリン酸などの脂肪酸系滑剤、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミドなどの脂肪族アミド系滑剤などを用いることができる。例えば、変性セルロース繊維(A)、分散用高分子(B)、滑剤、及びその他配合剤からなる樹脂組成物のように、樹脂組成物に滑剤を配合した場合の、上記樹脂組成物の合計を100質量%としたときの該樹脂組成物に対する滑剤配合率は、1質量%以上が好ましく、3質量%以上がより好ましい。他方、20質量%以下が好ましく、10質量%以下がより好ましく、7質量%以下が特に好ましい。
本発明の効果に影響を及ぼさない範囲で、前記酸化防止剤を配合することで、変性セルロース繊維(A)と分散用高分子(B)との混練工程において、変性セルロース繊維の熱劣化が緩和される場合がある。前記酸化防止剤としては、特に制限されず、例えば、AO−20、AO−30、AO−40、AO−50、AO−60等のアデカスタブAOシリーズ((株)ADEKA製)などのフェノール系酸化防止剤などを用いることができる。例えば、変性セルロース繊維(A)、分散用高分子(B)、酸化防止剤、及びその他配合剤からなる樹脂組成物のように、樹脂組成物に酸化防止剤を配合した場合の、上記樹脂組成物の合計を100質量%としたときの該樹脂組成物に対する酸化防止剤配合率は、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。他方、10質量%以下が好ましく、3質量%以下がより好ましい。
その他、本発明の効果を損なわない範囲であれば、本発明における変性セルロース繊維含有ゴム組成物は前記変性セルロース繊維(A)と分散用高分子(B)とゴム成分(C)とを含む限りその他の成分を含んでいてもよく、例えば、前記分散用高分子(B)に該当しない135℃より高い軟化点を有する樹脂を前記分散用高分子(B)と混合して用いることもできる。そのような樹脂を前記分散用高分子(B)と混合して用いる場合、その配合量は、該樹脂と分散用高分子(B)の全量に対して、50質量%以下であることが好ましい。
本発明における変性セルロース繊維含有ゴム組成物には、変性セルロース繊維(A)、分散用高分子(B)、及びゴム成分(C)以外に必要に応じて、従来ゴム工業で使用されるその他の配合剤、例えば、カーボンブラック、シリカ等の補強剤、オイル、老化防止剤、酸化亜鉛、ステアリン酸、シランカップリング剤、硬化レジン、ワックス、加硫剤、加硫促進剤などを配合することができる。
本発明における変性セルロース繊維含有ゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどのゴム用混練機で上記各成分を混練りし、その後加硫する方法等により製造できる。
本発明の空気入りタイヤは、上述した本発明における変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも1種の部材を有する。
ビードエイペックスとは、ビードコアから半径方向外側にのびるように、タイヤクリンチの内側に配される部材であり、具体的には、特開2008−38140号公報の図1〜3、特開2004−339287号公報の図1などに示される部材である。
クリンチエイペックスとは、サイドウォールの内方端に配されるゴム部であり、具体的には、例えば、特開2008−75066号公報の図1、特開2004−106796号公報の図1等に示される部材である。
プライトッピングとは、カーカスプライやベルトプライにおけるコードを被覆する部材である。
次に、本発明の空気入りタイヤが有する各部材について説明する。
<ビードエイペックス>
本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合、用いられるゴム成分(C)としては、上述したものと同様のものを用いることができるが、コスト的に有利で隣接部材との接着性能を確保するという理由から、天然ゴムとスチレンブタジエンゴム(SBR)とを含むことが好ましい。
ゴム成分(C)100質量%中の天然ゴムの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは30質量%以上、特に好ましくは50質量%以上である。5質量%未満であると、優れた低燃費性及びゴム強度が得られないおそれがある。また、該含有量の上限は特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下である。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E−SBR)、溶液重合スチレンブタジエンゴム(S−SBR)、これらの変性SBRなどを使用できる。なかでも、カーボンブラックやセルロース繊維を良好に分散でき、加工性が良いという点から、E−SBRが好ましい。
なお、上記変性SBRとしては、末端及び/又は主鎖が変性されたSBR、スズ、ケイ素化合物などでカップリングされた変性SBR(縮合物、分岐構造を有するものなど)などが挙げられる。
SBRのスチレン含量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上である。5質量%未満では、充分なグリップ性能やゴム強度が得られないおそれがある。また、該スチレン含量は、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは30質量%以下である。60質量%を超えると、優れた低燃費性が得られないおそれがある。
なお、本発明において、SBRのスチレン含量は、H−NMR測定により算出される。
SBRのビニル含量は、好ましくは10質量%以上、より好ましくは15質量%以上である。ビニル含量が10質量%未満であると、充分な硬度、グリップ性能、ゴム強度が得られないおそれがある。該ビニル含量は、好ましくは65質量%以下、より好ましくは60質量%以下、更に好ましくは30質量%以下、特に好ましくは25質量%以下である。ビニル含量が65質量%を超えると、グリップ性能、耐久性、耐摩耗性が悪化するおそれがある。
なお、本発明において、SBRのビニル含量(1,2−結合ブタジエン単位量)は、赤外吸収スペクトル分析や、H−NMR測定によって測定できる。
SBRのムーニー粘度(ML1+4(100℃))は、好ましくは35以上、より好ましくは45以上、更に好ましくは50以上である。35未満であると、未加硫ゴム組成物の粘度が低く、加硫後に適正な厚みを確保できないおそれがある。該ムーニー粘度は、好ましくは65以下、より好ましくは60以下である。65を超えると、未加硫ゴム組成物が硬くなりすぎて、スムーズなエッジで押し出すことが困難になるおそれがある。
なお、本発明において、SBRのムーニー粘度は、ISO289、JIS K6300に準じて測定される。
ゴム成分(C)100質量%中のSBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。上記SBRの含有量は、好ましくは95質量%以下、より好ましくは60質量%以下、更に好ましくは55質量%以下、特に好ましくは50質量%以下である。SBRの含有量が上記範囲内であると、低燃費性及び加工性が良好に得られる。
ゴム成分(C)100質量%中の天然ゴム及びSBRの合計含有量は、好ましくは80質量%以上、より好ましくは100質量%である。該含有量が上記範囲内であると、優れた低燃費性及び加工性、コストメリットが得られる。
本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合、用いられる変性セルロース繊維(A)及び分散用高分子(B)としては、上述したものと同様のものが挙げられ、上記同様の配合量で用いることができる。
本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合、用いられるカーボンブラックとしては、特に限定されず、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらのカーボンブラックは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは10m/g以上、より好ましくは30m/g以上、更に好ましくは50m/g以上である。また該NSAは、好ましくは250m/g以下、より好ましくは150m/g以下、更に好ましくは100m/g以下である。10m/g未満であると、充分な接着性やゴム強度が得られないおそれがあり、250m/gを超えると、未加硫時の粘度が非常に高くなり、加工性が悪化し、また低燃費性も悪化する傾向がある。
上記カーボンブラックの含有量は、ゴム成分(C)100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上、更に好ましくは40質量部以上である。該含有量は、好ましくは100質量部以下、より好ましくは80質量部以下、更に好ましくは70質量部以下である。5質量部未満であると、充分な粘着性、ゴム強度が得られないおそれがあり、100質量部を超えると、分散性や加工性が悪化する傾向がある。
本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合、該ゴム組成物は、白色充填剤を含んでいてもよい。該白色充填剤としては、ゴム工業で一般的に使用されているもの、例えば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタンなどを使用できる。
上記白色充填剤(特に、シリカ)の含有量は、ゴム成分(C)100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上である。また、該含有量は、好ましくは120質量部以下、より好ましくは100質量部以下である。
本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、酸化亜鉛を含むことが好ましい。酸化亜鉛を配合することにより、リバージョンを抑制し、加硫を促進する効果が得られる。
酸化亜鉛の含有量は、ゴム成分(C)100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上である。また、該含有量は、好ましくは15質量部以下、より好ましくは10質量部以下である。2質量部未満であると、加硫促進剤としての効果が得られにくいおそれがあり、15質量部を超えると、ゴム強度が低下するおそれがある。
本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合、本発明における変性セルロース繊維含有ゴム組成物には、上記の材料以外にも、シランカップリング剤、レジン、オイルなどの可塑剤、ステアリン酸、各種老化防止剤、硫黄などの加硫剤、加硫促進剤などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。
上記レジンとしては、例えば、フェノール系樹脂、クレゾール系樹脂などが挙げられ、なかでもフェノール系樹脂が好ましい。フェノール系樹脂としては、フェノール類と、ホルムアルデヒド、アセトアルデヒド、フルフラール等のアルデヒド類とを反応させて得られるフェノール樹脂;カシューオイル、トールオイル、アマニ油、各種動植物油、不飽和脂肪酸、ロジン、アルキルベンゼン樹脂、アニリン、メラミンなどを用いて変性した変性フェノール樹脂等が挙げられる。なかでも、硬度を向上できる点から、変性フェノール樹脂が好ましく、カシューオイル変性フェノール樹脂が特に好ましい。
レジンを配合する場合、レジンの含有量は、充分な硬度が得られる点から、ゴム成分(C)100質量部に対して、1質量部以上が好ましく、5質量部以上がより好ましい。また、該含有量は、加工性に優れる点から、30質量部以下が好ましく、20質量部以下がより好ましい。
<クリンチエイペックス>
本発明における変性セルロース繊維含有ゴム組成物を用いてクリンチエイペックスを作製する場合、用いられるゴム成分(C)としては、上述したものと同様のものを用いることができるが、耐摩耗性及び低燃費性の点から、天然ゴムとブタジエンゴム(BR)とを含むことが好ましい。
ゴム成分(C)100質量%中の天然ゴムの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは30質量%以上である。5質量%未満であると、優れた低燃費性及びゴム強度が得られないおそれがある。また、該含有量の上限は特に限定されないが、好ましくは90質量%以下、より好ましくは70質量%以下である。
BRとしては特に限定されず、タイヤ工業において一般的なものを使用できるが、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含有量のブタジエンゴム、日本ゼオン(株)製のBR1250H等の変性ブタジエンゴム、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するブタジエンゴム、ランクセス(株)製のBUNA−CB25等の希土類元素系触媒を用いて合成されるブタジエンゴム等を使用できる。これらBRは、1種を用いてもよいし、2種以上を併用してもよい。
BRのシス含量は、70質量%以上が好ましく、90質量%以上がより好ましく、97質量%以上が更に好ましい。
なお、本発明において、BRのシス含量(シス1,4結合含有率)は、赤外吸収スペクトル分析法によって測定できる。
BRのムーニー粘度(ML1+4(100℃))は、好ましくは10以上、より好ましくは30以上である。10未満であると、フィラーの分散性が低下する傾向がある。該ムーニー粘度は、好ましくは120以下、より好ましくは80以下である。120を超えると、押し出し加工時のゴム焼け(変色)の発生が懸念される。
なお、本発明において、BRのムーニー粘度は、ISO289、JIS K6300に準じて測定される。
ゴム成分(C)100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは30質量%以上である。上記BRの含有量は、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。5質量%未満であると、耐摩耗性が悪化するおそれがあり、80質量%を超えると、加工性が悪化する傾向がある。
ゴム成分(C)100質量%中の天然ゴム及びBRの合計含有量は、好ましくは80質量%以上、より好ましくは100質量%である。該含有量が上記範囲内であると、優れた低燃費性及び加工性が得られる。
本発明における変性セルロース繊維含有ゴム組成物を用いてクリンチエイペックスを作製する場合、用いられる変性セルロース繊維(A)及び分散用高分子(B)としては、上述したものと同様のものが挙げられ、上記同様の配合量で用いることができる。
本発明における変性セルロース繊維含有ゴム組成物を用いてクリンチエイペックスを作製する場合、用いられるカーボンブラックとしては、本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合に用いられるカーボンブラックと同様のものを用いることができる。
上記カーボンブラックの含有量は、ゴム成分(C)100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上、更に好ましくは40質量部以上である。該含有量は、好ましくは100質量部以下、より好ましくは80質量部以下、更に好ましくは70質量部以下である。5質量部未満であると、充分な耐摩耗性や粘着性、ゴム強度が得られないおそれがあり、100質量部を超えると、分散性や加工性が悪化する傾向がある。
本発明における変性セルロース繊維含有ゴム組成物を用いてクリンチエイペックスを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、白色充填剤を含んでいてもよい。該白色充填剤としては、本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合に用いられる白色充填剤と同様のものを用いることができる。また、その含有量も本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合と同様である。
本発明における変性セルロース繊維含有ゴム組成物を用いてクリンチエイペックスを作製する場合、本発明における変性セルロース繊維含有ゴム組成物には、上記の材料以外にも、シランカップリング剤、オイル、ワックスなどの可塑剤、酸化亜鉛、ステアリン酸、各種老化防止剤、硫黄などの加硫剤、加硫促進剤などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。
<プライトッピング>
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、用いられるゴム成分(C)としては、上述したものと同様のものを用いることができるが、天然ゴムとスチレンブタジエンゴム(SBR)とを含むことが好ましい。
ゴム成分(C)100質量%中の天然ゴムの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上、特に好ましくは50質量%以上である。5質量%未満であると、優れた低燃費性及びゴム強度が得られないおそれがある。また、該含有量の上限は特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下である。
SBRとしては、本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合に用いられるSBRと同様のものを用いることができる。
ゴム成分(C)100質量%中のSBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上である。5質量%未満であると、耐加硫戻り性が低下するおそれがある。上記SBRの含有量は、好ましくは60質量%以下、より好ましくは50質量%以下である。60質量%を超えると、天然ゴムの含有量が少なくなり、低燃費性が悪化するおそれがある。
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、用いられる変性セルロース繊維(A)及び分散用高分子(B)としては、上述したものと同様のものが挙げられ、上記同様の配合量で用いることができる。
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、用いられるカーボンブラックとしては、特に限定されず、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらのカーボンブラックは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは20m/g以上、より好ましくは30m/g以上である。また該NSAは、好ましくは200m/g以下、より好ましくは150m/g以下、更に好ましくは100m/g以下である。20m/g未満であると、充分な補強効果が得られない傾向があり、200m/gを超えると、低燃費性が低下する傾向がある。
カーボンブラックの含有量は、ゴム成分(C)100質量部に対して、好ましくは10質量部以上、より好ましくは15質量部以上である。該含有量は、好ましくは100質量部以下、より好ましくは80質量部以下、更に好ましくは70質量部以下である。10質量部未満であると、充分な補強性が得られない傾向があり、100質量部を超えると、発熱が大きくなり、低燃費性が悪化する傾向がある。
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、白色充填剤を含んでいてもよい。該白色充填剤としては、本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合に用いられる白色充填剤と同様のものを用いることができる。また、その含有量も本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合と同様である。
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、酸化亜鉛を含むことが好ましい。酸化亜鉛を配合することにより、コードとゴムとの接着性が向上する。また、ゴムの加硫助剤としての働きもある。また、スコーチを抑制する効果もある。
酸化亜鉛の含有量は、ゴム成分(C)100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上、更に好ましくは4質量部以上である。2質量部未満では、スチールコードのメッキ層とゴムとの接着性が不充分であったり、ゴムの加硫が不充分となったりするおそれがある。また、該含有量は、好ましくは25質量部以下、より好ましくは20質量部以下、更に好ましくは15質量部以下である。25質量部を超えると、ゴム強度が低下するおそれがある。
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、加硫剤として硫黄を含むことが好ましい。硫黄としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などが挙げられる。
硫黄の含有量は、ゴム成分(C)100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上である。2質量部未満では、充分な架橋密度が得られず、接着性能が悪化するおそれがある。また、該含有量は、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。10質量部を超えると、耐熱劣化特性が悪化するおそれがある。
本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合、本発明における変性セルロース繊維含有ゴム組成物には、上記の材料以外にも、シランカップリング剤、オイルなどの可塑剤、ステアリン酸、各種老化防止剤、加硫促進剤などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。
上記加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド−アミン系若しくはアルデヒド−アンモニア系、イミダゾリン系、又は、キサンテート系加硫促進剤が挙げられる。なかでも、スコーチ性に優れるという理由から、スルフェンアミド系加硫促進剤が好ましい。
スルフェンアミド系加硫促進剤としては、例えば、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(TBBS)、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N,N’−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DZ)等が挙げられる。
上記オイルとしては、例えば、プロセスオイル、植物油脂、その混合物等を用いることができる。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。
オイルの含有量は、ゴム成分(C)100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、該含有量は、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。上記範囲外であると、充分に湿熱耐剥離性、耐久性を向上できないおそれがある。
<トレッド>
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、用いられるゴム成分(C)としては、上述したものと同様のものを用いることができるが、天然ゴムとスチレンブタジエンゴム(SBR)とを含むことが好ましい。
ゴム成分(C)100質量%中の天然ゴムの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上である。5質量%未満であると、優れた低燃費性が得られないおそれがある。また、該含有量は、好ましくは80質量%以下、より好ましくは60質量%以下、更に好ましくは40質量%以下である。80質量%を超えると、ウェットグリップ性能が低下するおそれがある。
SBRとしては、本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合に用いられるSBRと同様のものを用いることができる。
ゴム成分(C)100質量%中のSBRの含有量は、好ましくは40質量%以上、より好ましくは50質量%以上である。40質量%未満であると、充分なグリップ性能が得られないおそれがある。上記SBRの含有量は、好ましくは90質量%以下、より好ましくは80質量%以下である。90質量%を超えると、天然ゴムの含有量が少なくなり、低燃費性が悪化するおそれがある。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、用いられる変性セルロース繊維(A)及び分散用高分子(B)としては、上述したものと同様のものが挙げられ、上記同様の配合量で用いることができる。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、用いられるカーボンブラックとしては、本発明における変性セルロース繊維含有ゴム組成物を用いてプライトッピングを作製する場合に用いられるカーボンブラックと同様のものを用いることができる。
カーボンブラックの含有量は、ゴム成分(C)100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは50質量部以下、特に好ましくは30質量部以下である。上記範囲内であると、良好な低燃費性、耐摩耗性及びウェットグリップ性能が得られる。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、白色充填剤を含むことが好ましい。該白色充填剤としては、本発明における変性セルロース繊維含有ゴム組成物を用いてビードエイペックスを作製する場合に用いられる白色充填剤と同様のものを用いることができる。中でも、低燃費性の観点から、シリカが好ましい。
シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
前記シリカの窒素吸着比表面積(NSA)は、40m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上が更に好ましく、150m/g以上が特に好ましい。40m/g未満では、加硫後の破壊強度が低下する傾向がある。また、シリカのNSAは、500m/g以下が好ましく、300m/g以下がより好ましく、200m/g以下が更に好ましい。500m/gを超えると、低発熱性、ゴムの加工性が低下する傾向がある。
白色充填剤(特に、シリカ)の含有量は、ゴム成分(C)100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上、特に好ましくは40質量部以上である。5質量部未満であると、低発熱性が不充分になるおそれがある。また、該含有量は、好ましくは200質量部以下、より好ましくは150質量部以下、更に好ましくは130質量部以下である。200質量部を超えると、充填剤へのゴムへの分散が困難になり、ゴムの加工性が悪化する傾向がある。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合に、当該ゴム組成物がシリカを含む場合、シランカップリング剤を更に配合することが好ましい。シランカップリング剤としては特に限定されず、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(3−トリエトキシシリルプロピル)テトラスルフィド等のスルフィド系、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプト系、ビニルトリエトキシシランなどのビニル系、3−アミノプロピルトリエトキシシランなどのアミノ系、γ−グリシドキシプロピルトリエトキシシランのグリシドキシ系、3−ニトロプロピルトリメトキシシランなどのニトロ系、3−クロロプロピルトリメトキシシランなどのクロロ系シランカップリング剤等が挙げられる。これらシランカップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは1.5質量部以上、更に好ましくは2.5質量部以上である。0.5質量部未満であると、シリカを良好に分散させることが難しくなるおそれがある。また、該含有量は、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。20質量部を超えても、シリカの分散を向上させる効果が得られず、コストが不必要に増大する傾向がある。また、スコーチタイムが短くなり、混練りや押し出しでの加工性が低下する傾向がある。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、本発明における変性セルロース繊維含有ゴム組成物において、白色充填剤及びカーボンブラックの合計含有量は、ゴム成分(C)100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは120質量部以下である。上記範囲内であると、良好な低燃費性、耐摩耗性及びウェットグリップ性能が得られる。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、本発明における変性セルロース繊維含有ゴム組成物は、可塑剤としてオイルを含むことが好ましい。これにより、硬度を適切な低さに調整し良好な加工性を得ることが出来る。オイルとしては特に限定されず、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどのプロセスオイル、植物油脂、及びこれらの混合物等、従来公知のオイルを使用できる。
オイルの含有量は、ゴム成分(C)100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。また該含有量は、好ましくは30質量部以下、より好ましくは20質量部以下である。上記範囲内であると、良好な加工性を付与するとともに、優れた低燃費性、ウェットグリップ性能も得られる。
本発明における変性セルロース繊維含有ゴム組成物を用いてトレッドを作製する場合、本発明における変性セルロース繊維含有ゴム組成物には、上記の材料以外にも、酸化亜鉛、ステアリン酸、各種老化防止剤、オイル以外の可塑剤(ワックスなど)、加硫剤(硫黄、有機過酸化物など)、加硫促進剤(スルフェンアミド系、グアニジン系加硫促進剤など)などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。
上記各部材に適用される本発明における変性セルロース繊維含有ゴム組成物を製造する方法としては、公知の方法を用いることができ、例えば、上記各部材における各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。
本発明における変性セルロース繊維含有ゴム組成物を用いて作製した、プライトッピング以外の上記各部材を有する空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合した変性セルロース繊維含有ゴム組成物を、未加硫の段階で各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。
本発明における変性セルロース繊維含有ゴム組成物を用いて作製したプライトッピングを有する空気入りタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、上記ゴム組成物を通常の方法を用いて混練りし、得られた未加硫ゴム組成物をコードに圧着して未加硫の帯状プライ(ゴム圧着コード)を形成した後、該帯状プライをタイヤ成型機上で他の部材とともに通常の方法により貼り合わせて未加硫タイヤを成形する。この未加硫タイヤを加硫機中で加熱加圧して、本発明の空気入りタイヤを得ることができる。
上記各部材を有する本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に乗用車用タイヤとして好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
これらの実施例の一部で用いられた物性値測定法は、以下のとおりである。
(1)変性反応進行の確認
変性反応の進行はPerkin Elmer社製フーリエ変換赤外分光分析装置「Spectrum one」を用いて観察した。具体的には1650〜1750cm−1に生じるエステル結合のカルボニル炭素と酸素の伸縮振動に由来するピーク強度が変性反応の進行に伴い増強することから、定性的に確認した。
(2)酸無水物のセルロース繊維に対する付加率の測定
付加率は下記式(I)の通り、セルロース繊維の変性前後の質量変化から算出した。付加率を評価するサンプルは十分な量の溶剤で洗浄した上で測定に供した。洗浄溶剤には酸無水物の良溶媒を適宜選択して用いた。
Wp=(W−Ws)×100/Ws・・・(I)
Wp:酸無水物のセルロース繊維に対する付加率(質量%)
W:変性したセルロース繊維(変性セルロース繊維)の乾燥質量(g)
Ws:変性前のセルロース繊維の乾燥質量(g)
(3)固形分の測定
固形分の測定には赤外線水分計((株)ケット科学研究所製:「FD−620」)を用いた。
(4)酸価の測定
酸無水物の酸価は、以下の手順を用いて測定した。
酸無水物を0.5g秤量し、50mlのテトラヒドロフランに溶解させ、フェノールフタレインの1%エタノール溶液を10滴加えて酸無水物溶液を得た。得られた酸無水物溶液を撹拌しながら0.5規定の水酸化カリウムのエタノール溶液を滴下し、系内を着色させた。水酸化カリウム溶液を滴下しなくとも30秒間色が変化しなくなる時点を終点とし、終点に至るまでに加えた水酸化カリウム溶液の質量から下記式(II)を用いて酸価(mgKOH/g)を算出した。
酸価=Wk×56.1・・・(II)
Wk:終点に至るまでに加えた0.5規定の水酸化カリウム溶液の質量(g)
[変性セルロース繊維(A−1)の製造]
容積2000mlの容器へ水を含んだ針葉樹晒クラフトパルプ(以下、NBKPと記載する)250.00g(固形分50.00g)とN-メチルピロリドン200.00gを仕込み、水分を留去して溶媒置換NBKPを得た。系内を70℃とし、酸無水物(a)としてヘキサデセニルコハク酸無水物を39.75gと、エステル化触媒として炭酸カリウムを8.53g投入して2時間反応させた。反応物をエタノール、酢酸、水で順次洗浄し、エタノールで溶媒置換した後に乾燥させて変性セルロース繊維A−1を得た。付加率を評価するサンプルの洗浄溶剤にはエタノールを用いた。変性セルロース繊維A−1における、セルロース繊維に対する酸無水物(a)の付加率は59.6質量%であった。
[酸無水基含有石油系樹脂(a−1)の合成]
容積3000mlのセパラブルフラスコにペトロタック70(東ソー(株)製、C5C9系石油樹脂:重量平均分子量1300、軟化点70℃、臭素価45Brg/100g)1200.00gを投入し、160℃に加熱して溶融状態とした。系内を160℃に保ち、窒素置換を行った後、無水マレイン酸221.00gとt−ブチルパーオキサイド6.00gを3時間かけて12回に分けて投入した。投入終了から2時間後に系内を180℃とし、減圧したまま2時間保持することにより未反応の無水マレイン酸を留去する精製操作を行って酸価98、軟化点96℃、重量平均分子量5800の酸無水基含有石油系樹脂a−1を得た。
[変性セルロース繊維(A−2)の製造]
容積2000mlの容器へ水を含んだNBKP250.00g(固形分50.00g)とN−メチルピロリドン200.00gを仕込み、水分を留去して溶媒置換NBKPを得た。系内を75℃とし、酸無水物(a)として酸無水基含有石油系樹脂a−1を50.00g秤量し、エステル化触媒として炭酸カリウムを8.53gと共に投入して3時間反応させた。反応物を酢酸、水、エタノールで順次洗浄し、乾燥させて変性セルロース繊維A−2を得た。付加率を評価するサンプルの洗浄溶剤にはテトラヒドロフランを用いた。変性セルロース繊維A−2における、セルロース繊維に対する酸無水基含有石油系樹脂a−1の付加率は36質量%であった。
[変性セルロース繊維含有樹脂組成物の製造]
(製造例1)
分散用高分子(B)としてクイントンR100(日本ゼオン(株)製、C5系石油樹脂:重量平均分子量2250、軟化点96℃)、変性セルロース繊維A−1、滑剤としてステアリン酸(日油(株)製のビーズステアリン酸つばき)、酸化防止剤としてAO−60((株)ADEKA製、フェノール系酸化防止剤)を使用し、後述の表1に示す割合に従って、二軸混練機((株)テクノベル製「KZW」、スクリュー径:15mm、L/D:45)へ投入し、溶融混練して変性セルロース繊維含有樹脂組成物X−1を得た。
(製造例2)
分散用高分子(B)としてペトコールLX(東ソー(株)製、C9系石油樹脂:重量平均分子量1400、軟化点98℃)を使用したほかは、製造例1と同様にして、変性セルロース繊維含有樹脂組成物X−2を得た。
(製造例3)
分散用高分子(B)としてペトコールLX(東ソー(株)製、C9系石油樹脂:重量平均分子量1400、軟化点98℃)及び酸無水基含有石油系樹脂a−1(酸価98、軟化点96℃、重量平均分子量5800)、変性セルロース繊維A−2、滑剤としてステアリン酸(日油(株)製のビーズステアリン酸つばき)、酸化防止剤としてAO−60((株)ADEKA製、フェノール系酸化防止剤)を使用し、後述の表1に示す割合に従って、二軸混練機((株)テクノベル製「KZW」、スクリュー径:15mm、L/D:45)へ投入し、溶融混練して変性セルロース繊維含有樹脂組成物X−3を得た。
(製造例4)
分散用高分子(B)を使用せず、後述の表1に示す割合で配合したほかは、製造例1と同様にして、変性セルロース繊維含有樹脂組成物X−4を得た。
(製造例5)
クイントンR100のみからなる樹脂組成物を樹脂組成物X−5とした。
(製造例6)
ペトコールLXのみからなる樹脂組成物を樹脂組成物X−6とした。
前記樹脂組成物X−1〜X−6の配合を下記表1に示す。
Figure 2016216608
表1中、変性セルロース繊維を用いた例における「内、セルロース分」は、変性セルロース繊維中のセルロース繊維分を示し、樹脂組成物100質量%に対する含有量(質量%)で表している。また、「内、変性剤成分」は、変性セルロース繊維中の環状多塩基酸無水物(a)に由来する量を示し、樹脂組成物100質量%に対する含有量(質量%)で表している。
表1中の製品名及び略号は以下のとおりである。
クイントンR100:日本ゼオン(株)製、C5系石油樹脂、重量平均分子量2250、軟化点96℃
ペトコールLX:東ソー(株)製、C9系石油樹脂、重量平均分子量1400、軟化点98℃
ステアリン酸:日油(株)製のビーズステアリン酸つばき
AO−60:(株)ADEKA製、フェノール系酸化防止剤
以下に、各部材ごとに実施例及び比較例を示す。
<ビードエイペックス>
以下に、実施例、比較例で用いた各種薬品について説明する。
X−1〜X−6:製造例1〜6で得られた樹脂組成物X−1〜X−6
天然ゴム:TSR20
スチレンブタジエンゴム:日本ゼオン(株)製のNipol1502(E−SBR、スチレン含量:23.5質量%、ML1+4(100℃):52)
カーボンブラック:東海カーボン(株)製のシーストN(N330、NSA:74m/g、DBP吸油量:102ml/100g)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
オイル:出光興産(株)製のダイアナプロセスAH−24
レジン:住友ベークライト(株)製のPR12686(カシューオイル変性フェノール樹脂)
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
硫黄:日本乾溜工業(株)製のセイミ硫黄(オイル分:10%)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−t−ブチル−2−ベンゾチアゾールスルフェンアミド[TBBS])
(実施例1−1〜1−5、比較例1−1〜1−5)
表2に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りし、混練り物を得た。次に得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をビードエイペックスの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し加硫して、試験用タイヤ(サイズ:195/65R15)を製造した。
得られた未加硫ゴム組成物、加硫ゴム組成物、試験用タイヤについて下記の評価を行った。結果を表2に示す。
(粘弾性試験)
試験用タイヤのビードエイペックスから試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、試験片のタイヤ周方向の複素弾性率E*a(MPa)、及び、タイヤラジアル方向(径方向)の複素弾性率E*b(MPa)を測定し、下記計算式により指数表示した(弾性率指数)。弾性率指数は大きいほど弾性率が良好であり、剛性が高く操縦安定性に優れる。
(弾性率a指数)=(各配合のE*a)/(比較例1−1のE*a)×100
(弾性率b指数)=(各配合のE*b)/(比較例1−1のE*b)×100
(引張試験)
JIS K6251「加硫ゴムおよび熱可塑性ゴム引っ張り特性の求め方」に準じて、加硫ゴム組成物からなる3号ダンベル型試験片を用いて引張試験を実施し、加硫ゴム組成物の破断時伸び(引張伸び;EB〔%〕)及び破断時の引張強度(引張破断強度;TB〔MPa〕)を測定し、下記計算式により指数表示した(破断強度指数)。破断強度指数は大きいほど破断強度に優れ、耐久性に優れる。
(破断強度指数)=(各配合のEB×TB)/(比較例1−1のEB×TB)×100
(低燃費性)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、加硫ゴム組成物の損失正接(tanδ)を測定し、下記計算式により指数表示した(低燃費性指数)。低燃費性指数は大きいほど転がり抵抗性が低く、燃費性能(低燃費性)に優れる。
(低燃費性指数)=(比較例1−1のtanδ)/(各配合のtanδ)×100
(タイヤ性能のバランス指数)
前記各指数に基づき、下記計算式によりバランス指数を求めた。指数が大きいほど、操縦安定性、低燃費性、及び耐久性のバランスに優れる。
(バランス指数)=(弾性率a指数×破断強度指数×低燃費性指数)/10000
(加工性:ムーニー粘度の測定)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃でムーニー粘度を測定し、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例1−1のML1+4)/(各配合のML1+4)×100
Figure 2016216608
表2中、変性セルロース繊維量(質量部)は、ゴム組成物中のゴム成分100質量部に対する変性セルロース繊維の含有量(質量部)を表している。
表2より、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含む変性セルロース繊維含有ゴム組成物を用いた実施例1−1〜1−5では、ゴム中でのセルロース繊維の分散性が改善されるために、弾性率の向上が見られ、変性セルロース繊維(A)を含むが分散用高分子(B)は含まない比較例1−2に比べて破断強度や低燃費性、加工性は良くなるまたは同等の結果であり、特に弾性率、破断強度及び低燃費性のバランス性能が向上していた。すなわち、優れた剛性及び破断特性と低いエネルギーロス(転がり抵抗特性)とを両立することができることが確認された。このことから、そのような変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックスを有する空気入りタイヤが操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れることが分かる。そして更には、ゴム組成物を上述のようなものとすることで、ゴム中でのセルロース繊維の分散性が良好なものとなり、ビードエイペックスにおいてタイヤ周方向の剛性だけでなくタイヤ径方向の剛性についても優れたものとなることが確認され、操縦安定性に非常に優れた空気入りタイヤが得られることも分かる。
なお、セルロース繊維を配合しない代わりにカーボンブラックを多量に配合することで補強性を高めることも考えられるが、比較例1−5の結果より、カーボンブラックを多量に配合した場合、剛性を向上させることは可能である一方で、剛性、破断特性、転がり抵抗特性をバランスよく向上させることができず、加工性にも劣る、ということが分かる。
<クリンチエイペックス>
以下に、実施例、比較例で用いた各種薬品について説明する。
X−1〜X−6:製造例1〜6で得られた樹脂組成物X−1〜X−6
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製のBR150B(シス含有量:97質量%、ML1+4(100℃):40)
カーボンブラック:東海カーボン(株)製のシーストN(N330、NSA:74m/g、DBP吸油量:102ml/100g)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
オイル:出光興産(株)製のダイアナプロセスAH−24
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
硫黄:日本乾溜工業(株)製のセイミ硫黄(オイル分:10%)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−t−ブチル−2−ベンゾチアゾールスルフェンアミド[TBBS])
(実施例2−1〜2−5、比較例2−1〜2−5)
表3に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りし、混練り物を得た。次に得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をクリンチエイペックスの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し加硫して、試験用タイヤ(サイズ:195/65R15)を製造した。
得られた未加硫ゴム組成物、加硫ゴム組成物、試験用タイヤについて下記の評価を行った。結果を表3に示す。
(粘弾性試験)
試験用タイヤのクリンチエイペックスから試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、試験片のタイヤ周方向の複素弾性率E*a(MPa)、及び、タイヤラジアル方向(径方向)の複素弾性率E*b(MPa)を測定し、下記計算式により指数表示した(弾性率指数)。弾性率指数は大きいほど弾性率が良好であり、剛性が高く操縦安定性に優れる。
(弾性率a指数)=(各配合のE*a)/(比較例2−1のE*a)×100
(弾性率b指数)=(各配合のE*b)/(比較例2−1のE*b)×100
(引張試験)
JIS K6251「加硫ゴムおよび熱可塑性ゴム引っ張り特性の求め方」に準じて、加硫ゴム組成物からなる3号ダンベル型試験片を用いて引張試験を実施し、加硫ゴム組成物の破断時伸び(引張伸び;EB〔%〕)及び破断時の引張強度(引張破断強度;TB〔MPa〕)を測定し、下記計算式により指数表示した(破断強度指数)。破断強度指数は大きいほど破断強度に優れ、耐久性に優れる。
(破断強度指数)=(各配合のEB×TB)/(比較例2−1のEB×TB)×100
(低燃費性)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、加硫ゴム組成物の損失正接(tanδ)を測定し、下記計算式により指数表示した(低燃費性指数)。低燃費性指数は大きいほど転がり抵抗性が低く、燃費性能(低燃費性)に優れる。
(低燃費性指数)=(比較例2−1のtanδ)/(各配合のtanδ)×100
(タイヤ性能のバランス指数)
前記各指数に基づき、下記計算式によりバランス指数を求めた。指数が大きいほど、操縦安定性、低燃費性、及び耐久性のバランスに優れる。
(バランス指数)=(弾性率a指数×破断強度指数×低燃費性指数)/10000
(加工性:ムーニー粘度の測定)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃でムーニー粘度を測定し、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例2−1のML1+4)/(各配合のML1+4)×100
Figure 2016216608
表3中、変性セルロース繊維量(質量部)は、ゴム組成物中のゴム成分100質量部に対する変性セルロース繊維の含有量(質量部)を表している。
表3より、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含む変性セルロース繊維含有ゴム組成物を用いた実施例2−1〜2−5では、ゴム中でのセルロース繊維の分散性が改善されるために、弾性率の向上が見られ、変性セルロース繊維(A)を含むが分散用高分子(B)は含まない比較例2−2に比べて破断強度や低燃費性、加工性は良くなる又は同等の結果であり、特に弾性率、破断強度及び低燃費性のバランス性能が向上していた。すなわち、優れた剛性及び破断特性と低いエネルギーロス(転がり抵抗特性)とを両立することができることが確認された。このことから、そのような変性セルロース繊維含有ゴム組成物を用いて作製したクリンチエイペックスを有する空気入りタイヤが操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れることが分かる。そして更には、ゴム組成物を上述のようなものとすることで、ゴム中でのセルロース繊維の分散性が良好なものとなり、クリンチエイペックスにおいてタイヤ周方向の剛性だけでなくタイヤ径方向の剛性についても優れたものとなることが確認され、操縦安定性に非常に優れた空気入りタイヤが得られることも分かる。
なお、セルロース繊維を配合しない代わりにカーボンブラックを多量に配合することで補強性を高めることも考えられるが、比較例2−5の結果より、カーボンブラックを多量に配合した場合、剛性を向上させることは可能である一方で、剛性、破断特性、転がり抵抗特性をバランスよく向上させることができず、加工性にも劣る、ということが分かる。
<プライトッピング>
以下に、実施例、比較例で用いた各種薬品について説明する。
X−1〜X−6:製造例1〜6で得られた樹脂組成物X−1〜X−6
天然ゴム:TSR20
スチレンブタジエンゴム:日本ゼオン(株)製のNipol1502(E−SBR、スチレン含量:23.5質量%、ビニル含量:18質量%)
カーボンブラック:キャボットジャパン(株)製のショウブラックN550(NSA:42m/g、平均粒子径:48nm、DBP吸油量:113ml/100g)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
オイル:出光興産(株)製のダイアナプロセスAH−24
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
硫黄:日本乾溜工業(株)製のセイミ硫黄(オイル分:10%)
加硫促進剤:大内新興化学工業(株)製のノクセラーDZ(N,N’−ジシクロヘキシル−2−ベンゾチアゾールスルフェンアミド)
(実施例3−1〜3−5、比較例3−1〜3−5)
表4に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りし、混練り物を得た。次に得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をプライトッピングの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し加硫して、試験用タイヤ(サイズ:195/65R15)を製造した。
得られた未加硫ゴム組成物、加硫ゴム組成物、試験用タイヤについて下記の評価を行った。結果を表4に示す。
(粘弾性試験)
試験用タイヤのプライトッピングから試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、試験片のタイヤ周方向の複素弾性率E*a(MPa)、及び、タイヤラジアル方向(径方向)の複素弾性率E*b(MPa)を測定し、下記計算式により指数表示した(弾性率指数)。弾性率指数は大きいほど弾性率が良好であり、剛性が高く操縦安定性に優れる。
(弾性率a指数)=(各配合のE*a)/(比較例3−1のE*a)×100
(弾性率b指数)=(各配合のE*b)/(比較例3−1のE*b)×100
(引張試験)
JIS K6251「加硫ゴムおよび熱可塑性ゴム引っ張り特性の求め方」に準じて、加硫ゴム組成物からなる3号ダンベル型試験片を用いて引張試験を実施し、加硫ゴム組成物の破断時伸び(引張伸び;EB〔%〕)及び破断時の引張強度(引張破断強度;TB〔MPa〕)を測定し、下記計算式により指数表示した(破断強度指数)。破断強度指数は大きいほど破断強度に優れ、耐久性に優れる。
(破断強度指数)=(各配合のEB×TB)/(比較例3−1のEB×TB)×100
(低燃費性)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、加硫ゴム組成物の損失正接(tanδ)を測定し、下記計算式により指数表示した(低燃費性指数)。低燃費性指数は大きいほど転がり抵抗性が低く、燃費性能(低燃費性)に優れる。
(低燃費性指数)=(比較例3−1のtanδ)/(各配合のtanδ)×100
(タイヤ性能のバランス指数)
前記各指数に基づき、下記計算式によりバランス指数を求めた。指数が大きいほど、操縦安定性、低燃費性、及び耐久性のバランスに優れる。
(バランス指数)=(弾性率a指数×破断強度指数×低燃費性指数)/10000
(接着強度)
8本のコードを10mmの等間隔に並べ、その両側から0.7mm厚のトッピングゴム(未加硫ゴム組成物)を圧着させた。得られたゴム圧着コードを湿度60%の条件で保管した後、2枚のゴム圧着コードを90度の角度で貼り合わせ、更にその両側に補強用のゴムを圧着させた。得られた圧着物の形状は加硫用金型の形状に合わせて長方形とした。該金型で圧着物を165℃で20分加硫した後、得られた加硫物中の貼り合わせた2枚のゴム圧着コード間に裂け目を入れ、インストロン社製の引張試験機を用いて50mm/分の速度で180度の向きに引っ張り、ゴム圧着コード間の剥離力(kN/25mm)を評価した。結果は、比較例3−1の剥離力を100として指数表示した。数値が大きいほど、コードとトッピングゴムとの接着性が良好であり、耐久性に優れることを示している。
(加工性:ムーニー粘度の測定)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃でムーニー粘度を測定し、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例3−1のML1+4)/(各配合のML1+4)×100
Figure 2016216608
表4中、変性セルロース繊維量(質量部)は、ゴム組成物中のゴム成分100質量部に対する変性セルロース繊維の含有量(質量部)を表している。
表4より、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含む変性セルロース繊維含有ゴム組成物を用いた実施例3−1〜3−5では、ゴム中でのセルロース繊維の分散性が改善されるために、弾性率の向上が見られ、変性セルロース繊維(A)を含むが分散用高分子(B)は含まない比較例3−2に比べて破断強度や低燃費性、接着強度、加工性は良くなるまたは同等の結果であり、特に弾性率、破断強度及び低燃費性のバランス性能が向上していた。すなわち、優れた剛性及び破断特性と低いエネルギーロス(転がり抵抗特性)とを両立することができることが確認された。このことから、そのような変性セルロース繊維含有ゴム組成物を用いて作製したプライトッピングを有する空気入りタイヤが操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れることが分かる。そして更には、ゴム組成物を上述のようなものとすることで、ゴム中でのセルロース繊維の分散性が良好なものとなり、プライトッピングにおいてタイヤ周方向の剛性だけでなくタイヤ径方向の剛性についても優れたものとなることが確認され、操縦安定性に非常に優れた空気入りタイヤが得られることも分かる。
なお、セルロース繊維を配合しない代わりにカーボンブラックを多量に配合することで補強性を高めることも考えられるが、比較例3−5の結果より、カーボンブラックを多量に配合した場合、剛性を向上させることは可能である一方で、剛性、破断特性、転がり抵抗特性をバランスよく向上させることができず、加工性にも劣る、ということが分かる。
<トレッド>
以下に、実施例、比較例で用いた各種薬品について説明する。
X−1〜X−6:製造例1〜6で得られた樹脂組成物X−1〜X−6
天然ゴム:TSR20
スチレンブタジエンゴム:日本ゼオン(株)製のNipol1502(E−SBR、スチレン含量:23.5質量%、ML1+4(100℃):52)
カーボンブラック:キャボットジャパン(株)製のショウブラックN550(NSA:42m/g)
シリカ:エボニックデグッサ社製のUltrasil VN3(NSA:175m/g)
シランカップリング剤:エボニックデグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
オイル:出光興産(株)製のダイアナプロセスAH−24
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
硫黄:日本乾溜工業(株)製のセイミ硫黄(オイル分:10%)
加硫促進剤:大内新興化学工業(株)製のノクセラーDZ(N,N’−ジシクロヘキシル−2−ベンゾチアゾールスルフェンアミド)
(実施例4−1〜4−5、比較例4−1〜4−4)
表5に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りし、混練り物を得た。次に得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し加硫して、試験用タイヤ(サイズ:195/65R15)を製造した。
得られた未加硫ゴム組成物、加硫ゴム組成物、試験用タイヤについて下記の評価を行った。結果を表5に示す。
(粘弾性試験)
試験用タイヤのトレッドから試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、試験片のタイヤ周方向の複素弾性率E*a(MPa)、及び、タイヤラジアル方向(径方向)の複素弾性率E*b(MPa)を測定し、下記計算式により指数表示した(弾性率指数)。弾性率指数は大きいほど弾性率が良好であり、剛性が高く操縦安定性に優れる。
(弾性率a指数)=(各配合のE*a)/(比較例4−1のE*a)×100
(弾性率b指数)=(各配合のE*b)/(比較例4−1のE*b)×100
(引張試験)
JIS K6251「加硫ゴムおよび熱可塑性ゴム引っ張り特性の求め方」に準じて、加硫ゴム組成物からなる3号ダンベル型試験片を用いて引張試験を実施し、加硫ゴム組成物の破断時伸び(引張伸び;EB〔%〕)及び破断時の引張強度(引張破断強度;TB〔MPa〕)を測定し、下記計算式により指数表示した(破断強度指数)。破断強度指数は大きいほど破断強度に優れ、耐久性に優れる。
(破断強度指数)=(各配合のEB×TB)/(比較例4−1のEB×TB)×100
(低燃費性)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、加硫ゴム組成物の損失正接(tanδ)を測定し、下記計算式により指数表示した(低燃費性指数)。低燃費性指数は大きいほど転がり抵抗性が低く、燃費性能(低燃費性)に優れる。
(低燃費性指数)=(比較例4−1のtanδ)/(各配合のtanδ)×100
(加工性:ムーニー粘度の測定)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃でムーニー粘度を測定し、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例4−1のML1+4)/(各配合のML1+4)×100
(ウェットグリップ性能)
各試験用タイヤを車両(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求めた。結果は指数で表し、数字が大きいほどウェットスキッド性能(ウェットグリップ性能)が良好である。指数は次の式で求めた。
(ウェットスキッド性能指数)=(比較例4−1の制動距離)/(各配合例の制動距離)×100
(タイヤ性能のバランス指数)
前記各指数に基づき、下記計算式によりバランス指数を求めた。指数が大きいほど、操縦安定性、低燃費性、耐久性、加工性及びウェットグリップ性能のバランスに優れる。
(バランス指数)=(弾性率a指数×破断強度指数×低燃費性指数×ムーニー粘度指数×ウェットスキッド性能指数)/100000000
Figure 2016216608
表5中、変性セルロース繊維量(質量部)は、ゴム組成物中のゴム成分100質量部に対する変性セルロース繊維の含有量(質量部)を表している。
表5より、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含む変性セルロース繊維含有ゴム組成物を用いた実施例4−1〜4−5では、ゴム中でのセルロース繊維の分散性が改善されるために、弾性率、ウェットグリップ性能の向上が見られ、変性セルロース繊維(A)を含むが分散用高分子(B)は含まない比較例4−2に比べて破断強度や低燃費性、加工性は良くなるまたは同等の結果であり、特に弾性率、破断強度、低燃費性、加工性及びウェットグリップ性能のバランス性能が向上していた。すなわち、優れた剛性、破断特性、加工性及びウェットグリップ性能と低いエネルギーロス(転がり抵抗特性)とを両立することができることが確認された。このことから、そのような変性セルロース繊維含有ゴム組成物を用いて作製したトレッドを有する空気入りタイヤが操縦安定性、転がり抵抗特性、耐久性及びウェットグリップ性能にバランス良く優れ、生産性良く製造できることが分かる。そして更には、ゴム組成物を上述のようなものとすることで、ゴム中でのセルロース繊維の分散性が良好なものとなり、トレッドにおいてタイヤ周方向の剛性だけでなくタイヤ径方向の剛性についても優れたものとなることが確認され、操縦安定性に非常に優れた空気入りタイヤが得られることも分かる。
以上の結果から、セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含む変性セルロース繊維含有ゴム組成物は、ゴム中でのセルロース繊維の分散性を改善させることができ、優れた剛性及び破断特性と低いエネルギーロスとを両立できることから、このような変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも1種を有する空気入りタイヤが操縦安定性、転がり抵抗特性及び耐久性にバランス良く優れることが分かる。そして更には、ゴム組成物を上述のようなものとすることで、ゴム中でのセルロース繊維の分散性が良好なものとなり、タイヤ周方向の剛性だけでなくタイヤ径方向の剛性についても優れたものとなることが確認され、操縦安定性に非常に優れた空気入りタイヤが得られることも分かる。

Claims (6)

  1. セルロース繊維に疎水性基を有する炭素数が15以上の環状多塩基酸無水物(a)を付加してエステル化した変性セルロース繊維(A)、軟化点が135℃以下である分散用高分子(B)、及びゴム成分(C)を含有する変性セルロース繊維含有ゴム組成物を用いて作製したビードエイペックス、クリンチエイペックス、プライトッピング及びトレッドからなる群より選択される少なくとも一種を有する空気入りタイヤ。
  2. 前記環状多塩基酸無水物(a)が、酸無水基含有石油系樹脂及び酸無水基含有石炭系樹脂からなる群より選択される少なくとも一種である請求項1記載の空気入りタイヤ。
  3. 前記分散用高分子(B)が、石油系樹脂及び石炭系樹脂からなる群より選択される少なくとも一種である請求項1又は2記載の空気入りタイヤ。
  4. 前記ゴム成分(C)が、天然ゴム、改質天然ゴム、合成ゴム、及び変性合成ゴムからなる群より選択される少なくとも一種である請求項1〜3のいずれかに記載の空気入りタイヤ。
  5. 前記変性セルロース繊維(A)の含有量が、前記ゴム成分(C)100質量部に対して0.01〜30質量部である請求項1〜4のいずれかに記載の空気入りタイヤ。
  6. 前記変性セルロース繊維含有ゴム組成物が、前記変性セルロース繊維(A)と分散用高分子(B)とを混練して混練物を得、その後、該混練物とゴム成分(C)とを混練して得られるものである請求項1〜5のいずれかに記載の空気入りタイヤ。
JP2015103227A 2015-05-20 2015-05-20 空気入りタイヤ Active JP6378130B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015103227A JP6378130B2 (ja) 2015-05-20 2015-05-20 空気入りタイヤ
US15/135,831 US10017634B2 (en) 2015-05-20 2016-04-22 Pneumatic tire and run-flat tire
EP16166785.2A EP3095816B1 (en) 2015-05-20 2016-04-25 Pneumatic tires and run-flat tires containing modified cellulose fibres
CN201610265938.5A CN106167561B (zh) 2015-05-20 2016-04-26 充气轮胎及缺气保用轮胎

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015103227A JP6378130B2 (ja) 2015-05-20 2015-05-20 空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2016216608A true JP2016216608A (ja) 2016-12-22
JP6378130B2 JP6378130B2 (ja) 2018-08-22

Family

ID=57578493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015103227A Active JP6378130B2 (ja) 2015-05-20 2015-05-20 空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP6378130B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077833A (ja) * 2017-10-26 2019-05-23 横浜ゴム株式会社 タイヤ用ゴム組成物

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634737A (en) * 1979-08-28 1981-04-07 Chisso Corp Polyolefin resin composition
JPS633001A (ja) * 1986-06-23 1988-01-08 ヘンケル・コマンデイトゲゼルシヤフト・アウフ・アクテイ−ン アルケニル又はアルキルコハク酸エステルを含む水溶性セルロ−スエ−テル
JP2003253051A (ja) * 2001-12-28 2003-09-10 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
JP2011136670A (ja) * 2009-12-29 2011-07-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
US20110319529A1 (en) * 2010-06-29 2011-12-29 Eastman Chemical Company Cellulose ester/elastomer compositions
JP2012025949A (ja) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
WO2013081138A1 (ja) * 2011-11-30 2013-06-06 国立大学法人京都大学 変性セルロースファイバー及び変性セルロースファイバーを含むゴム組成物
WO2013086079A1 (en) * 2011-12-07 2013-06-13 Eastman Chemical Company Cellulose ester/elastomer compositions
JP2013166914A (ja) * 2012-01-16 2013-08-29 Sumitomo Rubber Ind Ltd マスターバッチ、ゴム組成物及び空気入りタイヤ
JP2014031649A (ja) * 2012-08-03 2014-02-20 Toa Doro Kogyo Co Ltd 舗装用バインダ及び舗装用混合物
JP2014144997A (ja) * 2013-01-25 2014-08-14 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2014152289A (ja) * 2013-02-12 2014-08-25 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634737A (en) * 1979-08-28 1981-04-07 Chisso Corp Polyolefin resin composition
JPS633001A (ja) * 1986-06-23 1988-01-08 ヘンケル・コマンデイトゲゼルシヤフト・アウフ・アクテイ−ン アルケニル又はアルキルコハク酸エステルを含む水溶性セルロ−スエ−テル
JP2003253051A (ja) * 2001-12-28 2003-09-10 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
JP2011136670A (ja) * 2009-12-29 2011-07-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012025949A (ja) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp 微細セルロース繊維分散液およびセルロース繊維複合体並びにその製造方法
US20110319529A1 (en) * 2010-06-29 2011-12-29 Eastman Chemical Company Cellulose ester/elastomer compositions
WO2013081138A1 (ja) * 2011-11-30 2013-06-06 国立大学法人京都大学 変性セルロースファイバー及び変性セルロースファイバーを含むゴム組成物
WO2013086079A1 (en) * 2011-12-07 2013-06-13 Eastman Chemical Company Cellulose ester/elastomer compositions
JP2013166914A (ja) * 2012-01-16 2013-08-29 Sumitomo Rubber Ind Ltd マスターバッチ、ゴム組成物及び空気入りタイヤ
JP2014031649A (ja) * 2012-08-03 2014-02-20 Toa Doro Kogyo Co Ltd 舗装用バインダ及び舗装用混合物
JP2014144997A (ja) * 2013-01-25 2014-08-14 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2014152289A (ja) * 2013-02-12 2014-08-25 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077833A (ja) * 2017-10-26 2019-05-23 横浜ゴム株式会社 タイヤ用ゴム組成物

Also Published As

Publication number Publication date
JP6378130B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
US10017634B2 (en) Pneumatic tire and run-flat tire
JP6543086B2 (ja) ゴム組成物、タイヤ用ゴム組成物及び空気入りタイヤ
JP5039750B2 (ja) タイヤ
JP6430868B2 (ja) ゴム組成物及びタイヤ
US8022136B2 (en) Vulcanized rubber composition, pneumatic tire and the process of producing the same
EP3438178B1 (en) Rubber composition and pneumatic tire
JP2009113794A (ja) タイヤ
JP2023090825A (ja) タイヤ用ゴム組成物及びタイヤ
JP6378130B2 (ja) 空気入りタイヤ
JP6378132B2 (ja) 空気入りタイヤ
JP6378133B2 (ja) ランフラットタイヤ
JP6378134B2 (ja) 空気入りタイヤ
JP6378131B2 (ja) 空気入りタイヤ
JP5912934B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6423311B2 (ja) 空気入りタイヤ
JP2023082931A (ja) タイヤ用ゴム組成物及びタイヤ
JP5898007B2 (ja) ビードエイペックス用ゴム組成物及び空気入りタイヤ
JP2019001954A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180726

R150 Certificate of patent or registration of utility model

Ref document number: 6378130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250