JP2016216522A - 成形品、フィルム、及び熱変形の抑制方法 - Google Patents

成形品、フィルム、及び熱変形の抑制方法 Download PDF

Info

Publication number
JP2016216522A
JP2016216522A JP2015098720A JP2015098720A JP2016216522A JP 2016216522 A JP2016216522 A JP 2016216522A JP 2015098720 A JP2015098720 A JP 2015098720A JP 2015098720 A JP2015098720 A JP 2015098720A JP 2016216522 A JP2016216522 A JP 2016216522A
Authority
JP
Japan
Prior art keywords
film
structural protein
molding
fibroin
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015098720A
Other languages
English (en)
Inventor
圭司 沼田
Keiji Numata
圭司 沼田
健二郎 矢澤
Kenjiro Yazawa
健二郎 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2015098720A priority Critical patent/JP2016216522A/ja
Priority to PCT/JP2016/064179 priority patent/WO2016182029A1/ja
Priority to US15/573,670 priority patent/US20180105660A1/en
Publication of JP2016216522A publication Critical patent/JP2016216522A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】構造タンパク質を成形して得られた成形品及びフィルムの熱変形の抑制方法、並びに熱変形が抑制された成形品及びフィルムを提供することを目的とする。
【解決手段】構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×10−5である成形品の含水率を0〜8.5質量%にすることにより、熱変形を抑制することができる。
【選択図】図2

Description

本発明は、成形品、フィルム、及び熱変形の抑制方法に関し、より詳しくは構造タンパク質を成形して得られる成形品及びフィルムの熱変形の抑制方法、並びに熱変形が抑制された成形品及びフィルムに関する。
シルクやクモの巣に含まれる構造タンパク質「フィブロイン」は、堅牢性に加え、生体適合性や生分解性を有するため、衣類用途以外に医療用途や化粧用途にもその活用の幅が広がっている。
例えば特許文献1には、フィブロイン溶液から骨の修復、補強、又は置換のための移植可能な材料を調製する方法が報告されており、得られた材料が移植部位の骨に匹敵する耐荷重性を有するほか、骨組織に置き換えられるように徐々に分解される吸収性を有することが記載されている。
また、特許文献2には、脂肪族カルボン酸を添加して得られたシルクフィブロイン溶液を凍結、融解するシルクフィブロイン多孔質体の製造方法が報告されており、得られた多孔質体が吸水性や安全性に優れ、保湿などを目的とした化粧品・エステ分野等に広く適用できることが記載されている。
特表2011−525400号公報 特開2012−82244号公報
フィブロイン等の構造タンパク質を合成樹脂の代替品として工業製品の構造材料等に利用するためには、十分な熱的安定性を確保することが必要になるが、本発明者らは例えば蚕繭から得られたシルクフィブロインをフィルム状に成形したものが50℃付近と180℃付近にガラス転移点が現れる、即ち、これらの温度付近以上では熱変形が生じてしまうことを明らかとしている。
本発明は、構造タンパク質を成形して得られた成形品の熱変形の抑制方法、並びに熱変形が抑制された成形品を提供することを目的とする。
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、構造タンパク質を成形して得られる成形品のガラス転移点は、含水率が特定の値より高い場合に現れ、含水率がその値以下では熱変形が生じ難くなることを見出し、本発明を完成させた。
即ち、本発明は以下の通りである。
<1> 構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×1
−5である成形品であって、含水率が0〜8.5質量%であることを特徴とする成形品。
<2> 前記構造タンパク質が、フィブロインである、<1>に記載の成形品。
<3> 前記フィブロインが、カイコ、ハチ、ハエ、クモ、又はトビケラ由来である、<
2>に記載の成形品。
<4> 構造タンパク質を成形して得られたフィルムであって、含水率が0〜8.5質量
%であることを特徴とするフィルム。
<5> 前記構造タンパク質が、フィブロインである、<4>に記載のフィルム。
<6> 前記フィブロインが、カイコ、ハチ、ハエ、クモ、又はトビケラ由来である、<
5>に記載のフィルム。
<7> 構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×1
−5である成形品の熱変形の抑制方法であって、前記成形品が50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とする、熱変形の抑制方法。
<8>前記構造タンパク質が、フィブロインである、<7>に記載の熱変形の抑制方法。<9>構造タンパク質を成形して得られたフィルムの熱変形の抑制方法であって、前記フィルムが50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とする、熱変形の抑制方法。
<10>前記構造タンパク質が、フィブロインである、<9>に記載の熱変形の抑制方法。
本発明によれば、構造タンパク質を成形して得られる成形品の熱変形を抑制することができる。
Bombyx mori由来のシルクフィブロインフィルムの各相対湿度条件下での熱重量分析の結果である。 Bombyx mori由来のシルクフィブロインフィルムの含水率毎の示差走査熱量測定の結果である。 Bombyx moriの蚕繭、シルクフィブロイン、シルクフィブロインフィルムの示差走査熱量測定の結果である。
本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<成形品>
本発明の一態様である成形品(以下、「本発明の成形品」と略す場合がある。)は、構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×10−5である成形品であり、含水率が0〜8.5質量%であることを特徴とする。
前述のように、本発明者らはシルクフィブロインをフィルム状に成形したものにガラス転移点が現れることを明らかとしているが、蚕繭自体や紡績した絹糸にはこのようなガラス転移点が現れないことも確認している。これは、蚕繭や絹糸ではタンパク質分子の配向性が高いために相転移が生じない一方、フィルム状に成形したものではタンパク質分子の配向性が低い非晶質の状態にあり、温度条件によって準安定な状態に相転移してしまうためであると考えられる。「複屈折率が1.0×10−5〜10.0×10−5」という数値は、成形品がこのように非晶質の状態にあることを表しているのである。
そして、本発明者らは、フィルム状に成形したもののこのようなガラス転移点は、含水率が特定の値より高い場合に現れ、含水率が特定の値以下では現れないことを明らかとしており、含水率がその値以下では熱変形が生じ難くなることを見出したのである。ここで、含水率が1.4%〜10.5%のシルクフィブロインフィルムの示差走査熱量測定の結果を図2に示す。50℃付近のガラス転移点は、含水率が9%以上になると現れるとともに、その熱量が含水率に依存することが明らかである。これは、水分子がタンパク質内において可塑剤としての役割を果たし、含水率が十分に低いフィルムでは相転移が生じ難くなっているものと考えられる。一方、高温側のガラス転移点は、含水率に依存していないことから、タンパク質分子の疎水性相互作用や水素結合の切断・組み換えによる構造変化に基づいたものであると考えられる。
即ち、本発明の成形品は、「複屈折率が1.0×10−5〜10.0×10−5」の成形品でありながら、熱変形が生じ難い優れた特長を有しているのである。
なお、「構造タンパク質」とは、生体内において構造や形態を形成・保持する役割を果たす公知のタンパク質を意味するものとする。
また、「構造タンパク質を成形」するとは、構造タンパク質を固体材料として目的の形に加工することを意味し、例えば物品の表面に構造タンパク質層を形成させること等も「構造タンパク質を成形」することに含まれるものとする。
本発明の成形品は、構造タンパク質を成形して得られたものであるが、構造タンパク質の具体的種類や成形品に含まれるその他の成分等は、特に限定されず、目的に応じて適宜選択することができる。以下、具体例を挙げて説明する。
構造タンパク質としては、フィブロイン、コラーゲン、ケラチン、アクチン、ミオシン、エラスチンが挙げられる。この中でもフィブロインが特に好ましい。
なお、フィブロインは、何れの生物由来のものであってもよいが、カイコ、ハチ、ハエ、クモ、トビケラ由来のものが好ましい。また、本発明の成形品に含まれる構造タンパク質は、1種類に限らず、2種類以上を含むものであってもよい。
本発明の成形品は、その他の成分を含むものであってもよく、例えばシルクに含まれるセリシン、蚕繭層に含まれるシュウ酸カルシウムを含むことが挙げられる。
本発明の成形品の構造タンパク質の含有量(2種類以上含む場合は総含有量)は、通常80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上である。
本発明の成形品は、複屈折率が1.0×10−5〜10.0×10−5の成形品であるが、好ましくは2.0×10−5以上、より好ましくは4.0×10−5以上、さらに好ましくは5.0×10−5以上であり、好ましくは9.0×10−5以下、より好ましくは8.0×10−5以下、さらに好ましくは7.5×10−5以下である。
なお、「複屈折率」は、例えばスライドグラスに成形品を貼り付け、位相差顕微鏡でベースラインを測定後、リターダンスを測定し、この平均値と標準偏差を算出して、直径(nm)の平均と標準偏差の値で除することで算出することができる。
本発明の成形品は、含水率が0〜8.5質量%であることを特徴とするが、好ましくは1.0質量%以上であり、好ましくは8.0質量%以下、さらに好ましくは7.0質量%
以下である。上記範囲内であると、熱変形を抑制し易くなる。
<フィルム>
本発明の別の一態様であるフィルム(以下、「本発明のフィルム」と略す場合がある。)は、構造タンパク質を成形して得られたフィルムであり、含水率が0〜8.5質量%であることを特徴とする。
前述のように、本発明者らはシルクフィブロインをフィルム状に成形したものにガラス転移点が現れることを明らかとするとともに、含水率が所定量以下では熱変形が生じ難くなることを見出している。
即ち、本発明のフィルムは、構造タンパク質を成形して得られたフィルムでありながら、熱変形が生じ難い優れた特長を有しているのである。
本発明のフィルムは、構造タンパク質を成形して得られたものであるが、構造タンパク質の具体的種類、フィルムに含まれるその他の成分、構造タンパク質の含有量、含水率等は、前述の<成形品>において説明したものと同様である。
なお、本発明のフィルムの厚さは、通常1.0μm以上、好ましくは5.0μm以上、より好ましくは15μm以上である。
<熱変形の抑制方法>
本発明の別の一態様である熱変形の抑制方法(以下、「本発明の抑制方法1」と略す場合がある。)は、構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×10−5である成形品の熱変形の抑制方法であり、成形品が50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とする。
同様に、本発明の別の一態様である熱変形の抑制方法(以下、「本発明の抑制方法2」と略す場合がある。)は、構造タンパク質を成形して得られたフィルムの熱変形の抑制方法であり、フィルムが50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とする。
前述のように、本発明者らはシルクフィブロインフィルムのような「複屈折率が1.0×10−5〜10.0×10−5」の成形品にガラス転移点が現れることを明らかとするとともに、含水率が特定の値以下では熱変形が生じ難くなることを見出している。
即ち、構造タンパク質を成形して得られた成形品が50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することによって、熱変形を抑制することができるのである。
本発明の抑制方法1及び2は、構造タンパク質を成形して得られた成形品の熱変形の抑制方法であるが、構造タンパク質の具体的種類、成形品に含まれるその他の成分、構造タンパク質の含有量、含水率等は、前述の<成形品>において説明したものと同様である。
本発明の抑制方法1及び2は、成形品が50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とするが、「含水率を0〜8.5質量%に保持する」手段は、特に限定されず、公知の手段を適宜採用することができる。
「含水率を0〜8.5質量%に保持する」具体的手段としては、以下の(1)〜(3)のものが挙げられる。
(1)外部環境の湿度を58%以下に抑えること
例えば、成形品が50℃以上に加熱されてしまうような物品である場合、その物品の使用環境(外部環境)の湿度を58%以下に抑え、成形品の含水率が増加すること抑えることが挙げられる。
(2)外部環境から成形品への水の浸入を抑えること
例えば、成形品が50℃以上に加熱されてしまうような物品である場合、成形品の表面に水の透過量が少ない保護層等を設けて、外部環境から成形品への水の浸入を抑えることが挙げられる。
(3)成形品の内部及び/又は表面に吸湿剤を配置すること
例えば、成形品が50℃以上に加熱されてしまうような物品である場合、成形品の内部や表面に吸湿剤を配置して、成形品(構造タンパク質)自体の含水率が増加することを抑えることが挙げられる。
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<シルクフィブロインの成形(フィルム)>
(1)Bombyx mori由来の蚕繭を断片化し、煮沸した0.02Mの炭酸ナトリウム水溶液で30分間撹拌することで、蚕繭に含まれる糊成分のセリシンを除去しシルクフィブロインを得た。
(2)超純水中で30分間撹拌することを3回行った後、シルクフィブロインから水分を絞り出し、室温で乾燥させた。
(3)9.3Mの臭化リチウム水溶液中で60℃、1時間インキュベートすることでシル
クフィブロインを完全に溶解させ、分画分子量6000から8000の透析膜を用いて超純水中で透析した。
(4)プラスチック皿にフィブロイン溶液を流し込み、乾燥させることで厚さ30μmのシルクフィブロインフィルムを得た。
<シルクフィブロインフィルムの複屈折率の測定>
得られたシルクフィブロインフィルムについて、複屈折率を測定した。測定方法は、以下の通りである。
スライドグラスの長辺の両端に両面テープを貼り、フィルムを貼り付け、位相差顕微鏡でベースラインを測定後、リターダンスを測定した。上記リターダンスを5回測定した解析値の平均値と標準偏差を算出後、直径(nm)の平均と標準偏差の値で除することで算出した。
シルクフィブロインフィルムの複屈折率は、5.2×10−5〜7.0×10−5であった。
<シルクフィブロインフィルムの熱重量分析>
得られたシルクフィブロインフィルムを種々の湿度下で1晩静置した。なお、湿度は、密閉容器内で飽和塩を共存させることで実現し、湿度11%には塩化リチウムを、湿度33%には塩化マグネシウム、湿度58%には臭化ナトリウム、湿度69%にはヨウ化カリウム、湿度75%には塩化ナトリウムを使用した。また、完全な乾燥(図1の「Dried」)は、40℃一晩の真空乾燥により行った。
それぞれのシルクフィブロインフィルムについて、窒素環境下で熱重量分析を行った。なお、熱重量分析装置にはセイコーインスツル株式会社製のTG/DTA7200を使用し、走査速度は20K/minとした。結果を図1に示す。
220℃付近までシルク分子内に結合した水分子の脱離に由来する質量減少が観察され、湿度が高くなると質量減少も大きくなった。このことから、高湿度条件ではシルク分子内により多くの水が保持されると考えられる。また、さらに加熱すると分解に伴う質量減少が観察された。
<シルクフィブロインフィルムの示差走査熱量測定>
同様にそれぞれのシルクフィブロインフィルムについて、窒素環境下で示差走査熱量測定を行った。なお、示差走査熱量測定にはPerkin Elmer社製のDSC 8500を使用し、走査速度は20K/minとした。結果を図2に示す。
ガラス転移点が50℃付近と180℃付近に2つ観察されることが明らかである。50℃付近のガラス転移点は、含水率が9%以上になると現れるとともに、その熱量は含水率に依存することが明らかとなった。これは、水分子がタンパク質内において可塑剤としての役割を果たし、含水率が十分に低いフィルムでは相転移が生じ難くなっているものと考えられる。一方、高温側のガラス転移点は、含水率に依存していないことから、フィブロイン分子内の疎水性相互作用や水素結合の切断・組み換えに由来する構造変化に伴うものであると考えられる。また、220℃付近には、シルクフィブロインの熱分解と思われるピークが観察された。
<蚕繭及びフィブロインの示差走査熱量測定>
比較として、蚕繭とフィブロインについても、示差走査熱量測定を行った。フィブロインは蚕繭を0.02M炭酸ナトリウム中で30分煮沸撹拌した後、水中で30分間洗浄することを3回行った後、室温で乾燥させることで調製した。なお、示差走査熱量測定にはPerkin Elmer社製のDSC 8500を使用し、走査速度は20K/minとした。結果を図3に示す。
蚕繭とフィブロインは、共に240℃付近までの温度走査により特に転移などは観察されなかった。一方、含水率1.4%のシルクフィブロインフィルムは、225℃付近に分
解と思われるピークが観察された。
本発明の成形品は、自動車用の衝撃吸収材、防弾装備、衣服等に利用することができる。

Claims (10)

  1. 構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×10−5である成形品であって、含水率が0〜8.5質量%であることを特徴とする成形品。
  2. 前記構造タンパク質が、フィブロインである、請求項1に記載の成形品。
  3. 前記フィブロインが、カイコ、ハチ、ハエ、クモ、又はトビケラ由来である、請求項2に記載の成形品。
  4. 構造タンパク質を成形して得られたフィルムであって、含水率が0〜8.5質量%であることを特徴とするフィルム。
  5. 前記構造タンパク質が、フィブロインである、請求項4に記載のフィルム。
  6. 前記フィブロインが、カイコ、ハチ、ハエ、クモ、又はトビケラ由来である、請求項5に記載のフィルム。
  7. 構造タンパク質を成形して得られ、複屈折率が1.0×10−5〜10.0×10−5である成形品の熱変形の抑制方法であって、前記成形品が50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とする、熱変形の抑制方法。
  8. 前記構造タンパク質が、フィブロインである、請求項7に記載の熱変形の抑制方法。
  9. 構造タンパク質を成形して得られたフィルムの熱変形の抑制方法であって、前記フィルムが50℃以上に加熱されるときに、含水率を0〜8.5質量%に保持することを特徴とする、熱変形の抑制方法。
  10. 前記構造タンパク質が、フィブロインである、請求項9に記載の熱変形の抑制方法。
JP2015098720A 2015-05-14 2015-05-14 成形品、フィルム、及び熱変形の抑制方法 Pending JP2016216522A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015098720A JP2016216522A (ja) 2015-05-14 2015-05-14 成形品、フィルム、及び熱変形の抑制方法
PCT/JP2016/064179 WO2016182029A1 (ja) 2015-05-14 2016-05-12 成形品、フィルム、及び熱変形の抑制方法
US15/573,670 US20180105660A1 (en) 2015-05-14 2016-05-12 Molded Article, Film, and Method for Preventing Thermal Deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098720A JP2016216522A (ja) 2015-05-14 2015-05-14 成形品、フィルム、及び熱変形の抑制方法

Publications (1)

Publication Number Publication Date
JP2016216522A true JP2016216522A (ja) 2016-12-22

Family

ID=57249210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098720A Pending JP2016216522A (ja) 2015-05-14 2015-05-14 成形品、フィルム、及び熱変形の抑制方法

Country Status (3)

Country Link
US (1) US20180105660A1 (ja)
JP (1) JP2016216522A (ja)
WO (1) WO2016182029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163758A1 (ja) * 2017-03-10 2018-09-13 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
JP2020055916A (ja) * 2018-09-28 2020-04-09 Spiber株式会社 モールド成形体、モールド成形体の製造方法、およびモールド成形体の柔軟性調整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118756A (ja) * 1996-08-05 1997-05-06 Ain Kk 樹脂フィルム
WO2005103158A1 (ja) * 2004-04-20 2005-11-03 Nippon Shinyaku Co., Ltd. 絹フィブロインフィルム
JP2009280715A (ja) * 2008-05-23 2009-12-03 Gunma Univ 非結晶性フィブロインフィルム及びその製造方法
WO2014103799A1 (ja) * 2012-12-26 2014-07-03 スパイバー株式会社 クモ糸タンパク質フィルム及びその製造方法
WO2014175178A1 (ja) * 2013-04-25 2014-10-30 スパイバー株式会社 ポリペプチド多孔質体及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615440B2 (ja) * 1995-01-27 1997-05-28 農林水産省蚕糸・昆虫農業技術研究所長 絹フィブロイン微粉末の製造方法
JP3362778B2 (ja) * 1999-06-03 2003-01-07 独立行政法人農業生物資源研究所 結晶性絹超微粉末の製造方法
GB0108181D0 (en) * 2001-04-02 2001-05-23 Xiros Plc Silk-based fibre
WO2005000483A1 (en) * 2003-06-06 2005-01-06 Tufts University Method for forming inorganic coatings
JP6317425B2 (ja) * 2013-03-15 2018-04-25 パセオン ソフトジェルズ インコーポレイティド シルク系カプセル剤
US20150202651A1 (en) * 2013-12-17 2015-07-23 Utah State University Recombinant Spider Silk Protein Film and Method of Synthesizing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118756A (ja) * 1996-08-05 1997-05-06 Ain Kk 樹脂フィルム
WO2005103158A1 (ja) * 2004-04-20 2005-11-03 Nippon Shinyaku Co., Ltd. 絹フィブロインフィルム
JP2009280715A (ja) * 2008-05-23 2009-12-03 Gunma Univ 非結晶性フィブロインフィルム及びその製造方法
WO2014103799A1 (ja) * 2012-12-26 2014-07-03 スパイバー株式会社 クモ糸タンパク質フィルム及びその製造方法
WO2014175178A1 (ja) * 2013-04-25 2014-10-30 スパイバー株式会社 ポリペプチド多孔質体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163758A1 (ja) * 2017-03-10 2018-09-13 Spiber株式会社 モールド成形体及びモールド成形体の製造方法
JP2020055916A (ja) * 2018-09-28 2020-04-09 Spiber株式会社 モールド成形体、モールド成形体の製造方法、およびモールド成形体の柔軟性調整方法

Also Published As

Publication number Publication date
US20180105660A1 (en) 2018-04-19
WO2016182029A1 (ja) 2016-11-17

Similar Documents

Publication Publication Date Title
Kundu et al. Isolation and processing of silk proteins for biomedical applications
Mandal et al. Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications
TW565633B (en) Method of manufacturing silk, silk fibers or film and silk-like fibers or film
Mazzi et al. Comparative thermal analysis of Eri, Mori, Muga, and Tussar silk cocoons and fibroin fibers
JP2016519189A5 (ja)
JP5658659B2 (ja) シルクフィブロイン多孔質体の製造方法
RU2605592C2 (ru) Биологически разлагаемая полимерная композиция с высокой деформируемостью
CN105111657A (zh) 高强度高抗菌tpe吸震鞋垫及其制备方法
ES2581530T3 (es) Composición polimérica biodegradable para la fabricación de artículos que presentan una temperatura de deformación bajo carga elevada
WO2016182029A1 (ja) 成形品、フィルム、及び熱変形の抑制方法
Ming et al. A novel silk fibroin/sodium alginate hybrid scaffolds
JPWO2008120722A1 (ja) 重合体およびそれを含むフィルムまたはシート
KR20180072887A (ko) 실크 피브로인 다공질체 및 그 제조 방법
Pal et al. An emerging functional natural silk biomaterial from the only domesticated non‐mulberry silkworm Samia ricini
JP2011529978A5 (ja)
Seoane et al. Effect of two different plasticizers on the properties of poly (3‐hydroxybutyrate) binary and ternary blends
Purwar et al. Flexible sericin/polyvinyl alcohol/clay blend films
CN105062024A (zh) 高透明高耐温聚乳酸复合材料及其制备方法
JP2016539215A (ja) 微多孔ポリ乳酸配向フィルムおよびその応用
Ribeiro Lopes et al. Production and characterization of films containing poly (hydroxybutyrate)(PHB) blended with esterified alginate (ALG‐e) and poly (ethylene glycol)(PEG)
Ravindra et al. Tensile and thermal properties of poly (vinyl pyrrolidone)/vanillin incorporated poly (vinyl alcohol) films
JP2015028155A5 (ja)
CN104177788A (zh) 耐水解脂肪族聚酯树脂组合物及其制备方法
JP5704688B2 (ja) シルクフィブロイン多孔質体の製造方法
JP5704687B2 (ja) シルクフィブロイン多孔質体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702