JP2016212941A - TMRセンサのためのMgOバリア層を作製する方法 - Google Patents

TMRセンサのためのMgOバリア層を作製する方法 Download PDF

Info

Publication number
JP2016212941A
JP2016212941A JP2015242007A JP2015242007A JP2016212941A JP 2016212941 A JP2016212941 A JP 2016212941A JP 2015242007 A JP2015242007 A JP 2015242007A JP 2015242007 A JP2015242007 A JP 2015242007A JP 2016212941 A JP2016212941 A JP 2016212941A
Authority
JP
Japan
Prior art keywords
layer
depositing
mgo
chamber
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015242007A
Other languages
English (en)
Japanese (ja)
Other versions
JP2016212941A5 (enExample
Inventor
チン・ホー
Hoh Chin
イ・ジェ−ヨン
Jae-Yong Yi
エリック・ダブリュ・シングルトン
W Singleton Eric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of JP2016212941A publication Critical patent/JP2016212941A/ja
Publication of JP2016212941A5 publication Critical patent/JP2016212941A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
JP2015242007A 2015-04-29 2015-12-11 TMRセンサのためのMgOバリア層を作製する方法 Pending JP2016212941A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/699,190 US9890449B2 (en) 2015-04-29 2015-04-29 Methods of forming MgO barrier layer
US14/699,190 2015-04-29

Publications (2)

Publication Number Publication Date
JP2016212941A true JP2016212941A (ja) 2016-12-15
JP2016212941A5 JP2016212941A5 (enExample) 2019-01-24

Family

ID=57205539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242007A Pending JP2016212941A (ja) 2015-04-29 2015-12-11 TMRセンサのためのMgOバリア層を作製する方法

Country Status (4)

Country Link
US (2) US9890449B2 (enExample)
JP (1) JP2016212941A (enExample)
KR (2) KR20160128895A (enExample)
CN (1) CN106098082A (enExample)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10229705B2 (en) 2017-01-24 2019-03-12 International Business Machines Corporation Shorting tolerant tunnel valve head and circuit
KR102470367B1 (ko) * 2017-11-24 2022-11-24 삼성전자주식회사 자기 저항 메모리 소자의 제조 방법
US10837105B1 (en) 2019-01-03 2020-11-17 Seagate Technology Llc Multilayer barrier and method of formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173843A (ja) * 2005-12-22 2007-07-05 Magic Technologies Inc トンネルバリア層およびその形成方法並びにmtj素子およびその製造方法
JP2008091484A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置
JP2008263031A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
JP2008300840A (ja) * 2007-05-29 2008-12-11 Headway Technologies Inc ピンド層およびこれを用いたtmrセンサ並びにtmrセンサの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326783A (ja) * 1994-05-30 1995-12-12 Canon Inc 光起電力素子の形成方法及びそれに用いる薄膜製造装置
US5460704A (en) * 1994-09-28 1995-10-24 Motorola, Inc. Method of depositing ferrite film
JP2002314166A (ja) 2001-04-16 2002-10-25 Nec Corp 磁気抵抗効果素子及びその製造方法
US6841395B2 (en) 2002-11-25 2005-01-11 International Business Machines Corporation Method of forming a barrier layer of a tunneling magnetoresistive sensor
US20050029091A1 (en) * 2003-07-21 2005-02-10 Chan Park Apparatus and method for reactive sputtering deposition
KR100628928B1 (ko) 2003-07-21 2006-09-27 한국전기연구원 반응성 스퍼터링 증착장치
US7820020B2 (en) * 2005-02-03 2010-10-26 Applied Materials, Inc. Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece with a lighter-than-copper carrier gas
CN100346524C (zh) * 2005-07-28 2007-10-31 复旦大学 一种原位沉积制备全固态薄膜锂电池的设备和方法
US7780820B2 (en) 2005-11-16 2010-08-24 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
US7535069B2 (en) * 2006-06-14 2009-05-19 International Business Machines Corporation Magnetic tunnel junction with enhanced magnetic switching characteristics
FR2910716B1 (fr) 2006-12-26 2010-03-26 Commissariat Energie Atomique Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif
US7488609B1 (en) 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
US20130134032A1 (en) 2008-06-25 2013-05-30 Canon Anelva Corporation Method of fabricating and apparatus of fabricating tunnel magnetic resistive element
EP2568305B1 (en) * 2011-09-09 2016-03-02 Crocus Technology S.A. Magnetic tunnel junction with an improved tunnel barrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173843A (ja) * 2005-12-22 2007-07-05 Magic Technologies Inc トンネルバリア層およびその形成方法並びにmtj素子およびその製造方法
JP2008091484A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置
JP2008263031A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
JP2008300840A (ja) * 2007-05-29 2008-12-11 Headway Technologies Inc ピンド層およびこれを用いたtmrセンサ並びにtmrセンサの製造方法

Also Published As

Publication number Publication date
CN106098082A (zh) 2016-11-09
KR101977795B1 (ko) 2019-05-13
US20160319419A1 (en) 2016-11-03
US9890449B2 (en) 2018-02-13
KR20180037613A (ko) 2018-04-12
KR20160128895A (ko) 2016-11-08
US20180094346A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6100990B2 (ja) 磁気抵抗効果センサおよびその製造方法
JP5529648B2 (ja) 磁気センサ積層体、その成膜方法、成膜制御プログラムおよび記録媒体
JP5897448B2 (ja) 固定層構造および自由層構造にCoFeBTaを有する磁気センサ
JP3601690B2 (ja) 磁気抵抗効果素子とその製造方法、磁気抵抗効果型ヘッド、磁気記録装置、磁気抵抗効果メモリ素子
JP5739833B2 (ja) データ検知素子、磁気素子および方法
US6631055B2 (en) Tunnel valve flux guide structure formed by oxidation of pinned layer
US8373948B2 (en) Tunnel magnetoresistance (TMR) structures with MGO barrier and methods of making same
JP5599738B2 (ja) 磁気抵抗効果素子およびその形成方法
US11087785B1 (en) Effective rear hard bias for dual free layer read heads
US20120308728A1 (en) Magnetoresistive element and method of manufacturing the same
US10354681B1 (en) Tunnel magnetoresistance read head including side shields containing nanocrystalline ferromagnetic particles
US10354707B2 (en) Composite seed layer
US9679589B2 (en) Magnetoresistive sensor with enhanced uniaxial anisotropy
GB2525740A (en) TMR/CPP reader for narrow reader gap application
JP2015015068A (ja) 結晶性CoFeX層およびホイスラー型合金層を含む、多重層からなる基準層を含む平面垂直通電型(CPP)磁気抵抗センサ
US20080151439A1 (en) Tmr sensor having magnesium/magnesium oxide tunnel barrier
JP2013004166A (ja) ハードバイアスのシード構造を有する磁気センサ
KR101977795B1 (ko) Mgo 배리어 층을 형성하는 방법
JP2014107006A (ja) MgO絶縁層を有するハードマグネットバイアス構造を有する面垂直電流(CPP)磁気抵抗(MR)センサ
JP2000500292A (ja) 磁界センサ及び磁界センサの製造方法
JP4403337B2 (ja) トンネル磁気抵抗効果素子、及びトンネル磁気抵抗効果型磁気ヘッド
US6398924B1 (en) Spin valve sensor with improved pinning field between nickel oxide (NiO) pinning layer and pinned layer
JP2003318462A (ja) 磁気抵抗効果素子とこれを用いた磁気ヘッドおよび磁気メモリ
US7088561B2 (en) Method of making a tunnel valve sensor with improved free layer sensitivity
JP2006186345A (ja) 薄膜及び磁気抵抗デバイス用ナノ粒子生成方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191021

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200218