JP2016206842A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2016206842A
JP2016206842A JP2015085983A JP2015085983A JP2016206842A JP 2016206842 A JP2016206842 A JP 2016206842A JP 2015085983 A JP2015085983 A JP 2015085983A JP 2015085983 A JP2015085983 A JP 2015085983A JP 2016206842 A JP2016206842 A JP 2016206842A
Authority
JP
Japan
Prior art keywords
safety
diagnosis
driving device
unit
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015085983A
Other languages
English (en)
Inventor
新 山本
Arata Yamamoto
新 山本
青山 直樹
Naoki Aoyama
直樹 青山
健男 榎本
Takeo Enomoto
健男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015085983A priority Critical patent/JP2016206842A/ja
Publication of JP2016206842A publication Critical patent/JP2016206842A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】機器の入れ替えを必要とすることなく、安全な制御システムを構築できる制御装置を得ること。【解決手段】重故障状態であるか、軽故障状態であるか、安全状態であるかを診断する診断処理部21a,22aと、診断の結果を照合する照合処理部21b,22bとを備えたCPU21,22と、回転軸の位置及び回転速度の少なくとも一方が重故障状態と診断されたら、駆動機器2を停止させる第1の安全停止信号を出力し、回転軸の位置又は回転速度の診断結果が一致しないと判断されたら、制御プログラム25に定義された安全動作を実行する処理を行う判定部23とを有する安全演算部12と、駆動機器2の回転軸の位置又は回転速度を検出する検出部11b,11cを有する安全エンコーダ部11と、検出部11b,11cの検出結果を安全演算部12に出力するとともに、速度制御器5へ第1の安全停止信号を出力する安全入出力部13とを備える。【選択図】図1

Description

本発明は、装置又はロボットの監視制御を行う制御装置に関する。
近年、産業用ロボットの普及により、工作機械又はロボットと作業者とが協働する機械が増え、安全性の確保に対するニーズが高まっている。工作機械又はロボットと作業者とが同じ空間で作業する場合、旧来の安全システムでは対応できないため、国際電気標準会議(International Electrotechnical Commission, IEC)の国際標準規格IEC61800−5−2に規定されるような安全規格に準拠して工作機械又はロボットを動作させる必要がある。
IEC61800−5−2は、安全動作に関する国際標準規格であるが、この規格に準拠して安全な動作を実行するためには、サーボ又はインバータといった速度制御装置と、安全エンコーダとが必要であった。
また、特許文献1には、フィードバック信号を基にサーボドライバで指令値を生成し、セーフティユニットでフィードバック値と指令値とを比較するサーボシステムが開示されている。
特許第5367623号公報
しかし、現在稼働している既設装置をIEC61800−5−2のような安全規格に対応させるためには、安全システムに用いる機器の入れ替え及び再設定の手間がかかり、ユーザの負担となる。
また、特許文献1では、サーボドライバが不具合を起こした場合は、サーボドライバが生成する値が正しくない可能性がある。サーボドライバが生成する値が正しくない場合は、サーボドライバからの情報が正しい前提で処理を行っているセーフティユニットでは正しい判断をすることができないという問題があった。すなわち、特許文献1は、安全性を向上させることはできるが、安全な制御システムを構築することはできなかった。
本発明は、上記に鑑みてなされたものであって、機器の入れ替えを必要とすることなく、安全な制御システムを構築できる制御装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、駆動機器の回転軸の位置又は回転速度を検出する複数の検出部を有する安全エンコーダ部を備える。また、上述した課題を解決し、目的を達成するために、本発明は、安全エンコーダ部による回転軸の位置又は回転速度の複数の検出結果の各々に基づいて、回転軸の位置又は回転速度が駆動機器を停止させる必要がある重故障状態であるか、駆動機器を停止させる必要のない軽故障状態であるか、正常である安全状態であるかを診断する診断処理部と、回転軸の位置又は回転速度の診断の結果を照合する照合処理部とを備えた複数の演算装置と、診断処理部が回転軸の位置又は回転速度の少なくとも一方を重故障状態と診断したら、駆動機器を停止させる第1の安全停止信号を出力し、照合処理部が、回転軸の位置又は回転速度の診断結果が一致しないと判断したら、制御プログラムに定義された安全動作を実行する処理を行う判定部とを有する安全演算部を備える。また、上述した課題を解決し、目的を達成するために、本発明は、複数の検出部の検出結果を安全エンコーダ部から受信して安全演算部に出力するとともに、駆動機器を制御する速度制御器へ第1の安全停止信号を出力する安全入出力部を備える。
本発明によれば、機器の入れ替えを必要とすることなく、安全な制御システムを構築できるという効果を奏する。
本発明の実施の形態にかかる制御装置である安全コントローラを用いた制御システムの構成を示す図 実施の形態にかかる安全コントローラの外観図 実施の形態にかかる安全コントローラの駆動機器との接続例を示す図 実施の形態にかかる安全コントローラの駆動機器との接続の別の例を示す図 実施の形態にかかる非接触方式で駆動機器の回転軸の位置又は回転速度を検出する安全コントローラの外観図 実施の形態にかかる安全コントローラの駆動機器との接続例を示す図 実施の形態にかかる安全コントローラの駆動機器との接続の別の例を示す図 実施の形態にかかる安全コントローラの効果を説明するための制御システムの構成を示す図 実施の形態にかかる安全コントローラと同様に安全規格に対応した制御システムの構成を示す図 実施の形態にかかる安全コントローラの動作の流れを示すフローチャート 実施の形態にかかる安全コントローラの組合せ条件確認処理の一例を示すフローチャート 実施の形態にかかる安全コントローラの組合せ条件確認処理の一例を示すフローチャート 実施の形態にかかる安全コントローラを用いた制御システムの動作の流れを示すフローチャート
以下に、本発明の実施の形態にかかる制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
図1は、本発明の実施の形態にかかる制御装置である安全コントローラを用いた制御システムの構成を示す図である。制御システム10に用いられる安全コントローラ1は、駆動機器2の駆動軸の位置又は回転速度を検出する安全エンコーダ部11と、各信号の診断及び照合し制御ロジックを実行する安全演算部12と、制御システム10に用いられる機器と信号の受け渡しをする安全入出力部13とを有する。また、安全コントローラ1は、駆動機器2の回転軸のトルクを監視するトルク監視部14と、駆動機器2の温度を検出する温度監視部15とを有する。
安全エンコーダ部11は、円盤部11aと検出部11b,11cとを備えている。円盤部11aは、駆動機器2の駆動軸に取り付けられて回転駆動される。検出部11b,11cは、円盤部11aの位置又は回転速度を別々に検出することにより、駆動機器2の回転軸の位置又は回転速度を検出する。
一般的に、駆動機器2に供給される電流と、駆動機器2の回転軸に生じるトルクとは比例関係にある。トルク監視部14は、三相交流の電源17から駆動機器2に供給されるUVWの各相について電流を検出する検出部を備えており、UVWの各相の電流値により駆動機器2の回転軸のトルクを検出し、各相の監視結果を安全入出力部13に出力する。
温度監視部15は、温度センサ15a及び温度センサ15bを有しており、温度センサ15a及び温度センサ15bで別々に駆動機器2の温度を検出して、検出結果を安全入出力部13に出力する。
安全エンコーダ1において、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度は、駆動機器の状態を示す状態情報である。また、安全コントローラ1において、安全エンコーダ部11、トルク監視部14及び温度監視部15は、駆動機器2の状態情報を出力する状態情報源である。安全入出力部13は、駆動機器2の状態を検出する状態情報源と、駆動機器2を制御する速度制御器5とに接続され、状態情報源の各々から、駆動機器2の状態を示す状態情報を取得する。
安全演算部12は、演算装置であるCPU(Central Processing Unit)21及びCPU22を有しており、安全エンコーダ部11、トルク監視部14又は温度監視部15からの信号及び外部からの安全情報を照合する。CPU21は、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度について、正常である安全状態、駆動機器を停止させる必要のない軽故障状態又は駆動機器を停止させる必要のある重故障状態のいずれであるかを診断する診断処理を行う診断処理部21aと、診断処理部21aの診断結果を診断処理部22aの診断結果と照合する照合処理を行う照合処理部21bとを有する。CPU22は、診断処理を行う診断処理部22aと、診断処理部22aの診断結果と診断処理部21aの診断結果とを照合する照合処理を行う照合処理部22bとを有する。すなわち、安全演算部12は、CPU21,22の各々で、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度のいずれかについて診断処理部21a,22aで診断し、診断処理部21a,22aの各々の診断結果を照合処理部21b,22bで照合する。
また、安全演算部12は、診断処理によって駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク又は駆動機器2の温度の重故障状態が検出されるか、又は安全入力機器3から異常発生を示す第2の安全停止信号が入力されるかした場合に、駆動機器2を停止させる第1の安全停止信号を出力する処理を行う判定部23を有する。また、判定部23は、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の診断結果が、他の診断の結果と一致しないと判断した場合、具体的には、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の全てが重故障状態ではなく、かついずれかが軽故障状態である場合に、メモリ24に記憶されている安全ロジックの制御プログラム25に従って駆動機器2を制御することにより、制御プログラム25に定義された安全動作を実行する処理を行う。
安全演算部12が実現する駆動安全機能の具体例には、駆動機器2を制御する速度制御器5がトルクを生み出すエネルギーを駆動機器2に供給しないようにするSTO(Safe Torque Off)、駆動機器2の減速を開始したのち、用途により規定された遅延時間後にSTOを起動するSS1(Safe Stop 1)、駆動機器2の停止位置からのずれを規定量以内に納めるSOS(Safe Operating Stop)、駆動機器2の減速を開始したのち、用途により規定された遅延時間後にSOSを起動するSS2(Safe Stop 2)、駆動機器2の速度が規定限度値を超えないようにするSLS(Safely-Limited Speed)、駆動機器2のトルクが規定限度値を超えないようにするSLT(Safely-Limited Torque)、駆動機器2の加速度が規定限度値を超えないようにするSLA(Safely-Limited Acceleration)、駆動機器2の加速度又は減速度が規定範囲内となるようにするSAR(Safe Acceleration Range)、駆動機器2の回転速度が規定範囲内となるようにするSSR(Safe Speed Range)、駆動機器2の速度が規定限度値以下であることを示す安全信号を出力するSSM(Safe Speed Monitor)、駆動機器2の回転軸の位置が規定限度値を超えないようにするSLP(Safely-Limited Position)、駆動機器2の回転軸の位置のインチングが規定限度範囲内となるようにするSLI(Safely-Limited Increment)、駆動機器2の回転軸が意図しない方向に回転しないようにするSDI(Safe Direction)、駆動機器2の回転軸の位置が規定範囲になることを示す安全信号を出力するSafe cam、駆動機器2の温度が規定上限値を超えないようにするSMT(Safe Motor Temperature)及び外部ブレーキをコントローする安全信号を出力するSBC(Safe Brake Control)を挙げることができる。
安全エンコーダ部11からの位置速度信号は、安全入出力部13を通じて安全演算部12に入力され、安全演算部12での照合後に安全入出力部13によって外部へ伝えられる。トルク監視部14及び温度監視部15の監視結果も、安全入力部13を通じて安全演算部12に入力され、安全演算部12での照合後に安全入力部13によって外部へ伝えられる。
また、安全演算部12は、メモリ24内に安全ロジックの制御プログラム25を保持しており、制御プログラム25を実行することで、安全動作を行うことができる。
安全入出力部13には、駆動機器2に供給する電流を制御する速度制御器5が接続され、駆動機器2の回転速度は、負荷一定の条件下では駆動機器2に供給される電流と比例関係にある。駆動機器2の回転速度を示す指令値は、安全入出力部13を通じて速度制御器5から安全演算部12に入力される。また、安全演算部12が重故障を検出した場合には、安全入出力部13を通じて速度制御器5に制御停止信号が出力される。なお、速度制御器5には、インバータ又はサーボアンプを適用できる。速度制御器5は、一般制御機器7によって制御される。一般制御機器7には、プログラマブルロジックコントローラを適用できる。
安全演算部12は、照合処理部21b,22bを有するCPU21,22を備えているため、安全入出力部13を通じて速度制御器5から安全演算部12に指令値を取り込むことで、指令値が示す速度と安全エンコーダ部11からフィードバックされた速度とを照合できる。また、安全入出力部13を通じて速度制御器5から取り込む指令値同士を照合することもできる。
安全入出力部13は、速度制御器5と電源17との間に設置された安全出力機器4へ第1の安全停止信号を出力して、非常停止時に駆動機器2を電源17から遮断する安全出力を有する。安全出力機器4には、マグネットコンタクタを適用できる。また、安全入出力部13に安全制御機器6及び安全入力機器3と接続することにより、中規模の安全システムも構築できるようになっている。なお、本装置及び安全制御機器6は、国際標準化機構(International Organization for Standardization, ISO)のISO13849−1又は国際電気標準会議のIEC61508シリーズのような国際安全規格に対応し、安全入力機器3及び安全出力機器4と共に使用されて駆動機器2を安全に動作させる機器である。安全出力機器4には、マグネットコンタクタを適用可能であるが、これに限定されることはない。安全制御機器6には、安全通信によって通信可能な安全プログラマブルロジックコントローラを適用できる。また、安全入力機器3には、第2の安全停止信号を出力する装置である非常停止スイッチ又はライトカーテンを適用できる。
また、実施の形態では、安全入出力部13に安全通信部16を設けている。安全入出力部13に安全通信部16を設けることにより、安全制御機器6との安全通信のために安全入出力部13に接続する複数の配線を一本の通信ケーブルに纏めることができ、省配線化を実現できる。
図2は、実施の形態にかかる安全コントローラの外観図であり、図2(a)は正面図、図2(b)は側面図である。安全コントローラ1は、床面のような据付面への固定用の据付部1aと、上述の円盤部11a及び検出部11b,11cを保護するカバー部1bとを有する。カバー部1bには、設定操作及び情報表示用の表示操作パネル32と、点灯状態及び表示色で駆動機器2の状態を表示する状態表示部33とが設けられている。
図3は、実施の形態にかかる安全コントローラの駆動機器との接続例を示す図である。安全コントローラ1は、モータ接続金具31により駆動機器2の駆動軸の出力端に接続されている。駆動機器2と逆側には、駆動対象61が設置される。すなわち、図3では、駆動機器2と駆動対象61との間に安全コントローラ1を挿入する形式で、安全コントローラ1が設置されている。
安全コントローラ1は、表示操作パネル32を有するため、駆動対象61と接続したままでも設定内容の変更を行うことが可能である。
図4は、実施の形態にかかる安全コントローラの駆動機器との接続の別の例を示す図である。図4に示す構成では、駆動機器2は両軸モータであり、安全コントローラ1は、モータ接続金具31により駆動機器2の後側の駆動軸に接続されている。図4に示す構成では、安全コントローラ1を駆動機器2に接続しても、駆動機器2と駆動対象61との位置関係は不変であるため、安全コントローラ1を設置するにあたって、駆動対象61の設置位置を変更する必要はない。
なお、安全コントローラ1は、駆動機器2の筐体に固定し、非接触方式で駆動機器2の回転軸の位置又は回転速度を検出させることも可能である。非接触方式で駆動機器2の回転軸の回転を検出させる場合には、駆動機器2の回転軸に検出部11b,11cで検出可能な印を設け、円盤部11aは省略した構造とする。検出部11b,11cで検出可能な印の一例には、複数のスリットによる光学的に検出可能な凹凸を挙げることができる。
図5は、実施の形態にかかる非接触方式で駆動機器の回転軸の位置又は回転速度を検出する非接触型安全コントローラの外観図であり、図5(a)は、正面図、図5(b)は側面図である。非接触型安全コントローラ1’は、上述の検出部11b,11cを保護するカバー部1bを有する。カバー部1bには、設定操作及び情報表示用の表示操作パネル32と、点灯状態及び表示色で駆動機器2の状態を表示する状態表示部33とが設けられている。
図6は、実施の形態にかかる非接触型安全コントローラの駆動機器との接続例を示す図である。非接触型安全コントローラ1’は、駆動機器2の筐体の前側、すなわち、駆動機器2の駆動軸が突出している側に固定されている。図7は、実施の形態にかかる非接触型安全コントローラの駆動機器との接続の別の例を示す図である。図7に示す構成では、駆動機器2は両軸モータであり、非接触型安全コントローラ1’は、駆動機器2の筐体の後側に固定されている。
非接触型安全コントローラ1’は、非接触方式で駆動機器2の回転軸の位置又は回転速度を検出するため、駆動機器2の前後どちらに設置した場合でも、駆動機器2と駆動対象61との位置関係は不変であり、非接触型安全コントローラ1’を設置するにあたって、駆動対象61の設置位置を変更する必要はない。以下の説明は、円盤部11aを備えた安全コントローラ1を例に行うが、非接触型安全コントローラ1’を用いる場合も同様である。
図8は、実施の形態にかかる安全コントローラの効果を説明するための制御システムの構成を示す図である。図8は、安全制御機器が無く、速度制御器105が一般機器である場合の制御システムの構成を示している。制御システム100は、一般入出力機器108が接続された一般制御機器107により速度制御器105を制御して、エンコーダ106を用いたフィードバック制御により駆動機器102の回転を制御する。駆動機器102と電源117との間には、安全出力機器104が設けられており、安全出力機器104が開くと駆動機器102への電力供給が遮断される。駆動機器102の周囲には安全入力機器103が設置されている。安全入力機器103は、ライトカーテン、非常停止スイッチ又はレーザスキャナが適用される。安全入力機器103から一般制御機器107に異常検知信号が入力されると、一般制御機器107は、安全出力機器104に第1の安全停止信号を出力して、駆動機器102への電力供給を遮断する。
図8に示す制御システム100では、一般制御機器107又は速度制御器105が故障しなければ問題は生じないが、一般制御機器107又は速度制御器105に故障が発生すると、駆動機器102を確実に停止できる保証がないため、安全対策がなされていないシステムとなる。
図9は、実施の形態にかかる安全コントローラと同様に安全規格に対応した制御システムの構成を示す図である。図9に示す制御システム200は、トルクセンサ242及び温度センサ243と安全制御機器206とを導入し、安全対応速度制御器205を用いて構成されている。駆動機器202と電源217との間には、安全出力機器204が設けられており、安全出力機器204が開くと駆動機器202への電力供給が遮断される。駆動機器202の周囲には安全入力機器203が設置されている。安全入力機器203は、ライトカーテン、非常停止スイッチ又はレーザスキャナが適用される。安全入力機器203から一般入出力機器208が接続された一般制御機器207に異常検知信号が入力されると、一般制御機器207は、安全出力機器204に第1の安全停止信号を出力して、駆動機器202への電力供給を遮断する。
制御システム200は、トルクセンサ242及び温度センサ243を一般制御機器207に接続することにより、IEC61800−5−2に規定される安全動作を全て実行できる構成となっている。しかし、トルクセンサ242と一般制御機器207とを接続する配線と、温度センサ243と一般制御機器207とを接続する配線と、安全制御機器206と一般制御機器207とを接続する配線とが必要である。また、安全対応速度制御器205の制御プログラムと安全制御機器206の制御プログラムとを別個に作る必要があるため、ユーザの負担が大きくなる。
図1に示した実施の形態にかかる安全コントローラ1を用いた制御システム10は、図9に示した制御システム200と同様に、IEC61800−5−2に規定される安全動作を全て実行可能である。制御システム10の構築は、安全コントローラ1を駆動機器2に接続するだけでよいため、ユーザは安全確保以外の一般制御に労力を集中することができる。また、速度制御器5は、安全対応速度制御器である必要はないため、指令値を生成する駆動源の種類によることなく安全が担保される。さらに、安全コントローラ1用の制御プログラム25のみを作成すればよいため、システム構築時のユーザの負担を軽減できる。
次に、実施の形態にかかる安全コントローラ1の安全動作について説明する。図10は、実施の形態にかかる安全コントローラの動作の流れを示すフローチャートである。ステップS101において、安全演算部12は、安全対応が必要なモードかを判断する。モードの切替は、表示操作パネル32に対する操作によって行われる。安全対応が必要なモードでなければ、ステップS101でNoとなり、安全対応が必要なモードであるかの監視を継続する。安全対応が必要なモードであれば、ステップS101でYesとなり、安全演算部12は、ステップS102で、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の少なくともいずれかが重故障状態となっているかを判断する。
駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の少なくともいずれかが重故障状態となっていれば、ステップS102でYesとなり、安全演算部12は、ステップS108で安全動作を行う。ステップS108で行う安全動作の一例は、STO又はSS1である。駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度のいずれも重故障状態となっていなければ、ステップS102でNoとなり、ステップS103で、安全演算部12は、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の全てが安全状態であるかを判断する。
駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の全てが安全状態であれば、ステップS103でYesとなり、ステップS102に進む。駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の少なくともいずれかが安全状態でなければ、ステップS103でNoとなり、安全演算部12は、ステップS104で組合せ条件を確認して安全動作により駆動機器2を停止させる必要があるかを判断する。安全動作により駆動機器2を停止させる必要があれば、ステップS104でYesとなり、安全演算部12は、ステップS108で安全動作を行う。安全動作により駆動機器2を停止させる必要が無ければ、ステップS104でNoとなり、安全演算部12は、ステップS105で組合せ条件に合わせた減速指令又は警告表示を行う。なお、組合せ条件を確認する処理は、安全ロジックの制御プログラム25によって定義され、安全演算部12に保持されている。すなわち、ステップS105では、安全演算部12は、診断結果の組合せに基づいて、制御プログラム25に定義された制御を行う。
ステップS106で、安全演算部12は、危険が回避されたかを判断する。危険が回避されたか否かの判断は、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の組合せに基づいて行う。危険が回避されたならば、ステップS106でYesとなり、ステップS102に進む。危険が回避されていなければ、ステップS106でNoとなり、安全演算部12は、ステップS107で、ユーザ指定の動作を行う。ステップS107で行うユーザ指定の動作の一例は、SS2である。
図11は、実施の形態にかかる安全コントローラの組合せ条件確認処理の一例を示すフローチャートである。図11は、駆動機器2の回転速度が軽故障状態である場合に駆動機器2の回転軸のトルクの状態との組合せにより安全動作により駆動機器2を停止させる必要があるかを判断する処理であり、駆動機器2の回転軸の回転速度が軽故障状態であるために図10のステップS104でNoとなった場合のステップS105の処理の詳細である。ステップS201において、安全演算部12は、駆動機器2の回転軸の回転速度が過多であるか不足であるかを確認する。回転速度が不足であれば、ステップS201でYesとなり、安全演算部12は、ステップS202で駆動機器2の回転軸のトルクが過多であるか不足であるかを確認する。トルクが不足であれば、ステップS202でYesとなり、ステップS203で安全演算部12は、安全動作により駆動機器2を停止させる必要は無いと判断する。トルクが過多であれば、ステップS202でNoとなり、ステップS204で安全演算部12は、安全動作により駆動機器2を停止させる必要があると判断する。
一方、駆動機器2の回転軸の回転速度が過多であれば、ステップS201でNoとなり、安全演算部12は、ステップS205でメンテナンスモードであるかを確認する。メンテナンスモードであるならば、ステップS205でYesとなり、安全演算部12は、ステップS204で安全動作により駆動機器2を停止させる必要があると判断する。メンテナンスモードでなければ、ステップS205でNoとなり、安全演算部12は、ステップS206で駆動機器2の回転軸のトルクが過多であるか不足であるかを確認する。トルクが不足であれば、ステップS206でYesとなり、安全演算部12は、ステップS204で安全動作により駆動機器2を停止させる必要があると判断する。トルクが過多であれば、ステップS206でNoとなり、安全演算部12は、ステップS203で安全動作により駆動機器2を停止させる必要は無いと判断する。
図12は、実施の形態にかかる安全コントローラの組合せ条件確認処理の一例を示すフローチャートである。図12は、駆動機器2の回転軸の回転速度が軽故障状態である場合に指令値との組合せにより過負荷又は無負荷の可能性を判断する処理であり、駆動軸の回転速度が軽故障状態であるために図10のステップS104でNoとなった場合のステップS105の処理の詳細である。
ステップS301で、安全演算部12は、指令値が制御プログラム25中に規定された設定範囲内であるか否かを確認する。指令値が設定範囲内であれば、ステップS301でYesとなり、ステップS302で、安全演算部12は、駆動機器2の回転軸の回転速度と指令値との差が設定範囲内であるか否かを確認する。駆動機器2の回転軸の回転速度と指令値との差が設定範囲内であれば、ステップS302でYesとなり、安全演算部12は、ステップS303で、安全動作により駆動機器2を停止させる必要は無いと判断する。駆動機器2の回転軸の回転速度と指令値との差が設定範囲外であれば、ステップS302でNoとなり、安全演算部12は、ステップS304で、安全動作により駆動機器2を停止させる必要があると判断する。また、指令値が設定範囲外であれば、ステップS301でNoとなり、ステップS304に進む。
このように、実施の形態にかかる安全コントローラ1は、制御を開始した後に、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度を監視し、どれか一つでも重故障状態であるならば非常停止動作後に電力供給を遮断する。また、実施の形態にかかる安全コントローラは、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度のいずれもが重故障状態でなくても、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度のいずれかが、軽故障状態である場合には駆動機器2の状態を類推し、状況に応じた動作を行う。駆動機器2の状態の類推は、安全演算部12が保持する制御プログラム25に従って行われる。以下、二つの信号の組合せの他の例について説明する。
まず、駆動機器2の回転軸の回転速度と回転軸のトルクとの組合せにより、SSR及びSTRを実現する方法について説明する。駆動機器2の回転軸のトルクが規定値よりも少なくて回転速度が超過である場合は、弱い力でも回転軸が回転して減速することなく加速してしまう状態であるから、負荷が接続されていないか、規定の治具が取り付けられていない可能性がある。したがって、安全演算部12は、規定の負荷及び治具を接続してから再始動させるために、安全動作により駆動機器2を停止させる必要があると判定して駆動機器2を停止させる。
駆動機器2の回転軸のトルクが規定よりも少なくて回転速度が足りない場合は、負荷と駆動機器2とのバランスがあっていない可能性がある。出力すなわちトルクを上げれば既定の速度に達する可能性があるが、何らかの理由でトルクが規定に達していない状態である。この場合には、一般制御機器7の方で何らかのインターロック又はリミッタが働いている可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要はないと判定して、ユーザに処置を任せる。
駆動機器2の回転軸のトルクが規定よりも多くて回転速度が足りない場合は、負荷が重くて回転ができない可能性がある。または、負荷にブレーキを掛けたまま運転している可能性がある。この場合には、ユーザの点検が必要であるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定する。
駆動機器2の回転軸のトルクが規定より多くて回転速度が超過である場合は、負荷と駆動機器2とのバランスがあっていない可能性がある。出力すなわちトルクを段階的に上げなければならないところ、一気にトルクがかかってしまい、駆動機器2の回転軸が規定以上の回転速度となった可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定して装置を停止させる。
メンテナンスモード又は第2の安全停止信号の入力があるにもかかわらず、回転速度又はトルクが超過した場合は、制御システム10内のいずれかの機器に不具合が生じていると考えられる。ユーザの点検が必要であるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定して駆動機器2を止める。
次に、駆動機器2の回転軸の回転速度とトルクとの組合せによりSLS及びSLTを実現する方法について説明する。トルクが規定より多くて回転速度が超過している場合は、負荷と駆動機器2とのバランスがあっていない可能性がある。出力であるトルクを段階的に上げなければならないところ、一気にトルクを上げてしまい、駆動機器2の回転軸の回転速度が規定以上の速度となった可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定して駆動機器2を停止させる。
メンテナンスモード又は第2の安全停止信号の入力があるにもかかわらず、回転速度又はトルクが超過した場合は、制御システム10内のいずれかの機器に不具合が生じていると考えられる。ユーザの点検が必要であるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定して駆動機器2を止める。
次に、駆動機器2の回転軸の回転速度とトルクとの組合せによりSDI及びSTRを実現する動作について説明する。トルクが規定値よりも少なくて回転速度の符号が逆である場合、検出部11a,11bの取付方向が逆の可能性がある。または回転軸に動力が正しく伝わっていない可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し、装置を停止させる。
トルクが規定より多くて回転速度の符号が逆である場合は、検出部11a,11bの取付方向が逆の可能性がある。または負荷が重くて始動トルクが足らずに駆動機器2の回転軸を回転できない可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し、駆動機器2を停止させる。この場合、駆動機器2の温度状態を温度監視部15から安全演算部12に取り入れることにより、駆動機器2の状況を判断しやすくなる。
次に、駆動機器2の回転軸の回転速度の方向と大きさとの組合せにより、SDI及びSSRを実現する動作について説明する。駆動機器2の回転軸の回転速度が規定値よりも小さく逆回転である場合、検出部11a,11bの取付方向が逆の可能性がある。または回転軸に動力が正しく伝わっていない可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し、駆動機器2を停止させる。
回転速度が規定より大きく逆回転である場合は、検出部11a,11bの取付方向が逆の可能性がある。または負荷が外力によって逆方向の力を受けて回転軸が逆回転している可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し、駆動機器2を停止させる。この場合、駆動機器2の温度状態を温度監視部15から安全演算部12に取り入れることにより、駆動機器2の状況を判断しやすくなる。
次に、駆動機器2の回転軸の回転速度の方向と大きさとの組合せにより、SDI及びSLSを実現する動作について説明する。駆動機器2の回転軸の回転速度が規定より大きくて逆回転である場合は、検出部11a,11bの取付方向が逆の可能性がある。または負荷が外力によって逆方向の力を受けて回転軸が逆回転している可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し、駆動機器2を停止させる。この場合、駆動機器2の温度状態を温度監視部15から安全演算部12に取り入れることにより、駆動機器2の状況を判断しやすくなる。
次に、駆動機器2の回転軸の位置とトルクとの組合せにより、SLP及びSLTを実現する動作について説明する。駆動機器2の回転軸のトルクが規定値よりも大きくて回転軸の位置が過多である場合は、負荷が重すぎて制御がうまくいっていない可能性がある。したがって、安全演算部12は、安全動作により駆動機器2を停止させる必要はないと判定し、制御方法及び機器構成を見直す注意をユーザに促す。
次に、駆動機器2の温度と駆動機器2の回転軸のトルクとの組合せにより、STRを実現する動作について説明する。回転軸のトルクが規定値よりも大きく駆動機器2の温度が過多である場合は、温度上昇率が低ければ周囲環境に依るとみなして、安全演算部12は、安全動作により駆動機器2を停止させる必要はないと判定する。温度上昇率が高ければ過負荷状態の可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し駆動機器2を停止させる。
駆動機器2の回転軸のトルクが規定値より少なくて駆動機器2の温度が過多である場合は、温度上昇率が低ければ周囲環境に依るものとみなして、安全演算部12は、安全動作により駆動機器2を停止させる必要はないと判定する。温度上昇率が高ければ別の理由が考えられる。
次に、駆動機器2の温度と回転軸の回転速度との組合せにより、SSRを実現する動作について説明する。回転軸の回転速度が規定値よりも大きく駆動機器2の温度が過多である場合は、温度上昇率が低ければ周囲環境に依るものとみなして、安全演算部12は、安全動作により駆動機器2を停止させる必要はないと判定する。温度上昇率が高ければ別の理由が考えられる。
回転軸の回転速度が規定値よりも小さく駆動機器2の温度が過多である場合は、温度上昇率が低ければ周囲環境に依るものとみなして、安全演算部12は、安全動作により駆動機器2を停止させる必要はないと判定する。温度上昇率が高ければ過負荷により、回転速度が落ちた可能性があるため、安全演算部12は、安全動作により駆動機器2を停止させる必要があると判定し駆動機器2を止める。
図13は、実施の形態にかかる安全コントローラを用いた制御システムの動作の流れを示すフローチャートである。ステップS401で、一般制御機器7は、速度制御器5に速度指令を送信する。ステップS402で、速度制御器5は、駆動機器2に供給する電流を変更する制御を行う。
また、ステップS401及びステップS402と並行して、安全演算部12は、ステップS403で安全条件を確認する。ステップS404で、安全演算部12は、安全出力機器4に接続指令を送信する。
ステップS402及びステップS404が完了すると、ステップS405で、安全演算部12は、安全コントローラによる安全処理の動作を行う。ステップS405で行う安全処理の動作は、図10のフローチャートに示した動作である。安全処理中に安全動作又はユーザ指定動作が行われていなければ、ステップS405でNoとなり、安全演算部12は、ステップS406で、安全入力機器3からの第2の安全停止信号の入力の有無を確認する。安全入力機器3からの第2の安全停止信号の入力がなければ、ステップS406でNoとなり、ステップS405に進む。
安全処理中に安全動作又はユーザ指定動作が行われた場合は、ステップS405でYesとなり、ステップS408で、安全演算部12は、安全出力機器4に遮断指令を送信する。また、安全入力機器3から第2の安全停止信号の入力があった場合、ステップS406でYesとなり、安全演算部12は、ステップS407で安全動作を行わせてステップS408に進む。
実施の形態にかかる安全コントローラ1は、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度のそれぞれの診断の結果を照合することにより、制御システム10を構成する各機器又は機器間を接続する配線に単一故障が起こっても安全機能の確保が可能である。また、駆動機器2の回転軸の位置、回転軸の回転速度、回転軸のトルク及び駆動機器2の温度の診断の結果を二つ以上用いて駆動機器2の状態を類推できるため、異常速度となる前に、一般制御機器7に危険信号を発信し、駆動機器2の緊急停止を回避することができる。
また、実施の形態にかかる安全コントローラは、指令値を安全演算部12に取り込んで、最終端の駆動機器2からのフィードバック値である回転速度と比較できるため、指令値の内容、受け渡しルート及び信号の種類に依らず、様々なインターフェースに対応できる。
安全エンコーダ部11と安全演算部12と、安全入出力部13とを組み合わせた安全コントローラ1を駆動部の最終端に取り付けることにより、直接駆動機器2の動きを監視し、安全システムを構築することができる。速度制御器5及び駆動機器2自体が、安全対応機器である必要は無く、最終端に安全コントローラ1を取り付けるだけで、安全の確保ができる。すなわち、既存の機器の入れ替え及び再設定を必要とすることなく、安全な制御システムを構築できる。実施の形態にかかる安全コントローラ1を付けることで、安全非対応の既存設備であっても、駆動機器2を変えることなく安全対策できるため、コストを大幅に削減する事ができる。
安全コントローラ1を最終端に取り付けることにより、駆動機器2の状態変化量を実測値で正確に素早く取り込むことが可能となるため、確実な安全制御が可能となる。また、安全エンコーダ部11が安全コントローラ1内に組み込まれているため、安全エンコーダ部11と速度制御器5とを接続する配線が不要であり、ノイズの影響を低減することが可能である。
図8に示した安全不対応の制御システムを、図9に示した安全規格に定められた機能安全に対応した制御システムに変更するためには、エンコーダ、トルクセンサ及び温度センサといったセンサ類及び速度制御器及び温度表示機といった機器の追加が必要になり、システム及び配線が複雑になる。実施の形態にかかる安全コントローラ1は、安全エンコーダ部11、トルク監視部14、温度監視部15、安全演算部12、安全入出力部13及び安全通信部16を持ち、装置内で処理が閉じているため、外部への配線の本数を抑えつつ、安全不対応の制御システムを機能安全へ対応したシステムに変更することが可能である。
実施の形態にかかる安全コントローラ1を用い、表示操作パネル32又は状態表示部33での表示を駆動機器2の状態と連動させることにより、離れた場所又は騒音の多い場所からも駆動機器2の状態を確認することができる。表示操作パネル32からは動作制限に関するパラメータを入力することで、条件を外れた場合の動作設定を行うことができる。表示操作パネル32が制御対象の最終端にあるので、駆動機器2の状況を現場で確認しながらパラメータを設定できる。また、安全演算部12の内部に制御プログラム25を保持することで、安全入出力制御を行うことができ、任意の動作を制御することができる。
また、トルク監視部14及び温度監視部15を着脱可能とすることにより、トルク又は温度を監視する必要が無い場合に装置の小型化を実現できる。また、安全入力機器3から第2の安全停止信号が安全演算部12から第1の安全停止信号を出力するため、安全入力機器3が異常を検出した際に駆動機器2を安全に停止させることができる。
また、安全通信部16を設けることで、指令値及びフィードバック値を安全通信によって受け渡すことができる。扱える安全情報が増えることにより、駆動機器2の状況にあった制御が可能となる。人とロボットとの協働作業を考えた場合、危険になるのかの見極めは、人とロボットとの位置関係及び状態関係が重要である。安全情報で、停止指令を送受信できることで、複数台連携する際に一連のシステムとして制御することができる。通常安全の連携を行う場合、様々な安全機器で構成する必要があるが、実施の形態にかかる安全コントローラ1は最終端で安全確保されているので、構成を単純化できる。
また、通常は通信を行わず、診断に問題が発生した時のみデータを転送することで、通信負荷を低減できる。なお、常時モニタが必要な場合は、通信負荷がかかるものの、常時信号によりフィードバックすることも可能である。
実施の形態にかかる安全コントローラ1は、安全制御機器6及び安全入力機器3と接続することで、国際安全規格に則った安全回路の構築が可能であるため、駆動機器2の状態を定期的に監視し、緊急時に確実に動力を遮断することができる。また、実施の形態にかかる安全コントローラ1は、既存システム及びプロセスを変更することなく、既存のシステムに追加し、再設定を行うだけで、既存のシステムを安全なシステムへ移行することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 安全コントローラ、1’ 非接触型安全コントローラ、1a 据付部、1b カバー部、2,102,202 駆動機器、3,103,203 安全入力機器、4,104,204 安全出力機器、5,105 速度制御器、6,206 安全制御機器、7,107,207 一般制御機器、10,100,200 制御システム、11 安全エンコーダ部、11a 円盤部、11b,11c 検出部、12 安全演算部、13 安全入出力部、14 トルク監視部、15 温度監視部、15a,15b,243 温度センサ、16 安全通信部、17,117,217 電源、21,22 CPU、21a,22a 診断処理部、21b,22b 照合処理部、23 判定部、24 メモリ、25 制御プログラム、31 モータ接続金具、32 表示操作パネル、33 状態表示部、61 駆動対象、106,241 エンコーダ、108,208 一般入出力機器、205 安全対応速度制御器、242 トルクセンサ。

Claims (6)

  1. 駆動機器の回転軸の位置又は回転速度の二つ以上の検出結果の各々に基づいて、前記回転軸の位置又は前記回転速度が前記駆動機器を停止させる必要がある重故障状態であるか、前記駆動機器を停止させる必要のない軽故障状態であるか、正常である安全状態であるかを診断する診断処理部と、前記回転軸の位置又は回転速度の診断の結果を照合する照合処理部とを備えた二つの演算装置と、前記診断処理部が前記回転軸の位置及び前記回転速度の少なくとも一方を重故障状態と診断したら、前記駆動機器を停止させる第1の安全停止信号を出力し、前記照合処理部が、前記回転軸の位置又は回転速度の診断結果が一致しないと判断したら、制御プログラムに定義された安全動作を実行する処理を行う判定部とを有する安全演算部と、
    前記回転軸の位置又は回転速度を検出する複数の検出部を有する安全エンコーダ部と、
    前記複数の検出部の検出結果を前記安全エンコーダ部から受信して前記安全演算部に出力するとともに、前記駆動機器を制御する速度制御器へ前記第1の安全停止信号を出力する安全入出力部とを備えることを特徴とする制御装置。
  2. 前記駆動機器の回転軸のトルクを検出する複数の検出部を有するトルク監視部を備え、
    前記安全入出力部は、前記トルク監視部による二つのトルク検出結果を前記安全演算部に入力し、
    前記安全演算部は、前記トルク監視部が出力する二つのトルク検出結果に基づいて前記駆動機器の回転軸のトルクが前記重故障状態、前記軽故障状態及び前記安全状態のいずれであるかを前記診断処理部で診断するとともに、前記回転軸のトルクの診断の結果が前記回転軸の位置又は回転速度の診断の結果を含む他の診断の結果と一致するか否かを前記照合処理部で判断し、前記判定部は、前記診断処理部が前記回転軸のトルクを重故障状態と診断したならば前記第1の安全停止信号を前記安全入出力部へ出力し、前記回転軸のトルクの診断の結果が他の診断の結果と一致しないと前記照合処理部が判断したならば、前記制御プログラムに定義された安全動作を実行する処理を行うことを特徴とする請求項1に記載の制御装置。
  3. 前記駆動機器の温度を検出する複数の温度センサを有する温度監視部を備え、
    前記安全入出力部は、前記温度監視部による二つの温度の検出結果を前記安全演算部に入力し、
    前記安全演算部は、前記温度監視部が出力する二つの温度検出結果に基づいて前記駆動機器の温度が前記重故障状態、前記軽故障状態及び前記安全状態のいずれであるかを前記診断処理部で診断するとともに、前記駆動機器の温度の診断の結果が前記回転軸の位置又は回転速度の診断結果を含む他の診断の結果と一致するか否かを前記照合処理部で判断し、前記判定部は、前記診断処理部が前記駆動機器の温度を重故障状態と診断したならば前記第1の安全停止信号を前記安全入出力部へ出力し、前記駆動機器の温度の診断結果が他の診断の結果が一致しないと前記照合処理部が判断したならば、前記制御プログラムに定義された安全動作を実行する処理を行うことを特徴とする請求項1又は2に記載の制御装置。
  4. 前記判定部は、安全入力機器から異常発生を示す第2の安全停止信号が入力されると、前記第1の安全停止信号を前記安全入出力部へ出力することを特徴とする請求項1から3のいずれか1項に記載の制御装置。
  5. 前記安全演算部は、前記診断処理部が全ての診断で前記重故障状態ではないと診断し、かつ少なくとも一つの診断で前記軽故障状態であると診断したら、診断結果の組合せに基づいて、前記制御プログラムに定義された安全動作を実行する処理を行うことを特徴とする請求項1から4のいずれか1項に記載の制御装置。
  6. 駆動機器の状態を検出する少なくとも二つの状態情報源と、前記駆動機器を制御する制御機器とに接続され、前記状態情報源の各々から、該駆動機器の状態を示す状態情報を取得する安全入出力部と、
    前記安全入出力部が取得した前記状態情報の各々に基づいて、前記駆動機器を停止させる必要がある重故障状態であるか、前記駆動機器を停止させる必要のない軽故障状態であるか、正常である安全状態であるかを診断する診断処理部と、前記診断の結果を照合する照合処理部とを備えた演算装置と、前記診断処理部が状態情報のいずれかに基づいて重故障状態と診断したら、前記駆動機器を停止させる第1の安全停止信号を前記安全入出力部を通じて前記制御機器へ出力し、前記照合処理部が、診断の結果が一致しないと判断したら、制御プログラムに定義された安全動作を実行する処理を行う判定部とを有する安全演算部とを備えることを特徴とする制御装置。
JP2015085983A 2015-04-20 2015-04-20 制御装置 Pending JP2016206842A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085983A JP2016206842A (ja) 2015-04-20 2015-04-20 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085983A JP2016206842A (ja) 2015-04-20 2015-04-20 制御装置

Publications (1)

Publication Number Publication Date
JP2016206842A true JP2016206842A (ja) 2016-12-08

Family

ID=57487823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085983A Pending JP2016206842A (ja) 2015-04-20 2015-04-20 制御装置

Country Status (1)

Country Link
JP (1) JP2016206842A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136696A (ja) * 2017-02-21 2018-08-30 オムロン株式会社 モータ制御装置
WO2018155426A1 (ja) * 2017-02-21 2018-08-30 オムロン株式会社 サーボシステム
CN109211546A (zh) * 2018-08-28 2019-01-15 电子科技大学 基于降噪自动编码器及增量学习的旋转机械故障诊断方法
CN110192157A (zh) * 2017-02-21 2019-08-30 欧姆龙株式会社 马达控制装置
EP4311098A1 (en) * 2022-07-18 2024-01-24 Nxp B.V. Power controller

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370776A (ja) * 1991-06-20 1992-12-24 Saginomiya Seisakusho Inc ステッピングモータのトルク特性測定方法
JPH06147918A (ja) * 1992-11-04 1994-05-27 Omron Corp 多回転アブソリュート型ロータリーエンコーダ
JPH07117991A (ja) * 1993-10-28 1995-05-09 Hitachi Ltd 可変速形電動巻上機
JPH08318757A (ja) * 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd モータの制御方法
JP2008022590A (ja) * 2006-07-10 2008-01-31 Nachi Fujikoshi Corp サーボモータ監視装置
JP2009058085A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp シフト制御装置
JP2010152595A (ja) * 2008-12-25 2010-07-08 Omron Corp サーボシステムおよび安全制御機器
JP2013192414A (ja) * 2012-03-15 2013-09-26 Omron Corp 駆動制御装置
JP2013191130A (ja) * 2012-03-15 2013-09-26 Omron Corp 動力源の制御装置
JP2013223259A (ja) * 2012-04-12 2013-10-28 Toyota Motor Corp モータ制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370776A (ja) * 1991-06-20 1992-12-24 Saginomiya Seisakusho Inc ステッピングモータのトルク特性測定方法
JPH06147918A (ja) * 1992-11-04 1994-05-27 Omron Corp 多回転アブソリュート型ロータリーエンコーダ
JPH07117991A (ja) * 1993-10-28 1995-05-09 Hitachi Ltd 可変速形電動巻上機
JPH08318757A (ja) * 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd モータの制御方法
JP2008022590A (ja) * 2006-07-10 2008-01-31 Nachi Fujikoshi Corp サーボモータ監視装置
JP2009058085A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp シフト制御装置
JP2010152595A (ja) * 2008-12-25 2010-07-08 Omron Corp サーボシステムおよび安全制御機器
JP2013192414A (ja) * 2012-03-15 2013-09-26 Omron Corp 駆動制御装置
JP2013191130A (ja) * 2012-03-15 2013-09-26 Omron Corp 動力源の制御装置
JP2013223259A (ja) * 2012-04-12 2013-10-28 Toyota Motor Corp モータ制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588209A4 (en) * 2017-02-21 2020-12-23 Omron Corporation ENGINE CONTROL DEVICE
WO2018155426A1 (ja) * 2017-02-21 2018-08-30 オムロン株式会社 サーボシステム
CN110192158A (zh) * 2017-02-21 2019-08-30 欧姆龙株式会社 伺服系统
CN110192157A (zh) * 2017-02-21 2019-08-30 欧姆龙株式会社 马达控制装置
JP2018136696A (ja) * 2017-02-21 2018-08-30 オムロン株式会社 モータ制御装置
EP3588208A4 (en) * 2017-02-21 2021-01-06 Omron Corporation SERVO SYSTEM
EP3588207A4 (en) * 2017-02-21 2021-01-13 Omron Corporation ENGINE CONTROL DEVICE
US10948893B2 (en) 2017-02-21 2021-03-16 Omron Corporation Motor control device
US10965225B2 (en) 2017-02-21 2021-03-30 Omron Corporation Motor control device
CN110192158B (zh) * 2017-02-21 2022-08-12 欧姆龙株式会社 伺服系统
CN109211546A (zh) * 2018-08-28 2019-01-15 电子科技大学 基于降噪自动编码器及增量学习的旋转机械故障诊断方法
CN109211546B (zh) * 2018-08-28 2020-05-26 电子科技大学 基于降噪自动编码器及增量学习的旋转机械故障诊断方法
EP4311098A1 (en) * 2022-07-18 2024-01-24 Nxp B.V. Power controller

Similar Documents

Publication Publication Date Title
JP4817084B2 (ja) モータ駆動システム及びモータ制御装置
JP2016206842A (ja) 制御装置
JP5479486B2 (ja) 自動化設備を制御するための安全コントローラおよびその制御方法
CN107110118B (zh) 机电驱动系统
EP3388906B1 (en) Motor control system, motor controller, and method for setting safety function
JP6309990B2 (ja) 複数の機構ユニットにより構成されたロボットを制御するロボットシステム、該機構ユニット、およびロボット制御装置
EP3588208B1 (en) Servo system
EP1685545B1 (en) Process device with supervisory overlayer
US7933676B2 (en) Automation system with integrated safe and standard control functionality
JP5436660B2 (ja) 安全関連制御ユニット用アプリケーションプログラムの生成方法および装置
EP3203627B1 (en) Power conversion device, power conversion method, and power conversion system
JP5450644B2 (ja) 自動化システムを制御する安全コントローラおよびその制御方法
JP2010152595A (ja) サーボシステムおよび安全制御機器
JP4900607B2 (ja) セーフティ・コントロール・システム
US10699929B2 (en) Controller of transfer device
JP2018136715A (ja) 制御システム
JP6607098B2 (ja) 速度監視装置と速度監視方法
JP5215188B2 (ja) 駆動装置のための監視装置
CN114467245A (zh) 可编程电子功率调节器
US10596669B2 (en) Machining system
JP7112240B2 (ja) 電力変換システム及び電力変換方法
KR101820538B1 (ko) 복수의 제어시스템을 구비한 건설장비용 제어기 안전 시스템
JP6635238B1 (ja) 安全制御装置および安全制御システム
CN107577163B (zh) 防故障的自动化系统、输入系统和设备
KR101998413B1 (ko) 건설기계 시동 전 오동작 방지장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514