JP2016200179A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2016200179A
JP2016200179A JP2015079380A JP2015079380A JP2016200179A JP 2016200179 A JP2016200179 A JP 2016200179A JP 2015079380 A JP2015079380 A JP 2015079380A JP 2015079380 A JP2015079380 A JP 2015079380A JP 2016200179 A JP2016200179 A JP 2016200179A
Authority
JP
Japan
Prior art keywords
oil
vehicle
driving
amount
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015079380A
Other languages
English (en)
Other versions
JP6418044B2 (ja
Inventor
隆人 遠藤
Takahito Endo
隆人 遠藤
星屋 一美
Kazumi Hoshiya
一美 星屋
伊藤 良雄
Yoshio Ito
良雄 伊藤
浅原 則己
Noriki Asahara
則己 浅原
桑原 清二
Seiji Kuwabara
清二 桑原
直志 藤吉
Naoshi Fujiyoshi
直志 藤吉
雄二 岩瀬
Yuji Iwase
雄二 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015079380A priority Critical patent/JP6418044B2/ja
Priority to US15/091,736 priority patent/US9873434B2/en
Publication of JP2016200179A publication Critical patent/JP2016200179A/ja
Application granted granted Critical
Publication of JP6418044B2 publication Critical patent/JP6418044B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1843Overheating of driveline components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R17/00Arrangements or adaptations of lubricating systems or devices
    • B60R17/02Systems, e.g. central lubrication systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0051Handover processes from occupants to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments

Abstract

【課題】手動運転走行と自動運転走行とを切り替えることが可能な車両に対して、オイル供給量を最適化して、車両のエネルギ効率を向上させること。
【解決手段】手動運転走行と、走行計画に基づいて自動で走行する自動運転走行とを切り替え可能な車両であって、オイル需要部へ供給するオイル供給量を制御可能なオイル供給機構を備えた車両の制御装置において、前記走行計画を立案し(ステップS5)、前記手動運転走行時に、前記供給量を第1油量q1に設定するとともに、前記自動運転走行時に、前記供給量を前記第1油量q1よりも少ない第2油量q2に設定し(ステップS9)、前記自動運転走行中に前記走行計画に基づいて前記オイル需要部における前記オイルの需要が増大することを予測した場合は、前記供給量を前記第2油量q2から増大させる(ステップS10)。
【選択図】図3

Description

この発明は、運転者の運転操作に基づいて走行する手動運転走行と、運転操作に依存せずに自動で走行する自動運転走行とを切り替えることが可能な車両の制御装置に関するものである。
特許文献1には、ポンプ駆動力の浪費を防止するとともに、エンジンの燃費を向上させることを目的としたハイブリッド車両の油圧制御装置が記載されている。この特許文献1に記載されたハイブリッド車両は、駆動力源が出力する動力を駆動輪へ伝達するベルト式無段変速機、ならびに、ベルト式無段変速機に供給する変速用油圧および潤滑用油圧を発生させるための電動オイルポンプを備えている。そして、油圧制御装置は、車両が定常走行する場合に、電動オイルポンプの吐出量を減少させ、ベルト式無段変速機の変速制御を実行する場合には、電動オイルポンプの吐出量を増大させるように構成されている。
なお、特許文献2には、予め設定された走行計画に従って自動運転走行することが可能な自動運転車両が記載されている。この特許文献2に記載された自動運転車両は、走行計画として、例えば目標速度パターンおよび目標走行軌跡を生成し、それら目標速度パターンおよび目標走行軌跡に従って車両の加減速制御および操舵制御を実行することにより、運転者の運転操作に依存せずに車両を自動で走行させる自動運転走行を行うように構成されている。
特開平11−189073号公報 特開2012−59274号公報
上記の特許文献1に記載された油圧制御装置によれば、変速制御時に、定常走行時と比較して電動オイルポンプの吐出量が増大される。そのため、ベルト式無段変速機の変速制御や潤滑・冷却に必要なオイルの油圧および油量を確保することができる。しかしながら、特許文献1に記載されたベルト式無段変速機のように、車両に搭載されて油圧制御される自動変速機は、上記のような変速制御時の他にも、通常よりも多量のオイルを必要とする場合がある。例えば、運転者のアクセル操作によって大きな駆動力が要求された場合や急制動された場合などでも、そのような運転操作に対応した自動変速機の変速制御を適切に実行するため、また、潤滑・冷却を十分に行うために、多量のオイルが必要になる。そのため、従来の車両では、上記のような運転操作によってオイルの需要が急増するような場合に備えて、定常走行時であっても本来必要な油量よりも多い油量のオイルが供給されている。したがって、定常走行時には、自動変速機や伝動機構の回転部材にオイルが過剰に供給されることになり、その過剰分だけオイルの撹拌損失によるエネルギの無駄が増大してしまう。また、油圧源は余剰となる油圧も発生することになる。これらのことが、燃料消費率あるいは電力消費率などの車両のエネルギ効率を低下させる一因となっていた。
一方、特許文献2に記載されているような自動運転車両においては、自動運転走行中は、運転者による運転操作がないことから、上記のような運転操作によりオイルの需要が急増するような状況を想定する必要がなくなる。そのため、供給されるオイルの過剰分を抑制して、オイルの撹拌損失を低減できる可能性がある。また、油圧源で発生する油圧を低下させて、油圧源を駆動するためのエネルギ消費を削減できる可能性がある。それに対して、従来考えられている自動運転車両では、上記のような損失の低減や消費エネルギの削減について精査されていない。したがって、自動運転車両の研究・開発を進める上で、上記のようにオイル需要部へ供給するオイルの油圧および油量を低下させることによって車両のエネルギ効率を向上させる技術に関して、具体的に検討する余地があった。
この発明は上記のような技術的課題に着目して考え出されたものであり、運転者の運転操作に基づいて走行する手動運転走行と、運転操作に依存せずに自動で走行する自動運転走行とを切り替えることが可能な車両に対して、オイル需要部へ供給するオイルの供給量を最適化することにより、車両のエネルギ効率を向上させることができる車両の制御装置を提供することを目的とするものである。
上記の目的を達成するために、この発明は、運転者の運転操作に従って走行する手動運転走行と、将来の駆動力要求を予め設定した走行計画に基づいて自動で走行する自動運転走行とを切り替えることが可能な車両であって、オイル需要部へ供給するオイルの供給量を制御することが可能なオイル供給機構を備えた車両の制御装置において、前記駆動力要求を満たす走行状態および前記オイル供給機構の作動状態を制御するコントローラを備え、前記コントローラは、前記走行計画を立案し、前記手動運転走行時に、前記供給量を第1油量に設定するとともに、前記自動運転走行時には、前記供給量を前記第1油量よりも少ない第2油量に設定し、前記自動運転走行中に前記走行計画に基づいて前記オイル需要部における前記オイルの需要が増大することを予測した場合は、前記供給量を前記第2油量から増大させるように構成されていることを特徴とするものである。
また、この発明における前記コントローラは、前記車両が前記手動運転走行から前記自動運転走行へ移行する場合は、前記手動運転走行から前記自動運転走行への移行が完了した後に、前記供給量を前記第2油量に低減し、前記車両が前記自動運転走行から前記手動運転走行へ移行する場合には、前記自動運転走行から前記手動運転走行への移行が完了する前に、前記供給量を前記第1油量に増大するように構成することができる。
この発明では、車両が自動運転走行する際には、手動運転走行時に設定される第1油量よりも少ない第2油量のオイルをオイル需要部へ供給するように、オイル供給機構の作動状態が制御される。すなわち、自動運転走行時は、手動運転走行時と比較して、オイル需要部に対するオイル供給量が低減される。自動運転走行時は、運転者による運転操作がないため、運転操作に対応する余裕分の多めのオイルが供給される手動運転走行時と比較して、オイルの供給量を低減することができる。オイルの供給量を低減した分、オイルの撹拌損失を低減することができる。また、オイル供給機構の油圧源を駆動するための消費エネルギを低減することもできる。
さらに、この発明では、自動運転走行中に、将来の走行計画を基にオイル需要部で必要とされるオイルの供給量が予測される。そして、オイル需要部におけるオイルの需要が増大することを予測した場合に、オイルの供給量が増大される。将来の走行計画に基づいて実行される自動運転走行中には、将来の車両の走行状態を予測することができる。したがって、走行状態の予測内容に基づいてオイル需要部における将来のオイルの需要を予測することができる。そして、そのオイルの需要が増大することを予測した際にオイルの供給量を増大することにより、オイル需要部へ適量のオイルを供給することができる。すなわち、自動運転走行中は、オイル需要部におけるオイルの需要の変化を予測できる利点を利用し、オイル需要部へ過不足無くオイルを供給することができる。
したがって、この発明によれば、上記のように自動運転走行中のオイルの供給量を低減することにより、撹拌損失や消費エネルギを低減し、その結果、車両のエネルギ効率を向上させることができる。それとともに、自動運転走行中にオイル需要部におけるオイルの需要が変化する場合であっても、その需要の変化に対応してオイル需要部へ過不足無くオイルを供給することができる。そのため、オイルによる潤滑や冷却が必要な部位の焼き付きや過熱を適切に防止することができる。また、例えば自動変速機などの油圧制御に必要な油圧も過不足無く供給することができ、油圧制御を適切に実行することができる。
また、この発明によれば、手動運転走行から自動運転走行へ移行する場合は、その移行が完了した後に、オイル需要部に対するオイル供給量が低減される。そのため、例えば、手動運転走行から自動運転走行への移行の過渡時に運転者による運転操作が行われ、オイル需要部におけるオイルの需要が急増する場合であっても、必要なオイルの供給量を確保することができる。一方、自動運転走行から手動運転走行へ移行する場合には、その移行が完了する前に、オイル需要部に対するオイルの供給量が増大される。そのため、例えば、自動運転走行から手動運転走行へ移行した直後に運転者による運転操作が行われ、オイル需要部におけるオイルの需要が急増する場合であっても、必要なオイルの供給量を確保することができる。
この発明の制御装置で制御対象とする自動運転走行が可能な車両の制御系統の概要を説明するための図である。 この発明の制御装置で制御対象とする車両の駆動系統およびオイル供給機構の一例を示す図である。 この発明の制御装置で実行される制御の一例を説明するためのフローチャートである。 図3のフローチャートで示す制御を実行した場合のオイル供給量および駆動力要求の変化等を示した図であって、特に、手動運転走行から自動運転走行へ移行する際のオイル供給量の推移を説明するためタイムチャートである。 図3のフローチャートで示す制御を実行した場合のオイル供給量および駆動力要求の変化等を示した図であって、特に、自動運転走行から手動運転走行へ移行する際のオイル供給量の推移を説明するためタイムチャートである。 この発明の制御装置で制御対象とする車両のオイル供給機構の他の例を示す図である。 この発明の制御装置で制御対象とする車両のオイル供給機構の他の例を示す図である。 この発明の制御装置で制御対象とする車両のオイル供給機構の他の例を示す図である。
この発明を、図を参照して具体的に説明する。この発明で制御の対象とする車両Veは、従来の一般的な車両と同様に、運転者の運転操作に従って走行する手動運転走行と、運転者の運転操作には依存せずに、将来の走行状態を予め設定した走行計画に基づいて自動で走行する自動運転走行とを切り替えることが可能なように構成されている。
具体的には、図1に示すように、車両Veは、前輪1および後輪2を有している。この図1に示す例では、車両Veは、駆動力源(ENG,MG)3が出力する動力を、動力伝達機構(TM)4および駆動軸5を介して、前輪1に伝達して駆動力を発生させる前輪駆動車として構成されている。なお、車両Veとしては、駆動力源3が出力する動力を後輪2に伝達して駆動力を発生させる後輪駆動車であってもよい。あるいは、駆動力源3が出力する動力を前輪1および後輪2にそれぞれ伝達して駆動力を発生させる四輪駆動車であってもよい。また、各車輪1,2には、それぞれ、制動装置(図示せず)が設けられている。
駆動力源(ENG,MG)3は、例えばエンジンやモータなど、車両Veの駆動力を発生する原動機である。駆動力源3としてエンジンを用いる場合、そのエンジンは、出力の調整や起動および停止の動作を制御することが可能なように構成される。例えばガソリンエンジンであれば、スロットル開度、燃料の供給量、点火の実行および停止、ならびに、点火時期などが電気的に制御される。駆動力源3としてモータを用いる場合、そのモータは、発電機能のあるモータ(いわゆる、モータ・ジェネレータ)であり、例えば永久磁石式の同期電動機によって構成される。そして、インバータを介してバッテリに接続され、回転数やトルク、あるいはモータとしての機能および発電機としての機能の切り替えなどを制御することが可能なように構成される。
動力伝達機構(TM)4は、例えば、従来一般的な有段の自動変速機や、ベルト式もしくはトロイダル式の無段変速機であり、設定する変速段(もしくは変速比)を制御することが可能なように構成されている。また、ハイブリッド車両においてエンジンおよびモータが出力する動力を合成・分割する動力分割機構もこの動力伝達機構4に相当する。
動力伝達機構4におけるオイル需要部6へオイルを供給するためのオイル供給機構7が設けられている。オイル需要部6は、例えば、歯車や回転軸などの回転部材、ベアリング、自動変速機の多板クラッチ、プーリや伝動ベルト等の無段変速機の動力伝達部、あるいは、モータのコイルエンドなど、オイルによる潤滑および冷却を必要とする部位である。また、自動変速機の油圧制御装置や油圧アクチュエータなど、油圧制御のための油圧を必要とする部位もこのオイル需要部6に相当する。
オイル供給機構7は、オイル需要部6に対するオイル供給量を制御することが可能なように構成されている。例えば、後述の図2に示すような、電気モータによって駆動されて油圧を発生する電動オイルポンプ(EOP)30である。また、後述の図6,図7に示すような、オイル供給量を調整することが可能な電磁バルブ42,52を備えた機械式オイルポンプ(MOP)41,51もこのオイル供給機構7に相当する。あるいは、後述の図8に示すような、オイル供給量を調整することが可能な電磁バルブ65を備えた掻き上げ潤滑機構61もこのオイル供給機構7に相当する。
上記のような駆動力源3、動力伝達機構4、オイル供給機構7、制動装置、および、操舵装置等の動作を制御するためのコントローラ(ECU)8が設けられている。コントローラ8は、例えばマイクロコンピュータを主体にして構成される電子制御装置である。コントローラ8には、車両Ve各部のセンサ・車載装置類9からの検出信号や情報信号などが入力されるように構成されている。なお、図1では1つのコントローラ8が設けらた例を示しているが、コントローラ8は、例えば制御する装置や機器毎に、複数設けられていてもよい。
センサ・車載装置類9のうち、車両Veの走行状態および各部の作動状態や挙動等を検出する主な内部センサとして、例えば、アクセル開度を検出するアクセルセンサ、ブレーキペダルの踏み込み量を検出するブレーキセンサ(もしくはブレーキスイッチ)、ステアリング機構の舵角を検出する舵角センサ、エンジンの回転数を検出するエンジン回転数センサ、動力伝達機構4の出力軸回転数を検出するアウトプット回転数センサ、各車輪1,2の回転速度をそれぞれ検出して車速を求める車速センサ、車両Veの前後加速度を検出する前後加速度センサ、車両Veの横加速度を検出する横加速度センサ、車両Veのヨーレートを検出するヨーレートセンサ、および、オイル需要部6へ供給するオイルの温度を検出する油温センサなどが備えられている。
また、センサ・車載装置類9のうち、車両Veの周辺情報や外部状況を検出する主な外部センサとして、例えば、車載カメラ、レーダー[RADAR:Radio Detection and Ranging]、および、ライダー[LIDAR:Laser Imaging Detection and Ranging]などの少なくとも一つが備えられている。
車載カメラは、例えば車両Veのフロントガラスの内側に設置され、車両Veの外部状況に関する撮像情報をコントローラ8に送信するように構成されている。車載カメラは、単眼カメラであってもよく、あるいはステレオカメラであってもよい。ステレオカメラは、両眼視差を再現するように配置された複数の撮像部を有している。ステレオカメラの撮像情報によれば、車両前方の奥行き方向の情報も取得することができる。
レーダーは、ミリ波やマイクロ波などの電波を利用して車両Veの外部の他車両や障害物等を検出し、その検出データをコントローラ8に送信するように構成されている。例えば、電波を車両Veの周囲に放射し、他車両や障害物等に当たって反射された電波を受信して測定・分析することにより、他車両や障害物等を検出する。
ライダーは、レーザー光を利用して車両Veの外部の他車両や障害物等を検出し、その検出データをコントローラ8に送信するように構成されている。例えば、レーザー光を車両Veの周囲に放射し、他車両や障害物等に当たって反射されたレーザー光を受光して測定・分析することにより、他車両や障害物等を検出する。
上記のような内部センサや外部センサの他に、GPS[Global Positioning System]受信部、地図データベース、および、ナビゲーションシステム等が備えられている。GPS受信部は、複数のGPS衛星からの電波を受信することにより、車両Veの位置(例えば、車両Veの緯度および経度)を測定し、その位置情報をコントローラ8に送信するように構成されている。地図データベースは、地図情報を蓄積したデータベースであり、例えばコントローラ8内に形成されている。あるいは、例えば車両Veと通信可能な情報処理センタなどの外部施設のコンピュータに記憶されたデータを利用することもできる。ナビゲーションシステムは、GPS受信部が測定した車両Veの位置情報と、地図データベースの地図情報とに基づいて、車両Veの走行ルートを算出するように構成されている。
上記のような各種のセンサ・車載装置類9からの検出データや情報データが、コントローラ8に入力されるように構成されている。そして、それら入力されたデータおよび予め記憶させられているデータ等を使用して演算を行い、その演算結果を基に、駆動力源3、動力伝達機構4、オイル供給機構7、制動装置、および、操舵装置等の車両Ve各部のアクチュエータ(図示せず)に対して、制御指令信号を出力するように構成されている。
車両Veを自動運転走行させるための主なアクチュエータとして、スロットルアクチュエータ、ブレーキアクチュエータ、および、操舵アクチュエータ等を備えている。スロットルアクチュエータは、コントローラ8から出力される制御信号に応じてエンジンのスロットル開度やモータに対する供給電力を制御するように構成されている。ブレーキアクチュエータは、コントローラ8から出力される制御信号に応じて制動装置を作動させ、各車輪1,2へ付与する制動力を制御するように構成されている。操舵アクチュエータは、コントローラ8から出力される制御信号に応じて電動パワーステアリング装置のアシストモータを駆動し、操舵トルクを制御するように構成されている。
コントローラ8は、車両Veを自動運転走行させるための主な制御部として、例えば、車両位置認識部、外部状況認識部、走行状態認識部、走行計画生成部、および、走行制御部等を有している。
車両位置認識部は、GPS受信部で受信した車両Veの位置情報および地図データベースの地図情報に基づいて、地図上における車両Veの車両位置を認識するように構成されている。なお、ナビゲーションシステムで用いられる車両位置を、そのナビゲーションシステムから取得することもできる。あるいは、道路上や道路脇の外部に設置されたセンサで車両Veの車両位置を測定可能な場合は、そのセンサとの通信によって車両位置を取得することもできる。
外部状況認識部は、例えば車載カメラの撮像情報やレーダーもしくはライダーの検出データに基づいて、車両Veの外部状況を認識するように構成されている。外部状況としては、例えば、走行車線の位置、道路幅、道路の形状、路面勾配、および、車両周辺の障害物に関する情報等が取得される。また、走行環境として車両周辺の気象情報や路面の摩擦係数などを取得してもよい。
走行状態認識部は、内部センサの各種の検出データに基づいて、車両Veの走行状態を認識するように構成されている。車両Veの走行状態としては、例えば、車速、前後加速度、横加速度、および、ヨーレートなどが取得される。
走行計画生成部は、例えば、ナビゲーションシステムで演算された目標ルート、車両位置認識部で認識された車両位置、および、外部状況認識部で認識された外部状況等に基づいて、車両Veの進路を生成するように構成されている。進路は、目標ルートに沿って車両Veが進行する軌跡である。また、走行計画生成部は、目標ルート上で、安全に走行すること、法令を順守して走行すること、および、効率よく走行すること等の基準に沿って、車両Veが適切に走行することができるように進路を生成する。
そして、走行計画生成部は、生成した進路に応じた走行計画を生成するように構成されている。具体的には、少なくとも、外部状況認識部で認識された外部状況および地図データベースの地図情報に基づいて、予め設定された目標ルートに沿った走行計画が生成される。
走行計画は、車両Veの将来の駆動力要求を含む車両の走行状態を予め設定するものであり、例えば現在時刻から数秒先の将来のデータを基に生成される。車両Veの外部状況や走行状況によっては、現在時刻から数十秒先の将来のデータを用いることもできる。走行計画は、例えば、目標ルートに沿った進路を車両Veが走行する際に、車速、加速度、および、操舵トルク等の推移を示すデータとして走行計画生成部から出力される。
また、走行計画は、車両Veの速度パターン、加速度パターン、および、操舵パターンとして走行計画生成部から出力することもできる。速度パターンとは、例えば、進路上に所定間隔で設定された目標制御位置に対して、各目標制御位置毎に時間に関連付けられて設定された目標車速からなるデータである。加速度パターンとは、例えば、進路上に所定間隔で設定された目標制御位置に対して、各目標制御位置毎に時間に関連付けられて設定された目標加速度からなるデータである。操舵パターンとは、例えば、進路上に所定間隔で設定された目標制御位置に対して、各目標制御位置毎に時間に関連付けられて設定された目標操舵トルクからなるデータである。
走行制御部は、走行計画生成部で生成された走行計画に基づいて、車両Veの走行を自動で制御するように構成されている。具体的には、走行計画に応じた制御信号が、スロットルアクチュエータ、ブレーキアクチュエータ、および、操舵アクチュエータ等の各アクチュエータに対して出力される。それによって、車両Veが自動運転走行される。
上記のように自動運転走行が可能な車両Veの駆動系統の一例を図2に示してある。この図2に示す例では、車両Veは、駆動力源としてエンジン(ENG)11ならびに第1モータ(MG1)12および第2モータ(MG2)13を搭載したハイブリッド車両として構成されている。なお、この発明で制御対象とする車両は、この図2に示すようなハイブリッド車両に限定されることはない。例えば、エンジンおよび1基のモータを駆動力源として搭載した他の方式のハイブリッド車両であってもよく、あるいは、駆動力源としてエンジンのみを搭載した従来一般的な構成の車両であってもよい。
図2に示す車両Veは、エンジン11が出力する動力を、動力分割機構14によって第1モータ12と駆動軸15とに分割して伝達するように構成されている。また、第1モータ12で発生した電力で第2モータ13を駆動し、その第2モータ13が出力する動力を駆動軸15に付加することができるように構成されている。
動力分割機構14は、例えば、サンギヤ16、リングギヤ17、およびキャリア18を有する遊星歯車機構によって構成されている。この図2に示す例では、シングルピニオン型の遊星歯車機構が用いられている。この動力分割機構14を構成する遊星歯車機構は、エンジン11の出力軸11aと同一の回転軸線上に配置されている。
上記の遊星歯車機構のサンギヤ16に、第1モータ12が連結されている。具体的には、第1モータ12は、動力分割機構14を挟んでエンジン11の反対側に配置されていて、その第1モータ12のロータ12aがサンギヤ16に連結されている。このサンギヤ16に対して同心円上に、内歯歯車のリングギヤ17が配置されている。これらサンギヤ16とリングギヤ17とに噛み合っているピニオンギヤ19が、キャリア18によって自転および公転が可能なように保持されている。キャリア18には、この動力分割機構14の入力軸14aが連結されている。その入力軸14aが、ダンパ機構20およびフライホイール21ならびにワンウェイクラッチ22を介して、エンジン11の出力軸11aに連結されている。
ワンウェイクラッチ22は、エンジン11の回転方向と逆方向のトルクが作用した場合に、回転部材が固定部材と係合するクラッチ機構であって、固定部材は、回転不可能なようにハウジングなどに固定されている。そして、回転部材は、出力軸11aに連結されると共に、ダンパ機構20およびフライホイール21を介してキャリア18に連結されている。したがって、ワンウェイクラッチ22は、出力軸11aもしくはキャリア18に、エンジン11の回転方向と逆方向のトルクが作用した場合に係合してその回転を止めるように構成されている。このようなワンウェイクラッチ22を使用することにより、トルクの作用方向に応じて出力軸11aおよびキャリア18の回転を止めることができる。後述するように、このワンウェイクラッチ22は、第1モータ12および第2モータ13の両方の出力トルクによって車両Veをモータ走行させる場合に、エンジン11の出力軸11aの回転を止めるブレーキ機構として機能するものである。したがって、このワンウェイクラッチ22に替えて、例えば、係合状態を制御することにより出力軸11aの回転を選択的に止めるように構成した摩擦ブレーキ等を用いることもできる。
動力分割機構14のリングギヤ17の外周部分に、外歯歯車のドライブギヤ23が一体に形成されている。また、動力分割機構14や第1モータ12などの回転軸線と平行に、カウンタシャフト24が配置されている。このカウンタシャフト24の一方(図2での右側)の端部に、上記のドライブギヤ23と噛み合うカウンタドリブンギヤ25が一体となって回転するように取り付けられている。カウンタシャフト24の他方(図2での左側)の端部には、終減速機であるデファレンシャルギヤ26のリングギヤ27と噛み合うカウンタドライブギヤ28が、カウンタシャフト24に一体となって回転するように取り付けられている。したがって、動力分割機構14のリングギヤ17が、上記のドライブギヤ23、カウンタシャフト24、カウンタドリブンギヤ25、および、カウンタドライブギヤ28からなるギヤ列、ならびに、デファレンシャルギヤ26を介して、駆動軸15に連結されている。
上記の動力分割機構14から駆動軸15に伝達されるトルクに、第2モータ13が出力するトルクを付加できるように構成されている。すなわち、第2モータ13のロータ13aに一体となって回転するロータ軸13bが、上記のカウンタシャフト24と平行に配置され、そのロータ軸13bに連結されたリダクションギヤ29が、上記のカウンタドリブンギヤ25に噛み合っている。したがって、動力分割機構14のリングギヤ17には、上記のようなギヤ列あるいはリダクションギヤ29を介して、駆動軸15および第2モータ13が連結されている。
上記のように、この車両Veは、エンジン11の出力軸11aおよび第1モータ12のロータ軸12bが動力分割機構14を介して駆動軸15側のギヤ列およびデファレンシャルギヤ26に連結されている。すなわち、エンジン11および第1モータ12の出力トルクが、動力分割機構14を介して、駆動軸15側へ伝達されるように構成されている。
車両Veには、潤滑および冷却のためのオイルを供給するため、および、油圧制御用の油圧を発生するためのオイルポンプ(図示せず)が設けられている。このオイルポンプは、従来、車両のエンジンや変速機に用いられている一般的な構成の機械式オイルポンプであり、エンジン11が出力するトルクによって駆動されて油圧を発生するように構成されている。具体的には、オイルポンプのロータ(図示せず)がエンジン11の出力軸1aと共に回転するように構成されている。したがって、エンジン11が燃焼運転されて出力軸11aからトルクを出力する際には、オイルポンプも駆動されて油圧を発生する。オイルポンプが油圧を発生することによってオイルポンプから吐出されるオイルが、所定の油路(図示せず)を介して、動力分割機構14を含むオイル需要部6に供給されるように構成されている。
なお、動力分割機構14等のオイル需要部6には、デファレンシャルギヤ26のリングギヤ27による掻き上げ潤滑機構(図示せず)によっても、オイルが供給されるように構成されている。この掻き上げ潤滑機構は、歯車を用いる部分の潤滑機構として、従来、車両に一般的に用いられている構成である。掻き上げ潤滑機構は、例えば、リングギヤ27の歯先部分がオイルパン(図示せず)等のオイルの中に浸漬するように設けられている。そして、リングギヤ27が駆動軸15側から伝達されるトルクによって回転する際にオイルパンから掻き上げたオイルを動力分割機構14等のオイル需要部6に供給するように構成されている。したがって、エンジン11の出力軸11aの回転が停止している場合であっても、車両Veが走行していて駆動軸15が回転している状態では、オイル需要部6に対してオイルを供給することができる。
上記のようなオイルポンプは、エンジン11の出力軸11aの回転が停止している場合には油圧を発生することができない。車両Veが走行中であれば、掻き上げ潤滑機構によって動力分割機構14等のオイル需要部6にオイルを供給することができる。しかしながら、掻き上げ潤滑機構は、リングギヤ27によって一旦上方へ掻き上げたオイルを、重力の作用によって動力分割機構14等のオイル需要部6に供給する構成であるため、油圧を用いてオイルを供給する強制潤滑方式の潤滑機構と比較して潤滑および冷却性能が低い。また、掻き上げ潤滑機構は、油温や車速によってその潤滑・冷却性能が変化する。例えば、オイルは、油温が低い場合には粘度が高くなり、流動性が低下する。そのため、油温が低い場合には、掻き上げ潤滑機構によるオイル供給量は少なくなる。また、車速が低い場合は、リングギヤ27の回転数が低くなり、必然的にリングギヤ27によるオイルの掻き上げ量が減少する。また、油温が高くオイルの粘度が低い場合や、高車速でピニオンギヤ19の回転数が高い場合には、ピニオンギヤ19に供給されたオイルが遠心力によってピニオンギヤ19に付着せずに弾き飛ばされてしまい、結果的にピニオンギヤ19に対するオイル供給量が減少してしまう。
そこで、この車両Veには、エンジン11が停止している場合や、掻き上げ潤滑機構の潤滑・冷却性能が不足する場合であっても、動力分割機構14等のオイル需要部6へのオイルの供給を維持し、動力分割機構14等のオイル需要部6へ適切な油量のオイルを供給するために、また、油圧制御に必要な適切な油圧を維持するために、オイルポンプ30が設けられている。
この図2に示す例では、オイルポンプ30(以下、EOP30と記す)は、電気モータが出力するトルクによって駆動されて油圧を発生する電動オイルポンプによって構成されている。したがって、このEOP30には、EOP30を駆動するためのポンプ用モータ31が備えられている。ポンプ用モータ31は、エンジン11ならびに第1モータ12および第2モータ13などの車両Veの駆動力源とは別の電気モータであって、この図2に示す例ではEOP30専用に設けられている。
EOP30が油圧を発生することによってEOP30から吐出されるオイルが、所定の油路(図示せず)を介して、オイル需要部6に供給されるように構成されている。具体的には、動力分割機構14のピニオンギヤ9、ピニオン軸9a、および、ベアリング(図示せず)等に、オイルが供給されるように構成されている。
上記のようなエンジン11の運転制御、第1モータ12および第2モータ13の回転制御、ならびに、ポンプ用モータ31の回転制御などが、前述のコントローラ8によって実行される。具体的には、車両Veは、駆動力源としてのエンジン11ならびに第1モータ12および第2モータ13を有効に利用して、エネルギ効率あるいは燃費が良好になるように制御される。例えば、少なくともエンジン11の出力によって車両Veを走行させる「HVモード」と、エンジン11の運転を停止して第1モータ12および第2モータ13の少なくともいずれかのモータの出力によって車両Veを走行させる「EVモード」とが、車両Veの走行状態に応じて適宜に選択される。
上記の各走行モードのうち、特に「EVモード」は、第2モータ13の出力によって車両Veを走行させる「第1EVモード」と、第1モータ12および第2モータ13の両方のモータの出力により、高出力で車両Veを走行させる「第2EVモード」とに区分される。これら「第1EVモード」と「第2EVモード」とが、車両Veの走行状態に応じて適宜に選択される。
「第1EVモード」では、第2モータ13がモータとして正方向(エンジン11の出力軸11aの回転方向)に回転してトルクを出力するように制御される。そして、その第2モータ13の出力トルクによって発生させた駆動力で車両Veが走行させられる。
「第2EVモード」では、第1モータ12および第2モータ13の両方の出力によって車両Veが走行させられる。この「第2EVモード」では、第1モータ12がモータとして負方向(エンジン11の出力軸11aの回転方向と逆方向)に回転してトルクを出力するように制御される。また、第2モータ13がモータとして正方向に回転してトルクを出力するように制御される。そして、それら第1モータ12の出力トルクおよび第2モータ13の出力トルクによって発生させた駆動力で車両Veが走行させられる。この場合、エンジン11の出力軸11aには負方向のトルクが作用するため、ワンウェイクラッチ22が係合する。したがって、エンジン11の出力軸11aおよび動力分割機構14の遊星歯車機構におけるキャリア18の回転が止められて固定された状態で、第1モータ12および第2モータ13の両方の出力トルクによって、効率良く車両Veを走行させることができる。
上記のように、この車両Veでは、「HVモード」および「EVモード」を走行状態や要求駆動力などに応じて適宜切り替えられる。前述したように、「EVモード」では、エンジン11の運転が停止させられるため、エンジン11によって駆動されるオイルポンプで油圧を発生することができなくなる。「EVモード」のうち、「第1EVモード」が設定された場合は、特に、第2モータ13の潤滑および冷却のためにオイルが必要になる。また、「第2EVモード」が設定された場合には、第1モータ12および第2モータ13の冷却に加えて、特に、動力分割機構14のピニオンギヤ19およびそのピニオンギヤ19を支持しているピニオン軸19aならびにベアリング等の潤滑および冷却のためにオイルが必要になる。この場合は、前述したように、ワンウェイクラッチ22が係合して出力軸11aおよびキャリア18の回転が止められた状態で、第1モータ12と第2モータ13とが、それぞれ逆方向に回転させられる。すなわち、動力分割機構14の遊星歯車機構においては、キャリア18の回転が止められた状態で、サンギヤ16とリングギヤ17とがそれぞれ逆方向に回転する。そのため、キャリア18に支持されているピニオンギヤ19は、サンギヤ16の回りの公転が止められた状態で自転する。この場合の自転の回転数はサンギヤ16とリングギヤ17と差回転数によって決まるが、サンギヤ16とリングギヤ17とが互いに逆方向に回転していることから、ピニオンギヤ19は高速で自転することになる。したがって、特に、「第2EVモード」が設定された場合には、上記のように高速で回転するピニオンギヤ19およびピニオン軸19aならびにベアリング等の焼き付きや過剰な摩耗を防止するために、動力分割機構14に対して十分な量のオイルを供給する必要がある。
したがって、この車両Veでは、「EVモード」が設定された場合や、エンジン11が停止している場合に、EOP30が駆動される。すなわち、ポンプ用モータ32を制御して、EOP30で油圧を発生させ、動力分割機構14に対してオイルを供給するように構成されている。
このように、図2に示す構成の車両Veは、EOP30を油圧源とするオイル供給機構7を備えていることにより、例えば動力分割機構14のピニオンギヤ9や第1モータ12および第2モータ13のコイルエンドなどのオイル需要部6に対するオイル供給量を制御することが可能である。また、この車両Veは、運転者の運転操作に従って走行する手動運転走行と、将来の走行状態を予め設定した走行計画に基づいて自動で走行する自動運転走行とを切り替えることが可能なように構成されている。したがって、車両Veは、自動運転走行する場合には、その際に生成される走行計画に基づいてオイル需要部6における将来のオイルの需要の変化を予測することができる。そして、その予測したオイルの需要に応じて、オイル供給機構7からオイル需要部6へ供給するオイルの供給量を制御するように構成されている。
図3のフローチャートは、車両Veの走行状態が手動運転走行と自動運転走行との間で移行される場合のオイル供給機構7の制御例を示したものであり、車両Veが手動運転走行している場合に実行される。先ず、車両Veに対して手動運転走行から自動運転走行への移行の要求があるか否かが判断される(ステップS1)。例えば、運転者による切り替えスイッチ等の操作によって自動運転走行が選択された場合や、あるいは、車両Veが走行路に設定された自動運転走行区域に進入する場合に、手動運転走行から自動運転走行への移行が要求される。
続いて、自動運転走行実施フラグがONにされるとともに(ステップS2)、手動運転走行から自動運転走行への移行処理が実行される(ステップS3)。自動運転走行実施フラグは、手動運転走行から自動運転走行への移行要求があった場合にONにされ、反対に、自動運転走行から手動運転走行への移行要求があった場合にOFFにされる。
手動運転走行から自動運転走行への移行処理が完了することにより、自動運転走行が開始される。ステップS4では、その移行処理が完了したか否かが判断される。未だ手動運転走行から自動運転走行への移行処理が完了していないことにより、このステップS4で否定的に判断された場合は、上記のステップS3へ戻り、ステップS3およびステップS4の制御が同様に実行される。すなわち、手動運転走行から自動運転走行への移行処理が完了するまで、ステップS3およびステップS4の制御が繰り返し実行される。
これに対して、手動運転走行から自動運転走行への移行処理が完了したことにより、ステップS4で肯定的に判断された場合には、ステップS5へ進む。ステップS5では、自動運転走行のための走行計画が立案される。走行計画は、前述したように、例えば数秒から数十秒先の将来の車両Veの走行状態を予め設定したデータであり、コントローラ8の走行計画生成部によって生成される。
ステップS5で自動運転走行における走行計画が立案されることにより、将来のオイルの需要、すなわち、将来のオイル需要部6におけるオイルの必要量を推定することができる。したがって、ステップS6では、ステップS5で立案された走行計画に基づいて、将来のオイル需要部6におけるオイルの必要量が見積もられる。
ステップS6で推定された将来のオイル需要部6におけるオイルの必要量と、現在のオイル需要部6におけるオイル供給量とが比較されて、オイル需要部6に対するオイル供給量を増大することが必要か否かが判断される(ステップS7)。将来のオイル需要部6におけるオイルの必要量よりも現在のオイル需要部6におけるオイル供給量が多ければ、オイル需要部6に対するオイル供給量を増大する必要はないと判断される。
したがって、将来のオイル需要部6におけるオイルの必要量よりも現在のオイル需要部6におけるオイル供給量が多いことにより、このステップS7で否定的に判断された場合は、ステップS8へ進む。ステップS8では、オイル需要部6に対するオイル供給量を低減することが可能か否かが判断される。
手動運転走行中は、運転者の運転操作によっては、オイル需要部6におけるオイルの必要量が増大する場合がある。そのため、手動運転走行中は、そのような運転操作によるオイルの需要の増大に備えて、オイル供給量が多めに設定される。例えば、手動運転走行中は、オイル供給機構7によるオイル供給量が第1油量q1に設定される。それに対して、自動運転走行中は、上記のような運転操作によるオイルの需要の増大を考慮しなくともよいので、オイル供給量を手動運転走行時よりも少なめに設定することができる。したがって、自動運転走行中は、走行計画に基づく将来のオイルの需要の増大が予測されない限り、オイル供給機構7によるオイル供給量が、上記の第1油量q1よりも少ない第2油量q2に設定される。
したがって、走行計画に基づく将来のオイルの需要の増大が予測されておらず、オイル需要部6に対するオイル供給量を低減することが可能であることにより、このステップS8で肯定的に判断された場合は、ステップS9へ進む。ステップS9では、オイル供給機構7によるオイル供給量が、手動運転走行中に設定されていた第1油量q1よりも少ない第2油量q2に低減される。
このように、ステップS9では、車両Veが手動運転走行から自動運転走行に移行するのに伴い、オイル需要部6に対するオイル供給量が低減される。その場合のオイル供給量の低減は、上述のステップS4で手動運転走行から自動運転走行への移行処理が完了したことが判断された後に実行される。
一方、ステップS6で推定された将来のオイル需要部6におけるオイルの必要量と、現在のオイル需要部6におけるオイル供給量とが比較されて、将来のオイル需要部6におけるオイルの必要量よりも現在のオイル需要部6におけるオイル供給量が少ないことにより、上述のステップS7で肯定的に判断された場合には、ステップS10へ進む。ステップS10では、オイル供給機構7によるオイル供給量が、通常の自動運転走行中に設定される第2油量q2よりも多い第3油量q3に増大される。この場合の第3油量は、手動運転走行中に設定される第1油量q1と同等の値であってもよい。また、第3油量は、推定された将来のオイル需要部6におけるオイルの必要量に対応して設定される可変値であってもよい。
上記のステップS9で、オイル供給機構7によるオイル供給量が第1油量q1から第2油量q2に低減された後、または、ステップS10で、オイル供給機構7によるオイル供給量が第2油量q2から第3油量q3もしくは第1油量q1に増大された後には、ステップS11に進む。また、例えば、走行計画に基づく将来のオイルの需要の増大が予測され、オイル需要部6に対するオイル供給量を低減することが可能でないことにより、上述のステップS8で否定的に判断された場合には、ステップS9の制御を飛ばし、このステップS11に進む。そして、ステップS11では、自動運転走行が継続するか否かが判断される。
自動運転走行中は、例えば、運転者による切り替えスイッチ等の操作によって手動運転走行が選択された場合や、あるいは、車両Veが走行路に設定された自動運転走行区域から退出する場合に、自動運転走行から手動運転走行への移行が要求される。そのような移行要求がない場合に、自動運転走行が継続すると判断される。
したがって、未だ自動運転走行から手動運転走行への移行要求がないことにより、このステップS11で肯定的に判断された場合は、前述のステップS5へ戻り、従前と同様の制御が実行される。すなわち、自動運転走行から手動運転走行への移行が要求されるまで、ステップS5からステップS11までの制御が繰り返される。
これに対して、自動運転走行から手動運転走行への移行要求があったことにより、ステップS11で否定的に判断された場合には、ステップS12へ進み、自動運転走行実施フラグがOFFにされる。
続いて、自動運転走行から手動運転走行への移行処理が実行される(ステップS13)。自動運転走行から手動運転走行への移行処理が完了することにより、手動運転走行が開始されるが、このコントローラ8による制御では、手動運転走行が開始される前に、すなわち、自動運転走行から手動運転走行への移行処理が完了する前に、オイル供給機構7によるオイル供給量が、第2油量q2から第1油量q1に増大される。
したがって、上記のステップS13で自動運転走行から手動運転走行への移行処理が実行されると、その移行処理が完了する前に、オイル供給機構7によるオイル供給量が、第2油量q2から第1油量q1に増大される(ステップS14)。
そして、上記のステップS14でオイル供給量が増大された後に、自動運転走行から手動運転走行への移行処理が完了させられる。すなわち、手動運転走行が開始される。そしてその後、このルーチンを一旦終了する。
上記のように図3のフローチャートで示した制御を実行した場合のオイル供給量の推移を、図4および図5のタイムチャートに示してある。図4のタイムチャートは、車両Veが手動運転走行から自動運転走行へ移行する際のオイル供給量の推移、および、自動運転走行中にオイル需要部におけるオイルの需要の増大が予測された場合のオイル供給量の推移を示している。図4のタイムチャートにおいて、時刻t0から時刻t1の間の制御の開始当初では、車両Veは手動運転走行されている。この場合、オイル供給機構7によって第1油量q1のオイルがオイル需要部6に供給されている。時刻t1で手動運転走行から自動運転走行への移行要求があると、時刻t1から時刻t2の間の移行期間を経て、時刻t2で手動運転走行から自動運転走行への移行が完了する。すなわち、自動運転走行が開始される。
そして、このコントローラ8による制御では、時刻t2よりも後に、すなわち、手動運転走行から自動運転走行への移行が完了した後に、オイル供給機構7によるオイル供給量が、第1油量q1から第2油量q2に低減させられる。したがって、手動運転走行から自動運転走行への移行の際に、例えば、その移行の過渡時に運転者による運転操作が行われ、オイル需要部6におけるオイルの需要が急増した場合であっても、オイル供給量は未だ第1油量q1に維持されている。そのため、上記のようなオイルの需要の急増に対応して、必要なオイル供給量を確保することができる。
また、上記のように、自動運転走行中には、手動運転走行に設定される第1油量q1よりも少ない第2油量q2をオイル需要部6へ供給するように、オイル供給機構7によるオイル供給量が制御される。具体的には、EOP30のポンプ用モータ31の出力が制御される。そのため、自動運転走行中に、手動運転走行時と比較してオイル供給量を低減することができる。オイル供給量を低減した分、オイルの撹拌損失を低減することができる。また、ポンプ用モータ31を駆動するための消費エネルギを低減することもできる。
時刻t2以降の自動運転走行中に、前述したような走行計画に基づいて、時刻t3でオイル需要部6におけるオイルの需要の増大が予測されると、その需要の増大に対応してオイル供給機構7によるオイル供給量が増大させられる。具体的には、この図4に示す例では、車両Veが「第1EVモード」で第2モータ3の出力によってモータ走行している際に、時刻t3において「第2EVモード」で第1モータ2および第2モータ3の両方の出力による高トルクのモータ走行の要求が予測されると、直後の時刻t4で油量増大フラグがONにされる。それに伴い、オイル供給機構7によるオイル供給量が、第2油量q2から第3油量q3に増大させられる。あるいは、第2油量q2から第1油量q1に増大されてもよい。
このように、コントローラ8は、車両Veの自動運転走行中には、前述したような走行計画に基づいてオイル需要部6におけるオイルの需要の変化を予測可能である利点を活用し、オイルの需要が増大する状態を予測することができる。そして、そのオイルの需要の増大を予測した際には、それに対応してオイル供給量を増大することにより、オイル需要部6へ適量のオイルを供給することができる。したがって、自動運転走行中に、オイル需要部6へ過不足無くオイルを供給することができる。
図5のタイムチャートは、車両Veが自動運転走行から手動運転走行へ移行する際のオイル供給量の推移を示している。図5のタイムチャートにおいて、時刻t10から時刻t11の間は、車両Veは自動運転走行されている。この場合、オイル供給機構7によって第2油量q2のオイルがオイル需要部6に供給されている。時刻t11で自動運転走行から手動運転走行への移行要求があると、時刻t11から時刻t12の間の移行期間を経て、時刻t12で自動運転走行から手動運転走行への移行が完了する。すなわち、手動運転走行が開始される。
そして、このコントローラ8による制御では、時刻t12よりも前に、すなわち、自動運転走行から手動運転走行への移行が完了する前に、オイル供給機構7によるオイル供給量が、第2油量q2から第1油量q1に増大させられる。したがって、時刻t12で手動運転走行が開始された直後に、もしくは、手動運転走行が開始されると同時に、例えば、運転者による「第2EVモード」での高トルクのモータ走行の要求があった場合であっても、その時点では既にオイル供給量は第1油量q1に増大されている。そのため、上記のようなオイルの需要の急増に対応して、必要なオイル供給量を確保することができる。
なお、前述の図2では、オイル需要部6に対するオイル供給量を制御することが可能なオイル供給機構として、ポンプ用モータ31によって駆動されるEOP30を油圧源としたオイル供給機構7を備えた構成を示しているが、上記のようなEOP30に替えて、以下の図6や図7に示すようなオイルポンプを用いることもできる。
図6に示すオイルポンプ41(以下、MOP41と記す)は、前述したエンジン11によって駆動されるオイルポンプであり、従来、一般的な構成の機械式オイルポンプである。したがって、MOP41は、エンジン11が運転されていて、エンジン11の出力軸11aが回転することにより、MOP41のロータが駆動されて油圧を発生するように構成されている。そして、このMOP41を油圧源とするオイル供給機構7は、MOP41とオイル需要部6とをつなぐ油路の途中に、流量を調整することが可能な電磁バルブ42が設けられている。電磁バルブ42は、コントローラ8から出力される制御信号に基づいて動作が制御されるように構成されている。そのため、この図6に示すオイル供給機構7は、エンジン11が運転されていて、MOP41が油圧を発生している場合に、電磁バルブ42の動作を制御することにより、オイル需要部6に対するオイル供給量を制御することが可能である。したがって、この図6に示すオイル供給機構7を用いた場合であっても、自動運転走行中に、オイル需要部6に対するオイル供給量を低減させることができる。そのため、自動運転走行中のオイルの撹拌損失を低減することができる。
図7に示すオイルポンプ51(以下、MOP51と記す)は、前述したエンジン11によって駆動されるオイルポンプやMOP41と同様に、従来、一般的な構成の機械式オイルポンプである。MOP51は、駆動軸15側から伝達されるトルクによって駆動されて油圧を発生するように構成されている。具体的には、MOP51のロータ(図示せず)が、デファレンシャルギヤ26およびカウンタドライブギヤ28を介して駆動軸15に連結されているカウンタシャフト24と共に回転するように構成されている。したがって、MOP51は、車両Veが走行していて、駆動軸15が回転することにより、MOP51のロータが駆動されて油圧を発生するように構成されている。そして、このMOP51を油圧源とするオイル供給機構7は、MOP51とオイル需要部6とをつなぐ油路の途中に、流量を調整することが可能な電磁バルブ52が設けられている。電磁バルブ52は、上述の電磁バルブ42と同様に、コントローラ8から出力される制御信号に基づいて動作が制御されるように構成されている。そのため、この図7に示すオイル供給機構7は、車両Veが走行していて、MOP41が油圧を発生している場合に、電磁バルブ52の動作を制御することにより、オイル需要部6に対するオイル供給量を制御することが可能である。したがって、この図7に示すオイル供給機構7を用いた場合であっても、自動運転走行中に、オイル需要部6に対するオイル供給量を低減させることができる。そのため、自動運転走行中のオイルの撹拌損失を低減することができる。
また、図8に示すようなオイル供給機構7を用いることもできる。図8に示すオイル供給機構7は、掻き上げ潤滑機構61、オイル溜め62,63、油路64、および、電磁バルブ65などから構成されている。
掻き上げ潤滑機構61は、歯車を用いる部分の潤滑機構として、従来、車両に一般的に用いられている構成である。例えば、この掻き上げ潤滑機構61はデファレンシャルギヤ26のリングギヤ27の歯先部分がオイル溜め62のオイルの中に浸漬するように設けられている。そして、リングギヤ27が駆動軸15側から伝達されるトルクによって回転する際にオイル溜め62から掻き上げたオイルをオイル需要部6に供給するように構成されている。
オイル溜め63は、鉛直方向(図8の上下方向)において、オイル需要部6よりも下方で、かつ、オイル溜め62よりも上方に設けられている。オイル溜め62とオイル溜め63との間は、セパレータ66によって仕切られているとともに、油路64によってオイルの流通が可能なように連通されている。油路64は、一方の端部がオイル溜め63の底部に配置され、他方の端部が、オイル溜め63の底部よりも下方に位置するオイル溜め62の内部に配置されている。したがって、オイル溜め63に溜められたオイルが、油路64を通ってオイル溜め62に流下するように構成されている。
そして、上記の油路64の途中に、電磁バルブ65が設けられている。電磁バルブ65は、上述の電磁バルブ42および電磁バルブ52と同様に、コントローラ8から出力される制御信号に基づいて動作が制御されるように構成されている。そのため、この図8に示すオイル供給機構7は、車両Veが走行していて、掻き上げ潤滑機構61が掻き上げたオイルがオイル溜め63に溜められている場合に、電磁バルブ65の動作を制御することにより、掻き上げ潤滑機構61で掻き上げるオイルの量を制御することが可能である。すなわち、オイル需要部6に対するオイル供給量を制御することが可能である。したがって、この図8に示すオイル供給機構7を用いた場合であっても、自動運転走行中に、オイル需要部6に対するオイル供給量を低減させることができる。そのため、自動運転走行中のオイルの撹拌損失を低減することができる。
1…前輪、 2…後輪、 3…駆動力源(ENG,MG)、 4…動力伝達機構(TM)、 5…駆動軸、 6…オイル需要部、 7…オイル供給機構、 8…コントローラ(ECU)、 9…センサ・車載装置類、 11…エンジン(駆動力源;ENG)、 12…第1モータ(駆動力源;MG1)、 13…第2モータ(駆動力源;MG2)、 14…動力分割機構(オイル需要部)、 15…駆動軸、 16…サンギヤ、 17…リングギヤ、 18…キャリア、 19…ピニオンギヤ、 19a…ピニオン軸、 22…ワンウェイクラッチ、 30…電動オイルポンプ(オイル供給機構;EOP)、 31…ポンプ用モータ、 41,51…機械式オイルポンプ(MOP)、 42,52,65…電磁バルブ、 61…掻き上げ潤滑機構、 Ve…車両。

Claims (2)

  1. 運転者の運転操作に従って走行する手動運転走行と、将来の駆動力要求を予め設定した走行計画に基づいて自動で走行する自動運転走行とを切り替えることが可能な車両であって、オイル需要部へ供給するオイルの供給量を制御することが可能なオイル供給機構を備えた車両の制御装置において、
    前記走行計画に基づいて設定された前記駆動力要求を満たす走行状態および前記オイル供給機構の作動状態を制御するコントローラを備え、
    前記コントローラは、
    前記走行計画を立案し、
    前記手動運転走行時に、前記供給量を第1油量に設定するとともに、前記自動運転走行時には、前記供給量を前記第1油量よりも少ない第2油量に設定し、
    前記自動運転走行中に前記走行計画に基づいて前記オイル需要部における前記オイルの需要が増大することを予測した場合は、前記供給量を前記第2油量から増大させる
    ように構成されていることを特徴とする車両の制御装置。
  2. 請求項1に記載の車両の制御装置において、
    前記コントローラは、
    前記車両が前記手動運転走行から前記自動運転走行へ移行する場合は、前記手動運転走行から前記自動運転走行への移行が完了した後に、前記供給量を前記第2油量に低減し、
    前記車両が前記自動運転走行から前記手動運転走行へ移行する場合には、前記自動運転走行から前記手動運転走行への移行が完了する前に、前記供給量を前記第1油量に増大する
    ように構成されていることを特徴とする車両の制御装置。
JP2015079380A 2015-04-08 2015-04-08 車両の制御装置 Active JP6418044B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015079380A JP6418044B2 (ja) 2015-04-08 2015-04-08 車両の制御装置
US15/091,736 US9873434B2 (en) 2015-04-08 2016-04-06 Vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079380A JP6418044B2 (ja) 2015-04-08 2015-04-08 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2016200179A true JP2016200179A (ja) 2016-12-01
JP6418044B2 JP6418044B2 (ja) 2018-11-07

Family

ID=57111236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079380A Active JP6418044B2 (ja) 2015-04-08 2015-04-08 車両の制御装置

Country Status (2)

Country Link
US (1) US9873434B2 (ja)
JP (1) JP6418044B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096404A (ja) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 車両の制御装置
WO2018173906A1 (ja) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 車両の油圧制御装置および油圧制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128154B2 (ja) * 2015-03-24 2017-05-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US10949792B2 (en) 2016-12-30 2021-03-16 United States Postal Service System and method for delivering items using autonomous vehicles and receptacle targets
JP6536595B2 (ja) * 2017-01-19 2019-07-03 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503098A (ja) * 1996-01-12 2000-03-14 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシヤフト 無段変速機の変速比の予設定方法
JP2000170888A (ja) * 1998-12-07 2000-06-23 Toyota Motor Corp オイルポンプの駆動制御装置
JP2006312353A (ja) * 2005-05-06 2006-11-16 Toyota Motor Corp 車両の制御装置
JP2007071265A (ja) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd ベルト式無段変速機の油圧制御装置
JP2007085397A (ja) * 2005-09-20 2007-04-05 Toyota Motor Corp 車両用パワートレーン機器の冷却潤滑装置
JP2008120271A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 自動運転車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189073A (ja) 1997-12-25 1999-07-13 Nissan Motor Co Ltd ハイブリット車両の流体圧制御装置
JP5464123B2 (ja) 2010-10-26 2014-04-09 トヨタ自動車株式会社 車両の潤滑装置
JP5252058B2 (ja) 2011-10-07 2013-07-31 トヨタ自動車株式会社 自動運転車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503098A (ja) * 1996-01-12 2000-03-14 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシヤフト 無段変速機の変速比の予設定方法
JP2000170888A (ja) * 1998-12-07 2000-06-23 Toyota Motor Corp オイルポンプの駆動制御装置
JP2006312353A (ja) * 2005-05-06 2006-11-16 Toyota Motor Corp 車両の制御装置
JP2007071265A (ja) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd ベルト式無段変速機の油圧制御装置
JP2007085397A (ja) * 2005-09-20 2007-04-05 Toyota Motor Corp 車両用パワートレーン機器の冷却潤滑装置
JP2008120271A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 自動運転車両

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096404A (ja) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 車両の制御装置
WO2018173906A1 (ja) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 車両の油圧制御装置および油圧制御方法
JPWO2018173906A1 (ja) * 2017-03-23 2019-07-25 日立オートモティブシステムズ株式会社 車両の油圧制御装置および油圧制御方法
US10830340B2 (en) 2017-03-23 2020-11-10 Hitachi Automotive Systems, Ltd. Hydraulic pressure control device and hydraulic pressure control method for vehicle

Also Published As

Publication number Publication date
US9873434B2 (en) 2018-01-23
US20160297444A1 (en) 2016-10-13
JP6418044B2 (ja) 2018-11-07

Similar Documents

Publication Publication Date Title
US11442447B2 (en) Vehicle control system
US9902393B2 (en) Vehicle control system
JP6418044B2 (ja) 車両の制御装置
JP6308167B2 (ja) 車両の制御装置
CN107792051A (zh) 车辆的控制装置
CN107097778B (zh) 用于车辆的驱动系统
JP2008154393A (ja) 車両およびその制御方法
KR102024199B1 (ko) 차량의 제어장치
US20210122250A1 (en) Control apparatus for vehicle
CN111204329A (zh) 车辆的控制装置以及车辆的控制方法
US11267452B2 (en) Control device of vehicle
EP3858693A1 (en) Electric-powered vehicle control method and electric-powered vehicle drive system
US10766477B2 (en) Vehicle and control method for vehicle
US11820391B2 (en) Vehicle program update system and vehicle program update method
JP2008222120A (ja) ハイブリッド自動車およびその制御方法
WO2016121451A1 (ja) コーストストップ制御装置
CN116968735A (zh) 队列行驶系统
US11597398B2 (en) Vehicle control apparatus
JP2017177976A (ja) ハイブリッド車両の制御装置及びハイブリッド車両システム
JP6838777B2 (ja) 車両用制御装置
WO2017119189A1 (ja) 車両用制御装置
JP7067639B2 (ja) 車両の制御装置
JP2012218559A (ja) ハイブリッド車両の制御装置
JP2018191441A (ja) 車両用制御装置
KR20240031549A (ko) 전동화 차량 및 그를 위한 크루즈 컨트롤 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R151 Written notification of patent or utility model registration

Ref document number: 6418044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151