JP2016180495A - Vacuum valve - Google Patents
Vacuum valve Download PDFInfo
- Publication number
- JP2016180495A JP2016180495A JP2015062479A JP2015062479A JP2016180495A JP 2016180495 A JP2016180495 A JP 2016180495A JP 2015062479 A JP2015062479 A JP 2015062479A JP 2015062479 A JP2015062479 A JP 2015062479A JP 2016180495 A JP2016180495 A JP 2016180495A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- seal member
- elastic seal
- valve seat
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012495 reaction gas Substances 0.000 claims description 55
- 238000007789 sealing Methods 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 239000006227 byproduct Substances 0.000 abstract description 42
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000012423 maintenance Methods 0.000 abstract description 5
- 238000009826 distribution Methods 0.000 description 38
- 230000000052 comparative effect Effects 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000000859 sublimation Methods 0.000 description 9
- 230000008022 sublimation Effects 0.000 description 9
- 238000005206 flow analysis Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/42—Valve seats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/46—Attachment of sealing rings
- F16K1/465—Attachment of sealing rings to the valve seats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
- F16K27/02—Construction of housing; Use of materials therefor of lift valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K49/00—Means in or on valves for heating or cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K51/00—Other details not peculiar to particular types of valves or cut-off apparatus
- F16K51/02—Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Lift Valve (AREA)
- Details Of Valves (AREA)
Abstract
Description
本発明は、第1ポート部と第2ポート部が弁本体部に一体に突設され、反応ガスが流れるボディと、前記ボディに設けられた弁座と、前記弁座に当接又は離間する弁体と、前記弁体と前記弁座の間で押し潰されて弾性変形する弾性シール部材と、前記ボディに連結され、前記弁体に駆動力を付与する駆動手段と、前記ボディを加熱するヒータとを備える真空弁に関する。 In the present invention, the first port portion and the second port portion protrude integrally with the valve body portion, the body through which the reaction gas flows, the valve seat provided in the body, and the valve seat abuts or separates. A valve body; an elastic seal member that is crushed and elastically deformed between the valve body and the valve seat; a driving unit that is connected to the body and applies a driving force to the valve body; and the body is heated. The present invention relates to a vacuum valve including a heater.
例えば、半導体製造装置は、反応室と真空ポンプとの間に真空弁が配置されている。真空弁は、半導体の成膜に使用された反応ガスを反応室から真空ポンプへ排気する場合の排気流量を制御したり、反応室の真空圧力を一定に制御したりするのに用いられる。 For example, in a semiconductor manufacturing apparatus, a vacuum valve is disposed between a reaction chamber and a vacuum pump. The vacuum valve is used to control the exhaust flow rate when the reaction gas used for film formation of the semiconductor is exhausted from the reaction chamber to the vacuum pump, or to control the vacuum pressure in the reaction chamber to be constant.
図26は、第1従来例の真空弁101の断面図である。真空弁101は、第1ポート部121と第2ポート部122が弁本体部123に一体に突設されたボディ120に、駆動手段110が連結されている。弁体112は、駆動手段110の駆動軸111に連結され、駆動手段110の駆動力により、ボディ120に設けられた弁座面124に当接又は離間する。弁体112は、弁座面124と対向するシール面112aに弾性シール部材115が装着され、その弾性シール部材115を弁座面124に密着させることによりシールを行う。かかる真空弁101は、流路内において副生成物(化学反応で意図した反応と異なる反応により生成された物質)が発生することを防止するために、駆動軸111とボディ120にヒータ114,141,142,143が設けられている(例えば特許文献1参照)。 FIG. 26 is a cross-sectional view of the vacuum valve 101 of the first conventional example. In the vacuum valve 101, the driving means 110 is connected to a body 120 in which a first port portion 121 and a second port portion 122 project integrally with a valve body portion 123. The valve body 112 is connected to the drive shaft 111 of the drive means 110, and abuts on or separates from the valve seat surface 124 provided on the body 120 by the drive force of the drive means 110. The valve body 112 is sealed by attaching an elastic seal member 115 to a seal surface 112 a facing the valve seat surface 124, and bringing the elastic seal member 115 into close contact with the valve seat surface 124. The vacuum valve 101 is provided with heaters 114 and 141 on the drive shaft 111 and the body 120 in order to prevent the generation of by-products (substances generated by a reaction different from the intended reaction in the chemical reaction) in the flow path. , 142, and 143 (see, for example, Patent Document 1).
図27は、第2従来例の真空弁201の要部断面図である。真空弁201は、弁体210に設けられた弾性シール部材212を、ボディ220に設けられた弁座面221に密着させることにより、弁閉する。ボディ220は、環状壁231が形成されている。その環状壁231は、弁座面221及び弾性シール部材212より内側に設けられている。弁体210は、真空弁201の弁開動作の開始時に、環状壁231と嵌め合って微小な絞り流路241を形成する環状溝211が形成されている。かかる真空弁201では、弁開動作の開始時に、反応ガスが絞り流路241で流速を緩和されてから、弾性シール部材212と弁座面221との間を通過するので、反応ガスの副生成物は、環状壁231の表面や環状溝211の内壁に付着しやすく、弾性シール部材212や弁座面221への付着が低減される(例えば特許文献2参照)。 FIG. 27 is a cross-sectional view of a main part of the vacuum valve 201 of the second conventional example. The vacuum valve 201 is closed by bringing an elastic seal member 212 provided on the valve body 210 into close contact with a valve seat surface 221 provided on the body 220. The body 220 has an annular wall 231 formed thereon. The annular wall 231 is provided inside the valve seat surface 221 and the elastic seal member 212. The valve body 210 is formed with an annular groove 211 that fits with the annular wall 231 to form a minute throttle channel 241 when the valve opening operation of the vacuum valve 201 is started. In such a vacuum valve 201, at the start of the valve opening operation, the reaction gas is reduced in flow rate in the throttle channel 241, and then passes between the elastic seal member 212 and the valve seat surface 221, so that the reaction gas is generated as a by-product. Objects easily adhere to the surface of the annular wall 231 and the inner wall of the annular groove 211, and adhesion to the elastic seal member 212 and the valve seat surface 221 is reduced (see, for example, Patent Document 2).
図28は、第3従来例の真空バルブユニット301の断面図である。真空バルブユニット301は、粗排気弁体362と主排気弁体330を単一構造体にしたものである。ボディ310は、ポート形成部材315が主排気弁体330の弁閉方向と反対向きに固定ねじ316を挿通され、その固定ねじ316をシリンダ本体314に締結することにより、固定されている。ポート形成部材315には、主排気弁座317が設けられ、その主排気弁座317に設けられた環状溝に弾性シール部材318がはめ込まれている。真空バルブユニット301は、図28に示す状態から粗排気つまみ361が回転されると、粗排気弁体362が下降して粗排気弁座363を開放し、低真空圧までの減圧を行う。真空バルブユニット301は、粗排気後、粗排気つまみ361が逆方向に回転され、図28に示す状態に戻されると、主排気つまみ364が回転される。これにより、主排気弁体330が上昇して主排気弁座317を開放し、高真空圧までの減圧を行う(例えば特許文献3参照)。 FIG. 28 is a cross-sectional view of a vacuum valve unit 301 of the third conventional example. The vacuum valve unit 301 has a rough exhaust valve body 362 and a main exhaust valve body 330 in a single structure. The body 310 is fixed by the port forming member 315 being inserted through the fixing screw 316 in the direction opposite to the valve closing direction of the main exhaust valve body 330 and fastening the fixing screw 316 to the cylinder body 314. The port forming member 315 is provided with a main exhaust valve seat 317, and an elastic seal member 318 is fitted in an annular groove provided in the main exhaust valve seat 317. When the rough exhaust knob 361 is rotated from the state shown in FIG. 28, the vacuum valve unit 301 lowers the rough exhaust valve body 362, opens the rough exhaust valve seat 363, and performs pressure reduction to a low vacuum pressure. In the vacuum valve unit 301, after rough exhaust, the rough exhaust knob 361 is rotated in the reverse direction, and when the vacuum valve unit 301 is returned to the state shown in FIG. 28, the main exhaust knob 364 is rotated. As a result, the main exhaust valve body 330 rises to open the main exhaust valve seat 317 and perform pressure reduction to a high vacuum pressure (see, for example, Patent Document 3).
しかしながら、第1〜第3従来例の真空弁101,201,301には、以下の問題があった。
第1従来例の真空弁101は、ヒータ114,141,142,143が弁体112とボディ120を加熱するにもかかわらず、弾性シール部材115に副生成物が付着していた。
However, the vacuum valves 101, 201, and 301 of the first to third conventional examples have the following problems.
In the vacuum valve 101 of the first conventional example, by-products were attached to the elastic seal member 115 even though the heaters 114, 141, 142, and 143 heated the valve body 112 and the body 120.
図29は、第1従来例の真空弁101を使用した後における弾性シール部材115のシール部115aを示す図であって、(A)は弾性シール部材115の平面図を示し、(B)は(A)のXX断面図である。尚、図29(A)(B)に記載する副生成物Yは、図面を見やすくするために、膜厚や大きさ等を強調して記載している。発明者らが、使用後の真空弁101から弾性シール部材115を取り外し、そのシール部115aを顕微鏡写真で確認したところ、図29(A)(B)に示すように、シール部115aより内側部分(弾性シール部材115の内周側)P1とシール部115aより外側部分(弾性シール部材115の外周側)P2に副生成物Yが多く堆積していた。副生成物Yは、部分P1,P2から弾性シール部材115の外周側にかけて堆積量が減っていた。 FIGS. 29A and 29B are views showing the seal portion 115a of the elastic seal member 115 after using the vacuum valve 101 of the first conventional example. FIG. 29A is a plan view of the elastic seal member 115, and FIG. It is XX sectional drawing of (A). Note that the by-product Y described in FIGS. 29A and 29B is described with emphasis on the film thickness, size, and the like in order to make the drawing easy to see. The inventors removed the elastic seal member 115 from the vacuum valve 101 after use, and confirmed the seal portion 115a with a micrograph. As shown in FIGS. 29 (A) and 29 (B), the inner portion of the seal portion 115a. A large amount of by-product Y was deposited on the inner side P1 of the elastic seal member 115 and the outer side P2 of the seal portion 115a (the outer peripheral side of the elastic seal member 115). The amount of the by-product Y decreased from the portions P1 and P2 to the outer peripheral side of the elastic seal member 115.
副生成物Yが付着する原因について、発明者らは、弾性シール部材115を弁座面124から離間させるように弁体112が上昇した場合に、弾性シール部材115がヒータ141,142,143のヒータ熱を伝達されなくなって表面温度を低下させるためと考えた。また、発明者らは、弾性シール部材115を弁座面124から離間させるように弁体112が上昇した場合に、弾性シール部材115に反応ガスの流れが当たり、ガスが冷却され、温度の低い弾性シール部材115の表面に副生成物が析出すると考えた。 Regarding the cause of the adhesion of the by-product Y, the inventors have confirmed that when the valve body 112 is lifted so as to separate the elastic seal member 115 from the valve seat surface 124, the elastic seal member 115 is attached to the heaters 141, 142, and 143. This was thought to be because the heat of the heater was not transmitted and the surface temperature was lowered. In addition, when the valve body 112 is lifted so that the elastic seal member 115 is separated from the valve seat surface 124, the inventors flow the reaction gas to the elastic seal member 115, cool the gas, and lower the temperature. It was thought that by-products were deposited on the surface of the elastic seal member 115.
また、発明者らは、図29(B)に示すように、弾性シール部材115のシール部115aより内側部分P1と外側部分P2に、副生成物Yが膜状に張り付いていることを確認した。その原因について、発明者らは次のように考えた。弾性シール部材115は、弁閉時にヒータ141,142,143のヒータ熱を弁座面124を介して伝達されるため、弾性シール部材115の表面に付着した副生成物Yは、弁閉時に昇華しようとする。しかし、弾性シール部材115のシール部115a付近では、副生成物Yが、弾性シール部材115と弁座面124との間に挟み込まれて自由に動けないため、昇華しようとしてもできない。真空弁101が次に弁開すると、弾性シール部材115がヒータ熱を伝達されなくなる上に、残った副生成物Yが反応ガスに晒されるため、弾性シール部材115のシール部115a付近に残った副生成物Yの上に新たな副生成物Yが付着することになる。その後、真空弁101が再弁閉すると、新たな副生成物Yが古い副生成物Yの上に押し固められ、それらがヒータ熱で混ざり合って膜状に広がる。この繰り返しにより、副生成物Yがシール部115a付近に膜状に張り付くと考えられる。 In addition, as shown in FIG. 29B, the inventors have confirmed that the by-product Y is stuck to the inner portion P1 and the outer portion P2 from the seal portion 115a of the elastic seal member 115 in a film shape. did. The inventors considered the cause as follows. Since the elastic seal member 115 transmits the heater heat of the heaters 141, 142, and 143 via the valve seat surface 124 when the valve is closed, the by-product Y attached to the surface of the elastic seal member 115 is sublimated when the valve is closed. try to. However, in the vicinity of the seal portion 115a of the elastic seal member 115, the by-product Y is sandwiched between the elastic seal member 115 and the valve seat surface 124 and cannot move freely. When the vacuum valve 101 is opened next, the elastic seal member 115 cannot transmit the heater heat, and the remaining by-product Y is exposed to the reaction gas, so that it remains in the vicinity of the seal portion 115a of the elastic seal member 115. A new by-product Y will be deposited on the by-product Y. Thereafter, when the vacuum valve 101 is closed again, the new by-product Y is pressed onto the old by-product Y, and they are mixed by the heater heat and spread in a film shape. By repeating this, it is considered that the by-product Y sticks in the form of a film near the seal portion 115a.
上記副生成物Yは、シール部115aの周方向に沿って均一な厚さで弾性シール部材115に付着しない。そのため、真空弁101は、使用を続けていると、弾性シール部材115に付着する副生成物Yによりシール部115aを弁座面124に周方向に均一にシールさせることができなくなり、シール性能が低下する虞がある。この不具合を回避するためには、弾性シール部材115等のメンテナンスを短い周期で行う必要があった。このメンテナンス時には、半導体製造ラインを止める必要があるため、半導体の製造効率が低下する。よって、メンテナンス頻度を減らすために、シール性能を長期間維持できる真空弁が現場から求められていた。 The by-product Y does not adhere to the elastic seal member 115 with a uniform thickness along the circumferential direction of the seal portion 115a. Therefore, if the vacuum valve 101 continues to be used, the by-product Y adhering to the elastic seal member 115 cannot uniformly seal the seal portion 115a to the valve seat surface 124 in the circumferential direction. May decrease. In order to avoid this problem, it is necessary to perform maintenance of the elastic seal member 115 and the like in a short cycle. At the time of this maintenance, it is necessary to stop the semiconductor production line, so that the semiconductor production efficiency is lowered. Therefore, in order to reduce the maintenance frequency, a vacuum valve capable of maintaining the sealing performance for a long time has been demanded from the field.
ここで、図30のグラフに示すように、反応ガスは、ヒーティング温度が高いほど、昇華量が増える。そこで、ヒータ114が発生する熱量を増やせば、弁開時でも弾性シール部材115を高温に加熱し、副生成物Yを昇華させられるとも考えられる。しかし、この方法では、駆動手段110が熱によって破損する虞があるため、好ましくない。 Here, as shown in the graph of FIG. 30, the amount of sublimation of the reactive gas increases as the heating temperature increases. Therefore, it can be considered that if the amount of heat generated by the heater 114 is increased, the by-product Y can be sublimated by heating the elastic seal member 115 to a high temperature even when the valve is open. However, this method is not preferable because the driving unit 110 may be damaged by heat.
一方、図30のグラフに示すように、反応ガスは、同じヒーティング温度でも、反応ガスの圧力が低ければ、昇華量を増加させることが可能である。そこで、発明者らは、弁開時でも弾性シール部材115を加熱すると共に、弾性シール部材115付近を流れる反応ガスの圧力を低下させる構造を導き出すことができれば、弁開時に副生成物Yが昇華しやすくなり、シール性能を長期間維持させることができるとの考えに至った。 On the other hand, as shown in the graph of FIG. 30, even when the reaction gas has the same heating temperature, the sublimation amount can be increased if the pressure of the reaction gas is low. Therefore, if the inventors can derive a structure that heats the elastic seal member 115 even when the valve is opened and reduces the pressure of the reaction gas flowing in the vicinity of the elastic seal member 115, the by-product Y sublimates when the valve is opened. This led to the idea that the sealing performance can be maintained for a long time.
第2従来例の真空弁201は、環状壁231と環状溝211を嵌め合わせないように弁体210が上昇した場合、反応ガスが絞り流路241が解消されるため、副生成物の付着抑制効果がなくなる。この場合、第2従来例の真空弁201は、弾性シール部材212が弁体210に装着されているため、第1従来例の真空弁101と同様、弾性シール部材212に付着した副生成物が昇華せず、シール性能を低下させる虞がある。 In the vacuum valve 201 of the second conventional example, when the valve body 210 is lifted so that the annular wall 231 and the annular groove 211 are not fitted together, the reaction gas is eliminated from the throttle flow path 241, thereby suppressing the adhesion of by-products. No effect. In this case, since the elastic seal member 212 is attached to the valve body 210 in the vacuum valve 201 of the second conventional example, the by-product attached to the elastic seal member 212 is the same as the vacuum valve 101 of the first conventional example. There is a possibility that the sealing performance is deteriorated without sublimation.
第3従来例の真空バルブユニット301は、主排気弁座317に弾性シール部材318を装着しているため、ボディ310をヒータで加熱すれば、弁開時でも弾性シール部材318を加熱できると考えられる。しかし、真空バルブユニット301は、主排気弁体330が上昇して弁開する場合、弾性シール部材318が反応ガスに晒され、弾性シール部材318付近の流速や圧力が大きくなる。そのため、仮に、ボディ310をヒータで加熱したとしても、弾性シール部材318が反応ガスに熱を奪われ、副生成物を効率良く昇華させることができない。 In the vacuum valve unit 301 of the third conventional example, the elastic seal member 318 is attached to the main exhaust valve seat 317. Therefore, if the body 310 is heated with a heater, the elastic seal member 318 can be heated even when the valve is opened. It is done. However, in the vacuum valve unit 301, when the main exhaust valve body 330 rises and opens, the elastic seal member 318 is exposed to the reaction gas, and the flow velocity and pressure near the elastic seal member 318 increase. Therefore, even if the body 310 is heated with a heater, the elastic seal member 318 is deprived of heat by the reaction gas, and the byproduct cannot be sublimated efficiently.
また、真空バルブユニット301は、粗排気と主排気を別々の弁体362,330で行うものであり、1個の弁体112,210で流量制御を行う第1及び第2従来例の真空弁101,201と構造が異なる。かかる真空バルブユニット301は、真空弁101,201と比べ、主排気弁体330が弁開動作する際に、主排気弁体330を挟んで上流側と下流側との差圧が小さいため、主排気弁体330に作用するシール荷重が真空弁101,201の弁体112,210に作用するシール荷重より小さい。よって、真空バルブユニット301では、シリンダ本体314に固定ねじ316で固定されるポート形成部材315に弁座317と弾性シール部材318を設ける構成が可能でも、真空弁101,201に真空バルブユニット301の弁構造を適用することは困難であった。なぜなら、この場合、固定ねじではシール荷重に対する強度が不足するからである。また、例えば、仮に、真空バルブユニット301と同様に、真空弁101の弁座面124に装着溝を形成して弾性シール部材を装着する構成を採用しても、真空弁101は、第1ポート部121と第2ポート部122を弁本体部123に一体に突設しているため、弾性シール部材の装着に手間がかかる。特に、反応ガスが装着溝と弾性シール部材との間に入り込んで固化した場合、弾性シール部材の取り外しが非常に困難になる。 The vacuum valve unit 301 performs rough exhaust and main exhaust with separate valve bodies 362 and 330, and the vacuum valves of the first and second conventional examples in which flow control is performed with one valve body 112 and 210. 101 and 201 are different in structure. Such a vacuum valve unit 301 has a smaller differential pressure between the upstream side and the downstream side across the main exhaust valve body 330 when the main exhaust valve body 330 is opened, compared to the vacuum valves 101 and 201. The seal load acting on the exhaust valve body 330 is smaller than the seal load acting on the valve bodies 112 and 210 of the vacuum valves 101 and 201. Therefore, in the vacuum valve unit 301, the valve forming member 315 fixed to the cylinder body 314 with the fixing screw 316 can be provided with the valve seat 317 and the elastic seal member 318, but the vacuum valve 101, 201 has the vacuum valve unit 301. It was difficult to apply the valve structure. This is because in this case, the fixing screw has insufficient strength against the seal load. Further, for example, as with the vacuum valve unit 301, even if a configuration in which a mounting groove is formed in the valve seat surface 124 of the vacuum valve 101 and an elastic seal member is mounted is used, the vacuum valve 101 has the first port. Since the part 121 and the second port part 122 are integrally projected on the valve body part 123, it takes time to mount the elastic seal member. In particular, when the reaction gas enters between the mounting groove and the elastic seal member and is solidified, it is very difficult to remove the elastic seal member.
本発明は、上記問題点を解決するためになされたものであり、弁開時に副生成物が昇華しやすく、シール性能を長期間維持させることができ、弾性シール部材のメンテナンスが容易な真空弁を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is a vacuum valve in which by-products are easily sublimated when the valve is opened, the sealing performance can be maintained for a long time, and the elastic seal member is easily maintained. The purpose is to provide.
本発明の一態様は、次のような構成を有している。
(1)第1ポート部と第2ポート部が弁本体部に一体に突設され、反応ガスが流れるボディと、前記ボディに設けられた弁座と、前記弁座に当接又は離間する弁体と、前記弁体と前記弁座の間で押し潰されて弾性変形する弾性シール部材と、前記ボディに連結され、前記弁体に駆動力を付与する駆動手段と、前記ボディを加熱するヒータとを備える真空弁において、前記弾性シール部材が前記弁座に装着されていること、前記ボディの内壁に着脱自在に取り付けられ、前記弾性シール部材を保持する保持手段を有すること、を特徴とする。
One embodiment of the present invention has the following configuration.
(1) The first port portion and the second port portion are integrally projected on the valve main body portion, the body through which the reaction gas flows, the valve seat provided on the body, and the valve that contacts or separates from the valve seat A body, an elastic seal member that is crushed and elastically deformed between the valve body and the valve seat, a driving means that is connected to the body and applies a driving force to the valve body, and a heater that heats the body The elastic seal member is mounted on the valve seat, and is detachably attached to the inner wall of the body, and has holding means for holding the elastic seal member. .
上記構成では、ボディは、第1ポート部が弁本体部に一体に突設され、ボディに設けられたシール荷重に対する強度が確保されている。弾性シール部材は、ボディに設けられた弁座に設けられているので、ヒータがボディを加熱すると、そのヒータ熱が、弁閉状態と全開状態との間の如何なる弁開度であっても、ボディと弁座を介して弾性シール部材に伝達される。しかも、例えば、第1ポートに反応ガスが供給される場合、その反応ガスが弁体側へ向かって流れるため、弁座に設けられた弾性シール部材が反応ガスに晒されにくい。そのため、弁開時に弾性シール部材付近の圧力が弁体付近の圧力より低くなる。図30に示すように、同じヒーティング温度の場合でも、圧力が低いほど、昇華量が増加する。よって、副生成物は、弁開時に昇華しやすく、弾性シール部材のシール部に付着しにくい。また、弁開時に副生成物を昇華させることができるので、弁開閉動作を繰り返しても、副生成物が弾性シール部材のシール部に残って押し固められることがない。従って、上記構成によれば、弁開時に弾性シール部材のシール部に副生成物が付着するのを抑制し、シール性能を長期間維持できる。 In the above configuration, the first port portion of the body projects integrally with the valve body portion, and the strength against the sealing load provided on the body is ensured. Since the elastic seal member is provided in the valve seat provided in the body, when the heater heats the body, the heater heat is any valve opening between the valve closed state and the fully open state, It is transmitted to the elastic seal member through the body and the valve seat. In addition, for example, when the reaction gas is supplied to the first port, the reaction gas flows toward the valve body, so that the elastic seal member provided on the valve seat is not easily exposed to the reaction gas. Therefore, when the valve is opened, the pressure near the elastic seal member becomes lower than the pressure near the valve body. As shown in FIG. 30, even in the case of the same heating temperature, the sublimation amount increases as the pressure decreases. Therefore, the by-product is easily sublimated when the valve is opened, and hardly adheres to the seal portion of the elastic seal member. In addition, since the by-product can be sublimated when the valve is opened, even if the valve opening / closing operation is repeated, the by-product remains on the seal portion of the elastic seal member and is not compressed. Therefore, according to the said structure, it can suppress that a by-product adheres to the seal part of an elastic seal member at the time of valve opening, and can maintain sealing performance for a long period of time.
また、上記構成では、弁座が第1及び第2ポート部を弁本体部に一体に設けたボディに設けられ、その弁座に弾性シール部材が装着されているが、弾性シール部材は、駆動手段を弁体と一緒にボディから取り外し、保持手段をボディに着脱すれば、弁座に簡単に着脱できる。よって、上記構成によれば、弾性シール部材を容易にメンテナンスできる。 In the above configuration, the valve seat is provided in a body in which the first and second port portions are provided integrally with the valve main body portion, and an elastic seal member is mounted on the valve seat. If the means is removed from the body together with the valve body, and the holding means is attached to and detached from the body, it can be easily attached to and detached from the valve seat. Therefore, according to the said structure, an elastic seal member can be maintained easily.
(2)(1)に記載の構成において、前記弁座は、前記弾性シール部材が装着されるアリ溝を有すること、前記弁体は、前記弾性シール部材に密着するシール面の外径寸法が前記アリ溝の底部外径寸法以下であることが好ましい。 (2) In the configuration described in (1), the valve seat has a dovetail groove in which the elastic seal member is mounted, and the valve body has an outer diameter dimension of a seal surface that is in close contact with the elastic seal member. It is preferable that it is below the outer diameter dimension of the bottom part of the said dovetail.
上記構成によれば、同じシール径であれば、弾性シール部材を装着するアリ溝を備える弁体より、弁体の外径寸法を小さくできる。そのため、上記構成では、弾性シール部材を通過した反応ガスが弁本体部内へ直ぐに流出し、弾性シール部材付近の圧力を低くできる。よって、上記構成によれば、弁開時に弾性シール部材に付着した副生成物が昇華しやすい。 According to the said structure, if it is the same seal diameter, the outer diameter dimension of a valve body can be made smaller than a valve body provided with the dovetail groove | channel which mounts an elastic seal member. Therefore, in the above configuration, the reaction gas that has passed through the elastic seal member flows out immediately into the valve body, and the pressure near the elastic seal member can be reduced. Therefore, according to the said structure, the by-product adhering to the elastic seal member at the time of valve opening tends to sublime.
(3)(2)に記載の構成において、前記弁座は、前記弁体側に開口する開口部の内周面に径内方向に突出する膨出部を有すること、前記アリ溝が、前記膨出部側に張り出すように前記弁座に形成されていることが好ましい。 (3) In the configuration described in (2), the valve seat has a bulging portion projecting radially inwardly on an inner peripheral surface of an opening portion that opens to the valve body side, and the dovetail groove is the bulging portion. It is preferable that the valve seat is formed so as to project to the protruding portion side.
上記構成によれば、弁座の開口部の径方向肉厚を膨出部により厚くしているので、弁体に弾性シール部材を装着する場合と同様のシール径を有するように、弾性シール部材を装着するアリ溝を形成できる。よって、上記構成によれば、弁体をコンパクトにできる。 According to the above configuration, since the radial thickness of the opening of the valve seat is increased by the bulging portion, the elastic seal member has the same seal diameter as that when the elastic seal member is attached to the valve body. Dovetail grooves can be formed. Therefore, according to the said structure, a valve body can be made compact.
(4)(1)乃至(3)の何れか一つに記載の構成において、前記弾性シール部材より内側に設けられた絞り部を有することが好ましい。 (4) In the configuration described in any one of (1) to (3), it is preferable to have a throttle portion provided inside the elastic seal member.
上記構成では、弁開度が小さく、弾性シール部材付近の圧力が高くなるような場合でも、反応ガスが、絞り部で流量を絞られて圧力を小さくしてから、弾性シール部材と弁体の間を通過するため、弾性シール部材に付着した副生成物が昇華しやすい。 In the above configuration, even when the valve opening is small and the pressure in the vicinity of the elastic seal member is high, the reaction gas is reduced in flow rate by the throttle portion to reduce the pressure, and then the elastic seal member and the valve body Since it passes through, the by-product adhering to the elastic seal member is easily sublimated.
よって、上記構成によれば、弁開時に副生成物が昇華しやすく、シール性能を長期間維持させることができ、弾性シール部材のメンテナンスが容易な真空弁を提供することができる。 Therefore, according to the said structure, a by-product can be easily sublimated at the time of valve opening, a sealing performance can be maintained for a long period of time, and a vacuum valve with easy maintenance of an elastic seal member can be provided.
以下に、本発明に係る真空弁の実施形態について図面に基づいて説明する。 Hereinafter, embodiments of a vacuum valve according to the present invention will be described with reference to the drawings.
(第1実施形態)
(真空弁の全体構成について)
図1は、本発明の第1実施形態に係る真空弁1Aの断面図であって、弁閉状態を示す。図2は、図1に示す真空弁1Aの断面図であって、弁開状態を示す。
真空弁1Aは、駆動手段2がボディ4に図示しないボルトで固定され、外観が構成されている。真空弁1Aは、ボディ4に内設された弁体3を駆動手段2により軸線に沿って往復直線運動させることにより弁座部5に当接又は離間させ、流体制御を行う。
(First embodiment)
(Overall configuration of vacuum valve)
FIG. 1 is a cross-sectional view of a vacuum valve 1A according to a first embodiment of the present invention, showing a valve closed state. FIG. 2 is a cross-sectional view of the vacuum valve 1A shown in FIG. 1 and shows a valve open state.
The vacuum valve 1 </ b> A has an external appearance in which the driving means 2 is fixed to the body 4 with a bolt (not shown). The vacuum valve 1 </ b> A performs fluid control by causing the valve body 3 provided in the body 4 to reciprocate linearly along the axis by the driving means 2 to abut or separate from the valve seat portion 5.
ボディ4は、ステンレス等の耐腐食性、耐熱性、伝熱性に優れた金属で形成されている。ボディ4は、第1ポート形成部材13(第1ポート部の一例)が、弁本体部材12の下端開口部に突き合わせ溶接され、第2ポート形成部材14(第2ポート部の一例)が、弁本体部材12の側面に軸線に対して直交する方向に設けられたフランジ部12bに突き合わせ溶接されている。そのため、ボディ4は、第1ポート形成部材13に設けられた第1ポート13aが弁室12aに対して同軸上に連通し、第2ポート形成部材14に設けられた第2ポート14aが弁室12aに対して直交方向に連通しており、流路8がL字状に形成されている。 The body 4 is formed of a metal having excellent corrosion resistance, heat resistance, and heat transfer properties such as stainless steel. In the body 4, the first port forming member 13 (an example of the first port portion) is butt welded to the lower end opening of the valve body member 12, and the second port forming member 14 (an example of the second port portion) is The side surface of the main body member 12 is butt welded to a flange portion 12b provided in a direction orthogonal to the axis. Therefore, in the body 4, the first port 13a provided in the first port forming member 13 communicates coaxially with the valve chamber 12a, and the second port 14a provided in the second port forming member 14 has the valve chamber. It communicates in a direction orthogonal to 12a, and the flow path 8 is formed in an L shape.
弁座部5は、第1ポート13aと弁室12aとの間に同軸上に設けられている。弁座部5には、耐熱性を有するゴムを環状に形成した弾性シール部材7が弾性変形可能に装着され、弁体3が弾性シール部材7に密着するようになっている。この弁座部5の構成については、後述する。 The valve seat portion 5 is provided coaxially between the first port 13a and the valve chamber 12a. An elastic seal member 7 in which a heat-resistant rubber is formed in an annular shape is attached to the valve seat portion 5 so as to be elastically deformable, and the valve body 3 is in close contact with the elastic seal member 7. The configuration of the valve seat portion 5 will be described later.
駆動手段2は、駆動軸2aを弁室12aに突出させた状態でボディ4に連結される。駆動軸2aは、弁室12aと同軸上に配置され、下端部に弁体3が連結されている。駆動手段2は、圧縮ばね2bが弁体3に対して弁座部5方向への付勢力を常時付与している。駆動手段2は、弁体3を軸線に沿って往復直線運動させることにより、弁開度を制御する。ベローズ9は、駆動軸2aと圧縮ばね2bを覆った状態で、弁室12aに伸縮可能に配置されている。ベローズ9は、上端部9aが駆動手段2とボディ4の間で挟持される一方、下端部9bが弁体3に溶接等により固定されており、パーティクルが流路8に流出したり、反応ガスが駆動手段2側へ漏れることを防いでいる。尚、弁体3とベローズ9は、ステンレス等の耐腐食性、耐熱性、伝熱性に優れた金属で形成されている。 The drive means 2 is connected to the body 4 with the drive shaft 2a protruding into the valve chamber 12a. The drive shaft 2a is disposed coaxially with the valve chamber 12a, and the valve body 3 is connected to the lower end portion. In the driving means 2, the compression spring 2 b always applies a biasing force in the direction of the valve seat 5 to the valve body 3. The drive means 2 controls the valve opening degree by causing the valve body 3 to reciprocate linearly along the axis. The bellows 9 is disposed in the valve chamber 12a so as to be extendable and contractible while covering the drive shaft 2a and the compression spring 2b. The bellows 9 has an upper end 9a sandwiched between the driving means 2 and the body 4, while a lower end 9b is fixed to the valve body 3 by welding or the like. Is prevented from leaking to the driving means 2 side. The valve body 3 and the bellows 9 are made of a metal such as stainless steel having excellent corrosion resistance, heat resistance, and heat transfer.
真空弁1Aは、副生成物が流路8内で生成されることを防ぐために、ヒータ10,11により加熱される。ヒータ10は、ボディ4に外装され、ボディ4や弁座部5、弾性シール部材7を加熱する。ヒータ11は、駆動軸2aの下端部に内設され、弁体3やベローズ9を加熱する。駆動手段2が過剰に加熱されることを防止するために、ヒータ11は、ヒータ10より発生する熱量が小さく設定されている。 The vacuum valve 1 </ b> A is heated by the heaters 10 and 11 in order to prevent by-products from being generated in the flow path 8. The heater 10 is mounted on the body 4 and heats the body 4, the valve seat portion 5, and the elastic seal member 7. The heater 11 is installed in the lower end part of the drive shaft 2a, and heats the valve body 3 and the bellows 9. FIG. In order to prevent the driving unit 2 from being heated excessively, the heater 11 is set to have a small amount of heat generated from the heater 10.
(弁座部の構成について)
図3は、図1に示す真空弁1Aの弁構造を示す図である。
弁座部5は、第1ポート形成部材13に設けられた弁座形成部13cに保持手段6を取り付けることにより、弾性シール部材7が弁座面5aに弾性変形可能に装着されている。弁座部5は、コンダクタンスを確保するために、弁座面5aが第2ポート14aの底部14bと同程度の位置に設けられている。
(About the structure of the valve seat)
FIG. 3 is a view showing a valve structure of the vacuum valve 1A shown in FIG.
In the valve seat portion 5, the holding means 6 is attached to the valve seat forming portion 13c provided in the first port forming member 13, whereby the elastic seal member 7 is mounted on the valve seat surface 5a so as to be elastically deformable. In order to ensure conductance, the valve seat portion 5 is provided with a valve seat surface 5a at the same position as the bottom portion 14b of the second port 14a.
第1ポート形成部材13は、第1ポート13aが弁室12aより小径に設けられ、弁体3側に位置する端部に、弁本体部材12の開口部を塞ぐための閉鎖壁13hが環状に設けられている。環状壁13bは、その閉鎖壁13hの外縁部に沿って、弁体3側(駆動手段2側)へ突出するように垂設され、弁本体部材12の図中下端部に溶接されている。 The first port forming member 13 has a first port 13a having a smaller diameter than the valve chamber 12a, and an end wall located on the valve body 3 side has an annular closing wall 13h for closing the opening of the valve body member 12 Is provided. The annular wall 13b is suspended from the valve body 3 side (drive means 2 side) along the outer edge of the closing wall 13h, and is welded to the lower end of the valve body member 12 in the figure.
閉鎖壁13hは、環状壁13bより内側の位置に、円筒形状の弁座形成部13cが弁体3側へ突出するように設けられている。この弁座形成部13cは、弁体3側に位置する端面が、平坦に形成され、第2ポート14aの底部14bと同程度の位置に設けられている。弁座形成部13cは、第1ポート13a及び弁室12aと同軸となるように設けられている。弁座形成部13cの内周面には、膨出部13dが径方向内側に向かって突出するように設けられ、弁座面5aに開口する開口部分の内径寸法Bが第1ポート13aの内径寸法Aより小さくされている。 The closing wall 13h is provided at a position inside the annular wall 13b so that a cylindrical valve seat forming portion 13c protrudes toward the valve body 3 side. The valve seat forming portion 13c has a flat end surface located on the valve body 3 side, and is provided at the same position as the bottom portion 14b of the second port 14a. The valve seat forming portion 13c is provided so as to be coaxial with the first port 13a and the valve chamber 12a. The bulging portion 13d is provided on the inner peripheral surface of the valve seat forming portion 13c so as to protrude radially inward, and the inner diameter dimension B of the opening portion that opens to the valve seat surface 5a is the inner diameter of the first port 13a. It is made smaller than the dimension A.
弁座形成部13cは、弁体3側に位置する端面に、弁体3と反対側に凹む段差部13gを設けられている。保持手段6は、段差部13gに載置されるリング板形状のリング部材6aと、リング部材6aに挿通されて弁座形成部13cに設けられたねじ孔13iに締結される複数の固定ねじ6bを備える。リング部材6aは、段差部13gの高さと同じ厚さで設けられ、弁座形成部13cと共に弁座面5aを形成する。リング部材6aの内周面と段差部13gの周壁との間には、アリ溝15が設けられ、弾性シール部材7はそのアリ溝15の内壁に接触した状態で弁座部5に装着される。固定ねじ6bは、頭部がリング部材6aに形成された凹部6cに収納され、反応ガスの流れを阻害しないようにしている。リング部材6aと固定ねじ6bは、ステンレス等の耐腐食性、耐熱性、伝熱性に優れた金属で形成されている。そのため、弾性シール部材7は、リング部材6a、弁座形成部13cを介してヒータ10のヒータ熱を伝達され、弁閉状態から全開状態までの如何なる弁開度でもヒータ熱と同程度に加熱される。 The valve seat forming portion 13c is provided with a stepped portion 13g that is recessed on the side opposite to the valve body 3 on the end surface located on the valve body 3 side. The holding means 6 includes a ring plate-shaped ring member 6a placed on the stepped portion 13g, and a plurality of fixing screws 6b that are inserted into the ring member 6a and fastened to screw holes 13i provided in the valve seat forming portion 13c. Is provided. The ring member 6a is provided with the same thickness as the stepped portion 13g, and forms the valve seat surface 5a together with the valve seat forming portion 13c. A dovetail groove 15 is provided between the inner peripheral surface of the ring member 6a and the peripheral wall of the step portion 13g, and the elastic seal member 7 is mounted on the valve seat portion 5 in contact with the inner wall of the dovetail groove 15. . The fixing screw 6b is housed in a recess 6c formed in the ring member 6a so that the flow of the reaction gas is not hindered. The ring member 6a and the fixing screw 6b are formed of a metal excellent in corrosion resistance, heat resistance, and heat transfer, such as stainless steel. Therefore, the elastic seal member 7 receives the heater heat of the heater 10 via the ring member 6a and the valve seat forming portion 13c, and is heated to the same degree as the heater heat at any valve opening from the valve closed state to the fully open state. The
ここで、弁座形成部13cは、上述のように膨出部13dを有し、弁座面5a付近の肉厚が径方向に厚くされている。そのため、弁座部5は、アリ溝15が第1ポート13aの内壁13fを駆動手段2側へ延長した延長線上に設けられ、例えば図26及び図27に示す第1及び第2従来例のように弁体112,210に弾性シール部材115,212を装着する場合と同様のシール径を有するように、弾性シール部材7を装着することが可能である。換言すると、本実施形態の弁体3は、シール面3aの外径寸法Cがアリ溝15aの底部外径寸法Dより小さくされ、弾性シール部材を装着される弁体よりコンパクトにできる。 Here, the valve seat formation part 13c has the bulging part 13d as mentioned above, and the thickness of the valve seat surface 5a vicinity is made thick in radial direction. Therefore, the valve seat portion 5 is provided on an extension line in which the dovetail groove 15 extends the inner wall 13f of the first port 13a to the driving means 2 side, for example, as in the first and second conventional examples shown in FIGS. The elastic seal member 7 can be mounted so as to have the same seal diameter as that when the elastic seal members 115 and 212 are mounted on the valve bodies 112 and 210. In other words, the valve body 3 of the present embodiment can be made more compact than the valve body to which the elastic seal member is mounted by making the outer diameter dimension C of the sealing surface 3a smaller than the bottom outer diameter dimension D of the dovetail groove 15a.
尚、弁座形成部13cは、膨出部13dと第1ポート13aの内壁13fとの間にテーパ面13eが設けられ、反応ガスをスムーズに縮流させることができる。 In addition, the valve seat formation part 13c is provided with the taper surface 13e between the bulging part 13d and the inner wall 13f of the 1st port 13a, and can make a reaction gas flow smoothly.
(真空弁の動作説明)
上記真空弁1Aは、例えば、第1ポート13aが半導体製造装置の反応室に接続され、第2ポート14aが真空ポンプに接続される。真空弁1Aは、反応室から排気しない場合、駆動手段2が駆動しない。この場合、弁体3は、圧縮ばね2bのばね力により押し下げられ、弾性シール部材7に密着してシールする。これにより、真空弁1Aは、弁閉状態になる。
(Explanation of vacuum valve operation)
In the vacuum valve 1A, for example, the first port 13a is connected to a reaction chamber of a semiconductor manufacturing apparatus, and the second port 14a is connected to a vacuum pump. When the vacuum valve 1A is not exhausted from the reaction chamber, the driving means 2 is not driven. In this case, the valve body 3 is pushed down by the spring force of the compression spring 2 b and is in close contact with the elastic seal member 7 for sealing. Thereby, 1 A of vacuum valves will be in a valve closed state.
例えば、反応室から反応ガスの排気を開始する場合、真空弁1Aは、第1ポート13aと第2ポート14aとの差圧が大きいので、反応ガスを微小流量で排気する。例えば、真空弁1Aは、駆動手段2が弁体3を圧縮ばね2bに抗して僅かに上昇させることにより弾性シール部材7の弾性変形量を緩和させ、弾性シール部材7と弁体3との間から反応ガスを漏れさせる。これにより、反応ガスは、パーティクルを巻き上げないように微小流量で反応室から排気され、反応室が減圧される。 For example, when starting the exhaust of the reaction gas from the reaction chamber, the vacuum valve 1A exhausts the reaction gas at a minute flow rate because the differential pressure between the first port 13a and the second port 14a is large. For example, in the vacuum valve 1A, the driving means 2 slightly lifts the valve body 3 against the compression spring 2b to reduce the amount of elastic deformation of the elastic seal member 7, so that the elastic seal member 7 and the valve body 3 Let the reaction gas leak through. Accordingly, the reaction gas is exhausted from the reaction chamber at a minute flow rate so as not to wind up the particles, and the reaction chamber is decompressed.
反応室が所定の低真空設定圧力まで減圧されると、真空弁1Aは、第1ポート13aと第2ポート14aの差圧が小さくなる。そこで、真空弁1Aは、反応ガスを大流量で排気する。すなわち、真空弁1Aは、駆動手段2が圧縮ばね2bに抗して弁体3を更に上昇させて弾性シール部材7から離間させ、弁開度を大きくする。これにより、反応ガスの排気速度が速くなり、排気時間が短縮される。 When the reaction chamber is depressurized to a predetermined low vacuum set pressure, the differential pressure between the first port 13a and the second port 14a is reduced in the vacuum valve 1A. Therefore, the vacuum valve 1A exhausts the reaction gas at a large flow rate. That is, in the vacuum valve 1A, the driving means 2 further raises the valve body 3 against the compression spring 2b and separates it from the elastic seal member 7, thereby increasing the valve opening. Thereby, the exhaust speed of the reaction gas is increased and the exhaust time is shortened.
反応室の内圧が所定の高真空設定圧力まで減圧されると、真空弁1Aは、駆動手段2を停止させる。すると、弁体3が、圧縮ばね2bに付勢されて下降し、弾性シール部材7に密着する。これにより、真空弁1Aは、弁閉状態に復帰する。真空弁1Aは、例えば反応室に反応ガスを入れ替える度に上記弁開閉動作を繰り返す。 When the internal pressure of the reaction chamber is reduced to a predetermined high vacuum set pressure, the vacuum valve 1A stops the driving means 2. Then, the valve body 3 is lowered by being biased by the compression spring 2 b and is brought into close contact with the elastic seal member 7. Thereby, the vacuum valve 1A returns to the valve closed state. The vacuum valve 1A repeats the valve opening / closing operation each time the reaction gas is replaced in the reaction chamber, for example.
ところで、真空弁1Aは、半導体製造装置が稼動する間、ヒータ10,11に加熱される。真空弁1Aは、弾性シール部材7が弁座部5に設けられているので、ヒータ10がボディ4を加熱すると、そのヒータ熱が、弁閉状態から全開状態までの如何なる弁開度であっても、ボディ4と弁座部5を介して弾性シール部材7に伝達される。特に、弁座部5は、伝熱性の良い金属からなるリング部材6aと弁座形成部13cからなるので、弾性シール部材7を加熱しやすい。しかも、第1ポート13aに反応ガスが供給される場合、その反応ガスが弁体3のシール面3aへ向かって流れるため、弁座部5に設けられた弾性シール部材7が反応ガスに晒されにくい。そのため、弁開時に弾性シール部材7付近の圧力が弁体3のシール面3a付近の圧力より低くなる。図30に示すように、同じヒーティング温度の場合でも、圧力が低いほど、昇華量が増加する。よって、副生成物が弁開時に昇華しやすく、弾性シール部材7のシール部に付着しにくい。また、弁開時に副生成物を昇華させることができるので、弁開閉動作を繰り返しても、副生成物が弾性シール部材7のシール部に残って押し固められることがない。従って、上記真空弁1Aによれば、弁開時に弾性シール部材7のシール部に副生成物が付着するのを抑制し、シール性能を長期間維持できる。 By the way, the vacuum valve 1A is heated by the heaters 10 and 11 while the semiconductor manufacturing apparatus operates. In the vacuum valve 1A, since the elastic seal member 7 is provided in the valve seat portion 5, when the heater 10 heats the body 4, the heater heat has any valve opening degree from the valve closed state to the fully opened state. Is also transmitted to the elastic seal member 7 through the body 4 and the valve seat portion 5. In particular, since the valve seat portion 5 is composed of a ring member 6a made of a metal having good heat conductivity and a valve seat forming portion 13c, the elastic seal member 7 is easily heated. Moreover, when the reaction gas is supplied to the first port 13a, the reaction gas flows toward the seal surface 3a of the valve body 3, so that the elastic seal member 7 provided in the valve seat portion 5 is exposed to the reaction gas. Hateful. Therefore, when the valve is opened, the pressure near the elastic seal member 7 becomes lower than the pressure near the seal surface 3 a of the valve body 3. As shown in FIG. 30, even in the case of the same heating temperature, the sublimation amount increases as the pressure decreases. Therefore, the by-product is easily sublimated when the valve is opened, and hardly adheres to the seal portion of the elastic seal member 7. Further, since the by-product can be sublimated when the valve is opened, even if the valve opening / closing operation is repeated, the by-product remains on the seal portion of the elastic seal member 7 and is not compressed. Therefore, according to the vacuum valve 1 </ b> A, by-products are prevented from adhering to the seal portion of the elastic seal member 7 when the valve is opened, and the sealing performance can be maintained for a long time.
真空弁1Aは、高真空状態でも弁閉できるようにするために、シール荷重が大きく設定されている。そのシール荷重は、弾性シール部材7、弁座形成部13cを介して第1ポート形成部材13と弁本体部材12との溶接部分に作用する。よって、真空弁1Aは、シール荷重に対するボディ4の強度が十分に確保されている。 The vacuum valve 1A has a large seal load so that the valve can be closed even in a high vacuum state. The seal load acts on the welded portion between the first port forming member 13 and the valve main body member 12 via the elastic seal member 7 and the valve seat forming portion 13c. Therefore, the vacuum valve 1A has sufficient strength of the body 4 against the seal load.
また、弾性シール部材7をメンテナンスする場合、ボディ4が第1及び第2ポート形成部材13,14を弁本体部材12に溶接されているため、ボディ4の駆動手段2を連結される端部4aの開口部を介して、弾性シール部材7を着脱することになる。弾性シール部材7は、ボディ4の弁座形成部13cに着脱自在に取り付けられる保持手段6を介して弁座部5に保持されているので、駆動手段2を弁体3及びベローズ9と一緒にボディ4から取り外し、保持手段4を弁座部5に着脱すれば、弾性シール部材7を弁座部5に簡単に着脱できる。すなわち、端部4aの開口部から工具を挿入して固定ねじ6bを緩めてリング部材6aを弁座形成部13cから取り外せば、弾性シール部材7を弁座部5から取り外せる。また、弾性シール部材7とリング部材6aを段差部13gに載置して固定ねじ6bをねじ孔13iに締結すれば、弾性シール部材7を弁座部5に装着できる。よって、本実施形態の真空弁1Aは、弾性シール部材7等のメンテナンスを容易に行える。 When the elastic seal member 7 is maintained, since the body 4 is welded to the valve body member 12 with the first and second port forming members 13 and 14, the end 4a to which the driving means 2 of the body 4 is connected. The elastic seal member 7 is attached and detached through the opening. Since the elastic seal member 7 is held by the valve seat portion 5 via the holding means 6 that is detachably attached to the valve seat forming portion 13c of the body 4, the drive means 2 is mounted together with the valve body 3 and the bellows 9. The elastic seal member 7 can be easily attached to and detached from the valve seat portion 5 by removing it from the body 4 and attaching and detaching the holding means 4 to and from the valve seat portion 5. That is, the elastic seal member 7 can be removed from the valve seat portion 5 by inserting a tool from the opening of the end portion 4a, loosening the fixing screw 6b, and removing the ring member 6a from the valve seat forming portion 13c. Further, the elastic seal member 7 and the ring member 6a can be mounted on the valve seat portion 5 by placing the elastic seal member 7 and the ring member 6a on the stepped portion 13g and fastening the fixing screw 6b to the screw hole 13i. Therefore, the vacuum valve 1A of the present embodiment can easily maintain the elastic seal member 7 and the like.
尚、真空弁1Aは、弁座面5aが第2ポート14aの底部14bと同じ高さに設けられ、弾性シール部材7が第2ポート14aの底部14bとほぼ同じ高さに配置されている。そのため、例えば、反応ガスがアリ溝15と弾性シール部材7との間の隙間に入り込んで固化し、弾性シール部材7を取り外しにくい場合には、リング部材6aを弁座形成部13cから取り外した後、第2ポート14aから工具を挿入して弾性シール部材7を段差部13gから引きはがすことも可能である。 In the vacuum valve 1A, the valve seat surface 5a is provided at the same height as the bottom portion 14b of the second port 14a, and the elastic seal member 7 is disposed at substantially the same height as the bottom portion 14b of the second port 14a. Therefore, for example, when the reaction gas enters and solidifies in the gap between the dovetail groove 15 and the elastic seal member 7 and it is difficult to remove the elastic seal member 7, the ring member 6a is removed from the valve seat forming portion 13c. It is also possible to insert a tool from the second port 14a and peel the elastic seal member 7 from the step portion 13g.
また、真空弁1Aは、弁体3のシール面3aの外径寸法Cがアリ溝15の底部の外径寸法Dより小さい。一方、例えば図26及び図27に示す第1及び第2従来例のように弁体112,210に弾性シール部材115,212を装着する場合、弁体112,210のシール面の外径寸法はアリ溝の底部の外径寸法より大きくならざるを得ない。よって、同じシール径であれば、真空弁1Aのように弁座部5に弾性シール部材7を装着する方が、第1及び第2従来例のように弁体112,210に弾性シール部材115,212を装着するより、弁体3の外径寸法Cを小さくできる。弁体3の外径寸法Cが小さくなると、弾性シール部材7を通過した反応ガスが弁室12aへ直ぐに流出するので、弾性シール部材7付近の圧力を低下させることが可能になる。図30に示すように、圧力が低下すると、同じヒーティング温度でも昇華量が増加する。よって、本実施形態の真空弁1Aは、弾性シール部材7付近の反応ガスが昇華しやすくなり、副生成物が弾性シール部材7に付着するのを抑制できる。 Further, in the vacuum valve 1 </ b> A, the outer diameter dimension C of the sealing surface 3 a of the valve body 3 is smaller than the outer diameter dimension D of the bottom portion of the dovetail groove 15. On the other hand, when the elastic seal members 115 and 212 are attached to the valve bodies 112 and 210 as in the first and second conventional examples shown in FIGS. 26 and 27, for example, the outer diameter of the sealing surface of the valve bodies 112 and 210 is It must be larger than the outer diameter of the bottom of the dovetail. Therefore, if the seal diameter is the same, the elastic seal member 7 is attached to the valve seat portion 5 as in the vacuum valve 1A, and the elastic seal member 115 is attached to the valve bodies 112 and 210 as in the first and second conventional examples. , 212 can be attached, the outer diameter C of the valve body 3 can be made smaller. When the outer diameter C of the valve body 3 is reduced, the reaction gas that has passed through the elastic seal member 7 immediately flows out to the valve chamber 12a, so that the pressure in the vicinity of the elastic seal member 7 can be reduced. As shown in FIG. 30, when the pressure decreases, the sublimation amount increases even at the same heating temperature. Therefore, the vacuum valve 1 </ b> A of the present embodiment can easily sublimate the reaction gas near the elastic seal member 7 and suppress the by-product from adhering to the elastic seal member 7.
特に、真空弁1Aは、弁座部5が弁室12aに開口する開口部の内周面に膨出部13dを設け、弁座部5の径方向の肉厚を厚くして、膨出部13d上にアリ溝15を形成している。そのため、例えば、図26に示す第1従来例の真空弁101のように弾性シール部材115を弁体112に設ける場合と同じシール径を有するように、弾性シール部材7が装着されるアリ溝15を形成できる。よって、真空弁1Aによれば、弁体3をコンパクトにできる。 In particular, the vacuum valve 1A is provided with a bulging portion 13d on the inner peripheral surface of the opening portion where the valve seat portion 5 opens into the valve chamber 12a, and the bulging portion is thickened in the radial direction of the valve seat portion 5. The dovetail groove 15 is formed on 13d. Therefore, for example, the dovetail groove 15 in which the elastic seal member 7 is mounted so as to have the same seal diameter as when the elastic seal member 115 is provided on the valve body 112 as in the vacuum valve 101 of the first conventional example shown in FIG. Can be formed. Therefore, according to the vacuum valve 1A, the valve body 3 can be made compact.
また、真空弁1Aは、弁座面5aが、弁室12aの軸線に対して直交方向に設けられた第2ポート14aの底部14bと同じ高さに設けられているので、第1ポート13aに供給した反応ガスが弁体3のシール面3aに沿って第2ポート14aへ流れを変えやすい。そのため、真空弁1Aは、図26に示す真空弁101のように弁座112を第2ポート形成部材122より低い位置に設ける場合より、コンダクタンスを大きくできる。コンダクタンスが大きくなると、弾性シール部材7付近の圧力が低下する。よって、真空弁1Aは、弾性シール部材7付近を流れる反応ガスが昇華しやすくなり、弾性シール部材7に副生成物が付着するのを抑制できる。 Moreover, since the valve seat surface 5a is provided at the same height as the bottom portion 14b of the second port 14a provided in the direction orthogonal to the axis of the valve chamber 12a, the vacuum valve 1A is provided in the first port 13a. The supplied reaction gas can easily change the flow along the seal surface 3a of the valve body 3 to the second port 14a. Therefore, the vacuum valve 1A can increase conductance as compared with the case where the valve seat 112 is provided at a position lower than the second port forming member 122 as in the vacuum valve 101 shown in FIG. As the conductance increases, the pressure near the elastic seal member 7 decreases. Therefore, the vacuum valve 1 </ b> A can easily sublimate the reaction gas flowing in the vicinity of the elastic seal member 7, and can suppress the by-product from adhering to the elastic seal member 7.
(流れ解析について)
発明者らは、真空弁1Aの効果を確認するために、弾性シール部材7を弁座部5に設けた実施例1、及び、弾性シール部材1007を弁体1003に設けた比較例について、流れ解析を行った。
(About flow analysis)
In order to confirm the effect of the vacuum valve 1 </ b> A, the inventors flow about Example 1 in which the elastic seal member 7 is provided in the valve seat portion 5 and a comparative example in which the elastic seal member 1007 is provided in the valve body 1003. Analysis was performed.
実施例1は、上記真空弁1Aに対応しており、第1ポート13aの内径寸法Aを80mm、膨出部13dの内径寸法(弁座面5aの開口部内径寸法)Bを75mm、弁体3の外径寸法Cを91mmに設定した。 Example 1 corresponds to the vacuum valve 1A, the inner diameter A of the first port 13a is 80 mm, the inner diameter of the bulging portion 13d (the inner diameter of the opening of the valve seat surface 5a) B is 75 mm, and the valve body The outer diameter C of 3 was set to 91 mm.
図4は、比較例の弁構造を示す断面図である。
比較例の真空弁1001は、弁座1005と弁体1003を除き、実施例1と同様に構成されている。真空弁1001は、弁座面1005が第2ポート14aの底部14bより低い位置に設けられた閉鎖壁1006に平坦に設けられている。弁体1003は、ベローズ9の下端部9bが溶接されるバルブディスク1003aに、弁体部材1003bがボルト1003cで固定されている。弾性シール部材1007は、バルブディスク1003aと弁体部材1003bの間に形成されたアリ溝1015に装着されている。比較例は、第1ポート13aの内径寸法A1が実施例1と同じ80mmにされ、弁座1005の開口部内径寸法B1が第1ポート13aと同一にされ、弁体1003の外径寸法C1が実施例1の弁体3の外径寸法Cより大きい99mmに設定されている。
FIG. 4 is a cross-sectional view showing a valve structure of a comparative example.
The vacuum valve 1001 of the comparative example is configured in the same manner as in Example 1 except for the valve seat 1005 and the valve body 1003. The vacuum valve 1001 is provided flat on a closing wall 1006 provided at a position where the valve seat surface 1005 is lower than the bottom portion 14b of the second port 14a. In the valve body 1003, a valve body member 1003b is fixed to a valve disk 1003a to which a lower end portion 9b of the bellows 9 is welded by a bolt 1003c. The elastic seal member 1007 is mounted in a dovetail groove 1015 formed between the valve disc 1003a and the valve body member 1003b. In the comparative example, the inner diameter A1 of the first port 13a is set to 80 mm, which is the same as that of the first embodiment, the opening inner diameter B1 of the valve seat 1005 is the same as that of the first port 13a, and the outer diameter C1 of the valve body 1003 is It is set to 99 mm, which is larger than the outer diameter C of the valve body 3 of the first embodiment.
流れ解析は、解析ソフト「SCRYU」を使用し、比較例と実施例1を全開(開度100%)にした状態で第1ポート13aに反応ガスを所定の圧力で供給した場合の速度及び圧力の分布を調べた。また、比較例と実施例1を全開に対して60%の開度で弁開した状態で第1ポート13aに反応ガスを所定の圧力で供給した場合の速度及び圧力の分布を、調べた。 The flow analysis uses the analysis software “SCRYU”, and the speed and pressure when the reaction gas is supplied to the first port 13a at a predetermined pressure with the comparative example and Example 1 fully opened (opening degree 100%). The distribution of was examined. Further, the speed and pressure distribution when the reaction gas was supplied to the first port 13a at a predetermined pressure in a state where the comparative example and Example 1 were opened at a degree of opening of 60% with respect to the full opening were examined.
(全開時における流速の比較)
図5は、比較例を全開した場合の流速分布を解析した結果を示す。図7は、実施例1を全開した場合の流速分布を解析した結果を示す。
実施例1は、図7のR3に示すように、膨出部13dを通過する際に反応ガスが加速されている。一方、比較例は、図5のR1に示す弁座面1005の開口部付近よりも、図5のR2に示す弁体1003の1003d付近で反応ガスが加速されている。そして、実施例1は、図5のR4に示す弁座面5aとシール面3aとの間の流速が、図5のR2に示す比較例の弁座面1005と1003dとの間の流速より速い。更に、実施例1は、図7のQ3に示す弾性シール部材7付近の流速が、図5のQ1に示す弾性シール部材1007付近の流速より遅い。図7のQ3に示す弾性シール部材7付近の平均流速は、図5のQ1に示す弾性シール部材1007付近の平均流速に対して、約1/6であった。
(Comparison of flow velocity when fully open)
FIG. 5 shows the result of analyzing the flow velocity distribution when the comparative example is fully opened. FIG. 7 shows the result of analyzing the flow velocity distribution when Example 1 is fully opened.
In Example 1, the reaction gas is accelerated when passing through the bulging portion 13d, as indicated by R3 in FIG. On the other hand, in the comparative example, the reactive gas is accelerated in the vicinity of 1003d of the valve body 1003 shown in R2 of FIG. 5 rather than in the vicinity of the opening of the valve seat surface 1005 shown in R1 of FIG. In Example 1, the flow velocity between the valve seat surface 5a shown in R4 of FIG. 5 and the seal surface 3a is faster than the flow velocity between the valve seat surfaces 1005 and 1003d of the comparative example shown in R2 of FIG. . Further, in Example 1, the flow velocity in the vicinity of the elastic seal member 7 indicated by Q3 in FIG. 7 is slower than the flow velocity in the vicinity of the elastic seal member 1007 indicated by Q1 in FIG. The average flow velocity in the vicinity of the elastic seal member 7 indicated by Q3 in FIG. 7 was about 1/6 with respect to the average flow velocity in the vicinity of the elastic seal member 1007 indicated by Q1 in FIG.
これらのことより、実施例1は、比較例より大きなコンダクタンスを確保しつつ、弾性シール部材7が比較例の弾性シール部材1007より第1ポート13aに供給した反応ガスに晒されにくいことがわかった。 From these facts, it was found that in Example 1, the elastic seal member 7 was not easily exposed to the reaction gas supplied to the first port 13a from the elastic seal member 1007 of the comparative example while securing a larger conductance than the comparative example. .
(全開時における圧力の比較)
図6は、比較例を全開した場合の圧力分布を解析した結果を示す。図8は、実施例1を全開した場合の圧力分布を解析した結果を示す。
図8のQ4に示す弾性シール部材7付近の圧力は、図6のQ2に示す弾性シール部材1007付近の圧力より小さい。図8のQ4に示す弾性シール部材7付近の平均圧力は、図6のQ2に示す弾性シール部材1007付近の平均圧力に対して、約1/3であった。図30に示すように、圧力が低ければ、低いヒータ温度でも昇華が可能になる。よって、実施例1は、比較例より反応ガスを昇華させやすいことがわかった。
(Comparison of pressure when fully open)
FIG. 6 shows the result of analyzing the pressure distribution when the comparative example is fully opened. FIG. 8 shows the result of analyzing the pressure distribution when Example 1 is fully opened.
The pressure in the vicinity of the elastic seal member 7 indicated by Q4 in FIG. 8 is smaller than the pressure in the vicinity of the elastic seal member 1007 indicated by Q2 in FIG. The average pressure near the elastic seal member 7 indicated by Q4 in FIG. 8 was about 1/3 of the average pressure near the elastic seal member 1007 indicated by Q2 in FIG. As shown in FIG. 30, if the pressure is low, sublimation is possible even at a low heater temperature. Therefore, it turned out that Example 1 is easier to sublimate the reaction gas than the comparative example.
(60%開度時における流速の比較)
図9は、比較例を全開に対して60%の開度で弁開した場合の流速分布を解析した結果を示す。図11は、実施例1を全開時に対して60%の開度で弁開した場合の流速分布を解析した結果を示す。
図9のR11、図11のR12に示すように、実施例1は、シール面3aと弁座部5との間の流速が、比較例の弁座面1005と1003dとの間の流速より速い。よって、実施例1は、弁開度が小さい場合でも、比較例よりコンダクタンスが大きいことがわかる。
(Comparison of flow velocity at 60% opening)
FIG. 9 shows the result of analyzing the flow velocity distribution when the comparative example is opened with a valve opening of 60% with respect to full opening. FIG. 11 shows the results of analyzing the flow velocity distribution when Example 1 was opened with a valve opening of 60% with respect to the fully opened state.
As shown in R11 of FIG. 9 and R12 of FIG. 11, in Example 1, the flow velocity between the seal surface 3a and the valve seat portion 5 is faster than the flow velocity between the valve seat surfaces 1005 and 1003d of the comparative example. . Therefore, it can be seen that Example 1 has a larger conductance than the comparative example even when the valve opening is small.
そして、実施例1は、図11のQ7に示す弾性シール部材7付近の流速が、図9のQ5に示す比較例の弾性シール部材1007付近の流速より遅い。よって、実施例1の弁構造によれば、弁開度を小さくしても、弾性シール部材7が全開時と同様に比較例の弾性シール部材1007よりも反応ガスに晒されにくいことがわかった。 In Example 1, the flow velocity in the vicinity of the elastic seal member 7 indicated by Q7 in FIG. 11 is slower than the flow velocity in the vicinity of the elastic seal member 1007 in the comparative example indicated by Q5 in FIG. Therefore, according to the valve structure of Example 1, it has been found that even when the valve opening is reduced, the elastic seal member 7 is less exposed to the reaction gas than the elastic seal member 1007 of the comparative example, as in the fully opened state. .
(60%開度時における圧力の比較)
図10は、比較例を全開に対して60%の開度で弁開した場合の圧力分布を解析した結果を示す。図12は、実施例1を全開に対して60%の開度で弁開した場合の圧力分布を解析した結果を示す。
実施例1は比較例よりコンダクタンスが大きいので、図12のQ8に示す実施例1の弾性シール部材7付近の圧力は、図10のQ6に示す比較例の弾性シール部材1007付近の圧力より小さい。しかも、比較例は、図6のQ2、図10のQ6に示すように、弁開度が小さくなると、弾性シール部材1007付近の圧力が上昇する。しかし、実施例1は、図8のQ4、図12のQ8に示すように、全開の場合でも全開に対して60%の弁開度でも、弾性シール部材7付近の圧力がほぼ同じである。よって、実施例1は、弁開度を小さくしても、弾性シール部材7付近の圧力を小さくする効果が得られることがわかった。そして、実施例1は、弁開度が小さい場合でも、比較例より反応ガスが昇華しやすく、弾性シール部材7に副生成物が付着しにくいことがわかった。
(Comparison of pressure at 60% opening)
FIG. 10 shows the result of analyzing the pressure distribution when the comparative example is opened with a valve opening of 60% with respect to full opening. FIG. 12 shows the result of analyzing the pressure distribution when Example 1 was opened with a valve opening of 60% with respect to full opening.
Since Example 1 has a larger conductance than the comparative example, the pressure in the vicinity of the elastic seal member 7 of Example 1 shown in Q8 of FIG. 12 is smaller than the pressure in the vicinity of the elastic seal member 1007 of the comparative example shown in Q6 of FIG. Moreover, in the comparative example, as indicated by Q2 in FIG. 6 and Q6 in FIG. 10, the pressure in the vicinity of the elastic seal member 1007 increases as the valve opening decreases. However, in Example 1, as indicated by Q4 in FIG. 8 and Q8 in FIG. 12, the pressure in the vicinity of the elastic seal member 7 is substantially the same even when the valve is fully open or when the valve opening is 60% of the valve fully open. Therefore, it was found that Example 1 can obtain the effect of reducing the pressure in the vicinity of the elastic seal member 7 even if the valve opening is reduced. In Example 1, it was found that even when the valve opening was small, the reaction gas was more easily sublimated than the comparative example, and the by-product was less likely to adhere to the elastic seal member 7.
(考察)
上記流れ解析より、弾性シール部材7を弁座部5に設け、弁座面5aを第2ポート14aの底部14bより高くし、膨出部13dを設ければ、コンダクタンスを大きく確保できること、また、弁開度に関係なく、弾性シール部材7付近の流速及び圧力を小さくできることがわかった。
(Discussion)
From the above flow analysis, if the elastic seal member 7 is provided in the valve seat portion 5, the valve seat surface 5a is made higher than the bottom portion 14b of the second port 14a, and the bulging portion 13d is provided, a large conductance can be secured, It was found that the flow velocity and pressure near the elastic seal member 7 can be reduced regardless of the valve opening.
(弁体の検討)
次に、弁体3の形状が流速や圧力に与える影響を検討するために、実施例1,2についてシミュレーションを行った。
(Examination of valve body)
Next, in order to study the influence of the shape of the valve body 3 on the flow velocity and pressure, simulations were performed on Examples 1 and 2.
図13は、実施例2の弁構造を示す断面図である。実施例2の真空弁2001は、弁体2003の外径寸法C2が弁体3の外径寸法3より大きい点だけが、実施例1と相違している。弁体2003の外径寸法C2は99mmに設定されている。 FIG. 13 is a cross-sectional view showing the valve structure of the second embodiment. The vacuum valve 2001 of the second embodiment is different from the first embodiment only in that the outer diameter C2 of the valve body 2003 is larger than the outer diameter 3 of the valve body 3. The outer diameter C2 of the valve body 2003 is set to 99 mm.
シミュレーションは、解析ソフト「SCRYU」を使用し、実施例1,2が全開に対して2%の開度で弁開した状態で第1ポート13aに反応ガスを所定の圧力で供給した場合の流速分布及び圧力分布をそれぞれ解析した。 The simulation uses the analysis software “SCRYU”, and the flow rate when the reaction gas is supplied to the first port 13a at a predetermined pressure in the state where the first and second embodiments are opened at a degree of opening of 2% with respect to the fully open state. Distribution and pressure distribution were analyzed respectively.
(流速の比較)
図14は、実施例2を全開時の開度に対して2%の開度で弁開した場合の流速分布を解析した結果を示す。図16は、実施例1を全開時の開度に対して2%の開度で弁開した場合の流速分布を解析した結果を示す。
図16のQ11に示す実施例1の弾性シール部材7付近の流速は、図14のQ9に示す実施例2の弾性シール部材7付近の流速より遅い。これは、実施例2における弁座部5の開口部分から弁体2003の外周部までの距離L2が、実施例1における弁座部5から弁体3の外周部までの距離L1より長く、反応ガスが加速されやすいためと考えられる。
(Comparison of flow rate)
FIG. 14 shows the results of analyzing the flow velocity distribution when Example 2 was opened with a valve opening of 2% with respect to the opening when fully opened. FIG. 16 shows the results of analyzing the flow velocity distribution when Example 1 was opened with a valve opening of 2% with respect to the opening when fully opened.
The flow rate near the elastic seal member 7 of Example 1 shown in Q11 of FIG. 16 is slower than the flow rate near the elastic seal member 7 of Example 2 shown in Q9 of FIG. This is because the distance L2 from the opening portion of the valve seat 5 in Example 2 to the outer periphery of the valve body 2003 is longer than the distance L1 from the valve seat 5 in Example 1 to the outer periphery of the valve body 3, This is probably because the gas is easily accelerated.
(圧力の比較)
図15は、実施例2を全開時の開度に対して2%の開度で弁開した場合の圧力分布を解析した結果を示す。図17は、実施例1を全開時の開度に対して2%の開度で弁開した場合の圧力分布を解析した結果を示す。
図17のQ12に示す実施例1における弾性シール部材7の二次側(第2ポート14a側)の圧力は、図15のQ10に示す実施例2における弾性シール部材7の二次側(第2ポート14a側)の圧力より低い。これは、実施例1は、弁体3の外径寸法Cが実施例2の弁体2003の外径寸法C2より小さいため、弾性シール部材7を通過した反応ガスが実施例2より早く弁室12aに流出するためと考えられる。
(Pressure comparison)
FIG. 15 shows the result of analyzing the pressure distribution when Example 2 was opened with a valve opening of 2% with respect to the opening when fully opened. FIG. 17 shows the result of analyzing the pressure distribution when Example 1 was opened with a valve opening of 2% with respect to the opening when fully opened.
The pressure on the secondary side (second port 14a side) of the elastic seal member 7 in Example 1 shown in Q12 of FIG. 17 is the secondary side (second side) of the elastic seal member 7 in Example 2 shown in Q10 of FIG. Lower than the pressure on the port 14a side). In the first embodiment, since the outer diameter C of the valve body 3 is smaller than the outer diameter C2 of the valve body 2003 of the second embodiment, the reaction gas that has passed through the elastic seal member 7 is earlier than the second embodiment. This is considered to flow out to 12a.
(考察)
上記流れ解析より、弁体3の外径寸法Cを小さくすれば、コンダクタンスを大きく確保できること、また、弾性シール部材7付近の流速及び圧力を小さくして、弾性シール部材7に副生成物が付着するのを抑制できることがわかった。
(Discussion)
From the above flow analysis, if the outer diameter C of the valve body 3 is reduced, a large conductance can be secured, and the flow rate and pressure in the vicinity of the elastic seal member 7 are reduced so that by-products adhere to the elastic seal member 7. It was found that it can be suppressed.
(第2実施形態)
続いて、本発明の第2実施形態について図面を参照して説明する。
第2実施形態の真空弁は、弁座形成部に設けられた膨出部の内側に突出するように突部が弁体に環状に設けられ、その突部と膨出部との間に形成される隙間により反応ガスの流量を絞る絞り部を構成している点が、第1実施形態の真空弁1Aと相違する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings.
In the vacuum valve of the second embodiment, a protrusion is provided in an annular shape on the valve body so as to protrude inside the bulging portion provided in the valve seat forming portion, and is formed between the protruding portion and the bulging portion. The point which comprises the aperture | diaphragm | squeeze part which restrict | squeezes the flow volume of a reactive gas with the clearance gap formed differs from the vacuum valve 1A of 1st Embodiment.
かかる第2実施形態の真空弁は、弁開度が小さい場合に、弁体に設けた突部の外周面が膨出部に対向し、絞り部を形成する。その間、反応ガスは、絞り部で流量を絞られて流速と圧力を低下されてから、弾性シール部材と弁体の間を通過する。そのため、第2実施形態の真空弁は、弁開度が小さい場合でも、弾性シール部材付近を流れる反応ガスが第1実施形態の真空弁1Aより昇華しやすく、シール性能を長期間維持できる。 In the vacuum valve according to the second embodiment, when the valve opening is small, the outer peripheral surface of the protrusion provided on the valve body faces the bulging portion to form a throttle portion. In the meantime, the reaction gas is reduced in flow rate and pressure by the throttle portion, and then passes between the elastic seal member and the valve body. Therefore, in the vacuum valve of the second embodiment, even when the valve opening is small, the reaction gas flowing in the vicinity of the elastic seal member is more easily sublimated than the vacuum valve 1A of the first embodiment, and the sealing performance can be maintained for a long time.
(実施例3,4の流れ解析について)
発明者らは、絞り部の効果を検証するための流れ解析を行った。シミュレーションは、解析ソフト「SCRYU」を使用し、実施例3,4を全開に対して2%の弁開度で弁開させた状態で第1ポート13aに反応ガスを所定の圧力で供給した場合における流速分布と圧力分布を解析した。
(About flow analysis of Examples 3 and 4)
The inventors conducted a flow analysis for verifying the effect of the throttle portion. The simulation uses the analysis software “SCRYU”, and the reaction gas is supplied to the first port 13a at a predetermined pressure with the third and fourth embodiments opened at a valve opening of 2% with respect to the fully open state. The flow velocity distribution and pressure distribution in were analyzed.
図18は、本発明の第2実施形態に係る真空弁に対応する実施例3の弁構造を示す断面図である。図20は、実施例3を開度2%にした場合の流速分布を解析した結果を示す。図21は、実施例3を開度2%にした場合の圧力分布を解析した結果を示す。
図18に示すように、実施例3の真空弁3001は、弁体3003がシール面3003aに突部3003bを環状に突設されている点が実施例1と相違し、その他の構成は実施例1と共通している。突部3003bと膨出部13dとの間には、隙間S1(絞り部の一例)が環状に形成されている。
FIG. 18: is sectional drawing which shows the valve structure of Example 3 corresponding to the vacuum valve which concerns on 2nd Embodiment of this invention. FIG. 20 shows the result of analyzing the flow velocity distribution when the opening degree of Example 3 is 2%. FIG. 21 shows the result of analyzing the pressure distribution when the opening degree of Example 3 is 2%.
As shown in FIG. 18, the vacuum valve 3001 according to the third embodiment is different from the first embodiment in that the valve body 3003 is provided with a projecting portion 3003b projecting in an annular shape on the seal surface 3003a. 1 and in common. A gap S1 (an example of a throttle portion) is formed in an annular shape between the protrusion 3003b and the bulging portion 13d.
図20に示すように、突部3003bは、隙間S1の径方向幅寸法W1が弁閉時におけるシール面3003aと弁座面5aとの間の離間距離W2(図18参照)より小さくなるように、外径寸法Eが設定される。弾性シール部材7の弾性変形量を制御して微小流量制御するときから絞り機能を発揮し、弾性シール部材7付近を流れる反応ガスの流速と圧力を低下させるためである。図18、図20、図21に示すように、突部3003bの高さは、弁閉状態の場合からシール面3003aが弾性シール部材7から僅かに離れるように弁開する場合までの微小流量制御を行う間(例えば、全開に対して0%〜10%の弁開度の間)、突部3003bが膨出部13dの内側に配置されるように、設定される。コンダクタンスを確保しつつ、弁開度が小さい場合における反応ガスの昇華量を増加させるためである。また、突部3003bは、先端部外周に沿ってテーパ面3003cが設けられ、弁開度が大きくなるにつれて流量を増加させるようにしている。コンダクタンスを確保するためである。 As shown in FIG. 20, the protrusion 3003b has a radial width dimension W1 of the gap S1 that is smaller than a separation distance W2 (see FIG. 18) between the seal surface 3003a and the valve seat surface 5a when the valve is closed. The outer diameter dimension E is set. This is because the throttle function is exhibited from when the elastic deformation amount of the elastic seal member 7 is controlled to control the minute flow rate, and the flow velocity and pressure of the reaction gas flowing in the vicinity of the elastic seal member 7 are reduced. As shown in FIGS. 18, 20, and 21, the height of the protrusion 3003 b is controlled so that the flow rate is small from when the valve is closed until when the valve is opened so that the seal surface 3003 a is slightly separated from the elastic seal member 7. Is set so that the protrusion 3003b is disposed inside the bulging portion 13d during the period (for example, between 0% to 10% of the valve opening degree with respect to full opening). This is to increase the sublimation amount of the reaction gas when the valve opening is small while ensuring conductance. Further, the protrusion 3003b is provided with a tapered surface 3003c along the outer periphery of the tip, and increases the flow rate as the valve opening increases. This is to ensure conductance.
図19は、本発明の第2実施形態に係る真空弁に対応する実施例4の弁構造を示す断面図である。図22は、実施例4を開度2%にした場合の流速分布を解析した結果を示す。図23は、実施例4を開度2%にした場合の圧力分布を解析した結果を示す。
図19に示すように、実施例4の真空弁4001は、弁体4003が絞り部4003eを備える構成だけが実施例1の構成と相違し、その他の構成は実施例1と共通している。
FIG. 19: is sectional drawing which shows the valve structure of Example 4 corresponding to the vacuum valve which concerns on 2nd Embodiment of this invention. FIG. 22 shows the result of analyzing the flow velocity distribution when the opening degree of Example 4 is 2%. FIG. 23 shows the result of analyzing the pressure distribution when Example 4 was set at an opening degree of 2%.
As shown in FIG. 19, the vacuum valve 4001 of the fourth embodiment is different from that of the first embodiment only in the configuration in which the valve body 4003 includes the throttle portion 4003 e, and the other configurations are common to the first embodiment.
弁体4003は、シール面4003aに突部4003bが環状に突設され、その突部4003bの外周面に形成された装着溝4003cにOリング4003dが装着されることにより、絞り部4003eが形成されている。Oリング4003dは、流体漏れを生じさせるように膨出部13dの内壁に接触するように、或いは、膨出部13dとの間に隙間S2を形成するように、装着されることが望ましい。実施例4では、後者を採用している。 In the valve body 4003, a projecting portion 4003b is provided in a ring shape on the seal surface 4003a, and an o-ring 4003d is installed in a mounting groove 4003c formed on the outer peripheral surface of the projecting portion 4003b, thereby forming a throttle portion 4003e. ing. The O-ring 4003d is preferably mounted so as to contact the inner wall of the bulging portion 13d so as to cause fluid leakage, or to form a gap S2 with the bulging portion 13d. In the fourth embodiment, the latter is adopted.
図22及び図23に示すように、装着突部4003bの外径寸法Fは、膨出部13dの内径寸法Bより小さい。そして、Oリング4003dは、膨出部13dとの間に設けられる隙間S2の径方向幅寸法W3が、弁閉時にシール面4003aと弁座部5との離間距離W4(図19参照)より小さくなるように、装着突部4003bに装着されている。尚、Oリング4003dが弾性変形するので、口径が異なる真空弁の間で弁体4003を共用して絞り部4003eを設けることができる。 As shown in FIGS. 22 and 23, the outer diameter dimension F of the mounting protrusion 4003b is smaller than the inner diameter dimension B of the bulging portion 13d. The radial width W3 of the gap S2 provided between the O-ring 4003d and the bulging portion 13d is smaller than the separation distance W4 (see FIG. 19) between the seal surface 4003a and the valve seat portion 5 when the valve is closed. It is attached to the attachment protrusion 4003b. Since the O-ring 4003d is elastically deformed, it is possible to provide the throttle portion 4003e by sharing the valve body 4003 between vacuum valves having different diameters.
(流速の解析について)
図20及び図22に示すように、実施例3,4は、シール面3003a,4003aと弾性シール部材7との間T3,T5を流れる反応ガスの流速が、図16に示す実施例1のシール面3aと弾性シール部材7との間T1の流速より遅い。
(About analysis of flow velocity)
As shown in FIGS. 20 and 22, in the third and fourth embodiments, the flow rate of the reaction gas flowing between T3 and T5 between the sealing surfaces 3003a and 4003a and the elastic seal member 7 is the same as that of the first embodiment shown in FIG. It is slower than the flow rate of T1 between the surface 3a and the elastic seal member 7.
(圧力の解析について)
図21及び図23に示すように、実施例3,4は、シール面3003a,4003aと弾性シール部材7との間T4、T6の圧力が、図17に示す実施例1のシール面3aと弾性部材7との間T2の圧力より低い。
(About pressure analysis)
As shown in FIGS. 21 and 23, in Examples 3 and 4, the pressure between T4 and T6 between the seal surfaces 3003a and 4003a and the elastic seal member 7 is elastic with the seal surface 3a of Example 1 shown in FIG. It is lower than the pressure of T2 between the members 7.
(考察)
上記流れ解析より、弾性シール部材7の第1ポート13a側に隙間S1(絞り部の一例)、絞り部4003eを設ければ、弁開度が小さい場合でも、弾性シール部材7付近の流速及び圧力を低下させ、弾性シール部材7付近を流れる反応ガスを昇華させやすくなることがわかった。
(Discussion)
From the above flow analysis, if a clearance S1 (an example of a throttle part) and a throttle part 4003e are provided on the first port 13a side of the elastic seal member 7, the flow velocity and pressure near the elastic seal member 7 even when the valve opening is small. It was found that the reaction gas flowing in the vicinity of the elastic seal member 7 is easily sublimated.
(第3実施形態)
続いて、本発明の第3実施形態について説明する。図24は、本発明の第3実施形態に係る真空弁1Bの弁構造を示す断面図である。尚、図24では、ヒータ10の記載を省略している。
第3実施形態の真空弁1Bは、絞り部37を除き、第1実施形態の真空弁1Aと同様に構成されている。ここでは、第1実施形態の真空弁1Aと相違する点を中心に説明し、第1実施形態の真空弁1Aと共通する点は適宜説明を省略する。
(Third embodiment)
Subsequently, a third embodiment of the present invention will be described. FIG. 24 is a sectional view showing a valve structure of a vacuum valve 1B according to the third embodiment of the present invention. In FIG. 24, the heater 10 is not shown.
The vacuum valve 1B of the third embodiment is configured in the same manner as the vacuum valve 1A of the first embodiment except for the throttle portion 37. Here, it demonstrates centering on the point which is different from the vacuum valve 1A of 1st Embodiment, and abbreviate | omits description which is common in the vacuum valve 1A of 1st Embodiment suitably.
絞り部37は、弾性シール部材7より径方向内側に(第1ポート13a側に)設けられている。絞り部37は、弁座形成部13cに対して、段差部13gより内側の位置に、弁体3側へ突出するように環状に設けられた環状突起35と、弁閉時に環状突起35との間に隙間S3を空けて嵌合するように弁体3のシール面3aに環状に形成された環状溝34とで構成される。環状突部35と環状溝34の内壁には、嵌合を容易にするためのテーパが設けられている。 The throttle portion 37 is provided on the radially inner side (on the first port 13a side) with respect to the elastic seal member 7. The restricting portion 37 includes an annular protrusion 35 provided annularly so as to protrude toward the valve body 3 at a position inside the stepped portion 13g with respect to the valve seat forming portion 13c, and an annular protrusion 35 when the valve is closed. An annular groove 34 is formed in an annular shape on the seal surface 3a of the valve body 3 so as to be fitted with a gap S3 therebetween. The inner wall of the annular protrusion 35 and the annular groove 34 is provided with a taper for easy fitting.
保持手段31は、第1実施形態と同様、リング部材32を固定ねじ33でボディ4の弁座形成部13cに着脱自在に取り付けることにより、構成される。リング部材32は、弁体3側に位置する面が環状突部35と同じ高さになるように、第1実施形態のリング部材6aより厚く設けられている。 As in the first embodiment, the holding means 31 is configured by detachably attaching the ring member 32 to the valve seat forming portion 13 c of the body 4 with a fixing screw 33. The ring member 32 is thicker than the ring member 6a of the first embodiment so that the surface located on the valve body 3 side has the same height as the annular protrusion 35.
弁体3は、環状溝34より外側に設けられた押圧部36を環状突起35とリング部材32との間に挿入し、弾性シール部材7にシールする。 In the valve body 3, a pressing portion 36 provided outside the annular groove 34 is inserted between the annular protrusion 35 and the ring member 32 and sealed to the elastic seal member 7.
このような真空弁1Bは、微小流量制御を行う場合に、第1ポート13aに供給された反応ガスが絞り部37で流量を絞られて流速と圧力を低下されてから、弾性シール部材7とシール面3aとの間を通過する。よって、真空弁1Bは、第3及び第4実施例の隙間S1、絞り部4003eと同様の作用効果を発揮する。 When such a vacuum valve 1B performs minute flow control, the flow rate and pressure of the reaction gas supplied to the first port 13a is reduced by the restricting portion 37 to reduce the flow velocity and pressure. It passes between the sealing surface 3a. Therefore, the vacuum valve 1B exhibits the same effects as the clearance S1 and the throttle portion 4003e of the third and fourth embodiments.
(第4実施形態)
次に、本発明の第4実施形態について説明する。図25は、本発明の第4実施形態に係る真空弁1Cの弁構造を示す断面図である。
真空弁1Cは、弁座部46の構成を除き、第1実施形態の真空弁1Aと同様に構成されている。ここでは、真空弁1Aと相違する点を中心に説明し、真空弁1Aと共通する点は適宜説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. FIG. 25 is a cross-sectional view showing a valve structure of a vacuum valve 1C according to the fourth embodiment of the present invention.
The vacuum valve 1 </ b> C is configured similarly to the vacuum valve 1 </ b> A of the first embodiment except for the configuration of the valve seat portion 46. Here, it demonstrates centering on the point which is different from 1A of vacuum valves, and abbreviate | omits description suitably about the point which is common with 1A of vacuum valves.
第1ポート形成部材45は、弁座形成部13cを備えない点だけが、第1実施形態の第1ポート形成部材13と相違している。弁座部46は、閉鎖壁13hに保持手段40を取り付けることにより構成されている。 The first port forming member 45 is different from the first port forming member 13 of the first embodiment only in that the valve seat forming portion 13c is not provided. The valve seat portion 46 is configured by attaching the holding means 40 to the closing wall 13h.
保持手段40は、リング部材41に挿通した固定ねじ42を第1ポート形成部材45の閉鎖壁13hに形成したねじ孔13iに締結することにより、第1ポート形成部材45に着脱可能に取り付けられている。 The holding means 40 is detachably attached to the first port forming member 45 by fastening a fixing screw 42 inserted through the ring member 41 into a screw hole 13 i formed in the closing wall 13 h of the first port forming member 45. Yes.
リング部材41は、弁体3側に位置する端面が平坦に形成され、弁座面41aを構成する。リング部材41は、閉鎖壁13hに取り付けられた状態で弁座面41aが第2ポート14aの底部14bと同じ高さになるように、軸線方向(図中上下方向)の厚さが設定されている。リング部材41の内周面には、第1ポート13aの内壁13fより径方向内側に向かって突出する膨出部41bを備える。つまり、弁座面41aの開口部分の内径寸法Bが、第1ポート13aの内径寸法Aより小さくされている。テーパ面41cは、膨出部41bを内壁13fに接続し、第1ポート13aに供給された反応ガスを膨出部41bへ向かってスムーズに縮流させる。 The ring member 41 has a flat end surface located on the valve body 3 side, and constitutes a valve seat surface 41a. The thickness of the ring member 41 is set in the axial direction (vertical direction in the drawing) so that the valve seat surface 41a is at the same height as the bottom portion 14b of the second port 14a in a state of being attached to the closing wall 13h. Yes. The inner peripheral surface of the ring member 41 includes a bulging portion 41b that protrudes radially inward from the inner wall 13f of the first port 13a. That is, the inner diameter dimension B of the opening portion of the valve seat surface 41a is smaller than the inner diameter dimension A of the first port 13a. The tapered surface 41c connects the bulging portion 41b to the inner wall 13f and smoothly contracts the reaction gas supplied to the first port 13a toward the bulging portion 41b.
リング部材41は、弁座面41aにアリ溝41dが形成され、そのアリ溝41dに弾性シール部材7が弾性変形可能に装着されている。つまり、弾性シール部材7は、保持手段40に保持された状態で弁座部46に装着されている。アリ溝41dは、第1ポート13aの内壁13fを弁体3側に延長した延長線上に設けられ、シール面3aに弾性シール部材7を装着する場合より弁体3をコンパクトにしている。リング部材41は、アリ溝41dが形成された端面と反対側に位置する端面41eに環状溝41fが形成され、Oリング43が装着されている。Oリング43は、固定ねじ42の締結力によりリング部材41と閉鎖壁13hとの間で押し潰され、流体漏れを防いでいる。 The ring member 41 has a dovetail groove 41d formed in the valve seat surface 41a, and the elastic seal member 7 is mounted in the dovetail groove 41d so as to be elastically deformable. That is, the elastic seal member 7 is attached to the valve seat portion 46 while being held by the holding means 40. The dovetail groove 41d is provided on an extension line obtained by extending the inner wall 13f of the first port 13a toward the valve body 3, and makes the valve body 3 more compact than the case where the elastic seal member 7 is attached to the seal surface 3a. In the ring member 41, an annular groove 41f is formed on an end surface 41e located on the opposite side of the end surface on which the dovetail 41d is formed, and an O-ring 43 is attached. The O-ring 43 is crushed between the ring member 41 and the closing wall 13h by the fastening force of the fixing screw 42 to prevent fluid leakage.
このような真空弁1Cは、弁座部46が第1実施形態の弁座部5と同様に機能し、第1実施形態の真空弁1Aと同様の作用効果を奏する。真空弁1Cは、第1ポート形成部材45の形状が第1実施形態の第1ポート形成部材13の形状よりシンプルなので、第1実施形態の真空弁1aより生産コストを低減できる。
また、真空弁1Cは、ポート形成部材45に着脱可能に設けられる保持手段40に弾性シール部材7を装着しているので、例えば、固定ねじ42を弛めてリング部材41を丸ごと交換すれば、弾性シール部材7を簡単に交換できる。
また、真空弁1Cは、固定ねじ42を弁閉方向に締結するので、固定ねじ42にシール荷重に対する強度が要求されない。
In such a vacuum valve 1C, the valve seat portion 46 functions in the same manner as the valve seat portion 5 of the first embodiment, and has the same effects as the vacuum valve 1A of the first embodiment. Since the shape of the first port forming member 45 is simpler than the shape of the first port forming member 13 of the first embodiment, the production cost of the vacuum valve 1C can be reduced compared to the vacuum valve 1a of the first embodiment.
Further, since the vacuum seal 1C has the elastic seal member 7 attached to the holding means 40 that is detachably provided on the port forming member 45, for example, if the fixing member 42 is loosened and the entire ring member 41 is replaced, The elastic seal member 7 can be easily replaced.
Further, since the vacuum valve 1C fastens the fixing screw 42 in the valve closing direction, the fixing screw 42 is not required to have a strength against a seal load.
尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
例えば、上記実施形態の真空弁は、半導体製造装置の他の装置に適用しても良いことはいうまでもない。
In addition, this invention is not limited to the said embodiment, Various application is possible.
For example, it goes without saying that the vacuum valve of the above embodiment may be applied to other devices of the semiconductor manufacturing apparatus.
1A,1B,1C,2001,3001,4001 真空弁
2 駆動手段
3 弁体
4 ボディ
5,46 弁座部(弁座の一例)
6,31,40 保持手段
7 弾性シール部材
10 ヒータ
12 弁本体部材(弁本体部の一例)
13,45 第1ポート形成部材(第1ポート部の一例)
14 第2ポート形成部材(第2ポート部の一例)
15,41d アリ溝
37,4003e 絞り部
S1 隙間(絞り部の一例)
C 弁体の外径寸法
D アリ溝の底部外径寸法
1A, 1B, 1C, 2001, 3001, 4001 Vacuum valve 2 Driving means 3 Valve body 4 Body 5, 46 Valve seat (an example of valve seat)
6, 31, 40 Holding means 7 Elastic seal member 10 Heater 12 Valve body member (an example of valve body)
13, 45 1st port formation member (an example of the 1st port part)
14 Second port forming member (example of second port portion)
15,41d Dovetail groove 37,4003e Restriction portion S1 Clearance (an example of an restriction portion)
C Outer diameter D of valve body D Outer diameter of dovetail bottom
Claims (4)
前記弾性シール部材が前記弁座に装着されていること、
前記ボディの内壁に着脱自在に取り付けられ、前記弾性シール部材を保持する保持手段を有すること、
を特徴とする真空弁。 A first port portion and a second port portion integrally projecting from the valve body portion, a body through which a reaction gas flows, a valve seat provided in the body, and a valve body that contacts or separates from the valve seat; An elastic seal member that is crushed between the valve body and the valve seat and elastically deformed; a driving unit that is connected to the body and applies a driving force to the valve body; and a heater that heats the body. In the vacuum valve,
The elastic seal member is mounted on the valve seat;
A holding means for detachably attaching to the inner wall of the body and holding the elastic seal member;
A vacuum valve characterized by
前記弁座は、前記弾性シール部材が装着されるアリ溝を有すること、
前記弁体は、前記弾性シール部材に密着するシール面の外径寸法が前記アリ溝の底部外径寸法以下であること
を特徴とする真空弁。 The vacuum valve according to claim 1,
The valve seat has a dovetail groove in which the elastic seal member is mounted;
The said valve body is a vacuum valve characterized by the outer diameter dimension of the sealing surface closely_contact | adhered to the said elastic seal member being below the outer diameter dimension of the bottom part of the said dovetail groove.
前記弁座は、前記弁体側に開口する開口部の内周面に径内方向に突出する膨出部を有すること、
前記アリ溝が、前記膨出部側に張り出すように前記弁座に形成されていること
を特徴とする真空弁。 The vacuum valve according to claim 2,
The valve seat has a bulging portion projecting radially inwardly on an inner peripheral surface of an opening that opens on the valve body side;
The vacuum valve, wherein the dovetail groove is formed in the valve seat so as to project toward the bulging portion.
前記弾性シール部材より内側に設けられた絞り部を有すること
を特徴とする真空弁。 The vacuum valve according to any one of claims 1 to 3,
A vacuum valve having a throttle portion provided inside the elastic seal member.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015062479A JP6243868B2 (en) | 2015-03-25 | 2015-03-25 | Vacuum valve |
KR1020160034068A KR101806673B1 (en) | 2015-03-25 | 2016-03-22 | Vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015062479A JP6243868B2 (en) | 2015-03-25 | 2015-03-25 | Vacuum valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016180495A true JP2016180495A (en) | 2016-10-13 |
JP6243868B2 JP6243868B2 (en) | 2017-12-06 |
Family
ID=57132431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015062479A Active JP6243868B2 (en) | 2015-03-25 | 2015-03-25 | Vacuum valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6243868B2 (en) |
KR (1) | KR101806673B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109419333A (en) * | 2017-09-05 | 2019-03-05 | 浙江绍兴苏泊尔生活电器有限公司 | Cooking utensil and manufacturing method thereof |
JP2019065957A (en) * | 2017-09-29 | 2019-04-25 | 株式会社フジキン | Valve with built-in heater |
WO2019101318A1 (en) * | 2017-11-23 | 2019-05-31 | Applied Materials, Inc. | Lock valve for vacuum sealing, vacuum chamber and vacuum processing system |
JP2022079848A (en) * | 2020-11-17 | 2022-05-27 | Utm株式会社 | Vacuum breaking valve |
CN117847235A (en) * | 2024-03-06 | 2024-04-09 | 艾坦姆流体控制技术(山东)有限公司 | Corrugated pipe regulating valve structure easy to maintain |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230175603A1 (en) * | 2021-12-03 | 2023-06-08 | Proserv Gilmore Valve Llc | Pressure relief valve for high-pressure fluids, including abrasives laden fluids |
CN117419182B (en) * | 2023-12-18 | 2024-03-01 | 四川新途流体控制技术有限公司 | High-pressure pneumatic valve and fluid control system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54120725U (en) * | 1978-02-14 | 1979-08-23 | ||
JPS63180775A (en) * | 1987-01-23 | 1988-07-25 | Nec Corp | Isolation valve of chamber |
JPH0545346U (en) * | 1991-11-15 | 1993-06-18 | 関西日本電気株式会社 | Main valve |
JP2001173838A (en) * | 1999-12-20 | 2001-06-29 | Ckd Corp | Vacuum proportional opening and closing valve |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3762809B2 (en) * | 1996-05-01 | 2006-04-05 | 株式会社不二工機 | Motorized valve |
JP2002286162A (en) * | 2001-03-23 | 2002-10-03 | Megatorr Corp | Wide band variable conductance valve |
JP2008069943A (en) | 2006-09-15 | 2008-03-27 | Smc Corp | Film forming vacuum valve |
JP4884949B2 (en) | 2006-12-12 | 2012-02-29 | 株式会社堀場製作所 | Vacuum valve unit |
-
2015
- 2015-03-25 JP JP2015062479A patent/JP6243868B2/en active Active
-
2016
- 2016-03-22 KR KR1020160034068A patent/KR101806673B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54120725U (en) * | 1978-02-14 | 1979-08-23 | ||
JPS63180775A (en) * | 1987-01-23 | 1988-07-25 | Nec Corp | Isolation valve of chamber |
JPH0545346U (en) * | 1991-11-15 | 1993-06-18 | 関西日本電気株式会社 | Main valve |
JP2001173838A (en) * | 1999-12-20 | 2001-06-29 | Ckd Corp | Vacuum proportional opening and closing valve |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109419333A (en) * | 2017-09-05 | 2019-03-05 | 浙江绍兴苏泊尔生活电器有限公司 | Cooking utensil and manufacturing method thereof |
JP2019065957A (en) * | 2017-09-29 | 2019-04-25 | 株式会社フジキン | Valve with built-in heater |
JP7054502B2 (en) | 2017-09-29 | 2022-04-14 | 株式会社フジキン | Valve with built-in heater |
WO2019101318A1 (en) * | 2017-11-23 | 2019-05-31 | Applied Materials, Inc. | Lock valve for vacuum sealing, vacuum chamber and vacuum processing system |
JP2022079848A (en) * | 2020-11-17 | 2022-05-27 | Utm株式会社 | Vacuum breaking valve |
JP7462315B2 (en) | 2020-11-17 | 2024-04-05 | Utm株式会社 | Vacuum breaker valve |
CN117847235A (en) * | 2024-03-06 | 2024-04-09 | 艾坦姆流体控制技术(山东)有限公司 | Corrugated pipe regulating valve structure easy to maintain |
Also Published As
Publication number | Publication date |
---|---|
KR101806673B1 (en) | 2017-12-07 |
JP6243868B2 (en) | 2017-12-06 |
KR20160115751A (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6243868B2 (en) | Vacuum valve | |
KR101105858B1 (en) | Vacuum valve | |
US11118690B2 (en) | Fluid control valve and fluid control valve manufacturing method | |
TWI555941B (en) | Fluid control valve | |
WO2004074722A1 (en) | Diaphragm valve for vacuum evacuation system | |
JP2006329367A (en) | Vacuum valve | |
JP6294892B2 (en) | Apparatus and method for reducing actuator thrust requirements in control valves | |
JP2009002442A (en) | Fluid control valve | |
JP6733121B2 (en) | Gate valve with disk replacement structure | |
TW201925662A (en) | Valve device, fluid control device using said valve device, and semiconductor manufacturing device | |
JP2010266012A (en) | Resin diaphragm type fluid control valve | |
WO2008004303A1 (en) | Shaft sealing device | |
EP2875267A1 (en) | Temperature compensating flanged joint for a teflon diaphragm valve | |
WO2020111148A1 (en) | Diaphragm valve | |
TWI683072B (en) | Flow path assembly and valve device | |
JP2023083160A (en) | diaphragm valve | |
TWI724771B (en) | Flow path component, valve device using the flow path component, fluid control device, semiconductor manufacturing device, and semiconductor manufacturing method | |
JP7025915B2 (en) | Diaphragm valve | |
WO2017038274A1 (en) | Pipe joint, fluid control equipment, fluid control device and semiconductor manufacturing device, and pipe joint manufacturing method | |
JP5243200B2 (en) | Vacuum valve | |
JP5900866B2 (en) | Normally closed 3 port valve | |
JP2015178896A (en) | Vacuum pressure proportional control valve, valve body, and method of forming flow passage of valve body | |
JP2010121703A (en) | Diaphragm valve | |
JP2008202799A (en) | Gasket filter | |
US20130026722A1 (en) | Extremely low temperature rotary union |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6243868 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |