JP2016176948A - 線量分布測定装置 - Google Patents

線量分布測定装置 Download PDF

Info

Publication number
JP2016176948A
JP2016176948A JP2016077757A JP2016077757A JP2016176948A JP 2016176948 A JP2016176948 A JP 2016176948A JP 2016077757 A JP2016077757 A JP 2016077757A JP 2016077757 A JP2016077757 A JP 2016077757A JP 2016176948 A JP2016176948 A JP 2016176948A
Authority
JP
Japan
Prior art keywords
dose distribution
camera
irradiation
particle beam
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016077757A
Other languages
English (en)
Inventor
平澤 宏祐
Hirosuke Hirasawa
宏祐 平澤
昌広 池田
Masahiro Ikeda
昌広 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016077757A priority Critical patent/JP2016176948A/ja
Publication of JP2016176948A publication Critical patent/JP2016176948A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Measurement Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

【課題】スキャニング照射法による粒子線線量分布を、単純な構成で短時間に測定できる粒子線の線量分布測定装置を提供すること。【解決手段】水ファントムの周囲であって、水ファントムの粒子線の照射の中心軸に垂直な面上に、蛍光物質を含む液体の発光を撮像するように配置された1台のカメラと、この1台のカメラの画像を処理するカメラ画像処理部と、静止したペンシルビームである粒子線による照射での蛍光物質を含む液体の発光を1台のカメラにより撮像したカメラ画像をカメラ画像処理部で処理した画像から一次元の光強度分布を抽出する一次元光強度分布算出部ST23と、この一次元光強度分布算出部ST23で抽出した一次元光強度分布からペンシルビームである粒子線のPDDおよびOCRのデータを得る線量分布評価部ST24とを備えた線量分布算出評価装置と、を備えるようにした。【選択図】図14

Description

本発明は、例えば、がんの粒子線治療などに利用される粒子線の線量分布を測定する線量分布測定装置に関する。
がんの放射線治療では、治療に用いるX線、電子線、粒子線などの放射線ビームのエネルギーや形状を確認するため、患者にビームを照射する前に、人体を模擬した水ファントム中における線量分布を測定する必要がある。加速器などの放射線照射装置の調整、および、患者ごとに異なるビームエネルギー分布および形状の確認のため、放射線ビームの品質管理として日常的に線量分布測定が必要となる。
例えば特許文献1では、人体を模擬した水槽と、水中での位置を変更できるように駆動装置が備えられた1つの電離箱を用いて、電離箱を走査することによって、放射線の照射による水中の線量分布を測定している。そのため、1回の線量分布測定だけでも多大な時間と手間が必要になる。また、ビーム条件を変更する度に、線量分布測定による確認が必要であるため、照射装置1台当りの治療可能な患者数、すなわち治療装置の稼働率の向上には限界がある。
このような課題を解決するため、短時間に線量分布を測定できる装置として様々な形態の放射線検出器や線量分布測定装置が提案されている。例えば、特許文献2では、可視光線の透過率が高い固体ファントム中に放射線により励起されて蛍光発光する物質を含有させ、放射線の照射による発光をCCDカメラなどで電気信号に変えて蛍光強度を測定する技術が記載されている。
また、特許文献3には、陽子線を照射することで発光する液体シンチレータからなるシンチレータ部、シンチレータ部を陽子線の入射方向に対して垂直な方向から撮像する撮像部であるCCDカメラからなる粒子線線量分布測定装置が記載されている。この測定装置を用いて、入射粒子線方向に沿って複数の水平断面を同時に測定し、それぞれの断面について2次元分布を再構成することによって、最終的には3次元分布が得られることが記載されている。
特開2003−47666号公報 特開2011−133598号公報 特開2003−79755号公報
放射線の中でも陽子線や炭素線といったいわゆる粒子線を用いた粒子線治療装置における粒子線の照射方法として、スキャニング照射法がある。このスキャニング照射法は、細いペンシルビームと呼ばれる粒子線をビーム進行方向に垂直な2次元方向に移動させて、ビーム進行方向に垂直な2次元の照射分布を形成する方法である。また、粒子線のエネルギーにより、粒子線の吸収線量がピーク(ブラッグピークと呼ぶ)となる位置が決まるため、粒子線のエネルギーを変えることにより、ビーム進行方向の照射位置を変化させる。スキャニング照射法では、以上のように、ペンシルビームの移動と、エネルギーの変化により3次元の照射野を形成する。
このようにスキャニング照射法では、ビーム照射位置が時間的に変化するため、時間的に照射位置が変化しないときの線量分布を測定するための技術である特許文献1〜3に記載された技術を、スキャニング照射法の線量分布測定に直接適用することはできず、あるいはスキャニング照射法の線量分布を測定しようとすると多大な時間を必要とするという問題があった。
本発明は、以上のような問題点を解決するためになされたもので、スキャニング照射法による粒子線線量分布を、単純な構成で短時間に測定できる粒子線の線量分布測定装置を提供することを目的とする。
この発明は、ペンシルビームである粒子線の線源データを測定する線量分布測定装置において、粒子線を照射することにより発光する蛍光物質を含む液体を有し、粒子線を入射させるための入射窓を備えた水ファントムと、この水ファントムの周囲であって、水ファントムの粒子線の照射の中心軸に垂直な面上に、蛍光物質を含む液体の発光を撮像するように配置された1台のカメラと、この1台のカメラの画像を処理するカメラ画像処理部と、静止したペンシルビームである粒子線による照射での蛍光物質を含む液体の発光を1台のカメラにより撮像したカメラ画像をカメラ画像処理部で処理した画像から一次元の光強度分布を抽出する一次元光強度分布算出部と、この一次元光強度分布算出部で抽出した一次元光強度分布からペンシルビームである粒子線のPDDおよびOCRのデータを得る線量分布評価部とを備えた線量分布算出評価装置と、を備えたものである。
本発明によれば、単純な構成で短時間に線量分布測定ができる線量分布測定装置を得ることができる。
本発明の実施の形態1による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 ペンシルビームのPDDおよびOCRの一例を示す線図である。 本発明の実施の形態1による線量分布測定装置のカメラ画像から得られるスポット位置を説明する図である。 本発明の実施の形態1による線量分布測定装置の動作を示すフロー図である。 本発明の実施の形態1による線量分布測定装置により得られる2.5次元線量分布の一例を示す線図である。 本発明の実施の形態2による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態3による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態3による線量分布測定装置の動作を示すフロー図である。 本発明の実施の形態4による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態4による線量分布測定装置の動作を示すフロー図である。 本発明の実施の形態4による線量分布測定装置のカメラ画像の一例を示す図である。 本発明の実施の形態4による線量分布測定装置のカメラ画像から一次元光強度分布を抽出した一例を示す図である。 本発明の実施の形態4による線量分布測定装置のカメラ画像から他の一次元光強度分布を抽出した一例を示す図である。 本発明の実施の形態5による線量分布測定装置の動作を示すフロー図である。 本発明の効果を説明する表を示す図である。
実施の形態1.
図1は、本発明の実施の形態1による線量分布測定装置1を含む粒子線照射装置の概略構成を示すブロック図である。照射系2から水槽で構成される水ファントム3に向けて粒子線4が照射される。水ファントム3中には、粒子線を吸収して発光する蛍光物質を含む液体5(一般に液体シンチレータと呼ばれている)が入れられている。水ファントム3の壁は、アクリルなど光を透過する透明な材料で構成されている。また、粒子線4が入射する部分には、同じくアクリルなど粒子線の吸収が少ない材料の入射窓6が設けられている。粒子線の吸収が少ないようにするため、入射窓6は他の部分よりも薄くすることがある。水ファントム3の周囲には、カメラ7およびカメラ8の2台のカメラが配置されている。2台のカメラは、例えば粒子線4の照射の中心軸CAに対して垂直な面における、照射の中心軸CAを中心とする円C上に配置され、照射の中心軸CAを中心とする画像を撮像する。
カメラ7およびカメラ8で撮像したカメラ画像を用いて線量分布算出評価装置10において線量分布を算出・評価する。線量分布算出評価装置10は、カメラ画像を処理するカメラ画像処理部11、カメラ校正用パラメータ記憶部17に保存されているカメラ校正用パラメータを用いてカメラ画像処理部11において処理されたカメラ画像からスポット位置を算定するスポット位置算定部12、ペンシルビーム線量分布データ記憶部16に保存されているペンシルビーム線量分布を用いて各スポット位置における線量を算出して加算する線量加算部13、線量加算部13で加算された結果である線量分布の測定値と、治療計画装置20において計画された照射領域線量分布データを保存する照射領域線量分布データ記憶部15に保存された照射領域線量分布データと、を比較して評価する線量分布評価部14を備えている。
照射系2により、細いペンシルビームと呼ばれる粒子線4をビーム進行方向に垂直な2次元方向に移動させて、ビーム進行方向に垂直な2次元の照射分布を形成する。ここでは、ビーム進行方向をZ方向、Zに垂直な、すなわちビームを移動させる2方向をX方向およびY方向とする。粒子線4をX方向およびY方向に移動させるため、照射系2にはX方向偏向電磁石およびY方向偏向電磁石が備えられている。粒子線4は、照射系2により、移動と停留を繰り返しながら照射される。すなわち、粒子線4がある照射位置(以降スポット位置と呼ぶ)に停留してそのスポット位置での照射線量が計画した照射線量になったら、粒子線4を次のスポット位置に移動させて、次のスポット位置での計画照射線量になるまで照射する。あるエネルギーの粒子線4でこれを繰り返し、当該エネルギーに対応したブラッグピークの位置、すなわちビーム進行方向の位置である深さ位置の照射領域に計画の照射線量分布、すなわち2次元の線量分布を形成する。粒子線のエネルギーを変えることにより、照射される深さが変わるため、粒子線のエネルギーを変えて別の深さ位置の照射領域に計画した2次元の照射線量分布を形成する。このようにして、異なるエネルギー毎に粒子線4の移動と停留を繰り返して2次元の照射線量分布を形成することにより、最終的に3次元の照射領域に計画した照射線量分布を形成する。このような照射方法をここでは、スポットスキャニング照射法と呼ぶことにする。
以上のスポットスキャニング照射法により、患者の患部を照射領域として必要な照射線量分布を与えるために、治療計画装置20において、照射系2を制御するための照射系制御器21の制御データ、および図示しない加速器を制御するための加速器系制御器22の制御データなどを求めて、照射系制御器21および加速器系制御器22に送信する。治療時には、これら照射系制御器21の制御データおよび加速器系の制御データに従って粒子線4を移動と停留を繰り返して患者の患部に照射するが、治療中に患者の患部内の線量分布を直接測定することができない。このため、これらの制御データによって照射した場合に、計画した線量分布が形成されるかどうかを治療に先立って確認するために、線量分布測定装置1が用いられる。
本発明の実施の形態1による線量分布測定装置1による線量分布測定方法を図1〜図5に基づいて説明する。まず、線量分布測定装置1によって3次元の照射線量分布を測定する前に、ペンシルビームの線量分布特性を測定する。ペンシルビームの線量分布として、Z方向の分布であるPDD(Percent Depth Dose、深部百分率)と、X−Y面の分布であるOCR(Off Center Axis Ratio)とを測定しておく。OCRは従来知られている指頭型線量計などにより、PDDはAdvanced Markusなどにより測定することができる。あるいは、後述の実施の形態5による方法で測定することもできる。PDDの一例を図2(A)に、OCRの一例を図2(B)に示す。これらのPDDおよびOCRを粒子線のエネルギー毎に測定し、線量分布算出評価装置10のペンシルビーム線量分布データ記憶部16に保存する。
次に、図1の構成で、水ファントム3にスポットスキャニング照射法により粒子線4を照射する。すなわち、各スポット位置における加速器系制御器22の制御データおよび照射系制御器21の制御データにより加速器および照射系2を制御して、各スポット位置において粒子線4を照射する。粒子線4のエネルギーを変更する毎に、当該エネルギーに対応した水ファントムの深さ位置の2次元照射領域に、粒子線4を進行方向に垂直な2次元方向に移動と停留を繰り返して走査することにより、3次元の照射領域に粒子線4を照射する。このとき、各スポット位置における照射毎に、カメラ7およびカメラ8で蛍光物質を含む液体5の発光を撮像する。スポット位置毎に、撮像した画像における最も輝度の高い点を抽出する。例えばカメラ7で撮像したそれぞれのスポット位置での画像の最も輝度の高い点を抽出して、全てのスポット位置における最も輝度の高い点を並べると、図3のようなデータが得られる。スポット位置毎に、ペンシルビーム線量分布データ記憶部16に保存されている、PDDおよびOCRのデータを用いて、当該スポット位置における照射によって得られる3次元線量分布を算出する。全てのスポット位置における3次元線量分布を積算することにより全てのスポット位置の照射による積算された3次元照射分布を得ることができる。
2方向以上のカメラから三次元位置を三次元計測するためには、あらかじめカメラのキャリブレーション(校正)を実施しておく必要がある。具体的には、カメラの校正用のパラメータであるカメラの外部パラメータ(取り付け位置と姿勢)、およびカメラの内部パラメータ(画像中心、歪など)を既知の方法で求めることができる。ここでは、水ファントム内に、三次元座標位置が既知の校正点を埋め込んでおき、校正点を治療室内のレーザポインタ等でアイソセンタを中心とする治療室座標系に設置できるものとする。各カメラ画像上の校正点を使って、各カメラの外部パラメータ、内部パラメータを算出する。算出した各カメラの校正用パラメータである外部パラメータ、内部パラメータはカメラ校正用パラメータ記憶部17に保存する。
以上を、図4のフロー図を用いて説明する。前述のように、予め、ペンシルビームのPDDおよびOCRを粒子線のエネルギー毎に測定し、線量分布算出評価装置10のペンシルビーム線量分布データ記憶部16に保存しておく(ST1)。ここで、照射すべきスポット位置の数をnとする。まず1番目のスポット位置の照射線量分布測定データを得るためにi=1とセットする(ST2)。1番目のスポット位置を照射するように照射系制御器21および加速器系制御器22のパラメータがセットされ、i=1番目のスポットを照射して、そのときの水ファントム3の発光をカメラ7およびカメラ8で撮影する(ST3)。これらカメラ7およびカメラ8で撮像したカメラ画像から、スポット位置算定部12において、最も輝度が高い位置をスポット位置として、3次元位置を算定し、また輝度からピーク線量を算定する(ST4)。3次元位置を算定する際、カメラ校正用パラメータ記憶部17に保存されたそれぞれのカメラのカメラ校正用パラメータを用いる。また、輝度と吸収線量が非線形な関係になっている場合、輝度と吸収線量の非線形な関係を対応テーブルとしてテーブル化しておけば、輝度から吸収線量に簡単に変換できる。線量加算部13において、ペンシルビーム線量分布記憶部に保存されているPDDおよびOCRのデータを用いて、算定したi=1番目のスポット位置をピークとする照射線量分布を算出して、3次元の照射線量分布を得る(ST5)。
次にi=i+1(ST7)、すなわちi=2として、2番目のスポット位置を照射するように照射系制御器21および加速器系制御器22のパラメータがセットされ、i=2番目のスポットを照射して、そのときの水ファントム3の発光をカメラ7およびカメラ8で撮影する(ST3)。これらカメラ7およびカメラ8で撮像したカメラ画像から、スポット位置算定部12において、最も輝度が高い位置をスポット位置として、3次元位置を算定し、輝度からピーク線量を算定する(ST4)。ペンシルビーム線量分布記憶部に保存されているPDDおよびOCRのデータを用いて、算定したi=2番目のスポット位置をピークとする照射線量分布を算出して、3次元の照射線量分布を得て、1番目の3次元照射線量分布に加算する(ST5)。このようにして、i=nとなるまで(ST6 NO)、得られた3次元照射線量分布を加算する。i=n、すなわち全スポット位置での照射が終了した時点(ST6 YES)で、加算により得られた照射線量分布が、照射線量分布の測定値となる。得られるデータの一例を図5に示す。図5は、ある中心付近のY位置におけるZ方向とX方向の2次元の分布を示す図、すなわち2.5次元の分布図である。実際には、X,Y、Z三次元のボリュームの1点1点に対して値を持つような3次元照射線量分布が得られることになる。線量分布評価部14において、このようにして得られた3次元の照射線量分布の測定値と、治療計画で設定した3次元の照射線量分布とを比較、評価する(ST8)。治療計画で設定した線量分布は、予め治療計画装置から線量分布算出評価装置10の照射領域線量分布データ記憶部15に保存しておく。測定値としての照射線量分布が、治療計画により設定した照射線量分布とどの程度合致しているかの評価は、既知のガンマインデックスなどの指標を用いて行うことができる。
以上のように、本発明の実施の形態1による線量分布測定装置によれば、照射の中心軸CAを中心とする円C上に配置された2台のカメラ7およびカメラ8により、スポット位置毎の照射による水ファントム3の発光を撮像して得られる画像からスポット位置を算定し、予め測定したペンシルビームのPDDおよびOCRのデータを用いることにより、スポットスキャニング照射による線量分布を簡便に測定することができる。2台のカメラはその撮像の方向が互いに直交する位置に配置することが望ましい。ただし、カメラの配置に対応したカメラ校正用パラメータを求めておけば、カメラ画像からスポット位置を算出できるため、2台のカメラを必ずしも直交する位置に配置しなくても良い。また、カメラは、少なくとも2台配置すればよく、3台以上配置しても良い。カメラの台数が多いと、より精度良くスポット位置を算定できる。
実施の形態2.
図6は、本発明の実施の形態2による線量分布測定装置100を含む粒子線照射装置の概略構成を示すブロック図である。図6において、図1と同一符号は同一または相当する部分を示す。本実施の形態2による線量分布測定装置100では、実施の形態1による線量分布測定装置1の構成に、OCR測定用カメラ9を追加したものである。OCR測定用カメラ9は、水ファントム3の入射窓6のある側と反対側の、水ファントム3の外部に設置されている。OCR測定用カメラ9は、水ファントム3の方向に向けて画像を取得する。画像は、各スポット位置を照射する毎に取得する。このように取得することで、各スポット位置での照射毎のOCRに相当する画像が得られる。これらの画像から、線量分布算出評価装置110におけるOCR分布算定部18において、各スポット位置の照射毎にOCRデータを算定する。OCRデータの算定は、カメラ画像からビーム径を算出し、分布として例えばガウス分布を仮定してOCRデータとすれば良い。
本実施の形態2では、実施の形態1で説明したステップST5において、OCR分布算定部18において算定したOCRデータと、ペンシルビーム線量分布データ記憶部16に記憶されているPDDのデータを用いて、線量加算部13が、スポット位置算定部12において算定したi番目のスポット位置をピークとする線量分布を算出して加算する。
このように、本実施の形態2によれば、予めペンシルビームのOCRを測定して保存しておく必要がなく、実際に照射したときのOCRを測定して線量分布算定に用いるため、より精度が高い線量分布測定が行える。
実施の形態3.
図7は、本発明の実施の形態3による線量分布測定装置200を含む粒子線照射装置の概略構成を示すブロック図である。図7において、図1と同一符号は同一または相当する部分を示す。本実施の形態3では、1台のカメラ70が水ファントム3の外部に配置されている。カメラ70は、例えば粒子線4の照射の中心軸CAに対して垂直な面における照射の中心軸CAを中心とする円C上に配置され、照射の中止軸CAを中心とする画像を撮像する。
本実施の形態3による線量分布測定装置200の動作フローを図8に示す。粒子線4をスポットスキャニング照射法により水ファントム3に照射(ST11)したときの蛍光物質を含む液体5の発光を、カメラ70で照射中の全時間露光した画像を撮像する(ST12)ことで、線量分布算出評価装置210におけるカメラ画像処理部211に発光した光を積算値として記録する。記録する画像は、光強度を色の濃淡で表わした画像でも良く、あるいは光強度が同じ点を結んだ等光強度曲線で表わした画像でも良い。記録された画像はカメラの光軸方向の空間および時間の積算値であり、線量分布そのものではない。そこで、画像予測部30において、照射領域線量分布データ記憶部15に保存されている、治療計画装置20において設定した照射領域線量分布のデータを用いて、この線量分布による水ファントム3の発光量をシミュレーションし、シミュレーションした発光量によりカメラ70の位置で撮像されるであろう、空間および時間の積算値としての画像を予測して、予測した予測画像を保存する。蛍光物質を含む液体5の発光は、照射線量に対して非線形のものが多いため、この非線形性を考慮してシミュレーションするのが好ましい。線量分布評価部214において、画像予測部30に保存された予測画像とカメラ画像処理部211に記録された撮像画像とを比較・評価することにより、治療計画装置20において設定した線量分布と、実際に照射したときの線量分布を比較・評価する(ST13)ことができる。
以上のように、本実施の形態3による線量分布測定装置によれば、直接線量分布そのものを測定することはできないが、カメラ1台の簡単な構成により、治療計画装置において設定した線量分布と、実際に照射したときの線量分布を間接的に比較・評価できる。
実施の形態4.
図9は、本発明の実施の形態4による線量分布測定装置300を含む粒子線照射装置の概略構成を示すブロック図である。また図10は、本実施の形態4による線量分布測定装置の動作を示すフロー図である。図9において、図7と同一符号は同一または相当する部分を示す。本実施の形態4では、実施の形態3と同様、1台のカメラ70が水ファントム3の外部に配置されている。カメラ70は、例えば粒子線4の照射の中心軸CAに対して垂直な面における照射の中心軸CAを中心とする円C上に配置され、照射の中止軸CAを中心とする画像を撮像する。
本実施の形態4では、実施の形態3と同様、粒子線4をスポットスキャニング照射法により水ファントム3に照射(ST11)したときの蛍光物質を含む液体5の発光を、カメラ70で照射中の全時間露光した画像を撮像(ST12)することで、線量分布算出評価装置310のカメラ画像処理部311に発光した光を積算値として記録する。記録された画像はカメラの光軸方向の空間および時間の積算値であり、線量分布そのものではない。
画像は、例えば、等光強度曲線で表わした、図11のようなデータとして記録する。線量分布算出評価装置310の一次元光強度分布算出部319において、この画像から、照射の中心軸CAに平行な方向の断面Aの一次元、および照射の中心軸CAに垂直な方向の断面Bの一次元の光強度分布として抽出する(ST14)。抽出した光強度分布の例を図12および図13に示す。図12は照射の中心軸に平行な方向の断面Aの一次元、すなわちZ方向の光強度分布の例であり、図13は、照射の中心軸CAに垂直な方向の断面Bの一次元、すなわちX方向の光強度分布の例である。一方、画像予測部315において、照射領域線量分布データ記憶部15に保存されている、治療計画装置20において設定した照射領域線量分布のデータを用いて、この線量分布による水ファントムの発光量をシミュレーションし、シミュレーションした発光量によりカメラ70の位置で撮像されるであろう、空間および時間の積算値としての画像を予測して、この予測画像から、照射の中心軸CAに平行な方向の断面Aの一次元、および照射の中心軸CAに垂直な方向の断面Bの一次元の光強度分布として抽出する。線量分布評価部314において、撮像した画像から一次元光強度分布算出部319において抽出した一次元の光強度分布と、画像予測部315において予測画像から抽出した一次元の光強度分布とを比較することにより、照射線量分布を評価する(ST15)ことができる。
実施の形態5.
図14は、本発明の実施の形態5による線量分布測定装置の動作フロー図である。本実施の形態5による線量分布測定装置は、実施の形態4と同様、図9に示す線量分布測定装置300の構成で、ペンシルビームである粒子線4を移動させずに水ファントム3に短時間照射して(ST21)、ペンシルビームによる発光を、カメラ70により撮像する(ST22)ことで、ペンシルビームである粒子線4の線源データが得られる。例えば、カメラ70の配置が図9に示すような配置であると、一次元光強度分布算出部319において算出(ST23)するZ方向の一次元光強度分布は、線源のPDDに相当する分布となり、X方向の一次元光強度分布は、線源のX方向のOCRに相当する分布となる。よって、線量分布評価部314において、一次元光強度分布算出部319において算出した一次元強度分布から、線源のPDDおよびOCRのデータを抽出する(ST24)ことができる。さらにもう一台のカメラをカメラ70と直交する方向、すなわち図1のカメラ8の位置に設置すると、線源のY方向のOCRに相当する分布が得られる。このとき、輝度と吸収線量が非線形な関係になっている場合、輝度と吸収線量の非線形な関係を対応テーブルとしてテーブル化しておけば、光強度分布から吸収線量分布に簡単に変換できる。
このように、ペンシルビームによる短時間照射の、蛍光物質を含む液体の発光をカメラにより撮像することにより、ペンシルビームのPDDやOCRに相当する線源データを簡便に得ることができる。
粒子線治療の線量分布測定の目的としては、図15に示すように2つの場面と、2つの測定の計4ケースが想定される。1つ目の場面は、治療計画へ線源データを登録するための測定である。当該測定では、OCR測定として指頭型線量計等が用いられる。同じく当該測定では、PDD測定としてBragg Peakチェンバー等が用いられる。もう1つの用途(場面)としては、患者への線量投与が治療計画でシミュレーションしたとおりになるかを事前検証するための分布測定がある。分布測定では、OCRを指頭型線量計等で測り、PDDをAdvanced Markus等で計測することが多い。本発明による各手法を用いることで、4つの全領域をカバーできるようになり、2次元、2.5次元もしくは3次元の分布測定を実施できるという特徴がある。
なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1、100、200、300:線量分布測定装置、2:照射系、3:水ファントム、4:粒子線、5:蛍光物質を含む液体、6:入射窓、7、8、70:カメラ、9:OCR測定用カメラ、10、110、210、310:線量分布算出評価装置、11、211、311:カメラ画像処理部、12:スポット位置算定部、13:線量加算部、14、214、314:線量分布評価部、15:照射領域線量分布データ記憶部、16:ペンシルビーム線量分布データ記憶部、17:カメラ校正用パラメータ記憶部、18:OCR分布算定部、20:治療計画装置、21:照射系制御器、22:加速器系制御器、30、315:画像予測部、319:一次元光強度分布算出部

Claims (1)

  1. ペンシルビームである粒子線の線源データを測定する線量分布測定装置において、
    前記粒子線を照射することにより発光する蛍光物質を含む液体を有し、前記粒子線を入射させるための入射窓を備えた水ファントムと、
    この水ファントムの周囲であって、前記水ファントムの前記粒子線の照射の中心軸に垂直な面上に、前記蛍光物質を含む液体の発光を撮像するように配置された1台のカメラと、この1台のカメラの画像を処理するカメラ画像処理部と、静止した前記ペンシルビームである粒子線による照射での前記蛍光物質を含む液体の発光を前記1台のカメラにより撮像したカメラ画像を前記カメラ画像処理部で処理した画像から一次元の光強度分布を抽出する一次元光強度分布算出部と、この一次元光強度分布算出部で抽出した一次元光強度分布から前記ペンシルビームである粒子線のPDDおよびOCRのデータを得る線量分布評価部とを備えた線量分布算出評価装置と、
    を備えたことを特徴とする線量分布測定装置。
JP2016077757A 2016-04-08 2016-04-08 線量分布測定装置 Pending JP2016176948A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077757A JP2016176948A (ja) 2016-04-08 2016-04-08 線量分布測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077757A JP2016176948A (ja) 2016-04-08 2016-04-08 線量分布測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014553936A Division JP5918865B2 (ja) 2012-12-26 2012-12-26 線量分布測定装置

Publications (1)

Publication Number Publication Date
JP2016176948A true JP2016176948A (ja) 2016-10-06

Family

ID=57071018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077757A Pending JP2016176948A (ja) 2016-04-08 2016-04-08 線量分布測定装置

Country Status (1)

Country Link
JP (1) JP2016176948A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030648A (ja) * 2017-08-09 2019-02-28 学校法人東京女子医科大学 線量分布予測システム、線量分布予測方法及び線量分布予測プログラム
KR102056001B1 (ko) 2018-03-28 2019-12-16 한양대학교 산학협력단 입자빔의 3차원 선량분포 분석 시스템 및 방법
WO2020059364A1 (ja) * 2018-09-21 2020-03-26 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
KR20200098149A (ko) * 2019-02-12 2020-08-20 재단법인 아산사회복지재단 3차원 선량 분포 측정 시스템 및 방법
KR20210080852A (ko) * 2019-12-23 2021-07-01 연세대학교 산학협력단 휴대용 방사선 모니터링 시스템 및 이를 이용한 방사선 모니터링 방법
KR20210080851A (ko) * 2019-12-23 2021-07-01 연세대학교 산학협력단 실시간 방사선 계측 시스템 및 이를 이용한 실시간 방사선 계측 방법
JP7461664B2 (ja) 2022-02-24 2024-04-04 学校法人早稲田大学 照射線量推定装置および照射線量推定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153662A (ja) * 1996-11-21 1998-06-09 Mitsubishi Electric Corp 深部線量測定装置とその検出器
JP2008507358A (ja) * 2004-07-21 2008-03-13 スティル・リバー・システムズ・インコーポレーテッド 放射線治療用ビームを形成するためのプログラマブル・粒子散乱体
WO2011005862A2 (en) * 2009-07-07 2011-01-13 The Board Of Regents Of The University Of Texas System Liquid scintillator for 3d dosimetry for radiotherapy modalities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153662A (ja) * 1996-11-21 1998-06-09 Mitsubishi Electric Corp 深部線量測定装置とその検出器
JP2008507358A (ja) * 2004-07-21 2008-03-13 スティル・リバー・システムズ・インコーポレーテッド 放射線治療用ビームを形成するためのプログラマブル・粒子散乱体
WO2011005862A2 (en) * 2009-07-07 2011-01-13 The Board Of Regents Of The University Of Texas System Liquid scintillator for 3d dosimetry for radiotherapy modalities

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INDER K. DAFTARI, ET AL.: "Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range m", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A, vol. Vol.616, JPN6016047333, 22 May 2012 (2012-05-22), NL, pages 7 - 14, XP028400158, DOI: doi:10.1016/j.nima.2012.05.043 *
L. ARCHAMBAULT, ET AL.: "Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector", MEDICAL PHYSICS, vol. 39, no. 3, JPN6016047330, March 2012 (2012-03-01), US, pages 1239 - 1246, XP012160875, DOI: doi:10.1118/1.3681948 *
SAM BEDDAR, ET AL.: "Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulat", MEDICAL PHYSICS, vol. 36, no. 5, JPN6016047335, 2009, US, pages 1736 - 1743, XP012130007, DOI: doi:10.1118/1.3117583 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030648A (ja) * 2017-08-09 2019-02-28 学校法人東京女子医科大学 線量分布予測システム、線量分布予測方法及び線量分布予測プログラム
KR102056001B1 (ko) 2018-03-28 2019-12-16 한양대학교 산학협력단 입자빔의 3차원 선량분포 분석 시스템 및 방법
WO2020059364A1 (ja) * 2018-09-21 2020-03-26 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
JP2020044286A (ja) * 2018-09-21 2020-03-26 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
JP7125109B2 (ja) 2018-09-21 2022-08-24 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
KR102209585B1 (ko) * 2019-02-12 2021-01-29 재단법인 아산사회복지재단 3차원 선량 분포 측정 시스템 및 방법
WO2020166936A3 (ko) * 2019-02-12 2020-10-08 재단법인 아산사회복지재단 3차원 선량 분포 측정 시스템 및 방법
KR20200098149A (ko) * 2019-02-12 2020-08-20 재단법인 아산사회복지재단 3차원 선량 분포 측정 시스템 및 방법
KR20210080852A (ko) * 2019-12-23 2021-07-01 연세대학교 산학협력단 휴대용 방사선 모니터링 시스템 및 이를 이용한 방사선 모니터링 방법
KR20210080851A (ko) * 2019-12-23 2021-07-01 연세대학교 산학협력단 실시간 방사선 계측 시스템 및 이를 이용한 실시간 방사선 계측 방법
KR102343789B1 (ko) * 2019-12-23 2021-12-28 연세대학교 산학협력단 실시간 방사선 계측 시스템 및 이를 이용한 실시간 방사선 계측 방법
KR102403386B1 (ko) 2019-12-23 2022-06-02 연세대학교 산학협력단 휴대용 방사선 모니터링 시스템 및 이를 이용한 방사선 모니터링 방법
JP7461664B2 (ja) 2022-02-24 2024-04-04 学校法人早稲田大学 照射線量推定装置および照射線量推定方法

Similar Documents

Publication Publication Date Title
JP5918865B2 (ja) 線量分布測定装置
JP2016176948A (ja) 線量分布測定装置
Wiersma et al. Combined kV and MV imaging for real‐time tracking of implanted fiducial markers a
US9604077B2 (en) Visualizing radiation therapy beam in real-time in the context of patient's anatomy
US8471222B2 (en) Radiotherapy apparatus control method and radiotherapy apparatus control apparatus
JP5329256B2 (ja) ベッド位置決めシステム、放射線治療システム及びベッド位置決め方法
WO2017170178A1 (ja) 粒子線線量評価システム、計画装置および粒子線照射システムならびに線量評価方法
JP6565080B2 (ja) 放射線治療装置、その作動方法及びプログラム
CN110075428B (zh) 一种射束检验、测量方法及装置
JP6896649B2 (ja) 画素単位減衰因子を導き出すために色空間情報を用いる周囲光抑制
JP2008022896A (ja) 位置決め装置
JP2013176458A (ja) 治療計画装置及び治療計画方法並びにそのプログラム
JP2016144573A (ja) 画像処理装置および粒子線治療装置
CN116056757A (zh) 多传感器引导的放射疗法
JP2010178989A (ja) 放射線治療装置校正用ファントム、放射線治療装置、及び放射線治療装置校正方法
JP2004510466A (ja) 中断された治療のクオリティアシュランス
CN108815720A (zh) 基于质子成像精准定位技术的肿瘤放射治疗系统
JP6744123B2 (ja) 動体追跡装置および放射線照射システム
JPWO2020012785A1 (ja) 放射線治療装置および放射線治療方法
KR101448075B1 (ko) 하전입자의 방사선량 측정 장치 및 영상장치
WO2017188079A1 (ja) 追跡対象認識シミュレータ、若しくはマーカ認識シミュレータおよび動体追跡装置ならびに放射線照射システム
WO2019012686A1 (ja) 粒子線治療装置およびdrr画像作成方法
RU2786345C1 (ru) Способ контроля параметров пучка в процессе протонной терапии и устройство для его осуществления
US20230277873A1 (en) Systems and methods for particle portal imaging
CN110354402B (zh) 电子束剂量测量系统及检测方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170711