JP2016170951A - 位相板およびその製造方法、ならびに電子顕微鏡 - Google Patents

位相板およびその製造方法、ならびに電子顕微鏡 Download PDF

Info

Publication number
JP2016170951A
JP2016170951A JP2015049439A JP2015049439A JP2016170951A JP 2016170951 A JP2016170951 A JP 2016170951A JP 2015049439 A JP2015049439 A JP 2015049439A JP 2015049439 A JP2015049439 A JP 2015049439A JP 2016170951 A JP2016170951 A JP 2016170951A
Authority
JP
Japan
Prior art keywords
phase
control layer
phase plate
phase control
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015049439A
Other languages
English (en)
Inventor
寛文 飯島
Hirobumi Iijima
寛文 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2015049439A priority Critical patent/JP2016170951A/ja
Priority to US15/067,394 priority patent/US9786467B2/en
Priority to EP16159962.6A priority patent/EP3067912A1/en
Publication of JP2016170951A publication Critical patent/JP2016170951A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2614Holography or phase contrast, phase related imaging in general, e.g. phase plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

【課題】帯電を抑制することができる位相板およびその製造方法を提供する。【解決手段】位相板100は、電子顕微鏡用の位相板であって、貫通孔32が設けられた位相制御層30と、位相制御層30の第1面31aおよび第1面31aの反対側の第2面31bの少なくとも一方に設けられ、貫通孔32を塞ぐ導電層20と、を含み、位相制御層30は、位相制御層30を通過した電子波と、貫通孔32を通過した電子波と、の間に所与の位相差を生じさせる。【選択図】図1

Description

本発明は、位相板およびその製造方法、ならびに電子顕微鏡に関する。
位相板が搭載された透過電子顕微鏡(TEM)あるいは位相板が搭載された走査透過電子顕微鏡(STEM)が対象とする試料は、電子線が試料に照射された際に、試料を透過した電子線の強度は変化せず位相変化のみを生じる弱位相物体と呼ばれる試料である。具体的には、無染色の生物試料(樹脂包埋および氷包埋されたもの等)や、高分子など、吸収・散乱コントラストによる観察では低いコントラストしか得られない軽元素試料が該当する。
位相板は、位相差透過電子顕微鏡あるいは位相差走査透過電子顕微鏡に利用される。位相板は、中心に微小な貫通孔(例えば直径1μm程度)を有する薄膜を備えている。位相差透過電子顕微鏡では、対物レンズの後側焦点面に位相板を置くことで、試料を透過した電子波の一部の位相を変え、位相コントラストを得ることができる。一方、位相差走査透過電子顕微鏡では、対物レンズの前側焦点面に位相板を置き、位相の異なる電子波を試料に照射することにより、位相コントラストを検出することができる。
このような透過電子顕微鏡あるいは走査透過電子顕微鏡に搭載される位相板では、帯電による劣化が問題となる。例えば、特許文献1では、位相板の帯電を防止することは難しいとして、帯電に伴うレンズ効果を防止するための位相板の構成が開示されている。
特開2006−162805号公報
図25は、従来の位相板1Aの一例を模式的に示す断面図である。
図25に示すように、位相板1Aは、微小孔2Aが形成された薄膜4Aと、薄膜4Aを支持している支持用グリッド6Aと、で構成されている。孔2Aの大きさは、無限小であることが理想であるが、孔形成の加工精度および目視による孔2Aの位置調整の困難さから、例えば1μm程度の直径である。また、位相板1Aの厚みは、薄膜4Aを通過した電子波の位相をπ/2の奇数倍だけ遅らせるような膜厚に調整されている。
上述したように、薄膜位相板は帯電による劣化が早いため、寿命の短さが問題となっている。位相板に電子線が照射されると、位相板の表面からは2次電子が放出し正孔が残される。そのため、位相板の電子線が照射された領域は正電荷に帯電する。帯電により位相板表面の電荷量が多くなると、電子は位相板の効果に加えて電荷による位相変調作用も同時に受けるため、正常な位相コントラストを取得することができなくなる。電子線照射による位相板の帯電を防ぐことができれば、位相板の劣化は抑制され位相板の寿命は改善される。
本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様に係る目的の1つは、帯電を抑制することができる位相板およびその製造方法を提供することにある。また、本発明のいくつかの態様に係る目的の1つは、上記位相板を含む電子
顕微鏡を提供することにある。
(1)本発明に係る位相板は、
電子顕微鏡用の位相板であって、
貫通孔が設けられた位相制御層と、
前記位相制御層の第1面および前記第1面の反対側の第2面の少なくとも一方に設けられ、前記貫通孔を塞ぐ導電層と、
を含み、
前記位相制御層は、前記位相制御層を通過した電子波と、前記貫通孔を通過した電子波と、の間に所与の位相差を生じさせる。
このような位相板では、導電層が位相制御層に設けられた貫通孔を塞いでいるため、電荷が溜まりやすい位相制御層の縁(貫通孔の縁)の電荷を逃がすことができる。したがって、例えば位相制御層に設けられた貫通孔が塞がれていない場合と比べて、位相板の帯電を抑制することができる。これにより、位相板の帯電による劣化を低減させることができ、位相板の寿命を延ばすことが可能となる。
(2)本発明に係る位相板において、
前記導電層は、前記第1面および前記第2面に設けられていてもよい。
このような位相板では、位相制御層の縁(貫通孔の縁)の電荷をより逃がすことができ、位相板の帯電をより抑制することができる。
(3)本発明に係る位相板において、
前記導電層の膜厚は、一定であってもよい。
(4)本発明に係る位相板は、
電子顕微鏡用の位相板であって、
有底の凹部が設けられた位相制御層を含み、
前記位相制御層は、平面視で前記凹部と重なる第1部分と、平面視で前記凹部を囲み前記第1部分よりも厚さが大きい第2部分と、を有し、
前記位相制御層は、前記第1部分を通過した電子波と、前記第2部分を通過した電子波と、の間に所与の位相差を生じさせる。
このような位相板では、位相制御層には凹部が設けられているため、例えば位相制御層に貫通孔が設けられている場合と比べて、位相制御層の縁の電荷を逃がすことができ、位相板の帯電を抑制することができる。これにより、位相板の帯電による劣化を低減させることができ、位相板の寿命を延ばすことが可能となる。
(5)本発明に係る位相板の製造方法は、
電子顕微鏡用の位相板の製造方法であって、
基板上に導電層を形成する工程と、
前記導電層上に貫通孔が設けられた位相制御層を形成する工程と、
前記基板を前記導電層が形成された面とは反対側の面側からエッチングして、前記導電層を露出させる開口部を形成する工程と、
を含み、
前記位相制御層は、前記位相制御層を通過した電子波と、前記貫通孔を通過した電子波と、の間に所与の位相差を生じさせる。
このような位相板の製造方法では、簡易な工程で位相板を製造することができる。
(6)本発明に係る位相板の製造方法において、
前記位相制御層を形成する工程は、
前記導電層上に前記位相制御層を成膜する工程と、
前記位相制御層をフォトリソグラフィーおよびエッチングによりパターニングして、前記貫通孔を形成する工程と、
を有してもよい。
このような位相板の製造方法では、位相制御層をフォトリソグラフィーおよびエッチングによりパターニングして貫通孔を形成するため、例えば集束イオンビーム装置等を用いて位相制御層に貫通孔を形成する場合と比べて、簡易な工程で位相板を製造することができる。また、位相板を大量に安価に製造することができる。
(7)本発明に係る位相板の製造方法において、
前記位相制御層を形成する工程では、リフトオフにより前記貫通孔が設けられた前記位相制御層を形成してもよい。
このような位相板の製造方法では、リフトオフにより貫通孔が設けられた位相制御層を形成するため、例えば集束イオンビーム装置等を用いて位相制御層に貫通孔を形成する場合と比べて、簡易な工程で位相板を製造することができる。さらに、位相板を大量に安価に製造することができる。
(8)本発明に係る位相板の製造方法において、
電子顕微鏡用の位相板の製造方法であって、
基板上に位相制御層を成膜する工程と、
前記位相制御層に有底の凹部を形成して、前記位相制御層に、平面視で前記凹部と重なる第1部分と、平面視で前記凹部を囲み前記第1部分よりも厚さが大きい第2部分と、を形成する工程と、
前記基板を前記位相制御層が形成された面とは反対側の面側からエッチングして、前記位相制御層を露出させる開口部を形成する工程と、
を含み、
前記位相制御層は、前記第1部分を通過した電子波と、前記第2部分を通過した電子波と、の間に所与の位相差を生じさせる。
このような位相板の製造方法では、簡易な工程で位相板を製造することができる。
(9)本発明に係る位相板の製造方法において、
前記基板は、シリコン基板であってもよい。
このような位相板の製造方法では、半導体製造技術を用いて、簡易な工程で位相板を製造することができる。
(10)本発明に係る位相板の製造方法において、
前記位相制御層を形成する工程では、前記位相制御層を、真空蒸着、スパッタリング、イオンプレーティング、またはCVDを用いて成膜してもよい。
このような位相板の製造方法では、簡易な工程で位相板を製造することができる。さらに、位相板を大量に安価に製造することができる。
(11)本発明に係る電子顕微鏡は、
本発明に係る位相板を含む。
このような電子顕微鏡では、本発明に係る位相板を含むため、位相板の帯電の影響が低減された良好な位相差像を得ることができる。
第1実施形態に係る位相板を模式的に示す断面図。 透過電子顕微鏡における位相板の動作を説明するための図。 走査透過電子顕微鏡における位相板の動作を説明するための図。 第1実施形態に係る位相板の製造方法の一例を示すフローチャート。 第1実施形態に係る位相板の製造工程を模式的に示す断面図。 第1実施形態に係る位相板の製造工程を模式的に示す断面図。 第1実施形態に係る位相板の製造工程を模式的に示す断面図。 第1実施形態に係る位相板の製造工程を模式的に示す断面図。 第1実施形態に係る位相板の製造方法の変形例を示すフローチャート。 本変形例に係る位相板の製造工程を模式的に示す断面図。 本変形例に係る位相板の製造工程を模式的に示す断面図。 本変形例に係る位相板の製造工程を模式的に示す断面図。 第1実施形態の変形例に係る位相板を模式的に示す断面図。 第2実施形態に係る位相板を模式的に示す断面図。 第2実施形態の変形例に係る位相板を模式的に示す断面図。 第3実施形態に係る位相板を模式的に示す断面図。 第4実施形態に係る位相板を模式的に示す断面図。 透過電子顕微鏡における位相板の動作を説明するための図。 走査透過電子顕微鏡における位相板の動作を説明するための図。 第4実施形態に係る位相板の製造方法の一例を示すフローチャート。 第4実施形態に係る位相板の製造工程を模式的に示す断面図。 第4実施形態に係る位相板の製造工程を模式的に示す断面図。 第5実施形態に係る電子顕微鏡の構成を模式的に示す図。 第6実施形態に係る電子顕微鏡の構成を模式的に示す図。 従来の位相板の一例を模式的に示す断面図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 第1実施形態
1.1. 位相板
まず、第1実施形態に係る位相板について図面を参照しながら説明する。図1は、第1実施形態に係る位相板100を模式的に示す断面図である。
位相板100は、透過電子顕微鏡および走査透過電子顕微鏡等の電子顕微鏡用の位相板である。
位相板100は、図1に示すように、支持体10と、導電層20と、位相制御層30と、を含む。
支持体10は、導電層20および位相制御層30を支持している。支持体10には、開
口部12が設けられている。開口部12は、支持体10を貫通し、導電層20の下面を露出させている。開口部12の上側の開口は、導電層20で覆われている。開口部12の平面形状は、例えば、1辺が100μm以上500μm以下の四角形であるが、その形状や大きさは特に限定されない。支持体10の材質は、例えば、シリコンである。支持体10の材質としてシリコンを用いることにより、半導体製造技術を用いて容易に位相板100を形成することができる。なお、支持体10の材質は、特に限定されず、ガラス、セラミックス、金属、半導体、合成樹脂等であってもよい。支持体10の平面形状は、例えば、円や多角形等であってもよい。支持体10の厚さは、例えば、100μm以上300μm以下である。
導電層20は、支持体10によって支持されている。導電層20は、支持体10の上面および開口部12上に設けられている。導電層20は、位相制御層30の第2面(下面)31bに設けられている。導電層20は、位相制御層30に設けられている貫通孔32を塞いでいる。導電層20は、貫通孔32の、位相制御層30の第2面31b側の開口を塞いでいる。導電層20の厚さは、一定である。導電層20の厚さは、特に限定されず、例えば、10nm以上50nm以下程度である。
導電層20は、導電性を有する層である。導電層20は、高い導電性を有し、かつ、アモルファス(非晶質)であることが好ましい。導電層20は、例えば、アモルファスカーボン層である。なお、導電層20は、例えば、Ti層、IGZO層、Au−Si層、Pd−Si層、Cy40Zr60層、Fe2020層、Co90Zr10層、Ni78Si1012層等の金属層であってもよい。導電層20として金属層を用いる場合には、Ti層を用いることが好ましい。Ti層は、導電性が良好であり、アモルファス状に成膜されるためである。
位相制御層30は、導電層20上に設けられている。位相制御層30には、貫通孔32が設けられている。貫通孔32は、位相制御層30の第1面(上面)31aと、第1面31aとは反対側の第2面31bと、の間を貫通している。貫通孔32の直径Dは、例えば、1μm以上3μm以下である。貫通孔32の平面形状は、例えば、円である。なお、貫通孔32の平面形状は特に限定されず、多角形、楕円等であってもよい。
位相制御層30は、位相制御層30を通過した電子と、貫通孔32を通過した電子と、の間に所与の位相差を生じさせる。位相制御層30では、その膜厚(第1面31aと第2面31bとの間の距離)によって、位相制御層30を通過する電子波の位相の変化の程度を決めることができる。
位相制御層30は、貫通孔32を通過した電子波の位相に対して、位相制御層30を通過した散乱波の位相をπ/2の奇数倍ずらす(遅らせる)ことができる。位相制御層30の膜厚Tは、電子波の位相を、π/2の奇数倍だけ変化させる(遅らせる)ような厚さである。位相制御層30の膜厚Tは、例えば、30nm以上100nm以下である。
位相制御層30は、高い導電性を有し、かつ、アモルファス(非晶質)であることが好ましい。位相制御層30としては、例えば、上述した導電層20として例示したアモルファスカーボン層や、各種金属層などを用いることができる。位相制御層30の材質は、導電層20と異なっていてもよいし、同じであってもよい。
次に、第1実施形態に係る位相板の動作について説明する。
まず、位相板100を透過電子顕微鏡(TEM)に搭載した例について説明する。図2は、位相板100が搭載された透過電子顕微鏡(位相差透過電子顕微鏡)における位相板
100の動作を説明するための図である。
位相差透過電子顕微鏡では、位相板100(位相制御層30)は、対物レンズ2の後側焦点面に置かれる。光源から試料Sに照射されて試料Sを透過した電子波(直接波)は、貫通孔32および導電層20を通過し、像面に到達する。試料Sにより回折した電子波(回折波)は、位相制御層30および導電層20を通過し、像面に到達する。そして、直接波と回折波は、像面において干渉する。このとき直接波は貫通孔32を通過し、回折波は位相制御層30を通過しているため、位相制御層30の膜厚の分だけ直接波の位相と回折波の位相とが相対的にずれる。そのため、像面において、位相コントラストが生じる。導電層20は直接波と回折波の両方が通過するため、導電層20による相対的な位相ずれは生じない。したがって、導電層20の膜厚は、特に限定されない。
次に、位相板100を走査透過電子顕微鏡(STEM)に搭載した例について説明する。図3は、位相板100が搭載された走査透過電子顕微鏡(位相差走査透過電子顕微鏡)における位相板100の動作を説明するための図である。
走査透過電子顕微鏡では、位相板100(位相制御層30)は、対物レンズ2の前側焦点面に置かれる。貫通孔32および導電層20を通過した電子波と、位相制御層30および導電層20を通過した電子波は、試料S上に集束される。試料Sを通過した集束電子(直接波)と試料Sにより回折した集束電子(回折波)は検出器面に到達する。このとき、検出器面上では、貫通孔32を通過した直接波と、位相制御層30を通過した回折波と、が干渉する。直接波と回折波は相対的な位相差を与えられているため、検出器面上において位相コントラストが生じる。
位相板100は、例えば、以下の特長を有する。
位相板100では、貫通孔32が設けられた位相制御層30と、位相制御層30の第2面31bに設けられ、貫通孔32を塞ぐ導電層20と、を含んで構成されている。ここで、位相制御層の縁(エッジ)、すなわち、貫通孔の縁は、位相板に電子線が照射されたときに、電荷が溜まりやすい(集中しやすい)箇所である。位相板100では、導電層20が貫通孔32を塞ぐことで、位相制御層30の縁(貫通孔32の縁)の電荷を逃がすことができる。したがって、例えば位相制御層に設けられた貫通孔がふさがれていない場合と比べて、位相板の帯電を抑制することができる。これにより、位相板の帯電による劣化を低減させることができ、位相板の寿命を延ばすことが可能となる。
また、位相板100では、位相制御層30と導電層20とが積層されているため、例えば位相板が単層(位相制御層)で構成されている場合と比べて、位相板の導電性を向上させることができる。これにより、位相板の帯電による劣化を低減させることができ、位相板の寿命を延ばすことが可能となる。
また、位相板100では、導電層20の膜厚は一定であり、上述したように、導電層20は電子波全体の位相を変える。このように導電層20は特定の電子波の位相を選択的に変える機能を有さなくてもよいため、位相板100では、導電層20の膜厚や材質を任意に選ぶことができ、製造が容易である。
1.2. 位相板の製造方法
次に、第1実施形態に係る位相板の製造方法について、図面を参照しながら説明する。図4は、第1実施形態に係る位相板100の製造方法の一例を示すフローチャートである。図5〜図8は、第1実施形態に係る位相板100の製造工程を模式的に示す断面図である。
まず、図5に示すように、基板10a上に導電層20を形成する(ステップS10)。
基板10aとしては、シリコン基板等の半導体基板を用いることができる。基板10aとして、セラミックス基板、ガラス基板、サファイア基板、合成樹脂基板などの各種の基板を用いてもよい。導電層20は、例えば、真空蒸着、スパッタリング、イオンプレーティング、またはCVD(Chemical Vapor Deposition)により成膜される。導電層20は、基板10aの上面の全面に成膜される。
次に、図6に示すように、導電層20上に位相制御層30を形成する(ステップS12)。位相制御層30は、例えば、真空蒸着、スパッタリング、イオンプレーティング、またはCVDにより成膜される。位相制御層30は、導電層20の上面の全面に成膜される。
次に、位相制御層30に貫通孔32を形成する(ステップS14)。貫通孔32は、位相制御層30をフォトリソグラフィーおよびエッチングによりパターニングして形成される。
具体的には、まず、図7に示すように、位相制御層30上にフォトレジスト層Rを、スピンコーター等を用いて成膜した後に、レーザー光、電子ビーム等によりフォトレジスト層Rに貫通孔32に対応する形状を描く。そして、露光されたフォトレジスト層Rを現像することによりフォトレジスト層Rに貫通孔R2を形成する。次に、図8に示すように、フォトレジスト層Rをマスクとして位相制御層30をエッチングしてパターニングし、位相制御層30に貫通孔32を形成する。例えば導電層20の材質と位相制御層30の材質が異なる場合、導電層20のエッチングレートと位相制御層30のエッチングレートとの差を利用して位相制御層30を選択的にエッチングして貫通孔32を形成してもよい。このようにして位相制御層30に設けられた貫通孔32は、一方の開口が導電層20によって塞がれる。貫通孔32が形成された後、フォトレジスト層Rは除去される。
以上の工程(ステップS12、ステップS14)により、貫通孔32が設けられた位相制御層30を形成することができる。
次に、図1に示すように、基板10aを導電層20が形成された面(上面)とは反対側の面(下面)からエッチングして、導電層20を露出させる開口部12を形成する(ステップS14)。開口部12は、例えば、基板10aの下面にマスク層(図示せず)を形成し、当該マスク層を介して基板10aを下面からエッチングすることにより形成される。基板10aのエッチングは、ウエットエッチングでもよいし、ドライエッチングでもよい。開口部12が形成された後、マスク層は除去される。基板10aに開口部12が形成されることにより、支持体10が形成される。
以上の工程により、位相板100を製造することができる。
本実施形態に係る位相板の製造方法は、例えば、以下の特長を有する。
本実施形態に係る位相板の製造方法では、基板10a上に導電層20を形成する工程(ステップS10)と、導電層20上に貫通孔32が設けられた位相制御層30を形成する工程(ステップS12)と、基板10aを導電層20が形成された面とは反対側の面側からエッチングして、導電層20を露出させる開口部12を形成する工程(ステップS16)と、を含む。そのため、上述したように、フォトリソグラフィーやエッチング等の半導体製造技術を用いて位相板を製造することができる。そのため、例えば、薄膜をスライド
ガラスやマイカ劈開面上に成膜し、水面において薄膜を剥離し、モリブデングリッド等の位相板用支持体に転写して、集束イオンビーム(FIB)装置により薄膜に貫通孔を形成して位相板を形成する製造方法と比べて、簡易な工程で位相板を製造することができる。また、本実施形態に係る位相板の製造方法では、半導体製造技術を用いることができるため、位相板を大量に、安価に製造することができる。
本実施形態に係る位相板の製造方法では、貫通孔32が設けられた位相制御層30を形成する工程(ステップS12)は、導電層20上に位相制御層30を成膜する工程と、位相制御層30をフォトリソグラフィーおよびエッチングによりパターニングして、位相制御層30に貫通孔32を形成する工程と、を有する。そのため、例えば集束イオンビーム装置を用いて位相制御層に貫通孔を形成する場合と比べて、簡易な工程で位相制御層に貫通孔を形成することができる。また、例えば集束イオンビーム装置を用いて位相制御層に貫通孔を形成する場合と比べて、位相板を大量に、安価に製造することができる。
本実施形態に係る位相板の製造方法では、基板10aはシリコン基板である。そのため、半導体製造技術を用いて、簡易な工程で位相板を製造することができる。
本実施形態に係る位相板の製造方法では、位相制御層30を形成する工程では、位相制御層30を、真空蒸着、スパッタリング、イオンプレーティング、またはCVDを用いて成膜するため、簡易な工程で位相板を製造することができる。さらに、位相板を大量に安価に製造することができる。
1.3. 位相板の製造方法の変形例
次に、第1実施形態に係る位相板の製造方法の変形例について、図面を参照しながら説明する。図9は、第1実施形態に係る位相板100の製造方法の変形例を示すフローチャートである。図10〜図12は、本変形例に係る位相板100の製造工程を模式的に示す断面図である。
上述した図4に示す位相板100の製造方法では、導電層20上に位相制御層30を成膜した(ステップS12)後に、位相制御層30をフォトリソグラフィーおよびエッチングによりパターニングして、位相制御層30に貫通孔32を形成した(ステップS14)。
これに対して、本変形例では、貫通孔32が設けられた位相制御層30をリフトオフにより形成する。
まず、基板10a上に導電層20を形成する(ステップS20)。本工程は、上述した図4に示す導電層20を形成する工程(ステップS10)と同様に行われる(図5参照)。
次に、貫通孔32が設けられた位相制御層30をリフトオフにより形成する。具体的には、まず、図10に示すように、導電層20上にフォトレジスト層Rを形成する(ステップS22)。フォトレジスト層Rは、貫通孔32が形成されたときに、導電層20の、平面視で貫通孔32と重なる領域に形成される。フォトレジスト層Rは、貫通孔32の形状に対応している。フォトレジスト層Rは、フォトリソグラフィーにより形成される。すなわち、フォトレジスト層Rは、例えば、導電層20上にフォトレジスト層Rを成膜した後に、フォトレジスト層Rを露光し、露光されたフォトレジスト層Rを現像することにより形成される。
次に、図11に示すように、フォトレジスト層R上および導電層20上に位相制御層3
0を成膜する(ステップS24)。位相制御層30は、例えば、真空蒸着、スパッタリング、イオンプレーティング、またはCVDにより成膜される。
次に、図12に示すように、フォトレジスト層Rを除去する(ステップS26)。以上の工程により、貫通孔32が設けられた位相制御層30が形成される。
次に、図1に示すように、基板10aを下面からエッチングして、導電層20を露出させる開口部12を形成する(ステップS28)。本工程は、上述した図4に示す開口部12を形成する工程(ステップS16)と同様に行われる。
以上の工程により、位相板100を製造することができる。
本変形例によれば、上述した第1実施形態に係る位相板100の製造方法と同様の作用効果を奏することができる。
1.4. 位相板の変形例
次に、第1実施形態に係る位相板の変形例について、図面を参照しながら説明する。図13は、第1実施形態の変形例に係る位相板101を模式的に示す断面図である。以下、本変形例に係る位相板101において、上述した第1実施形態に係る位相板100の構成部材と同様の機能を有する部材については同一の符号を付し、その説明を省略する。
上述した位相板100では、支持体10は、エッチングで開口部12が形成された半導体基板(例えばシリコン基板)であった。
これに対して、位相板101では、支持体10は、支持グリッドである。支持グリッドとしては、例えば、モリブデングリッド、銅グリッド、金グリッド、ニッケルグリッド等を用いることができる。位相板101によれば、上述した位相板100と同様の作用効果を奏することができる。
次に、位相板101の製造方法について説明する。
支持体10として支持グリッドを用いた場合、まず、導電層20となる薄膜をスライドガラスやマイカ劈開面上に成膜し、水面において薄膜を剥離し、支持グリッドに転写する。次に、位相制御層30となる薄膜をスライドガラスやマイカ劈開面上に成膜した後に、集束イオンビーム(FIB)装置により薄膜に貫通孔を形成する。そして、貫通孔32が形成された薄膜を水面において剥離し、支持グリッドに支持された導電層20上に転写することで、位相板101を製造することができる。
2. 第2実施形態
2.1. 位相板
次に、第2実施形態に係る位相板について図面を参照しながら説明する。図14は、第2実施形態に係る位相板200を模式的に示す断面図である。以下、第2実施形態に係る位相板200において、上述した第1実施形態に係る位相板100の構成部材と同様の機能を有する部材については同一の符号を付し、その説明を省略する。
上述した位相板100では、図1に示すように、導電層20は、位相制御層30の第2面31bに設けられていた。
これに対して、位相板200では、図14に示すように、導電層20は、位相制御層30の第1面31aに設けられている。
位相制御層30は、支持体10の上面および開口部12上に設けられている。開口部12によって位相制御層30の第2面31bは露出している。貫通孔32は、支持体10の開口部12に連通している。導電層20は、位相制御層30上および貫通孔32上に設けられている。
次に位相板200の動作について説明する。位相板200の動作は、上述した位相板100では電子波が位相制御層30または貫通孔32を通過した後に導電層20を通過するのに対して位相板200では電子波が導電層20を通過した後に位相制御層30または貫通孔32を通過する点を除いて位相板100の動作と同様である。
第2実施形態に係る位相板200では、上述した第1実施形態に係る位相板100と同様の作用効果を奏することができる。
2.2. 位相板の製造方法
次に、第2実施形態に係る位相板200の製造方法について説明する。位相板200の製造方法は、基板上に位相制御層30を形成する工程と、位相制御層30上に導電層20を形成する工程と、基板を位相制御層30が形成された面とは反対側の面側からエッチングして位相制御層30を露出させる開口部12を形成する工程と、位相制御層30に貫通孔32を形成する工程と、を含む。
位相制御層30および導電層20を形成する工程は、上述した図4に示す位相制御層30および導電層20を形成する工程(ステップS10,ステップS12)と同様に行われる。また、開口部12を形成する工程は、上述した図4に示す開口部12を形成する工程(ステップS16)と同様に行われる。また、位相制御層30に貫通孔32を形成する工程では、例えば、基板の開口部12によって露出した位相制御層30の第2面31bをフォトリソグラフィーおよびエッチングによりパターニングすることにより貫通孔32を形成する。なお、貫通孔32をリフトオフにより形成してもよい。
以上の工程により、位相板200を製造することができる。
位相板200の製造方法によれば、上述した位相板100の製造方法と同様の作用効果を奏することができる。
2.3. 位相板の変形例
次に、第2実施形態に係る位相板の変形例について、図面を参照しながら説明する。図15は、第2実施形態の変形例に係る位相板201を模式的に示す断面図である。以下、本変形例に係る位相板201において、上述した第2実施形態に係る位相板200の構成部材と同様の機能を有する部材については同一の符号を付し、その説明を省略する。
上述した位相板200では、支持体10は、エッチングで開口部12が形成された半導体基板(例えばシリコン基板)であった。
これに対して、位相板201では、支持体10は、支持グリッドである。支持グリッドとしては、例えば、上述した位相板101で例示したものを用いることができる。位相板201によれば、上述した位相板200と同様の作用効果を奏することができる。
位相板201の製造方法は、貫通孔32が形成された位相制御層30となる薄膜を転写した後に導電層20を転写する点を除いて、位相板101の製造方法と同様でありその説明を省略する。
3. 第3実施形態
3.1. 位相板
次に、第3実施形態に係る位相板について図面を参照しながら説明する。図16は、第3実施形態に係る位相板300を模式的に示す断面図である。以下、第3実施形態に係る位相板300において、上述した第1実施形態に係る位相板100の構成部材と同様の機能を有する部材については同一の符号を付し、その説明を省略する。
上述した位相板100では、図1に示すように、導電層20は、位相制御層30の第2面31bに設けられていた。
これに対して、位相板300では、図16に示すように、導電層20は、位相制御層30の第1面31aおよび第2面31bに設けられている。
位相板300では、位相制御層30および貫通孔32は、導電層20によって挟まれている。貫通孔32の位相制御層30の第1面31a側の開口および第2面31b側の開口の両方が、導電層20によって塞がれている。
次に、位相板300の動作について説明する。位相差透過電子顕微鏡では、位相板300の位相制御層30の第1面31aに設けられた導電層20および位相制御層30の第2面31bに設けられた導電層20は、ともに直接波および回折波に位相ずれを生じさせない。位相差走査透過電子顕微鏡についても同様である。そのため、位相板300の動作は、上述した位相板100の動作と同様である。
位相板300によれば、導電層20が位相制御層30の第1面31aおよび第2面31bに設けられているため、例えば導電層が位相制御層の一方の面のみ設けられている場合と比べて、位相制御層30の縁(貫通孔32の縁)の電荷をより逃がすことができる。したがって、位相板の帯電をより抑制することができる。
なお、図示はしないが、位相板300において、支持体10として支持グリッドを用いてもよい。
3.2. 位相板の製造方法
第3実施形態に係る位相板の製造方法は、上述した図4に示す位相板100の製造方法と、位相制御層30に貫通孔32を形成する工程(ステップS14)の後に位相制御層30上および貫通孔32上に導電層20を形成する工程を含む点を除いて同様であり、その説明を省略する。
なお、支持体10として支持グリッドを用いた場合、支持グリッドに導電層20、および貫通孔32が形成された位相制御層30を転写した後に、位相制御層30上に導電層20を転写する工程を含む点を除いて上述した位相板101の製造方法と同様である。
4. 第4実施形態
4.1. 位相板
次に、第4実施形態に係る位相板について図面を参照しながら説明する。図17は、第4実施形態に係る位相板400を模式的に示す断面図である。以下、第4実施形態に係る位相板400において、上述した第1実施形態に係る位相板100の構成部材と同様の機能を有する部材については同一の符号を付し、その説明を省略する。
上述した位相板100は、図1に示すように、位相制御層30には貫通孔32が設けら
れていた。
これに対して、位相板400は、図17に示すように、位相制御層30には凹部34が設けられている。
位相制御層30は、支持体10の上面および開口部12上に設けられている。位相制御層30の第1面31a側には凹部34が設けられている。凹部34は、有底である。すなわち、凹部34の深さ(位相制御層30の厚さ方向における凹部34の大きさ)は、位相制御層30の厚さよりも小さい。
位相制御層30は、第1部分30aと、第2部分30bと、を有している。第1部分30aは、平面視で(位相制御層30の厚さ方向からみて)、凹部34と重なる領域である。第2部分30bは、平面視で凹部34を囲む領域である。第2部分30bの厚さT2は、第1部分30aの厚さT1よりも大きい。第2部分30bの厚さT2と第1部分30aの厚さT1との差(T2−T1)は、凹部34の深さに等しい。
位相制御層30は、第1部分30aを通過した電子波と、第2部分30bを通過した電子波と、の間に所与の位相差を生じさせる。位相制御層30では、第1部分30aの厚さT1と第2部分30bの厚さT2の差によって、第1部分30aを通過した電子波の位相に対して、第2部分30bを通過した電子波の位相をπ/2の奇数倍だけずらすことができる。
次に、第4実施形態に係る位相板400の動作について説明する。
まず、位相板400を透過電子顕微鏡に搭載した例について説明する。図18は、位相板400が搭載された透過電子顕微鏡(位相差透過電子顕微鏡)における位相板400の動作を説明するための図である。
位相差透過電子顕微鏡では、位相板400は、対物レンズ2の後側焦点面に置かれる。光源から試料Sに照射されて試料Sを透過した電子波(直接波)は、凹部34および位相制御層30の第1部分30aを通過し、像面に到達する。試料Sにより回折した電子波(回折波)は、位相制御層30の第2部分30bを通過し、像面に到達する。そして、直接波と回折波は、像面において干渉する。このとき直接波は凹部34および第1部分30aを通過し、回折波は第2部分30bを通過しているため、第1部分30aと第2部分30bの膜厚の差の分だけ直接波の位相と回折波の位相とが相対的にずれる。そのため、像面において、位相コントラストが生じる。
次に、位相板400を走査透過電子顕微鏡に搭載した例について説明する。図19は、位相板400が搭載された走査透過電子顕微鏡(位相差走査透過電子顕微鏡)における位相板400の動作を説明するための図である。
走査透過電子顕微鏡では、位相板400は、対物レンズ2の前側焦点面に置かれる。凹部34および第1部分30aを通過した電子波と、第2部分30bを通過した電子波は、試料S上に集束される。試料Sを通過した集束電子(直接波)と試料Sにより回折した集束電子(回折波)は検出器面に到達する。このとき、検出器面上では凹部34および第1部分30aを通過した直接波と、第2部分30bを通過した回折波が干渉する。これらの直接波と回折波は相対的な位相差を与えられているため、検出器面上において位相コントラストが生じる。
位相板400では、位相制御層30は、平面視で凹部34と重なる第1部分30aと、
平面視で凹部34を囲み第1部分30aよりも厚さが大きい第2部分30bと、を有している。そのため、例えば位相制御層に貫通孔が設けられている場合と比べて、電荷が溜まりやすい(集中しやすい)位相制御層の縁(凹部の縁)の電荷を逃がすことができ、位相板の帯電を抑制することができる。これにより、位相板の帯電による劣化を低減させることができ、位相板の寿命を延ばすことが可能となる。
なお、図示はしないが、支持体10として支持グリッドを用いてもよい。また、図示はしないが、凹部34を位相制御層30の第2面31b側に設けてもよい。これらによっても、上述した位相板400と同様の効果を奏することができる。
4.2. 位相板の製造方法
次に、第4実施形態に係る位相板の製造方法について、図面を参照しながら説明する。図20は、第4実施形態に係る位相板400の製造方法の一例を示すフローチャートである。図21および図22は、第4実施形態に係る位相板400の製造工程を模式的に示す断面図である。
まず、図21に示すように、基板10a上に位相制御層30を成膜する(ステップS40)。位相制御層30は、例えば、真空蒸着、スパッタリング、イオンプレーティング、またはCVDにより成膜される。
次に、図22に示すように、位相制御層30に有底の凹部34を形成する(ステップS42)。凹部34は、例えば、フォトリソグラフィーおよびエッチングにより位相制御層30をパターニングすることにより形成される。凹部34は、位相制御層30をハーフエッチングする(すなわち、位相制御層30の第1面31a側だけを厚みの途中までエッチングする)ことにより形成される。位相制御層30に凹部34が形成されることにより、位相制御層30には、平面視で凹部34と重なる第1部分30aと、平面視で凹部34を囲み第1部分30aよりも厚さが大きい第2部分30bと、が形成される。
次に、図17に示すように、基板10aを下面からエッチングして、導電層20を露出させる開口部12を形成する(ステップS44)。本工程は、上述した図4に示す開口部12を形成する工程(ステップS16)と同様に行われる。
以上の工程により、位相板400を製造することができる。
位相板400の製造方法によれば、上述した位相板100の製造方法と同様の作用効果を奏することができる。
5. 第5実施形態
次に、第5実施形態に係る電子顕微鏡について、図面を参照しながら説明する。図23は、第5実施形態に係る電子顕微鏡1000の構成を模式的に示す図である。
電子顕微鏡1000は、透過電子顕微鏡(TEM)である。透過電子顕微鏡は、試料Sを透過した電子波で結像して、透過電子顕微鏡像(TEM像)を得るための装置である。
電子顕微鏡1000は、本発明に係る位相板を含む。以下では、本発明に係る位相板として位相板100を含んで構成された電子顕微鏡について説明する。なお、図23では、便宜上、位相板100を簡略化して図示している。
電子顕微鏡1000は、位相板100と、電子線源112と、集束レンズ114と、電子線偏向部115と、対物レンズ116と、試料ステージ118と、中間レンズ120と
、投影レンズ122と、検出器(撮像部)124と、を含む。
電子線源112は、電子線を発生させる。電子線源112は、陰極から放出された電子を陽極で加速し電子線を放出する。電子線源112としては、例えば、電子銃を用いることができる。電子線源112として用いられる電子銃は特に限定されず、例えば熱電子放出型や、熱電界放出型、冷陰極電界放出型などの電子銃を用いることができる。
集束レンズ114は、電子線源112の後段(電子線の下流側)に配置されている。集束レンズ114は、電子線源112で発生した電子線を集束して試料Sに照射するためのレンズである。集束レンズ114は、図示はしないが、複数のレンズを含んで構成されていてもよい。
電子線偏向部115は、集束レンズ114の後段に配置されている。電子線偏向部115は、集束レンズ114からの電子線を偏向させることができる。これにより、試料S(試料面)に対する照射角度を制御することができる。
電子線偏向部115は、例えば、電子線を偏向させるための磁界を作る偏向コイルを含んで構成されている。電子線偏向部115は、例えば、上下対になった2組の偏向コイルからなる二段偏向系で電子線を偏向させる。
対物レンズ116は、電子線偏向部115の後段に配置されている。対物レンズ116は、試料Sを透過した電子線で結像するための初段のレンズである。対物レンズ116は、図示はしないが、上部磁極(ポールピースの上極)、および下部磁極(ポールピースの下極)を有している。対物レンズ116では、上部磁極と下部磁極との間に磁場を発生させて電子線を集束させる。
試料ステージ118は、試料Sを保持する。図示の例では、試料ステージ118は、試料ホルダー119を介して、試料Sを保持している。試料ステージ118は、例えば、対物レンズ116の上部磁極と下部磁極との間に試料Sを位置させる。試料ステージ118は、試料ホルダー119を移動および静止させることにより、試料Sの位置決めを行うことができる。
中間レンズ120は、対物レンズ116の後段に配置されている。投影レンズ122は、中間レンズ120の後段に配置されている。中間レンズ120および投影レンズ122は、対物レンズ116によって結像された像をさらに拡大し、検出器(撮像部)124に結像させる。電子顕微鏡1000では、対物レンズ116、中間レンズ120、および投影レンズ122によって、結像系が構成されている。
検出器(撮像部)124は、結像系によって結像されたTEM像を撮影する。検出器(撮像部)124は、例えば、CCDカメラ、CMOSカメラ等のデジタルカメラである。
位相板100は、対物レンズ2の後側焦点面に置かれている。位相板100は、上述したように、像面において回折波と直接波とを干渉させて、位相コントラストを生じさせる。これにより、電子顕微鏡1000では、位相差像(位相コントラスト像)を得ることができる。すなわち、電子顕微鏡1000は、位相差透過電子顕微鏡として機能する。
電子顕微鏡1000は、図示の例では、除振機126を介して架台128上に設置されている。
電子顕微鏡1000では、帯電を抑制することができる位相板100を含むため、位相
板の帯電の影響が低減された良好な位相差像を得ることができる。
6. 第6実施形態
次に、第6実施形態に係る電子顕微鏡について、図面を参照しながら説明する。図24は、第6実施形態に係る電子顕微鏡2000の構成を模式的に示す図である。以下、第6実施形態に係る電子顕微鏡2000において、上述した第5実施形態に係る電子顕微鏡1000の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
電子顕微鏡2000は、走査透過電子顕微鏡(STEM)である。走査透過電子顕微鏡は、電子プローブで試料S上を走査し、試料Sを透過した電子を検出して走査透過電子顕微鏡像(STEM像)を得るための装置である。
電子顕微鏡2000は、本発明に係る位相板を含む。以下では、本発明に係る位相板として位相板100を含んで構成された電子顕微鏡について説明する。なお、図24では、便宜上、位相板100を簡略化して図示している。
電子顕微鏡2000は、位相板100と、電子線源112と、集束レンズ114と、電子線偏向部115と、電子線走査部2010と、対物レンズ116と、試料ステージ118と、中間レンズ120と、投影レンズ122と、検出器124と、を含む。
電子線走査部2010は、集束レンズ114の後段に配置されている。電子線走査部2010は、電子線を偏向させて、集束レンズ114および対物レンズ116(対物レンズ116の上部磁極)で集束された電子線(電子プローブ)で試料S上を走査する。電子線走査部2010は、電子線を偏向させる走査コイルを有している。電子線走査部2010は、走査信号生成部(図示せず)で生成された走査信号に基づいて、電子線(電子プローブ)の走査を行う。
電子顕微鏡2000は、画像処理部(図示せず)を有し、画像処理部は、検出器124からの検出信号(電子線の強度信号)を、走査信号に同期させて画像化する処理を行う。これにより、走査透過電子顕微鏡像(STEM像)が生成される。ここで、走査透過電子顕微鏡像(STEM像)とは、検出信号と、走査信号とを同期させて得られた、試料位置に対応した信号量(電子波の強度)の分布を示す像である。
位相板100は、対物レンズ116の前側焦点面に配置される。位相板100の貫通孔32および導電層20を通過した電子波と、位相制御層30および導電層20を通過した電子波は試料S上に集束され、検出器124上では貫通孔32を通過した直接波と位相制御層30を通過した回折波とが干渉し位相コントラストが生じる。これにより、電子顕微鏡2000では、位相差像(位相コントラスト像)を得ることができる。すなわち、電子顕微鏡2000は、位相差走査透過電子顕微鏡として機能する。
電子顕微鏡1000では、帯電を抑制することができる位相板100を含むため、位相板の帯電の影響が低減された良好な位相差像を得ることができる。
なお、上述した実施形態及び変形例は一例であって、これらに限定されるわけではない。例えば各実施形態及び各変形例は、適宜組み合わせることが可能である。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、
実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
10…支持体、10a…基板、12…開口部、20…導電層、30…位相制御層、30a…第1部分、30b…第2部分、31a…第1面、31b…第2面、32…貫通孔、34…凹部、100…位相板、101…位相板、112…電子線源、114…集束レンズ、115…電子線偏向部、116…対物レンズ、118…試料ステージ、119…試料ホルダー、120…中間レンズ、122…投影レンズ、124…検出器、126…除振機、128…架台、200…位相板、201…位相板、300…位相板、400…位相板、1000…電子顕微鏡、2000…電子顕微鏡、2010…電子線走査部

Claims (11)

  1. 電子顕微鏡用の位相板であって、
    貫通孔が設けられた位相制御層と、
    前記位相制御層の第1面および前記第1面の反対側の第2面の少なくとも一方に設けられ、前記貫通孔を塞ぐ導電層と、
    を含み、
    前記位相制御層は、前記位相制御層を通過した電子波と、前記貫通孔を通過した電子波と、の間に所与の位相差を生じさせる、位相板。
  2. 請求項1において、
    前記導電層は、前記第1面および前記第2面に設けられている、位相板。
  3. 請求項1または2において、
    前記導電層の膜厚は、一定である、位相板。
  4. 電子顕微鏡用の位相板であって、
    有底の凹部が設けられた位相制御層を含み、
    前記位相制御層は、平面視で前記凹部と重なる第1部分と、平面視で前記凹部を囲み前記第1部分よりも厚さが大きい第2部分と、を有し、
    前記位相制御層は、前記第1部分を通過した電子波と、前記第2部分を通過した電子波と、の間に所与の位相差を生じさせる、位相板。
  5. 電子顕微鏡用の位相板の製造方法であって、
    基板上に導電層を形成する工程と、
    前記導電層上に貫通孔が設けられた位相制御層を形成する工程と、
    前記基板を前記導電層が形成された面とは反対側の面側からエッチングして、前記導電層を露出させる開口部を形成する工程と、
    を含み、
    前記位相制御層は、前記位相制御層を通過した電子波と、前記貫通孔を通過した電子波と、の間に所与の位相差を生じさせる、位相板の製造方法。
  6. 請求項5において、
    前記位相制御層を形成する工程は、
    前記導電層上に前記位相制御層を成膜する工程と、
    前記位相制御層をフォトリソグラフィーおよびエッチングによりパターニングして、前記貫通孔を形成する工程と、
    を有する、位相板の製造方法。
  7. 請求項5において、
    前記位相制御層を形成する工程では、リフトオフにより前記貫通孔が設けられた前記位相制御層を形成する、位相板の製造方法。
  8. 電子顕微鏡用の位相板の製造方法であって、
    基板上に位相制御層を成膜する工程と、
    前記位相制御層に有底の凹部を形成して、前記位相制御層に、平面視で前記凹部と重なる第1部分と、平面視で前記凹部を囲み前記第1部分よりも厚さが大きい第2部分と、を形成する工程と、
    前記基板を前記位相制御層が形成された面とは反対側の面側からエッチングして、前記位相制御層を露出させる開口部を形成する工程と、
    を含み、
    前記位相制御層は、前記第1部分を通過した電子波と、前記第2部分を通過した電子波と、の間に所与の位相差を生じさせる、位相板の製造方法。
  9. 請求項5ないし8のいずれか1項において、
    前記基板は、シリコン基板である、位相板の製造方法。
  10. 請求項5ないし9のいずれか1項において、
    前記位相制御層を形成する工程では、前記位相制御層を、真空蒸着、スパッタリング、イオンプレーティング、またはCVDを用いて成膜する、位相板の製造方法。
  11. 請求項1ないし4のいずれか1項に記載の位相板を含む、電子顕微鏡。
JP2015049439A 2015-03-12 2015-03-12 位相板およびその製造方法、ならびに電子顕微鏡 Pending JP2016170951A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015049439A JP2016170951A (ja) 2015-03-12 2015-03-12 位相板およびその製造方法、ならびに電子顕微鏡
US15/067,394 US9786467B2 (en) 2015-03-12 2016-03-11 Phase plate, method of fabricating same, and electron microscope
EP16159962.6A EP3067912A1 (en) 2015-03-12 2016-03-11 Phase plate, method of fabricating same, and electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049439A JP2016170951A (ja) 2015-03-12 2015-03-12 位相板およびその製造方法、ならびに電子顕微鏡

Publications (1)

Publication Number Publication Date
JP2016170951A true JP2016170951A (ja) 2016-09-23

Family

ID=55527432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049439A Pending JP2016170951A (ja) 2015-03-12 2015-03-12 位相板およびその製造方法、ならびに電子顕微鏡

Country Status (3)

Country Link
US (1) US9786467B2 (ja)
EP (1) EP3067912A1 (ja)
JP (1) JP2016170951A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591686A1 (en) 2018-07-03 2020-01-08 Jeol Ltd. Electron microscope

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11315434B2 (en) 2019-10-31 2022-04-26 Rockwell Collins, Inc. System and method to change SVS mode
US11097851B1 (en) 2019-11-19 2021-08-24 Rockwell Collins, Inc. System and method to momentarily switch SVS mode
US11610497B2 (en) 2020-12-15 2023-03-21 Rockwell Collins, Inc. System and method to display SVS taxi mode exocentric view of aircraft

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1807277A1 (de) * 1968-06-28 1970-01-08 Siemens Ag Korpuskularstrahlgeraet zur Untersuchung eines Praeparates mit einer phasendrehenden Folie
JP4625317B2 (ja) * 2004-12-03 2011-02-02 ナガヤマ アイピー ホールディングス リミテッド ライアビリティ カンパニー 位相差電子顕微鏡用位相板及びその製造方法並びに位相差電子顕微鏡
DE102005040267B4 (de) * 2005-08-24 2007-12-27 Universität Karlsruhe Verfahren zum Herstellen einer mehrschichtigen elektrostatischen Linsenanordnung, insbesondere einer Phasenplatte und derartige Phasenplatte
WO2007052723A1 (ja) * 2005-11-04 2007-05-10 Nagayama Ip Holdings, Llc 電子顕微鏡用位相板及びその製造方法
DE102007007923A1 (de) * 2007-02-14 2008-08-21 Carl Zeiss Nts Gmbh Phasenschiebendes Element und Teilchenstrahlgerät mit phasenschiebenden Element
US8785850B2 (en) * 2010-01-19 2014-07-22 National Research Counsel Of Canada Charging of a hole-free thin film phase plate
CN103843105A (zh) * 2010-02-10 2014-06-04 摩奇有限公司(d/b/aVoxa) 暗视野像差矫正电子显微镜
EP2667399A1 (en) * 2012-05-23 2013-11-27 FEI Company Improved phase plate for a TEM
JP6062737B2 (ja) * 2012-12-28 2017-01-18 日本電子株式会社 位相板の製造方法
US9240255B2 (en) * 2013-03-06 2016-01-19 University Of Oregon Device and method for creating Gaussian aberration-corrected electron beams
EP2797100A1 (en) * 2013-04-25 2014-10-29 Fei Company Method of using a phase plate in a transmission electron microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591686A1 (en) 2018-07-03 2020-01-08 Jeol Ltd. Electron microscope
US10741358B2 (en) * 2018-07-03 2020-08-11 Jeol Ltd. Electron microscope

Also Published As

Publication number Publication date
EP3067912A1 (en) 2016-09-14
US9786467B2 (en) 2017-10-10
US20160276125A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
Telieps et al. An analytical reflection and emission UHV surface electron microscope
JP6568646B2 (ja) 電子顕微鏡
JP6286270B2 (ja) 透過型電子顕微鏡内で位相版を用いる方法
JP2011029072A (ja) X線発生装置及びそれを備えたx線撮像装置。
JP2007250541A (ja) 位相差電子顕微鏡
JP2016170951A (ja) 位相板およびその製造方法、ならびに電子顕微鏡
JP5965656B2 (ja) コントラストを向上させる素子を具備するtemにおける光学素子をセンタリングするための方法
TW201137923A (en) Aberration-correcting dark-field electron microscopy
US9613779B2 (en) Scanning transmission electron microscope with variable axis objective lens and detective system
US20090166558A1 (en) Phase Contrast Electron Microscope Device
US8829436B2 (en) Phase plate and method of fabricating same
JP2016115680A (ja) 収差補正開孔を有する走査型荷電粒子ビームデバイスおよびその動作方法
JP3332384B2 (ja) 電子顕微鏡および電子顕微方法
JP2003272549A (ja) 走査電子顕微鏡
Uhlén et al. Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications
US3996468A (en) Electron microscope aperture system
JP5934513B2 (ja) 透過電子顕微鏡
JPH10162769A (ja) イオンビーム加工装置
JP4590590B2 (ja) 位置感度の高い検出器による透過オペレーションに対するsem
JP2008204642A (ja) 走査透過荷電粒子線装置
JP2006331901A (ja) 位相回復方式の電子顕微鏡による観察方法
JP2007080724A (ja) 電子顕微鏡の磁場印加装置
Darlington et al. Imaging of weak Lorentz objects (pn junctions) by high voltage Fresnel TEM and STEM
JP6814301B2 (ja) 電子銃および電子ビーム応用装置
JPH07105209B2 (ja) 電子顕微鏡