JP2016158163A - 受信装置及び送信装置 - Google Patents

受信装置及び送信装置 Download PDF

Info

Publication number
JP2016158163A
JP2016158163A JP2015035622A JP2015035622A JP2016158163A JP 2016158163 A JP2016158163 A JP 2016158163A JP 2015035622 A JP2015035622 A JP 2015035622A JP 2015035622 A JP2015035622 A JP 2015035622A JP 2016158163 A JP2016158163 A JP 2016158163A
Authority
JP
Japan
Prior art keywords
filter
frequency
optical
transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015035622A
Other languages
English (en)
Other versions
JP6540090B2 (ja
Inventor
亮 岡部
Akira Okabe
亮 岡部
智夫 ▲高▼原
智夫 ▲高▼原
Tomoo Takahara
田中 俊毅
Toshiki Tanaka
俊毅 田中
西原 真人
Masato Nishihara
真人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015035622A priority Critical patent/JP6540090B2/ja
Priority to US14/993,192 priority patent/US10212015B2/en
Publication of JP2016158163A publication Critical patent/JP2016158163A/ja
Application granted granted Critical
Publication of JP6540090B2 publication Critical patent/JP6540090B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】ディップ発生による伝送特性の劣化を抑制できる受信装置等を提供する。【解決手段】受信装置は、光フィルタと、取得部と、第1の決定部と、フィルタ設定部とを有する。光フィルタは、送信装置から受信した光DMT信号を透過する。取得部は、送信装置から受信した光DMT信号の伝送特性を取得する。第1の決定部は、取得した伝送特性に基づき、光DMT信号からディップを除去する光フィルタのフィルタ周波数を決定する。フィルタ設定部は、決定したフィルタ周波数を光フィルタに設定する。【選択図】図1

Description

本発明は、受信装置及び送信装置に関する。
近年、光ネットワークを用いて、大容量のデータを光伝送する伝送方式が望まれている。光ネットワークの伝送方式では、例えば、DMT(離散マルチトーン:Discrete Multi-Tone)変調方式等のマルチキャリア変調方式が知られている。DMT変調方式は、OFDM(Orthogonal Frequency Division Multiplexing)技術を基礎にしたマルチキャリア伝送技術の一つである。DMT変調方式は、複数の異なる周波数のサブキャリア(SC:Subcarrier)にデータを割り当て、これらSC毎に割り当てられたデータを多値度及び信号パワーの割当量に基づいて変調し、DMT信号としてデータを高速伝送する技術である。
DMT変調方式の光伝送装置は、システムの起動時等に、対向側の光伝送装置とプローブ信号でネゴシエーションし、そのネゴシエーション結果に基づき受信特性を取得し、取得した受信特性を伝送特性として設定する。光伝送装置は、設定した伝送特性に応じて、SC毎の多値度(ビット数)及び信号パワーの割当量を決定する。そして、光伝送装置は、決定したSC毎の多値度及び信号パワーの割当量に基づきSC毎に割り当てられたデータを変調してDMT信号を生成する。
図19は、ディップ発生の光DMT信号に関わる伝送特性の一例を示す説明図である。図19に示す伝送特性X12は、理想的な伝送特性X11に比較し、光伝送装置内のデバイスの周波数特性による帯域制限によって、その割当周波数が高くなるに連れて劣化する。更に、デバイスの周波数特性や、雑音や非線形性の劣化に加えて、光送信器で発生するチャープや光伝送路上の波長分散の相互作用でディップDが発生するため、その伝送特性X13は劣化する。
ディップDの発生周波数は、光DMT信号の変調度、光送信器のチャープ、光DMT信号の波長、光伝送路上の波長分散、光伝送路のファイバ長(伝送距離)を(数1)に代入することで算出できる。
Figure 2016158163
図20は、伝送距離毎の光DMT信号に関わるディップ発生の一例を示す説明図である。光DMT信号は、同一の信号であっても、図20に示すように、シングルモードファイバ(SMF;Single Mode Fiber)の伝送距離10km、20km、40km、80kmに応じて異なる周波数にディップが発生し、ディップ発生によって相対強度が著しく低下し、伝送特性が劣化する。その結果、伝送特性の伝送容量や伝送距離が制限されてしまうことになる。
特許第4575703号公報 特許第5523582号公報
図21は、光DMT信号の伝送特性(伝送容量−伝送距離)の一例を示す説明図である。図21に示す伝送特性X14は、光DMT信号の伝送特性である。伝送特性X14は、伝送距離が0km(BtoB:Back to Back)の場合、その伝送容量が130Gbpsであるのに対し、伝送距離が10kmの場合、ディップ発生で伝送容量が100Gbpsまで劣化する。従って、光送信器のチャープや光伝送路上で累積する波長分散等の相互作用によるディップ発生で光DMT信号の伝送特性が劣化する。
一つの側面では、ディップ発生による伝送特性の劣化を抑制できる受信装置及び送信装置を提供することを目的とする。
一つの態様は、フィルタと、測定部と、決定部と、設定部とを有する。フィルタは、対向装置から受信したマルチキャリア信号を透過する。測定部は、前記対向装置から受信したマルチキャリア信号の伝送特性を測定する。決定部は、測定した伝送特性に基づき、前記マルチキャリア信号からディップを除去する前記フィルタのフィルタ周波数を決定する。設定部は、決定した前記フィルタ周波数を前記フィルタに設定する。
一つの側面として、ディップ発生による伝送特性の劣化を抑制できる。
図1は、実施例1の光伝送システムの一例を示す説明図である。 図2は、光DMT信号の伝送特性(SNR−割当周波数)の一例を示す説明図である。 図3は、光フィルタのオフセット周波数の取得方法の一例を示す説明図である。 図4は、光フィルタのフィルタ周波数を設定するまでの処理の一例を示す説明図である。 図5は、ネゴシエーション処理に関わる光伝送システムの処理動作の一例を示すフローチャートである。 図6は、第1の光フィルタ設定処理に関わる受信装置内の制御部の処理動作の一例を示すフローチャートである。 図7は、VSB整形後の光DMT信号の伝送特性(SNR−割当周波数)の一例を示す説明図である。 図8は、実施例2の光伝送システムの一例を示す説明図である。 図9は、実施例3の光伝送システムの一例を示す説明図である。 図10は、伝送距離を100kmとした場合の光DMT信号の伝送特性(相対強度−割当周波数)の一例を示す説明図である。 図11は、図10に示す光DMT信号内で発生する各ディップの周波数と伝送距離との関係の一例を示す説明図である。 図12は、VSB整形後の光DMT信号の伝送特性(SNR−割当周波数)の一例を示す説明図である。 図13は、光フィルタのオフセット周波数の取得方法の一例を示す説明図である。 図14は、ネゴシエーション処理に関わる光伝送システムの処理動作の一例を示すフローチャートである。 図15は、第2の光フィルタ設定処理に関わる送信装置内の制御部の処理動作の一例を示すフローチャートである。 図16は、実施例4の光伝送システムの一例を示す説明図である。 図17は、各分散補償方式の比較例を示す説明図である。 図18は、実施例1及び実施例3のVSB整形後の光DMT信号の伝送特性(伝送容量−伝送距離)の一例を示す説明図である。 図19は、ディップ発生の光DMT信号に関わる伝送特性の一例を示す説明図である。 図20は、伝送距離毎の光DMT信号に関わるディップ発生の一例を示す説明図である。 図21は、光DMT信号の伝送特性(伝送容量−伝送距離)の一例を示す説明図である。
以下、図面に基づいて、本願の開示する受信装置及び送信装置の実施例を詳細に説明する。尚、本実施例により、開示技術が限定されるものではない。また、以下に示す実施例は、矛盾を起こさない範囲で適宜組み合わせても良い。
図1は、実施例1の光伝送システム1の一例を示す説明図である。図1に示す光伝送システム1は、送信装置2と、対向側の受信装置3と、送信装置2と対向側の受信装置3との間を接続する光伝送路4とを有する。送信装置2及び受信装置3は、例えば、光メトロネットワークや光アクセスネットワーク、或いは、光コアネットワーク等内に収容された光モジュール等の伝送装置である。尚、説明の便宜上、送信装置2と受信装置3とを分別したが、伝送装置及び対向側の伝送装置には、送信装置2及び受信装置3を内蔵している。そして、伝送装置内の送信装置2から光DMT信号を対向側の伝送装置内の受信装置3に伝送すると共に、対向側の伝送装置内の送信装置2から光DMT信号を伝送装置内の受信装置3に伝送するものとする。
送信装置2は、変調部11と、D/A(Digital/Analog)12と、光送信部13と、制御部14とを有する。変調部11は、クライアント信号をDMT変調する変調部である。変調部11は、S/P(Serial/Parallel)11Aと、マッピング部11Bと、IFFT(Inverse Fast Fourier Transform)11Cと、P/S(Parallel/Serial)11Dとを有する。S/P11Aは、シリアルのクライアント信号をDMT信号内のサブキャリア(SC:Subcarrier)本数分のデータをパラレルに変換する。マッピング部11Bは、設定中のSC毎の多値度及び信号パワーの割当量に基づき、各SCに割り当てるクライアント信号のデータをマッピングする。IFFT11Cは、設定中のSC毎の多値度及び信号パワーの割当量に基づき、マッピング出力のデータを各SCに分解するIFFT処理を実行してDMT信号を出力する。P/S11Dは、各SCのデータのDMT信号をシリアル変換してD/A12に入力する。
D/A12は、シリアル変換したデータのDMT信号をアナログ変換し、アナログ変換したDMT信号を光送信部13に伝送する。光送信部13は、図示せぬアンプで増幅したDMT信号を図示せぬLD(Laser Diode)の光信号で光変調して光DMT信号に変調し、光DMT信号を光伝送路4に出力する。光伝送路4は、送信装置2から対向側の受信装置3へ光DMT信号を光伝送する、例えば、光ファイバである。
制御部14は、送信装置2全体を制御する。制御部14は、依頼部14Aと、割当部14Bとを有する。依頼部14Aは、光伝送システム1の起動時にプローブ信号の光DMT信号を対向側の受信装置3に伝送するネゴシエーション開始を要求する。尚、プローブ信号は、光伝送システム1の起動時に実行するネゴシエーションに使用する、SC毎の多値度及び信号パワーの割当量が同一の試験信号である。割当部14Bは、プローブ信号のネゴシエーション結果である伝送特性に応じてSC毎の多値度及び信号パワーの割当量を決定し、決定したSC毎の多値度及び信号パワーの割当量を変調部11に設定する。
受信装置3は、光フィルタ21と、光受信部22と、A/D(Analog/Digital)23と、復調部24と、フィルタ設定部25と、制御部26とを有する。光フィルタ21は、光伝送路4から受信した光DMT信号を透過する可変型フィルタである。光フィルタ21は、設定中のフィルタ周波数に基づき、光DMT信号をVSB(Vestigial Sideband)整形する。その結果、光DMT信号に発生したディップを除去できる。尚、ディップは、前述した通り、送信装置2内の光送信部13で発生するチャープや、光伝送路4上で累積する波長分散等の相互作用によって発生するものである。
光受信部22は、光DMT信号をPD(Photo Diode)で電気変換し、電気変換したDMT信号を増幅してA/D23に入力する。A/D23は、受信したDMT信号をデジタル変換し、デジタル変換したDMT信号を復調部24に入力する。
復調部24は、S/P24Aと、FFT(Fast Fourier Transform)24Bと、デマッピング部24Cと、P/S24Dとを有する。S/P24Aは、A/D23からDMT信号のデータをSC単位のパラレルに変換する。FFT24Bは、SC毎の多値度及び信号パワーの割当量に基づき、SC毎のデータをIFFT処理前のデータに復元する。デマッピング部24Cは、復元したデータをデマッピングしてマッピング前のデータを取得し、マッピング前のデータをP/S24Dに入力する。P/S24Dは、入力したマッピング前のクライアント信号のデータをシリアル変換して出力する。
フィルタ設定部25は、光フィルタ21のフィルタ周波数をシフトすべく、光フィルタ21を駆動制御する回路である。制御部26は、受信装置3全体を制御する。制御部26は、取得部26Aと、第1の決定部26Bとを有する。取得部26Aは、送信装置2から受信したプローブ信号の光DMT信号からネゴシエーション結果としての伝送特性を取得する。取得部26Aは、デマッピング部24Cから光DMT信号の伝送特性としてSC番号毎のSNRを含むSNR情報を取得する。尚、SC番号は、SCを変調するボーレート換算することで周波数情報も取得できる。第1の決定部26Bは、ネゴシエーション結果の伝送特性に基づき、光フィルタ21のフィルタ周波数を決定する。
図2は、光DMT信号の伝送特性(SNR−周波数)の一例を示す説明図である。この場合の周波数は、光DMT信号を受信した後、電気信号に変換された後の電気周波数を示す。図2に示す伝送特性X1は、BtoB(伝送距離が0km)の理想的な光DMT信号の伝送特性であり、伝送特性X2は、VSB整形前の光DMT信号の伝送特性である。光DMT信号の伝送特性X2には、複数のディップが発生している。
図3は、光フィルタ21のオフセット周波数の取得方法の一例を示す説明図である。受信装置3内の制御部26の取得部26Aは、プローブ信号の光DMT信号のネゴシエーション結果として伝送特性を取得する。そして、第1の決定部26Bは、取得した伝送特性内のSNR情報からDC成分(0GHz)付近のSNRを基準値とする。尚、基準値は、例えば、取得部26Aで取得したSNR情報のDC成分(0GHz)付近の最小のSC番号1の周波数f1に対応するSNR1とする。
第1の決定部26Bは、伝送特性のSNR情報に基づき、基準値(SNR1)から3dB低下した時点のSNRiに対応する周波数fiを光フィルタ21のオフセット周波数feと決定する。図4は、光フィルタ21のフィルタ周波数を設定するまでの処理の一例を示す説明図である。図4の(A)及び(C)の横軸は、光周波数(波長)νを示し、(B)及び(D)の横軸は、光DMT信号を受信した後の電気信号の周波数を示す。図4の(A)に示す特性は、光フィルタ21のフィルタ特性を示し、光フィルタ21の透過帯域を2B(B+B)、光フィルタ21の中心光周波数(中心波長)をνf、光DMT信号の中心光周波数(中心波長)をνsとする。この場合、光フィルタ21の中心光周波数νfは、光DMT信号の中心光周波数νsに合せる。
光DMT信号の伝送特性は、図4の(B)に示すようにディップDが発生している。そして、第1の決定部26Bは、前述した通り、基準値から3dB低下した時点の周波数をオフセット周波数feと決定する。そして、フィルタ設定部25は、図4の(C)に示すように、決定したオフセット周波数feが光フィルタ21の透過帯域のエッジ周波数になるように光フィルタ21のフィルタ周波数をシフトすべく、中心光周波数νfをシフトする。その結果、光DMT信号の伝送特性は、図4の(D)に示すように、オフセット周波数fe以降の高周波帯域が除去されることで、ディップDを除去できる。
送信装置2内の制御部14と受信装置3内の制御部26との間は、光伝送路4と異なる制御線5で伝送特性や割当量等の情報を伝送するようにした。しかしながら、伝送特性や割当量等の情報をOSC(Optical Supervisory Channel)信号内に含めて光伝送路4で伝送するようにしても良い。
次に実施例1の光伝送システム1の動作について説明する。図5は、ネゴシエーション処理に関わる光伝送システム1の処理動作の一例を示すフローチャートである。図5に示すネゴシエーション処理は、システム起動時に送信装置2から受信装置3へ伝送するプローブ信号の光DMT信号の伝送特性を取得し、取得した伝送特性からSC毎の多値度及び信号パワーの割当量を設定する処理である。
図5において送信装置2は、光伝送路4を通じてプローブ信号の光DMT信号を受信装置3に伝送する(ステップS11)。受信装置3内の制御部26内の取得部26Aは、プローブ信号の光DMT信号からネゴシエーション結果の伝送特性を取得する(ステップS12)。受信装置3内の制御部26内の第1の決定部26Bは、取得した伝送特性から決定した光フィルタ21のオフセット周波数feに基づき、光フィルタ21のフィルタ周波数を設定する第1の設定処理を実行する(ステップS13)。
そして、送信装置2は、光伝送路4を通じてプローブ信号の光DMT信号を受信装置3に伝送する(ステップS14)。受信装置3内の取得部26Aは、プローブ信号の光DMT信号からネゴシエーション結果の伝送特性を取得する(ステップS15)。受信装置3は、取得した伝送特性を送信装置2に通知する(ステップS16)。送信装置2は、取得した伝送特性に基づき、SC毎の多値度及び信号パワーの割当量を決定し(ステップS17)、決定したSC毎の多値度及び信号パワーの割当量を変調部11に設定し(ステップS18)、図5に示す処理動作を終了する。
図5に示すネゴシエーション処理では、システム起動時に送信装置2と受信装置3との間でプローブ信号の光DMT信号を伝送することで伝送特性を取得し、取得した伝送特性に基づき、SC毎の多値度及び信号パワーの割当量を変調部11に設定する。その結果、装置特性や光伝送路4の特性等が劣化した場合でも、その伝送エラーの発生を効率良く抑制できる。そして、光伝送システム1での周波数効率の向上が図れる。
図6は、第1の設定処理に関わる受信装置3内の制御部26の処理動作の一例を示すフローチャートである。図6に示す第1の設定処理は、ネゴシエーション実行時に取得した伝送特性に基づき、光DMT信号に発生するディップを除去するVSB整形を実行する際の光フィルタ21のフィルタ周波数を決定する処理である。
図6において受信装置3内の制御部26内の取得部26Aは、取得したネゴシエーション結果の伝送特性のSNR情報から基準値(f1、SNR1)を決定し、決定した基準値(f1、SNR1)を記憶する(ステップS21)。取得部26Aは、伝送特性のSNR情報から次に高い周波数のSNR情報(fi,SNRi)を抽出する(ステップS22)。第1の決定部26Bは、抽出したSNR情報内のSNRiと基準値のSNR1とを比較する(ステップS23)。
第1の決定部26Bは、SNR差(SNR1−SNRi)が3dB以上であるか否かを判定する(ステップS24)。取得部26Aは、SNR差が3dB以上でない場合(ステップS24否定)、次のSNR情報を抽出すべく、ステップS22に移行する。
第1の決定部26Bは、SNR差が3dB以上の場合(ステップS24肯定)、基準値から3dB低下したと判断し、SNR差が3dB以上と判断されたときのSNR情報内の周波数fiを決定する(ステップS25)。第1の決定部26Bは、決定された周波数fiを光フィルタ21のオフセット周波数feと決定する(ステップS26)。第1の決定部26Bは、決定したオフセット周波数feが光フィルタ21の透過帯域のエッジ周波数になるように光フィルタ21のフィルタ周波数に決定する(ステップS27)。第1の決定部26Bは、決定した光フィルタ21のフィルタ周波数をフィルタ設定部25に設定し(ステップS28)、図6に示す処理動作を終了する。その結果、フィルタ設定部25は、設定したフィルタ周波数を光フィルタ21に設定する。
受信装置3は、設定したフィルタ周波数に基づき、光フィルタ21を通じてVSB整形後の光DMT信号を取得する。図7は、VSB整形後の光DMT信号の伝送特性の一例を示す説明図である。図7に示す伝送特性X3は、VSB整形後の光DMT信号の伝送特性である。伝送特性X3は、VSB整形なしの光DMT信号の伝送特性X2に比較してディップの影響を抑制できるため、その伝送特性の劣化を低減できる。つまり、伝送特性X2では、1.5mm帯での伝送容量100Gbpsの場合、伝送制限が約10kmであるのに対し、伝送特性X3の伝送制限は100kmである。伝送容量と伝送距離の関係の一例を図18に示す。
実施例1の受信装置3は、光DMT信号のネゴシエーション結果である伝送特性に基づき、光DMT信号からディップを除去するように光フィルタ21のフィルタ周波数を設定し、光フィルタ21でVSB整形後の光DMT信号を取得できる。その結果、受信装置3は、光DMT信号の高周波帯域からディップを除去できるため、その伝送特性の劣化を抑制できる。
受信装置3は、伝送特性のSNR情報から割当周波数毎のSNRに基づき、基準値(SNR1)から3dB低下したときのSNRに対応する割当周波数を決定する。更に、受信装置3は、決定した割当周波数が光フィルタ21の透過帯域のエッジ周波数になるように光フィルタ21のフィルタ周波数を動的に決定する。その結果、受信装置3は、光DMT信号の高周波帯域からディップを除去できるため、その伝送特性の劣化を抑制できる。
更に、受信装置3は、DMT固有のネゴシエーション結果の伝送特性を用いてSNR情報を取得し、SNR情報に基づき、光DMT信号からディップを除去するように光フィルタ21のフィルタ周波数を設定する。その結果、光DMT信号からディップを除去できるため、光DMT信号の伝送特性の劣化を抑制できる。
ディップ発生の光DMT信号のSNRは、BtoBの光DMT信号に比較し、3dBを超えて低下するものの、VSB整形後の光DMT信号のSNRは、最大3dBの低下で済むため、VSB整形なしの場合に比較して、伝送特性の劣化を抑制できる。
受信装置3は、光フィルタ21、取得部26A及び第1の決定部26Bに内蔵しているため、制御線5を使用せずに、光フィルタ21のオフセット周波数feが決定できるため、オフセット周波数feの決定に要する処理時間を短縮化できる。
尚、上記実施例1では、基準値をSC番号1のDC成分(0GHz)付近のSNR1としたが、雑音が乗るケースも考えられるため、次のSC番号2やSC番号3付近の比較的DC成分近傍のSC番号の周波数のSNRに設定しても良く。適宜変更可能である。
上記実施例1では、光フィルタ21及びフィルタ設定部25を受信装置3に内蔵するようにしたが、光フィルタ21及びフィルタ設定部25を送信装置2に内蔵しても良い。この場合の実施の形態につき、実施例2として以下に説明する。
図8は、実施例2の光伝送システム1Aの一例を示す説明図である。尚、図1に示す光伝送システム1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。
図8に示す受信装置3Aは、光受信部22、A/D23、復調部24及び制御部26を有する。送信装置2Aは、変調部11、D/A12、光送信部13及び制御部14の他に、光フィルタ21A及びフィルタ設定部25Aを有する。更に、制御部14は、第1の設定処理を実行する第1の決定部14Cを有する。
送信装置2A内の制御部14内の第1の決定部14Cは、受信装置3Aからプローブ信号の光DMT信号の伝送特性を受信し、受信した伝送特性に基づき、図6に示す第1の設定処理を実行する。第1の決定部14Cは、第1の設定処理で光フィルタ21Aのフィルタ周波数を決定する。第1の決定部14Cは、決定したフィルタ周波数をフィルタ設定部25Aに通知する。フィルタ設定部25Aは、フィルタ周波数を光フィルタ21Aに設定する。その結果、光フィルタ21Aは、設定したフィルタ周波数に基づき、光DMT信号をVBS整形し、VSB整形後の光DMT信号を、光伝送路4を経由して受信装置3Aに伝送する。VSB整形後の光DMT信号の伝送特性X3は、VSB整形なしの光DMT信号の伝送特性X2に比較してディップDの影響を抑制できているため、その伝送特性の劣化を低減できる。
実施例2の送信装置2Aは、光DMT信号のネゴシエーション結果である伝送特性を受信装置3Aから取得し、この伝送特性に基づき、光DMT信号からディップを除去するように光フィルタ21Aのフィルタ周波数を設定する。そして、送信装置2Aは、光フィルタ21AでVSB整形後の光DMT信号を取得できる。その結果、送信装置2Aは、光DMT信号の高周波帯域からディップを除去できるため、その伝送特性の劣化を抑制できる。
送信装置2Aは、伝送特性のSNR情報から割当周波数毎のSNRに基づき、基準値(SNR1)から3dB低下したときのSNRに対応する割当周波数を決定する。更に、送信装置2Aは、決定した割当周波数が光フィルタ21Aの透過帯域のエッジ周波数になるように光フィルタ21Aのフィルタ周波数を動的に決定する。その結果、送信装置2Aは、光DMT信号の高周波帯域からディップを除去できるため、その伝送特性の劣化を抑制できる。
更に、送信装置2Aは、DMT固有のネゴシエーション結果の伝送特性を用いてSNR情報を取得し、SNR情報に基づき、光DMT信号からディップを除去するように光フィルタ21Aのフィルタ周波数を設定する。その結果、光DMT信号からディップを除去できるため、光DMT信号の伝送特性の劣化を抑制できる。
送信装置2Aは、光フィルタ21Aを内蔵するため、光DMT信号の変調成分をほぼ半減して伝送し、信号パワーに依存して発生する非線形光学効果を低減できる。更に、光フィルタ21Aを光送信部13と一体化してモジュール化できる。
上記実施例1及び2では、基準値から3dB低下したSNRの周波数feを光フィルタ21(21A)のオフセット周波数と決定する。更に、オフセット周波数が光フィルタ21(21A)の透過帯域のエッジ周波数となるように光フィルタ21(21A)のフィルタ周波数を決定した。しかしながら、光DMT信号からディップを除去する方法としては、別の方法を採用しても良い。この場合の実施の形態につき、実施例3として、以下に説明する。
図9は、実施例3の光伝送システム1Bの一例を示す説明図である。尚、図1に示す光伝送システム1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。
図9に示す光伝送システム1Bと図1に示す光伝送システム1とが異なるところは、送信装置2B及び受信装置3Bの内部構成にある。受信装置3Bは、光受信部22と、A/D23と、復調部24と、制御部26とを有する。光受信部22は、光伝送路4からプローブ信号の光DMT信号を受信し、受信した光DMT信号を電気変換してDMT信号を出力する。A/D23は、光受信部22からのDMT信号をデジタル変換する。復調部24は、デジタル変換したDMT信号を復調出力する。制御部26内の取得部26Aは、復調部24で復調したプローブ信号の光DMT信号のネゴシエーション結果である伝送特性を取得する。そして、制御部26Aは、取得した伝送特性を、制御線を通じて送信装置2B内の制御部14に通知する。
送信装置2Bは、変調部11、D/A12、光送信部13及び制御部14の他に、光フィルタ31と、フィルタ設定部32と、フィルタ制御部33とを有する。光フィルタ31は、光送信部13からの光DMT信号をVSB整形するフィルタである。フィルタ設定部32は、後述する漸近値以降の高周波成分を除去するようにフィルタ周波数を光フィルタ31に設定する。フィルタ制御部33は、光分岐部41と、PD42と、BPF(Band Pass Filter)43と、検出部44とを有する。光分岐部41は、光フィルタ31のVSB整形後の光DMT信号を光伝送路4及びPD42に光分岐する。PD42は、光分岐部41で光分岐したVSB整形後の光DMT信号を電気変換するフォトダイオードである。BPF43は、電気変換後のDMT信号から、後述するVSB整形後の固有のディップD1、例えば2GHz付近の周波数の信号成分を抽出するフィルタである。
ここで、漸近値について説明する。図10は、伝送距離を100kmとした場合の光DMT信号の伝送特性(相対強度−割当周波数)の一例を示す説明図である。図10に示す伝送特性は、伝送距離が100km、光送信器13のチャープαが0.7の場合、u0、u1,u2,u3,u4…の順序でディップが発生する。その結果、ディップ発生に応じて光DMT信号の相対強度が著しく低下する。図11は、図10に示す光DMT信号内で発生する各ディップの周波数と伝送距離との関係の一例を示す説明図である。図10に示す各ディップu0、u1,u2,u3,u4は、伝送距離が長くなるに連れてディップの発生周波数が低くなるものの、4.9GHz以下ではディップが発生しないことが解る。そこで、ディップが発生しなくなる周波数、例えば、4.9GHzを漸近値とする。
光フィルタ31のフィルタ周波数は、光フィルタ31の透過帯域のエッジ周波数が漸近値4.9GHz以下となるように事前に設定する。更に、BPF43のフィルタ周波数は、VSB整形後の固有のディップD1、例えば、2GHz付近の周波数に設定する。図12は、VSB整形後の光DMT信号の伝送特性(SNR−割当周波数)の一例を示す説明図である。図12に示す伝送特性X3Aは、VSB整形後の光DMT信号の伝送特性である。伝送特性X3Aは、VSB整形なしの光DMT信号の伝送特性X2に比較してディップの影響を抑制できるため、その伝送特性の劣化を低減できる。しかしながら、伝送特性X3Aには、VSB整形による固有のディップD1が2GHz付近に発生する。尚、固有のディップD1は、光フィルタ31の遮断傾斜や光送信部13内のLDの線幅等で発生する。この固有のディップD1よって局所的にパワーが低下する特徴を利用して、以下に示すように光フィルタ31の設定を行う。
検出部44は、BPF43で抽出した2GHz付近の周波数の信号成分を電力変換してパワーを検出する。図13は、光フィルタ31のオフセット周波数の取得方法の一例を示す説明図である。
送信装置2B内の制御部14は、依頼部14A及び割当部14Bの他に、第2の決定部14Dを有する。第2の決定部14Dは、検出部44で検出した周波数毎の信号成分の隣接する前後ステップのパワー同士を比較する。第2の決定部14Dは、図13に示すように、前ステップS(i)のパワーP(i)と後ステップS(i+1)のパワーP(i+1)とを比較する。第2の決定部14Dは、(パワーP(i)−パワーP(i+1))のパワー差が0になる、光フィルタ31のステップ位置を決定する。尚、ステップ位置は、光フィルタ31のフィルタ周波数を段階的にシフトするためのステップ数である。
第2の決定部14Dは、決定されたステップ位置で、オフセット周波数が光フィルタ31の透過帯域のエッジ周波数になるように光フィルタ31のフィルタ周波数を決定する。更に、第2の決定部14Dは、決定されたフィルタ周波数をフィルタ設定部32に設定する。
次に実施例3の光伝送システム1Bの動作について説明する。図14は、ネゴシエーション処理に関わる光伝送システム1Bの処理動作の一例を示すフローチャートである。図14において送信装置2Bは、プローブ信号の光DMT信号を受信装置3Bに伝送する(ステップS31)。この際、送信装置2Bは、プローブ信号の光DMT信号を光分岐部41で光分岐し、光分岐した光DMT信号に対して第2の設定処理を実行する(ステップS32)。
受信装置3Bは、送信装置2Bから光伝送路4を経由して受信した光DMT信号からネゴシエーション結果の伝送特性を取得する(ステップS33)。受信装置3Bは、取得した伝送特性を送信装置2Bに通知する(ステップS34)。送信装置2Bは、取得した伝送特性に基づき、SC毎の多値度及び信号パワーの割当量を決定し(ステップS35)、決定したSC毎の多値度及び信号パワーの割当量を変調部11に設定し(ステップS36)、図14に示す処理動作を終了する。
図14に示すネゴシエーション処理では、システム起動時に送信装置2Bと受信装置3Bとの間でプローブ信号の光DMT信号を伝送することで伝送特性を取得し、取得した伝送特性に基づき、SC毎の多値度及び信号パワーの割当量を変調部11に設定する。その結果、装置特性や光伝送路4の特性等が劣化した場合でも、その伝送エラーの発生を効率良く抑制できる。そして、光伝送システム1Bでの周波数効率の向上が図れる。
図15は、第2の設定処理に関わる送信装置2B内の制御部14の処理動作の一例を示すフローチャートである。図15に示す第2の設定処理は、VSB整形後の光DMT信号から固有のディップD1を利用した光フィルタ31のフィルタ周波数を決定する処理である。
図15において送信装置2B内の制御部14は、光DMT信号の中心周波数に光フィルタ31の透過帯域の中心周波数を合わせるように光フィルタ31のフィルタ周波数を設定する(ステップS41)。
制御部14の第2の決定部14Dは、光フィルタ31のエッジ周波数として設定した、BPF43により抽出した信号成分のパワーP(i)を、検出部44を通じて取得して記憶する(ステップS42)。第2の決定部14Dは、光フィルタ31のフィルタ周波数を一定の周波数方向(高周波方向又は低周波方向)に所定量シフトし、シフト後のフィルタ周波数に対応するステップをフィルタ設定部32に設定する(ステップS43)。
第2の決定部14Dは、検出部44を通じて光フィルタ31のエッジ周波数の信号成分のパワーP(i+1)を取得して記憶する(ステップS44)。第2の決定部14Dは、記憶中の前後の周波数の信号成分のパワーP(i)とP(i+1)とを比較する(ステップS45)。
第2の決定部14Dは、比較結果に基づき、前後の周波数の信号成分のパワー差(P(i)−P(i+1))が0以下であるか否かを判定する(ステップS46)。第2の決定部14Dは、前後の周波数の信号成分のパワー差が0以下でない場合(ステップS46否定)、記憶中のパワーP(i+1)をパワーP(i)として更新する(ステップS47)。そして、第2の決定部14Dは、次の周波数成分のパワーP(i+1)を取得するように光フィルタ31のフィルタ周波数をシフトすべく、ステップS43に移行する。
第2の決定部14Dは、前後の周波数の信号成分のパワー差が0以下の場合(ステップS46肯定)、現在設定中のフィルタ周波数に相当するステップを維持したまま、図15に示す処理動作を終了する。
図15に示す第2の設定処理では、固有のディップD1の局所的なパワーの極小値を利用して、その極小値に光フィルタ31のエッジが来るようにフィルタ周波数を設定したので、受信装置24のDMT信号の復調処理を介することなく、フィルタ制御部33は簡易な構成で済む。
実施例3の送信装置2Bは、伝送距離の増加に応じてディップが発生しなくなる漸近値の周波数が光フィルタ31の透過帯域のエッジ周波数になるように光フィルタ31のフィルタ周波数を設定する。更に、送信装置2Bは、光フィルタ31で透過したVSB整形後の光DMT信号に発生する固有ディップD1を利用して光フィルタ31の設定周波数を決定する。その結果、VSB整形前の光DMT信号に発生するディップDを除去できるため、光DMT信号の伝送特性の劣化を抑制できる。
送信装置2Bは、受信装置3Bから取得したネゴシエーション結果の伝送特性内の割当周波数に相当するステップ毎のSNRに相当する信号パワーを参照する。そして、送信装置2Bは、信号パワーに基づき、光フィルタ31の透過後の光DMT信号に発生する固有ディップD1の周波数が光フィルタ31の透過帯域のエッジ周波数になるように光フィルタ31のステップを決定する。
送信装置2Bは、漸近値で光DMT信号をVSB整形するため、実施例1の光DMT信号のディップの発生周波数に応じて動的にフィルタ周波数を変更する場合に比較し、伝送特性がフラットになる。その結果、光DMT信号の伝送特性に基づく多値度及び信号パワーの割当処理が軽減できる。
送信装置2Bは、光フィルタ31及びフィルタ制御部33を内蔵するため、受信装置3Bから伝送特性を取得しなくても、送信装置2B内で閉じたフィルタ設定が可能となる。
尚、上記実施例3では、送信装置2B内に、光フィルタ31、フィルタ設定部32及びフィルタ制御部33を内蔵したが、送信装置2Bではなく、受信装置3B内に、光フィルタ31、フィルタ設定部32及びフィルタ制御部33を内蔵しても良い。この場合の実施の形態につき、実施例4として以下に説明する。
図16は、実施例4の光伝送システム1Cの一例を示す説明図である。尚、図9に示す光伝送システム1Bと同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。
図9に示す光伝送システム1Bと図16に示す光伝送システム1Cとが異なるところは、受信装置3C内に、光フィルタ31A、フィルタ設定部32A及びフィルタ制御部33Aを内蔵した点にある。
送信装置2Cは、プローブ信号の光DMT信号を光伝送路4経由で受信装置3Cに伝送する。受信装置3C内のフィルタ設定部32Aは、光フィルタ31Aの透過帯域のエッジ周波数が漸近値になるようにフィルタ周波数を光フィルタ31Aに設定する。
光フィルタ31Aは、光伝送路4からの光DMT信号をVSB整形する。フィルタ設定部32Aは、漸近値以降の高周波成分を除去するフィルタ周波数を光フィルタ31に設定する。フィルタ制御部33Aは、光分岐部41Aと、PD42Aと、BPF43Aと、検出部44Aとを有する。光分岐部41Aは、漸近値でVSB整形後の光DMT信号を光受信部22及びPD42Aに光分岐する。PD42Aは、光分岐した漸近値でVSB整形後の光DMT信号を電気変換する。BPF43Aは、電気変換後のDMT信号から固有のディップD1付近、例えば、2GHz付近の周波数の信号成分を抽出する。検出部44Aは、抽出した固有のディップD1付近の周波数の信号成分を電力変換してパワーを検出する。
受信装置3C内の制御部26は、取得部26Aの他に、第2の決定部26Cを有する。第2の決定部26Cは、検出部44Aで検出した周波数毎の信号成分の隣接する前後ステップのパワー同士を比較する。第2の決定部26Cは、図13に示すように、前ステップS(i)のパワーP(i)と後ステップS(i+1)のパワーP(i+1)とを比較する。第2の決定部26Cは、(パワーP(i)−パワーP(i+1))のパワー差が0以下ではない場合には、光フィルタ31Aのステップを継続し、パワー差が0以下になった時点で光フィルタ31Aの制御を終了し、光フィルタ31Aのステップ位置を決定する。尚、ステップ位置は、光フィルタ31Aのフィルタ周波数を段階的にシフトするためのステップ数である。
第2の決定部26Cは、決定されたステップ位置で、オフセット周波数が光フィルタ31Aの透過帯域のエッジ周波数になるように光フィルタ31Aのフィルタ周波数を決定する。更に、第2の決定部26Cは、決定されたフィルタ周波数をフィルタ設定部32Aに設定する。
次に実施例4の光伝送システム1Cの動作について説明する。受信装置3C内の制御部26は、光DMT信号の中心周波数に光フィルタ31Aの透過帯域の中心周波数を合わせるように光フィルタ31Aのフィルタ周波数を設定する。
制御部26の第2の決定部26Cは、光フィルタ31Aのエッジ周波数として設定した、BPF43Aにより抽出した信号成分のパワーP(i)を、検出部44Aを通じて取得して記憶する。第2の決定部26Cは、光フィルタ31Aのフィルタ周波数を一定の周波数方向(高周波方向又は低周波方向)に所定量シフトし、シフト後のフィルタ周波数をフィルタ設定部32Aに設定する。
第2の決定部26Cは、検出部44Aを通じて光フィルタ31Aのエッジ周波数の信号成分のパワーP(i+1)を取得して記憶する。第2の決定部26Cは、記憶中の前後の周波数の信号成分のパワーP(i)とP(i+1)とを比較する。
第2の決定部26Cは、比較結果に基づき、前後の周波数の信号成分のパワー差(P(i)−P(i+1))が0以下であるか否かを判定する。第2の決定部26Cは、前後の周波数の信号成分のパワー差が0以下でない場合、記憶中のパワーP(i+1)をパワーP(i)として更新し、次の周波数成分のパワーP(i+1)を取得すべく、光フィルタ31Aのフィルタ周波数をシフトする。
第2の決定部26Cは、前後の周波数の信号成分のパワー差が0以下の場合、現在設定中のフィルタ周波数に相当するステップを維持したまま、処理動作を終了する。
制御部26では、固有のディップD1の局所的なパワーの極小値を利用して、その極小値に光フィルタ31Aのエッジが来るようにフィルタ周波数を設定したので、受信装置24のDMT信号の復調処理を介することなく、フィルタ制御部33Aは簡易な構成で済む。
実施例4の受信装置3Cは、伝送距離の増加に応じてディップDが発生しなくなる漸近値の周波数が光フィルタ31Aの透過帯域のエッジ周波数になるように光フィルタ31Aのフィルタ周波数を設定する。その結果、VSB整形なしの光DMT信号に発生するディップDを除去できるため、光DMT信号の伝送特性の劣化を抑制できる。
受信装置3Cは、取得したネゴシエーション結果の伝送特性内の割当周波数に対応するステップ毎のSNRに相当する信号パワーを参照する。受信装置3Cは、信号パワーに基づき、光フィルタ31Aの透過後の光DMT信号に発生する固有ディップD1の周波数が光フィルタ31Aの透過帯域のエッジ周波数になるように光フィルタ31Aのステップを決定する。
受信装置3Cは、漸近値で光DMT信号をVSB整形するため、実施例1の光DMT信号のディップの発生周波数に応じて動的にフィルタ周波数を変更する場合に比較し、伝送特性がフラットになる。その結果、光DMT信号の伝送特性に基づく多値度及び信号パワーの割当処理が軽減できる。
受信装置3Cは、光フィルタ31A及びフィルタ制御部33Aを内蔵するため、受信装置3C内で閉じたフィルタ設定が可能となる。
尚、上記実施例3及び4では、光フィルタ31(31A)をステップで段階的にフィルタ周波数を調整するようにしたが、周波数で連続的に調整するようにしても良い。
図17は、分散による伝送特性の劣化を回避するために用いられている各分散補償方式の比較例を示す説明図である。DCF(Dispersion Compensating Fiber)方式では、信号ロスが大、回路構成は簡易、補償量が固定、信号遅延が大、設置位置も送信装置又は受信装置に設置可、波長多重(WDM:Wavelength Division Multiplxing)信号にも適用可能である。VIPA(Virtually Imaged Phased Array)方式では、信号ロスが大、回路構成は複雑、補償量が可変、信号遅延は小、設置位置も送信装置又は受信装置に設置可である。FBG(Fiber Bragg Grating)方式では、信号ロスが小、回路構成は簡易、補償量が固定、信号遅延が小、設置位置も送信装置又は受信装置に設置可、WDMにも適用可能である。OPC(Optical Phase Conjugation)方式では、信号ロスが大、回路構成は複雑、補償量が固定、信号遅延が中、設置位置も中継装置に設置可、WDMにも適用可能である。OFT(Optical Fourier Transform)方式では、信号ロスが大、回路構成は複雑、補償量が不問、信号遅延が中、設置位置も受信装置に設置可である。SSB(Single Side Band)移相方式では、信号ロスが大、回路構成は複雑、補償量が不問、信号遅延が小、設置位置も送信装置又は受信装置に設置可である。SSB(Single Side Band)フィルタ方式では、信号ロスが小、回路構成は簡易、補償量が不問、信号遅延が小、設置位置も送信装置又は受信装置に設置可、AWG(Arrayed Waveguide Grating)やIL(Interleaver)のような波長周回性フィルタを用いることによって、WDMにも適用可能である。SSBフィルタ方式を採用した場合、光DMT信号の上側波帯若しくは下側波帯の何れか一方を除去するSSB整形で光DMT信号内のディップを除去できる。VSB(Vestigial Side Band)フィルタ方式では、信号ロスが小、回路構成は簡易、補償量が不問、信号遅延が小、設置位置も送信装置又は受信装置に設置可、AWGあるいはILを用いる事でWDMにも適用可能である。尚、VSBフィルタ方式が本実施例に採用した分散補償方式である。
図18は、実施例1及び実施例3の光DMT信号の伝送特性(伝送容量−伝送距離)の一例を示す説明図である。図18に示す伝送特性X15は、SSB整形後の光DMT信号の伝送特性である。伝送特性X15は、伝送距離が変動しても、その伝送容量が約102Gbps程度と安定する。しかしながら、SSB整形は、急峻なフィルタリングや高精度な制御を要し、しかも、その光DMT信号の信号成分が半減するため、伝送特性が劣化してしまう。これに対して、伝送特性X4は、実施例1のVSB整形後の光DMT信号の伝送特性である。伝送特性X4は、伝送距離が0kmの場合、その伝送容量が130Gbps、伝送距離が10kmの場合、伝送容量が110Gbps、その後、伝送距離が変動した場合でも、その伝送容量が105Gbpsと安定する。これに対して、伝送特性X5は、実施例3のVSB整形後の光DMT信号の伝送特性である。伝送特性X5は、伝送距離が変動した場合でも、その伝送容量が105Gbpsと安定する。つまり、伝送特性X4及びX5は、SSB整形後の伝送特性X15に比較して優れた伝送特性を確保できる。
尚、上記実施例1〜4では、取得部26A、第1の決定部14C(26B)や第2の決定部14D(26C)を送信装置2又は受信装置3の何れかに内蔵するようにしたが、受信装置3や送信装置2以外の管理装置に内蔵するようにしても良い。この場合、受信装置3及び送信装置2の処理負担を軽減できる。
上記実施例1〜4では、光DMT信号の上側波帯の一部を除去するVSB整形を実行したが、下側波帯の一部を除去するVSB整形を実行しても良い。更に、上記実施例1〜4では、光DMT信号の上側波帯の一部を除去するVSB整形を採用したが、VSB整形に比較して、伝送特性が若干劣るものの、SSB整形を採用しても良い。
送信装置2及び受信装置3では、光伝送路4と異なる制御線5で割当量等の情報を対向側の送信装置2及び受信装置3に伝送するようにしたが、割当量や伝送特性等の情報をOSC信号内に含めて対向側の送信装置2及び受信装置3に伝送しても良い。
また、上記実施例1〜4の光送信部13は、アンプ、LD及び変調部で構成したが、LD及び変調部の代わりに、直接変調LDを使用しても良い。
上記実施例1〜4の取得部26Aは、デマッピング部24Cの後段の図示せぬFEC(Forward Error Correction)の前後の何れかでSNR情報を取得するようにしても良い。
また、上記実施例1〜4では、DMT変調方式の光伝送システム1を例示したが、複数のSCにデータを割り当て、SC毎に割り当てられたデータを変調する他のマルチキャリア変調方式の光伝送システムにも適用可能である。例えば、OFDM(Orthogonal Frequency Division Multiplexing)変調方式やQPSK(Quadrature Phase Shift Keying)変調方式を含む各種PSK変調方式等のマルチキャリア変調方式の光伝送システムにも適用可能である。同様に、DPSK(Differential Phase Shift Keying)や8PSK等にも適用可能である。
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
更に、各装置で行われる各種処理機能は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)等上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU等で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良い。
各種情報を記憶する領域は、例えば、ROM(Read Only Memory)や、SDRAM(Synchronous Dynamic Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)やNVRAM(Non Volatile Random Access Memory)等のRAM(Random Access Memory)で構成しても良い。
1 光伝送システム
2 送信装置
2A 送信装置
2B 送信装置
2C 送信装置
3 受信装置
3A 受信装置
3B 受信装置
3C 受信装置
4 光伝送路
11 変調部
14C 第1の決定部
14D 第2の決定部
21 光フィルタ
21A 光フィルタ
25 フィルタ設定部
25A フィルタ設定部
26A 取得部
26B 第1の決定部
26C 第2の決定部
31 光フィルタ
31A 光フィルタ
33 フィルタ制御部
33A フィルタ制御部

Claims (8)

  1. 対向装置から受信したマルチキャリア信号を透過するフィルタと、
    前記対向装置から受信したマルチキャリア信号の伝送特性を測定する測定部と、
    測定した伝送特性に基づき、前記マルチキャリア信号からディップを除去する前記フィルタのフィルタ周波数を決定する決定部と、
    決定した前記フィルタ周波数を前記フィルタに設定する設定部と
    を有することを特徴とする受信装置。
  2. 前記決定部は、
    前記伝送特性内の割当周波数毎の信号成分情報に基づき、基準値から所定レベル低下した前記信号成分情報に対応する前記割当周波数を決定し、決定した割当周波数が前記フィルタの透過帯域のエッジ周波数になるように前記フィルタ周波数を決定することを特徴とする請求項1に記載の受信装置。
  3. マルチキャリア信号を生成する生成部と、
    生成したマルチキャリア信号を透過するフィルタと、
    対向装置で測定した前記マルチキャリア信号の伝送特性に基づき、前記マルチキャリア信号からディップを除去する前記フィルタのフィルタ周波数を決定する決定部と、
    決定した前記フィルタ周波数を前記フィルタに設定する設定部と
    を有することを特徴とする送信装置。
  4. 前記決定部は、
    前記伝送特性内の割当周波数毎の信号成分情報に基づき、基準値から所定レベル低下した前記信号成分情報に対応する前記割当周波数を決定し、決定した割当周波数が前記フィルタの透過帯域のエッジ周波数になるように前記フィルタ周波数を決定することを特徴とする請求項3に記載の送信装置。
  5. マルチキャリア信号を生成する生成部と、
    マルチキャリア信号の伝送距離の増加に応じてディップがなくなる周波数付近に透過帯域のエッジ周波数を設定し、前記生成部で生成した前記マルチキャリア信号を透過するフィルタと、
    前記フィルタで透過後の前記マルチキャリア信号内のディップに基づき、前記フィルタのフィルタ周波数を決定する決定部と
    を有することを特徴とする送信装置。
  6. 前記決定部は、
    対向装置で測定した前記マルチキャリア信号の伝送特性内の割当周波数毎の信号成分情報に基づき、前記フィルタで透過後の前記マルチキャリア信号に発生するディップの周波数が前記フィルタの透過帯域のエッジ周波数になるように前記フィルタ周波数を決定することを特徴とする請求項5に記載の送信装置。
  7. 対向装置から受信したマルチキャリア信号の伝送特性を測定する測定部と、
    マルチキャリア信号の伝送距離の増加に応じてディップがなくなる周波数付近に透過帯域のエッジ周波数を設定し、前記対向装置から受信した前記マルチキャリア信号を透過するフィルタと、
    前記フィルタで透過後の前記マルチキャリア信号内のディップに基づき、前記フィルタのフィルタ周波数を決定する決定部と
    を有することを特徴とする受信装置。
  8. 前記決定部は、
    前記対向装置から受信した前記マルチキャリア信号の伝送特性内の割当周波数毎の信号成分情報に基づき、前記フィルタで透過後の前記マルチキャリア信号に発生するディップの周波数が前記フィルタの透過帯域のエッジ周波数になるように前記フィルタ周波数を決定することを特徴とする請求項7に記載の受信装置。
JP2015035622A 2015-02-25 2015-02-25 受信装置及び送信装置 Expired - Fee Related JP6540090B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015035622A JP6540090B2 (ja) 2015-02-25 2015-02-25 受信装置及び送信装置
US14/993,192 US10212015B2 (en) 2015-02-25 2016-01-12 Receiving device and sending device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035622A JP6540090B2 (ja) 2015-02-25 2015-02-25 受信装置及び送信装置

Publications (2)

Publication Number Publication Date
JP2016158163A true JP2016158163A (ja) 2016-09-01
JP6540090B2 JP6540090B2 (ja) 2019-07-10

Family

ID=56690053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035622A Expired - Fee Related JP6540090B2 (ja) 2015-02-25 2015-02-25 受信装置及び送信装置

Country Status (2)

Country Link
US (1) US10212015B2 (ja)
JP (1) JP6540090B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543939B2 (ja) * 2015-01-23 2019-07-17 富士通株式会社 光受信器、光送信器、マルチキャリア光伝送システム、及び、分散補償制御方法
JP6540090B2 (ja) * 2015-02-25 2019-07-10 富士通株式会社 受信装置及び送信装置
US9998235B2 (en) * 2016-01-08 2018-06-12 Google Llc In-band optical interference mitigation for direct-detection optical communication systems
JPWO2021005641A1 (ja) * 2019-07-05 2021-01-14

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575703B2 (ja) * 2004-04-21 2010-11-04 日本電信電話株式会社 光伝送システム及びその送信機
JP2012103215A (ja) * 2010-11-12 2012-05-31 Fujitsu Ltd 受信機、光スペクトル整形方法、及び光通信システム
JP2014078806A (ja) * 2012-10-09 2014-05-01 Fujitsu Ltd 送信装置、受信装置、光周波数分割多重伝送システムおよび光信号通信方法
JP5523582B2 (ja) * 2010-11-30 2014-06-18 三菱電機株式会社 光伝送システム、光送信装置および光受信装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027464B1 (en) * 1999-07-30 2006-04-11 Matsushita Electric Industrial Co., Ltd. OFDM signal transmission scheme, and OFDM signal transmitter/receiver
US7418043B2 (en) * 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
JP4011290B2 (ja) * 2001-01-10 2007-11-21 富士通株式会社 分散補償方法、分散補償装置および光伝送システム
JP3986824B2 (ja) * 2001-12-28 2007-10-03 富士通株式会社 光フィルタの制御方法及び制御装置並びに光ノード装置
US7421029B2 (en) * 2002-12-20 2008-09-02 Unique Broadband Systems, Inc. Impulse response shortening and symbol synchronization in OFDM communication systems
JP3920233B2 (ja) * 2003-02-27 2007-05-30 ティーオーエー株式会社 ディップフィルタの周波数特性決定方法
GB2401516A (en) * 2003-04-17 2004-11-10 Univ Southampton Peak-to-average power ratio reduction by subtracting shaped pulses from a baseband signal
US7627253B1 (en) * 2006-06-28 2009-12-01 Hrl Laboratories, Llc RF-photonic transversal filter method and apparatus
JP5061855B2 (ja) * 2007-11-07 2012-10-31 富士通株式会社 電気分散補償装置、光受信装置および光受信方法
EP2071784B1 (en) * 2007-12-10 2013-05-22 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method and apparatus for delay spread estimation
US20100142956A1 (en) * 2008-12-08 2010-06-10 Tellabs Operation, Inc. Method and Apparatus for Reshaping a Channel Signal
JP5267119B2 (ja) * 2008-12-26 2013-08-21 富士通株式会社 光受信装置および波長多重伝送システム
US8699882B2 (en) * 2009-01-08 2014-04-15 Ofidium Pty Ltd Signal method and apparatus
US9054832B2 (en) * 2009-12-08 2015-06-09 Treq Labs, Inc. Management, monitoring and performance optimization of optical networks
WO2011083798A1 (ja) * 2010-01-05 2011-07-14 日本電気株式会社 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置
JP5471578B2 (ja) * 2010-02-23 2014-04-16 富士通株式会社 波長分散測定方法および装置、並びに、光伝送システム
US8909066B2 (en) 2010-11-30 2014-12-09 Mitsubishi Electric Corporation Optical transfer system, optical transmission device, and optical reception device
US8706785B2 (en) * 2011-02-15 2014-04-22 Samsung Electronics Co., Ltd. Communication system with signal processing mechanism and method of operation thereof
CN104904141B (zh) * 2013-01-15 2017-05-17 日本电信电话株式会社 相干通信系统、通信方法、以及发送方法
US9042432B2 (en) * 2013-03-14 2015-05-26 Qualcomm Incorporated Adaptive filter bank for dynamic notching in powerline communication
WO2015001656A1 (ja) * 2013-07-04 2015-01-08 富士通株式会社 光信号処理装置、光信号処理方法及び光信号処理プログラム
WO2015087448A1 (ja) * 2013-12-13 2015-06-18 富士通株式会社 マルチキャリア光伝送システム、マルチキャリア光伝送方法、光送信器、及び、光受信器
US10708868B2 (en) * 2014-03-06 2020-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Evaluation performance between a network node and a radio head
JP6543939B2 (ja) * 2015-01-23 2019-07-17 富士通株式会社 光受信器、光送信器、マルチキャリア光伝送システム、及び、分散補償制御方法
JP6540090B2 (ja) * 2015-02-25 2019-07-10 富士通株式会社 受信装置及び送信装置
JP6645077B2 (ja) * 2015-09-03 2020-02-12 富士通株式会社 光伝送システムおよびビット割当方法
JP6561713B2 (ja) * 2015-09-15 2019-08-21 富士通株式会社 伝送装置及び伝送システム
JP6613761B2 (ja) * 2015-09-24 2019-12-04 富士通株式会社 光伝送システム、波長可変光フィルタの制御装置及び制御方法
JP6651881B2 (ja) * 2016-02-04 2020-02-19 富士通株式会社 光受信器評価方法および光源装置
JP6665682B2 (ja) * 2016-05-20 2020-03-13 富士通株式会社 光受信装置および判別方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575703B2 (ja) * 2004-04-21 2010-11-04 日本電信電話株式会社 光伝送システム及びその送信機
JP2012103215A (ja) * 2010-11-12 2012-05-31 Fujitsu Ltd 受信機、光スペクトル整形方法、及び光通信システム
JP5523582B2 (ja) * 2010-11-30 2014-06-18 三菱電機株式会社 光伝送システム、光送信装置および光受信装置
JP2014078806A (ja) * 2012-10-09 2014-05-01 Fujitsu Ltd 送信装置、受信装置、光周波数分割多重伝送システムおよび光信号通信方法

Also Published As

Publication number Publication date
US20160248500A1 (en) 2016-08-25
JP6540090B2 (ja) 2019-07-10
US10212015B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
JP6601240B2 (ja) 伝送装置、伝送システム、及び伝送制御方法
US9998233B2 (en) Optical reception apparatus
US9184867B2 (en) Transmission control device, transmission system, and transmission method
US9698905B2 (en) Optical transmission system, optical transmission apparatus and wavelength spacing measurement apparatus
US10735103B2 (en) Reception device, transmission device, optical communication system and optical communication method
US9853728B2 (en) Method for determining numbers of bits allocated to subcarriers and optical transmission system
JP6540090B2 (ja) 受信装置及び送信装置
JP6613761B2 (ja) 光伝送システム、波長可変光フィルタの制御装置及び制御方法
JP6214847B1 (ja) 通信装置およびサブキャリア信号配置方法
US9960846B2 (en) Free-space optical communication system and method in scattering environments
US9735880B2 (en) Transmission device, transmitter, and transmission method
JP2017059962A (ja) 伝送装置及び伝送システム
JP2018023050A (ja) 光伝送システムおよび光送信器
US9998230B2 (en) Optical transmitter, optical communication system, and optical transmission/reception control method
JP6589659B2 (ja) 伝送装置及び伝送方法
US10547390B2 (en) Optical transmission device, optical transmission system, and allocation method
Won et al. Optical access transmission with improved channel capacity using non-orthogonal frequency quadrature amplitude modulation
Zhou et al. A novel multi-band OFDMA-PON architecture using signal-to-signal beat interference cancellation receivers based on balanced detection
JP6447005B2 (ja) 伝送装置及び伝送方法
CN115176425A (zh) 光收发器、发送信号决定方法以及光通信系统
CN105282075B (zh) 拍频噪声的抑制方法及装置
Sethi et al. Critical Analysis of Dispersion Compensated Optical Communication System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees