JP2016157523A - イオン化装置 - Google Patents

イオン化装置 Download PDF

Info

Publication number
JP2016157523A
JP2016157523A JP2015032833A JP2015032833A JP2016157523A JP 2016157523 A JP2016157523 A JP 2016157523A JP 2015032833 A JP2015032833 A JP 2015032833A JP 2015032833 A JP2015032833 A JP 2015032833A JP 2016157523 A JP2016157523 A JP 2016157523A
Authority
JP
Japan
Prior art keywords
ion
ions
ionization chamber
electron
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015032833A
Other languages
English (en)
Other versions
JP6323362B2 (ja
JP2016157523A5 (ja
Inventor
勇介 立石
Yusuke Tateishi
勇介 立石
和輝 高橋
Kazuki Takahashi
和輝 高橋
佐藤 秀樹
Hideki Sato
秀樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015032833A priority Critical patent/JP6323362B2/ja
Priority to EP16156663.3A priority patent/EP3059756A1/en
Priority to US15/049,366 priority patent/US9679755B2/en
Priority to CN201610099211.4A priority patent/CN105914124B/zh
Publication of JP2016157523A publication Critical patent/JP2016157523A/ja
Publication of JP2016157523A5 publication Critical patent/JP2016157523A5/ja
Application granted granted Critical
Publication of JP6323362B2 publication Critical patent/JP6323362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/147Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • H01J27/205Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

【課題】高感度化と感度の安定性とを共に達成する。【解決手段】イオン化室31の内部にイオンをイオン出射口311に向けて押す押し出し電場を生成するリペラー電極32を設けたイオン源3において、電子導入口312とフィラメント34との間、及び、電子排出口313と対向フィラメント35との間に、イオン収束電極36、37を配置する。イオン収束電極36、37に所定の電圧を印加することで生成される電場は電子導入口312、電子排出口313を通してイオン化室31内に入り込み、イオンをイオン光軸C方向に押す収束電場となる。イオン化室31内の中央部を外れた位置にあるイオンは押し出し電場による力と収束電場による力を合成した力を受けて、イオン光軸Cに近づきつつイオン出射口311に向かう。これにより、イオン出射口から送り出されるイオンの量が増加するとともに、帯電現象が起きてもイオン軌道が変化しにくく感度の安定性が高まる。【選択図】図2

Description

本発明は、試料分子や原子をイオン化するためのイオン化装置に関し、更に詳しくは、電子イオン化(EI=Electron Ionization))法や化学イオン化(CI=Chemical Ionization)法など、熱電子を利用するイオン化装置に関する。なお、本発明に係るイオン化装置は、例えば質量分析装置のイオン源として利用できるほか、イオン注入装置などイオンを用いた各種装置にも利用することができる。
質量分析装置において気体試料をイオン化する際には、電子イオン化法や化学イオン化法など、熱電子を利用したイオン化法が一般に用いられる。図6及び図7は従来の一般的なEIイオン源の構成図である。なお、ここでは、正イオンを分析する場合を例示しているが、負イオンを分析対象とする場合でも電圧の極性が逆になるだけで基本的な動作は同じである。
高真空に維持される真空チャンバ(図示せず)の内部に設置された箱状のイオン化室31には、試料ガスが供給される試料導入口314、イオンが出射されるイオン出射口311、さらには、熱電子が導入される電子導入口312、熱電子が排出される電子排出口313が形成されている。電子導入口312の外側にはフィラメント室341に内装されたフィラメント34が配置されており、図示しない加熱電流源からフィラメント34に加熱電流Ifが供給されるとフィラメント34の温度が上昇し、その表面から熱電子が放出される。一方、電子排出口313の外側にはトラップ電極として、フィラメント室351に内装された対向フィラメント35が配置されている。例えばフィラメント34には例えば−70[V]の電圧V1、フィラメント室341には電圧V1よりも僅かに低い例えば−71[V]の電圧V2、対向フィラメント35には例えば+10[V]程度の正の電圧V3が印加されている。また、イオン化室31は接地電位(0[V])となっている。
フィラメント34で発生した熱電子は、フィラメント室341とイオン化室31との間の電位差(−71[V]→0[V])によって加速されて電子導入口312を経てイオン化室31内に導入される。イオン化室31内には試料導入口314から試料ガスが導入されており、イオン化室31内で試料分子Mと熱電子e-が接触すると、M+e-→M+・+2e- という電子放出が起こる。それによって、試料分子イオン又は試料原子イオンが生成される。対向フィラメント35に印加されている正の電圧V3に引かれて電子は該対向フィラメント35に到達し、対向フィラメント35にはトラップ電流Ibが流れる。対向フィラメント35に捕捉される電子数はフィラメント34から放出された電子数に依存するため、例えば制御回路(図示せず)は、トラップ電流Ibが所定値になるように加熱電流Ifを制御する。これによって、フィラメント34での熱電子の発生量がほぼ一定になり、イオン化室31内で安定したイオン化が達成される。
また、フィラメント34及び対向フィラメント35の外側には一対の磁石38が設置されており、この磁石38によってイオン化室31内及びその周囲には磁場が形成されている。この磁場によって、フィラメント34で発生した熱電子は螺旋状に旋回する軌道を描きながらイオン化室31内を通過して対向フィラメント35へと向かう。それにより、電子が単に直線的に飛行する場合に比べて、電子と試料分子との接触の機会が増加し、それによってイオン化効率を向上させることができる。
図6及び図7に示した構成のいずれでも、上記のようにしてイオン化室31内で試料由来のイオンが生成される。こうして生成された試料由来のイオンはイオン出射口311を通してイオン化室31の外側へと取り出され質量分析に供されるが、そのイオン取り出しのメカニズムが図6と図7とで相違する。
図6に示すイオン源では、イオン出射口311の外側に配置されている引き出し電極41に負の直流電圧V5を印加する。この引き出し電極41とイオン化室31との電位差によって形成される電場はイオン出射口311を通してイオン化室31の内部に入り込む。この電場の作用によって、イオン化室31内で生成されたイオンを図6において右方へと引き出し(以下、この動作を「引き出しモード」という)、図示しない四重極マスフィルタ等の質量分析器へと送り込む。
一方、図7に示すイオン源では、イオン化室31内にあってイオン出射口311と対向する位置にリペラー電極32が配置されており、このリペラー電極32に正の直流電圧V6を印加する。これにより形成する電場の作用によって、イオン化室31内で生成されたイオンを図7において右方へと押し出し(以下、この動作を「押し出しモード」という)、イオン出射口311を通過させて図示しない質量分析器へと送り込む。なお、リペラー電極32によるイオンの押し出しと引き出し電極41によるイオンの引き出しとの両方の作用を利用する場合もある。
質量分析装置において高い分析感度を達成するには、イオン化室31内で生成されたイオンのうち、分析対象であるイオンをできるだけ少ない損失で質量分析器にまで導くことが望ましい。また、定量に利用される検量線の信頼性を維持するには、連続的な装置の使用における検出感度の低下(変化)ができるだけ小さいこと、つまり感度の安定性が高いことが望ましい。しかしながら、以下に述べるように、従来のイオン化装置において、高感度と感度の安定性とを両立させることは困難であった。
図7に示した押し出しモードを採るイオン源の場合、イオン出射口311から離れた位置にあるリペラー電極32への印加電圧によって形成される電場によってイオンが押し出されるため、イオン出射口311に近づくほど電位勾配は緩やかになる。そのため、イオン化室31の中央部付近の領域で生成されたイオンは十分なエネルギーを受けてイオン出射口311へ向かって移動しイオン出射口311から送り出されるものの、イオン化室31内でイオン出射口311側のコーナー付近で生成されたイオンはイオン出射口311を通過しにくく、多くがその周りのイオン化室31壁面に接触して消滅する。また、電子導入口312や電子排出口313の近くで生成されたイオンは電子導入口312や電子排出口313を通して流出し易い。その結果、押し出しモードでは、専らイオン化室31の中央付近の比較的狭い領域で生成されたイオンしか質量分析に利用することができず、高い分析感度を達成することが難しい。
一方、図6に示した引き出しモードを採るイオン源の場合、引き出し電極41への印加電圧によってイオン化室31の外側に形成された電場がイオン出射口311を通してイオン化室31内部へと入り込んで形成された引き出し電場によってイオンが引き出される。イオン出射口311を通して入り込んだ引き出し電場はイオン化室31の中央付近にまで達するため、イオン化室31の中央付近で生成されたイオンは良好にイオン化室31から引き出される。また、引き出し電極41に近いイオン出射口311の周りの電場は強いため、上述した押し出しモードに比べれば、イオン化室31内でイオン出射口311側のコーナー付近で生成されたイオンをより多く引き出すことができる。したがって、引き出しモードは押し出しモードに比べて、イオン化室31内で生成されたイオンをより効率良くイオン出射口311から送り出すことができ、分析感度を上げるうえで有利である。
引き出しモードでも、イオン化室31内の電子導入口312付近や電子排出口313付近にまでは引き出し電場が届きにくいため、この付近で生成されたイオンは電子導入口312や電子排出口313を通して流出するおそれがある。それに対し、特許文献1に記載のイオン化装置では、フィラメント34と電子導入口312との間、及び、電子排出口313と対向フィラメント35との間にそれぞれ、電子が通過可能な開口を有するイオン漏出防止用電極を配置し、電子導入口312及び電子排出口313からそれぞれ該イオン漏出防止用電極へ向かうに従いイオンにとって上り傾斜となる電場を形成するように各イオン漏出防止用電極に所定の電圧を印加している。それによって、電子導入口312及び電子排出口313から外部に流出しようとするイオンはイオン化室31内へと押し戻され、イオンの損失が抑えられるため、分析感度を上げるにはさらに有利である。
このように引き出しモードは押し出しモードに比べて高感度化という点では有利であるものの、本願発明者の検討によれば、感度の安定性という点では引き出しモードは押し出しモードよりも不利である。
即ち、上述したように引き出しモードでは、イオンを移動させる電位勾配がイオン化室31の外側に配置された引き出し電極41への印加電圧によって形成される電場の入り込みによって与えられるため、押し出しモードにおいてイオン化室31内に形成される電場に比べてイオン化室31の中央付近での電位勾配は緩やかである。イオン化室31は導電体から成るが、長期間の装置の使用に伴い帯電(チャージアップ)現象が生じることがあり、そうなるとイオン化室31内に形成される電場の状態が変化する。イオン化室31での電位勾配が緩やかであるほうが、こうしたいわば外乱による電場の変化の影響を受け易い。そのため、引き出しモードは初期的には押し出しモードよりも分析感度が高くても、長期間の装置の使用に伴い帯電現象が生じるとイオンが適切な軌道で引き出されなくなり、質量分析器にまで到達するイオンの量が大きく減少して押し出しモードよりも分析感度が低下することになる。
特開2005−259482号公報
上述したように、引き出しモードと押し出しモードとを比較すると、前者は感度の高さで有利であるものの感度の安定性の点で劣り、後者は感度の安定性は優るものの感度自体は相対的に低い。つまり、感度の高さと感度の安定性という観点でみると、引き出しモードと押し出しモードとでは一長一短があり、高い感度を安定的に維持することは困難である。これは、引き出しモードと押し出しモードとを併用しても同様である。何故なら、リペラー電極32への印加電圧及び引き出し電極41への印加電圧の最適な値が高感度を達成するときと感度の安定性を達成するときとで同じではないからである。
本発明はこうした課題を解決するために成されたものであり、その目的とするところは、イオン化室内で生成されたイオンをできるだけ少ない損失で後段へと送出することができるとともに、装置の長期間の使用に伴う帯電現象の発生時にもその影響を最小限に抑えることによって、高い分析感度と感度の高い安定性とを両立することができるイオン化装置を提供することにある。
上記課題を解決するために成された本発明は、所定の試料分子又は原子をイオン化するイオン化装置であって、
a)熱電子を内部空間に導入する電子導入口、その内部空間を通過した熱電子を排出する電子排出口、及びその内部空間で生成された試料由来のイオンを外部に取り出すためのイオン出射口、を有するイオン化室と、
b)前記電子導入口の外側に配置され、熱電子を発生する熱電子源と、
c)前記電子排出口の外側に配置され、該電子排出口を通して排出された熱電子を捕捉する電子捕捉部と、
d)前記イオン化室内にあって前記イオン出射口と対向して配置され、該イオン化室内で生成された試料由来のイオンを前記イオン出射口側に向けて押し出す押し出し電場を該イオン化室内に形成するためのリペラー電極と、
e)前記熱電子源と前記電子導入口との間、又は、前記電子排出口と前記電子捕捉部との間、のいずれか一方又は両方に配置され、前記イオン化室内で生成された試料由来のイオンが前記押し出し電場により押し出されることで形成されるイオン流の中心軸付近に該イオンを収束させる収束電場を該イオン化室内に形成するためのイオン収束電極と、
を備えることを特徴としている。
本発明に係るイオン化装置では、イオン化室内に導入された試料ガス中の試料分子又は原子が熱電子に接触することによって、又は、試料ガスに含まれる若しくは別途供給されるバッファガスが熱電子に接触することにより生成されるバッファイオンと試料分子又は原子との化学反応によって、該試料分子又は原子はイオン化される。こうしてイオン化室内で生成された試料由来のイオンは、イオン化室内にイオン出射口と対向して配置されたリペラー電極に所定の電圧が印加されることで該イオン化室内に形成される押し出し電場の作用によって、イオン出射口に向かって移動する。即ち、本発明に係るイオン化装置では、試料由来のイオンは押し出しモードによってイオン出射口から送出される。
本発明に係るイオン化装置では、押し出し電場がイオンに作用する力に加え、イオン化室の外側に配置されたイオン収束電極に所定の電圧が印加されることで形成される収束電場が電子導入口及び/又は電子排出口を通してイオン化室内部に入り込み、該収束電場は、電子導入口や電子排出口に向かう方向に拡散するイオンをイオン化室の中央部側に収束させるようにイオンに力を与える。典型的には、電子導入口を通してイオン化室内に熱電子が導入される方向と略直交する方向にイオンが出射するようにイオン出射口は設けられる。この場合、イオン化室内において収束電場がイオンを押す方向は押し出し電場によるイオンの押し出し方向と略直交する方向である。そのため、イオン化室内で電子導入口や電子排出口に比較的近い位置にあるイオンには、押し出し電場による力と収束電場による力とが合成された力が加わり、それによって、イオンはイオン出射口方向に進行しつつそのイオン流の中心軸付近に収束するように移動する。その結果、押し出し電場による作用だけではイオン出射口周りのイオン化室壁面などに接触して消滅してしまっていたイオンがイオン出射口を通り抜け易くなり、より多くのイオンを後段へと送ることが可能となる。
また、本発明に係るイオン化装置では、帯電現象等の外乱の影響を受けにくい押し出し電場によってイオンをイオン出射口から送り出し、さらに電子導入口や電子排出口を通してイオン化室内に入り込む収束電場の電位勾配もイオン出射口周りの帯電現象の影響を受けにくい。そのため、帯電現象が起こった場合でも、試料由来のイオンがイオン出射口を経て送り出される際の軌道が変化しにくく、イオンの損失が少ない状態を持続することができる。こうしたことから、本発明に係るイオン化装置を質量分析装置のイオン源として用いれば、高い分析感度を実現できるとともに、長期間の装置の使用時にもそうした高い分析感度を維持することができる。
本願発明者の検討によれば、上記のように高い分析感度と感度の高い安定性を確保するために、本発明に係るイオン化装置では、リペラー電極に試料由来のイオンと極性が同じである直流電圧Vrを印加するとともにイオン収束電極に試料由来のイオンと極性が同じである直流電圧Vsを印加する電圧印加部をさらに備え、直流電圧Vrは1〜20[V]、より好ましくは1〜8[V]、直流電圧Vsは5〜50[V]、より好ましくは5〜20[V]とするとよい。これら印加電圧は、イオン化室をはじめとする各部のサイズや間隔などに応じて適宜の値に定めればよい。
本発明に係るイオン化装置では、イオン化室内に配置されたリペラー電極によるイオンの押し出し作用と、イオン化室の外側に配置されたイオン収束電極によるイオンの収束作用との両方の作用を利用して、イオン化室内で生成されたイオンをイオン出射口まで導き、イオン出射口を通して後段へと送り出すようにしている。それによって、従来の押し出しモードを用いたイオン化装置に比べてイオンの損失を抑え、より多くのイオンをイオン出射口から送り出すことができるうえに、長期間の装置の使用等による帯電現象の発生時にも、イオン軌道の変化を抑えることができる。その結果、本発明に係るイオン化装置を質量分析装置のイオン源として用いれば、質量分析対象のイオンの量が増加し分析感度の向上を図ることができ、しかもその高い感度を長期間に亘り維持することができる。
本発明の一実施例によるイオン源を用いた質量分析装置の概略構成図。 本実施例によるイオン源の構成図。 従来のイオン源におけるリペラー電極使用時(押し出しモード)のイオン軌道のシミュレーション結果を示す図であり(a)は帯電なしの場合、(b)は帯電ありの場合。 従来のイオン源における引き出し電極使用時(引き出しモード)のイオン軌道のシミュレーション結果を示す図であり(a)は帯電なしの場合、(b)は帯電ありの場合。 本発明によるイオン源でのイオン軌道のシミュレーション結果を示す図であり(a)は帯電なしの場合、(b)は帯電ありの場合。 従来のイオン源(押し出しモード)の構成図。 従来のイオン源(引き出しモード)の構成図。
本発明の一実施例であるイオン源について、添付図面を参照して説明する。図1は本実施例によるイオン源を用いた質量分析装置の概略構成図、図2は本実施例のイオン源の構成図である。すでに説明した図6、図7に示した従来のイオン源と同じ構成要素には同じ符号を付してある。
まず図1を参照して、本実施例のイオン源が用いられる質量分析装置について説明する。真空ポンプ2により真空排気されるチャンバ1の内部には、イオン源3と、イオン輸送光学系4と、質量分析器としての四重極マスフィルタ5と、イオン検出器6とが配置されている。例えば図示しないガスクロマトグラフのカラムから流出する試料ガスがイオン化室31の試料導入口314に接続され、イオン化室31内に連続的に供給される試料ガスに含まれる試料分子又は原子は、フィラメント34で生成される熱電子と接触することでイオン化される。生成された試料由来のイオンは後述するようにイオン出射口311を通してイオン化室31から送り出され、イオン輸送光学系4で収束されて四重極マスフィルタ5の長軸方向の空間に導入される。四重極マスフィルタ5には図示しない電源から直流電圧と高周波電圧とを重畳した電圧が印加され、その印加電圧に応じた質量電荷比m/zを有するイオンのみがその長軸方向の空間を通過し、イオン検出器6に到達して検出される。それ以外の不要なイオン種は四重極マスフィルタ5の長軸方向の空間を通り抜けることができず、途中で発散して消滅する。
図1、図2に示すように、本実施例のイオン源3では、図7に示した従来装置と同様に、イオン化室31内でイオン出射口311に対向する位置にリペラー電極32が配置されており、該リペラー電極32にはリペラー電圧源73から所定の直流電圧が印加される。電子導入口312とフィラメント室341との間、及び電子排出口313とフィラメント室351との間にはそれぞれ、イオン収束電極36、37が配置されている。イオン収束電極36、37は例えば、電子導入口312及び電子排出口313の内径と略同一又は該内径よりも若干小さい内径の電子通過開口を有するリング状の導電体である。イオン収束電極36には第1イオン収束電圧源71から所定の直流電圧が印加され、イオン収束電極37には別の第2イオン収束電圧源72から所定の直流電圧が印加される。つまり、二つのイオン収束電極36、37にはそれぞれ独立の電圧を印加することができるようになっている。
いま、正イオンを分析対象とする場合、リペラー電圧源73はリペラー電極32にVr=1〜20[V]の直流電圧を印加する。また、第1、第2イオン収束電圧源71、72はイオン収束電極36、37にそれぞれVs=5〜50[V]の直流電圧を印加する。これら印加電圧Vr、Vsは、イオン化室31のサイズや電子導入口312、電子排出口313のサイズ、イオン収束電極36、37の形状や電子導入口312、電子排出口313からの距離などによって異なり、例えば適当な値をシミュレーションや実験によって決めておけばよい。
フィラメント34で生成される熱電子は電子導入口312を通してイオン化室31内へと入り、一対の磁石38によって形成される磁場の作用で螺旋軌道を描きながら電子排出口313へ向かって移動する。その途中で試料分子又は原子に熱電子が接触すると、該試料分子又は原子はイオン化される。イオン化室31は接地され、リペラー電極32には上述したように1〜20[V]程度の正の直流電圧Vrが印加されているため、イオン化室31の内部には、リペラー電極32からイオン出射口311に向かってイオンをz軸の正方向(図2において右方向)に押す力を有する押し出し電場が形成される。これは、図7に示した従来装置と同様である。
負の電荷を有する熱電子はイオン化室31内においてy軸方向に細長く存在する。この電子による空間電荷効果によって、電子と逆極性である試料由来のイオンはy軸方向に広がろうとする。これに対し、本実施例のイオン源3では、電子導入口312、電子排出口313のすぐ外側に配置されているイオン収束電極36、37に上述したように5〜50[V]程度の正の直流電圧Vsが印加されているため、イオン収束電極36、37とイオン化室31との電位差により電場が形成され、該電場が電子導入口312、電子排出口313を通してイオン化室31の内部に入り込む。この収束電場は電子導入口312付近ではイオンをy軸の負方向(図2において下方向)に押すように作用し、電子排出口313付近ではイオンをy軸の正方向(図2において上方向)に押すように作用する。つまりは、y軸の正負方向に広がるイオンをイオン化室31の中央部に抑え込むように作用する。
実際には、押し出し電場による押し出しの力と収束電場による抑え込み(収束)の力とが合成された力がイオンに働くため、イオン化室31の中央付近に存在するイオンはz軸の正方向に押され、それよりも電子導入口312や電子排出口313に近い位置に存在するイオンはイオン流の中心軸であるイオン光軸Cに近づきつつイオン出射口311に向かうように押される。そのため、単純な押し出しモードのようにイオン出射口311の周りのイオン化室31壁面にイオンが衝突してしまうことを回避し、そうしたイオンをイオン出射口311から送り出すことができる。即ち、イオン出射口311から送り出すことができる、つまりは質量分析に供されるイオンの量が従来の押し出しモードに比べて増加するため、分析感度の向上に繋がる。
本実施例のイオン源3と従来のイオン源(押し出しモード、引き出しモード)とにおけるイオン軌道の差異を確認するために、計算機シミュレーションによりイオンの軌道の計算を行った結果を図3〜図5に示す。図3は従来のイオン源におけるリペラー電極使用時(押し出しモード)のイオン軌道のシミュレーション結果を示す図、図4は従来のイオン源における引き出し電極使用時(引き出しモード)のイオン軌道のシミュレーション結果を示す図、図5は本実施例のイオン源3でのイオン軌道のシミュレーション結果を示す図である。図3〜図5において(a)は帯電現象を想定しない場合、(b)はイオン化室31の表面に帯電現象が生じている状態を想定した場合である。また、図3〜図5において、塗りつぶした構成要素はイオンと同極性である正の直流電圧が印加されている構成要素である。さらに、図3〜図5において、上半分の範囲は質量マスフィルタ(図示せず)まで到達し得たイオンの軌道を示しており、下半分の範囲は途中で電極等に衝突して消滅してしまうイオンの軌道を示している。
図3に示すように、従来の押し出しモードでは、専らイオン化室31の中央付近で生成されたイオンのみが後段へと輸送されており、それから外れた位置で生成されたイオンは殆どがイオン化室31内で又は電極に接触して消滅している。これは帯電現象が生じている状態でも殆ど変化がない。
これに対し、図4(a)に示すように、従来の引き出しモードでは、イオン化室31の中央付近のみならず、それから大きく外れた位置で生成されたイオンもイオン化室31内から引き出され後段へと輸送されている。ただし、イオン化室31の中央付近に存在するイオンでもその一部は消滅している。これは押し出しモードに比べて、イオン化室31の中央付近での電場が相対的に弱い(電位勾配が緩やかである)ことを意味している。その結果、図4(b)に示すように、帯電現象が起こるとイオンの軌道が極端に変化し、後段に輸送されなくなるイオンが増えることになる。即ち、引き出しモードでは押し出しモードに比べて、帯電現象が起きていないときの感度は高いものの、帯電現象が起きたときの感度の低下が極端であることがシミュレーション結果からも容易に推測できる。
図5(a)と図3(a)とを比較すれば明らかなように、本実施例のイオン源3では、単純な押し出しモードでは殆ど後段へと輸送されなかったイオン化室31の中央部から外れた位置にあるイオンもイオン出射口131に導かれ後段へと輸送されており、イオン化室31の内壁面に接触して消滅するイオンは少ない。これは、イオン収束電極36、37により形成される電場がイオン化室31内にまで入り込み、イオンをイオン流の中心軸方向に押している効果である。これによって、後段へと多くの量のイオンを輸送することができ、高い分析感度を実現できる。
また図5(b)に示すように、本実施例のイオン源3におけるイオンの軌道は帯電現象が生じている状態でも殆ど変化がない。これは、押し出し電場によるイオンの押し出し作用と収束電場によるイオンの収束作用とのいずれもが、帯電現象の影響を殆ど受けないことを意味している。このことから、長期間の装置使用によって帯電現象が生じても、分析感度が高い状態を維持可能であることが分かる。
以上のように、イオン軌道のシミュレーション結果から、本実施例のイオン源3において高感度と感度の高い安定性とが共に実現できることが確認できる。
なお、イオン軌道のシミュレーションと併せてフィラメント34で生成される熱電子の軌道についても求めたが、熱電子の加速度は大きいので、イオン収束電極36、37への印加電圧Vsが上述した範囲であれば熱電子の軌道は殆ど影響を受けないことを確認している。
上記実施例では、電子導入口312と電子排出口313の外側にそれぞれイオン収束電極36、37を設けており、イオン収束効果の点ではそのほうが望ましいものの、いずれか一方にのみイオン収束電極を設けてもよい。また、二つのイオン収束電極36、37にはそれぞれ異なる電圧を印加可能となっているが、通常は同じ電圧を印加すれば十分である。
また上記実施例のイオン源はEIイオン源であるが、本発明はCIイオン源にも適用可能である。また、本発明は質量分析装置のイオン源に限らず、イオン注入装置などのイオンを利用した他の装置のイオン源としても利用することができる。
また、上記実施例は本発明の一例であって、上記の変形以外に、本発明の趣旨の範囲で適宜修正、変更、追加を行っても本願特許請求の範囲に包含されることは明らかである。
1…チャンバ
2…真空ポンプ
3…イオン源
31…イオン化室
311…イオン出射口
312…電子導入口
313…電子排出口
314…試料導入口
32…リペラー電極
34…フィラメント
35…対向フィラメント(トラップ電極)
341、351…フィラメント室
36、37…イオン収束電極
38…磁石
4…イオン輸送光学系
41…引き出し電極
5…四重極マスフィルタ
6…イオン検出器
71…第1イオン収束電圧源
72…第2イオン収束電圧源
73…リペラー電圧源

Claims (3)

  1. 所定の試料分子又は原子をイオン化するイオン化装置であって、
    a)熱電子を内部空間に導入する電子導入口、その内部空間を通過した熱電子を排出する電子排出口、及びその内部空間で生成された試料由来のイオンを外部に取り出すためのイオン出射口、を有するイオン化室と、
    b)前記電子導入口の外側に配置され、熱電子を発生する熱電子源と、
    c)前記電子排出口の外側に配置され、該電子排出口を通して排出された熱電子を捕捉する電子捕捉部と、
    d)前記イオン化室内にあって前記イオン出射口と対向して配置され、該イオン化室内で生成された試料由来のイオンを前記イオン出射口側に向けて押し出す押し出し電場を該イオン化室内に形成するためのリペラー電極と、
    e)前記熱電子源と前記電子導入口との間、又は、前記電子排出口と前記電子捕捉部との間、のいずれか一方又は両方に配置され、前記イオン化室内で生成された試料由来のイオンが前記押し出し電場により押し出されることで形成されるイオン流の中心軸付近に該イオンを収束させる収束電場を該イオン化室内に形成するためのイオン収束電極と、
    を備えることを特徴とするイオン化装置。
  2. 請求項1に記載のイオン化装置であって、
    前記イオン出射口は、前記電子導入口を通して前記イオン化室内に熱電子が導入される方向と略直交する方向にイオンが出射するように該イオン化室に設けていることを特徴とするイオン化装置。
  3. 請求項1又は2に記載のイオン化装置であって、
    前記リペラー電極に試料由来のイオンと極性が同じである直流電圧Vrを印加するとともに前記イオン収束電極に試料由来のイオンと極性が同じである直流電圧Vsを印加する電圧印加部をさらに備え、直流電圧Vrは1〜20[V]、直流電圧Vsは5〜50[V]であることを特徴とするイオン化装置。
JP2015032833A 2015-02-23 2015-02-23 イオン化装置 Active JP6323362B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015032833A JP6323362B2 (ja) 2015-02-23 2015-02-23 イオン化装置
EP16156663.3A EP3059756A1 (en) 2015-02-23 2016-02-22 Ionization apparatus
US15/049,366 US9679755B2 (en) 2015-02-23 2016-02-22 Ionization apparatus
CN201610099211.4A CN105914124B (zh) 2015-02-23 2016-02-23 电离设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032833A JP6323362B2 (ja) 2015-02-23 2015-02-23 イオン化装置

Publications (3)

Publication Number Publication Date
JP2016157523A true JP2016157523A (ja) 2016-09-01
JP2016157523A5 JP2016157523A5 (ja) 2017-06-22
JP6323362B2 JP6323362B2 (ja) 2018-05-16

Family

ID=55405220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032833A Active JP6323362B2 (ja) 2015-02-23 2015-02-23 イオン化装置

Country Status (4)

Country Link
US (1) US9679755B2 (ja)
EP (1) EP3059756A1 (ja)
JP (1) JP6323362B2 (ja)
CN (1) CN105914124B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819534B1 (ko) 2017-07-14 2018-03-02 한국기초과학지원연구원 이온화 소스 및 그를 포함하는 이차이온 질량분석기
WO2018100621A1 (ja) * 2016-11-29 2018-06-07 株式会社島津製作所 イオン化装置及び質量分析装置
CN109406689A (zh) * 2018-10-22 2019-03-01 南京国科医工科技发展有限公司 一种离子渗透气体分子分离方法及装置
JP2020526869A (ja) * 2017-06-13 2020-08-31 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated ロバストなイオン源
WO2021045873A1 (en) * 2019-09-03 2021-03-11 Applied Materials, Inc. System and method for improved beam current from an ion source
US11120966B2 (en) 2019-09-03 2021-09-14 Applied Materials, Inc. System and method for improved beam current from an ion source
US11264230B2 (en) 2017-06-29 2022-03-01 Shimadzu Corporation Quadrupole mass spectrometer
US11495447B2 (en) 2018-02-06 2022-11-08 Shimadzu Corporation Ionizer and mass spectrometer
WO2022239243A1 (ja) * 2021-05-14 2022-11-17 株式会社島津製作所 質量分析装置
US11581172B2 (en) 2020-11-27 2023-02-14 Shimadzu Corporation Method for mass spectrometry and mass spectrometer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3077329A1 (en) * 2017-09-29 2019-04-04 Perkinelmer Health Sciences Canada, Inc. Off-axis ionization devices and systems
CN108231529B (zh) * 2018-03-09 2024-04-05 晓睿真空设备(嘉兴)有限公司 低压磁控阴极离子源
US10622200B2 (en) * 2018-05-18 2020-04-14 Perkinelmer Health Sciences Canada, Inc. Ionization sources and systems and methods using them
CN109212113B (zh) * 2018-10-22 2023-05-12 南京国科精准医学科技有限公司 一种离子捕集气体分子分离方法及装置
CN113748488A (zh) * 2019-05-15 2021-12-03 株式会社岛津制作所 离子分析装置
CN111146049A (zh) * 2019-12-25 2020-05-12 兰州空间技术物理研究所 一种碳纳米管场发射阴极的小型离子源
WO2021120539A1 (zh) * 2020-06-08 2021-06-24 中国计量科学研究院 一种电子轰击电离源装置、电离轰击方法及物质分析方法
CN112599397B (zh) * 2020-12-14 2023-06-06 兰州空间技术物理研究所 一种储存式离子源
US11768176B2 (en) 2022-01-06 2023-09-26 Mks Instruments, Inc. Ion source with gas delivery for high-fidelity analysis
US20240055247A1 (en) * 2022-08-10 2024-02-15 Exum Instruments Off-axis ion extraction and shield glass assemblies for sample analysis systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259482A (ja) * 2004-03-11 2005-09-22 Shimadzu Corp イオン化装置
JP2010244903A (ja) * 2009-04-07 2010-10-28 Shimadzu Corp 質量分析装置
WO2013163530A2 (en) * 2012-04-26 2013-10-31 Leco Corporation Electron impact ion source with fast response

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325579B4 (de) * 2003-06-05 2007-10-11 Bruker Daltonik Gmbh Ionenfragmentierung durch Elektroneneinfang in linearen Ionenfallen
DE112011102743T5 (de) * 2010-08-19 2013-07-04 Leco Corporation Laufzeit-Massenspektrometer mit akkumulierender Elektronenstoss-Ionenquelle
WO2012112537A2 (en) * 2011-02-14 2012-08-23 Massachusetts Institute Of Technology Methods, apparatus, and system for mass spectrometry
US9865422B2 (en) * 2013-03-15 2018-01-09 Nissin Ion Equipment Co., Ltd. Plasma generator with at least one non-metallic component
GB2588861B (en) * 2013-04-23 2021-08-04 Leco Corp Multi-reflecting mass spectrometer with high throughput
WO2015108969A1 (en) * 2014-01-14 2015-07-23 908 Devices Inc. Sample collection in compact mass spectrometry systems
US10416131B2 (en) 2014-03-31 2019-09-17 Leco Corporation GC-TOF MS with improved detection limit
US9698000B2 (en) * 2014-10-31 2017-07-04 908 Devices Inc. Integrated mass spectrometry systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259482A (ja) * 2004-03-11 2005-09-22 Shimadzu Corp イオン化装置
JP2010244903A (ja) * 2009-04-07 2010-10-28 Shimadzu Corp 質量分析装置
WO2013163530A2 (en) * 2012-04-26 2013-10-31 Leco Corporation Electron impact ion source with fast response

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100621A1 (ja) * 2016-11-29 2018-06-07 株式会社島津製作所 イオン化装置及び質量分析装置
JP2020526869A (ja) * 2017-06-13 2020-08-31 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated ロバストなイオン源
JP7195284B2 (ja) 2017-06-13 2022-12-23 エム ケー エス インストルメンツ インコーポレーテッド ロバストなイオン源、質量分析計システム、イオン生成方法
US11264230B2 (en) 2017-06-29 2022-03-01 Shimadzu Corporation Quadrupole mass spectrometer
KR101819534B1 (ko) 2017-07-14 2018-03-02 한국기초과학지원연구원 이온화 소스 및 그를 포함하는 이차이온 질량분석기
US11495447B2 (en) 2018-02-06 2022-11-08 Shimadzu Corporation Ionizer and mass spectrometer
CN109406689A (zh) * 2018-10-22 2019-03-01 南京国科医工科技发展有限公司 一种离子渗透气体分子分离方法及装置
CN109406689B (zh) * 2018-10-22 2023-05-12 南京国科精准医学科技有限公司 一种离子渗透气体分子分离方法及装置
US11232925B2 (en) 2019-09-03 2022-01-25 Applied Materials, Inc. System and method for improved beam current from an ion source
US11120966B2 (en) 2019-09-03 2021-09-14 Applied Materials, Inc. System and method for improved beam current from an ion source
WO2021045873A1 (en) * 2019-09-03 2021-03-11 Applied Materials, Inc. System and method for improved beam current from an ion source
US11581172B2 (en) 2020-11-27 2023-02-14 Shimadzu Corporation Method for mass spectrometry and mass spectrometer
WO2022239243A1 (ja) * 2021-05-14 2022-11-17 株式会社島津製作所 質量分析装置

Also Published As

Publication number Publication date
US20160247669A1 (en) 2016-08-25
CN105914124A (zh) 2016-08-31
JP6323362B2 (ja) 2018-05-16
EP3059756A1 (en) 2016-08-24
CN105914124B (zh) 2018-07-10
US9679755B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP6323362B2 (ja) イオン化装置
JP4793440B2 (ja) 質量分析装置
JP4384542B2 (ja) 質量分析装置
JP6423615B2 (ja) 軸方向磁気イオン源及び関連するイオン化方法
JP2017535040A (ja) 不要イオンを抑制するシステム及び方法
JP2016157523A5 (ja)
US9105454B2 (en) Plasma-based electron capture dissociation (ECD) apparatus and related systems and methods
US10692712B2 (en) Ion transfer from electron ionization sources
US9177775B2 (en) Mass spectrometer
US20170148620A1 (en) Ion transport apparatus and mass spectrometer using the same
JP2016115674A (ja) ソフト電子イオン化のためのイオン源ならびに関連するシステムおよび方法
US20070187592A1 (en) High sensitivity slitless ion source mass spectrometer for trace gas leak detection
WO2016092696A1 (ja) 質量分析装置
JP4692627B2 (ja) 質量分析装置
KR101983293B1 (ko) 고성능 축방향 전자충돌 이온원
US10541122B2 (en) Robust ion source
JP4232662B2 (ja) イオン化装置
CN110612595B (zh) 离子检测装置及质谱分析装置
US10964521B2 (en) Mass spectrometer
JP2019021550A (ja) イオン化装置及びそれを用いた質量分析装置
WO2022239243A1 (ja) 質量分析装置
JP7347680B2 (ja) 質量分析装置
JP2007194094A (ja) 質量分析装置
CN117642838A (zh) 用于将离子注入到静电线性离子阱中的方法和系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R151 Written notification of patent or utility model registration

Ref document number: 6323362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151