JP2016152384A - パワーモジュール用基板の製造方法及びパワージュールの製造方法 - Google Patents

パワーモジュール用基板の製造方法及びパワージュールの製造方法 Download PDF

Info

Publication number
JP2016152384A
JP2016152384A JP2015030525A JP2015030525A JP2016152384A JP 2016152384 A JP2016152384 A JP 2016152384A JP 2015030525 A JP2015030525 A JP 2015030525A JP 2015030525 A JP2015030525 A JP 2015030525A JP 2016152384 A JP2016152384 A JP 2016152384A
Authority
JP
Japan
Prior art keywords
metal layer
layer
power module
circuit
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015030525A
Other languages
English (en)
Other versions
JP6439489B2 (ja
Inventor
仁人 西川
Masato Nishikawa
仁人 西川
宗太郎 大井
Sotaro Oi
宗太郎 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015030525A priority Critical patent/JP6439489B2/ja
Publication of JP2016152384A publication Critical patent/JP2016152384A/ja
Application granted granted Critical
Publication of JP6439489B2 publication Critical patent/JP6439489B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】容易に、モールド樹脂により封止されるパワーモジュール用基板の回路層とモールド樹脂との密着性の向上を図ることができ、半導体素子の良好な接合性を維持することができ、長期的に信頼性の高いパワーモジュール用基板の製造方法、及びそのパワーモジュール用基板の製造方法を用いたパワーモジュールの製造方法を提供する。【解決手段】回路層10をエッチングすることにより第二金属層14を貫通して第一金属層13の少なくとも途中まで到達する複数のアンカー孔9を形成するアンカー孔エッチング工程を有し、そのアンカー孔エッチング工程は、第一金属層13に対するエッチングレートが第二金属層14に対するエッチングレートよりも高いエッチング液を用いて行われ、第一金属層13に第二金属層14に形成されるアンカー孔9の開口部に対して半径方向外方に張り出す部分を形成する。【選択図】 図3

Description

本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板の製造方法及びパワーモジュールの製造方法に関する。
従来のパワーモジュール用基板として、絶縁層となるセラミックス基板の一方の面にアルミニウムからなる回路層が接合されるとともに、他方の面に放熱のためのアルミニウムからなる金属層が接合された構成のものが知られている。そして、このパワーモジュール用基板の金属層に、熱伝導性に優れたヒートシンクが接合され、回路層の上にはんだ材を介してパワー素子等の半導体素子が搭載され、パワーモジュールが製造される。
また、このようなパワーモジュールにおいて、例えば特許文献1に開示されるように、回路層上に搭載された半導体素子の固定及び良好な接合性を維持する目的で、エポキシ樹脂等からなるモールド樹脂を成形することで、パワーモジュール用基板及び半導体素子を樹脂封止することが行われている。ところが、モールド樹脂によりパワーモジュール用基板と半導体素子とを樹脂封止した場合においても、モールド樹脂と回路層との密着性が悪いと、モールド樹脂と回路層との界面に破断が生じ、半導体素子と回路層との間のはんだ層が破断することがある。
そこで、例えば特許文献2及び特許文献3に開示されるように、半導体素子の周辺の回路層(電極)表面にディンプル加工を施すことにより、モールド樹脂の密着性の向上を図ることが行われている。
特開2010‐114257号公報 特開2007‐329362号公報 特開2013‐38259号公報
しかし、回路層表面へのディンプル加工は、ディンプル形成時に形状が潰れたり、ディンプルが形成されない等、手間がかかることが問題である。
本発明は、このような事情に鑑みてなされたもので、容易に、モールド樹脂により封止されるパワーモジュール用基板の回路層とモールド樹脂との密着性の向上を図ることができ、半導体素子の良好な接合性を維持することができ、長期的に信頼性の高いパワーモジュール用基板の製造方法、及びそのパワーモジュール用基板の製造方法を用いたパワーモジュールの製造方法を提供することを目的とする。
本発明のパワーモジュール用基板の製造方法は、セラミックス基板の一方の面に積層された回路層と他方の面に積層された放熱層とを備え、前記回路層が前記セラミックス基板に接合される第一金属層と該第一金属層の前記セラミックス基板とは反対の面に接合された第二金属層とを有するパワーモジュール用基板の製造方法であって、前記回路層をエッチングすることにより前記第二金属層を貫通して前記第一金属層の少なくとも途中まで到達する複数のアンカー孔を形成するアンカー孔エッチング工程を有し、前記アンカー孔エッチング工程は、前記第一金属層に対するエッチングレートが前記第二金属層に対するエッチングレートよりも高いエッチング液を用いて行われ、前記第一金属層に前記第二金属層に形成される前記アンカー孔の開口部に対して半径方向外方に張り出す部分を形成する。
このようにして製造されるパワーモジュール用基板は、回路層に複数のアンカー孔を有していることで、回路層表面上に半導体素子が搭載された後にモールド樹脂により樹脂封止がされる際に、そのモールド樹脂がアンカー孔へ入り込み、半導体素子実装面である回路層とモールド樹脂との密着性を向上させることができる。
また、アンカー孔を形成する際に、第一金属層(アンカー孔の底部)に、第二金属層に形成される開口部よりも半径方向外方に張り出す部分を形成することにより、モールド樹脂がアンカー孔の底部に開口部よりも半径方向外方に張り出したモールド樹脂部分を形成することができるので、モールド樹脂が剥がれにくくなり、回路層とモールド樹脂との良好な密着性を維持することができる。
そして、回路層へのアンカー孔の形成は、第二金属層よりも第一金属層に対するエッチングレートが高いエッチング液を用いて行うので、回路層の表面側の第二金属層を介して第一金属層がエッチングされる際に、第一金属層にアンカー孔の底部となる開口部に対して半径方向外方に張り出す部分を形成することができる。このように、回路層をエッチングすることによりアンカー孔を形成するので、回路層にディンプル加工によりディンプルを形成する場合のように、形状が潰れたり回路層に変形を生じさせることなく、容易にアンカー形状を形成することができる。
本発明のパワーモジュール用基板の製造方法は、前記アンカー孔エッチング工程の前に、前記第二金属層をエッチングすることにより該第二金属層を貫通する下孔を形成する事前エッチング工程を備え、前記アンカー孔エッチング工程は、前記下孔を介して前記第一金属層のエッチングが行われる。
第一金属層のエッチングを行う前に、事前エッチング工程において回路層の表面側の第二金属層をエッチングして貫通孔を形成しておくことで、その後のアンカー孔エッチング工程において、第二金属層に形成された貫通孔を介して第一金属層のエッチングを行うことができる。この場合、第一金属層に対しては高い腐食性を有するが、第二金属層に対する腐食性を殆ど有さないエッチング液を用いることも可能となる。したがって、アンカー孔の開口部側のエッチングレートを低く抑えることができ、アンカー孔の底部に開口部よりも半径方向外方に張り出した部分を形成したアンカー形状を容易に形成することができる。
本発明のパワーモジュールの製造方法は、前記パワーモジュール用基板の製造方法により製造された前記パワーモジュール用基板の前記回路層の表面上に半導体素子をはんだ付けするはんだ付け工程と、前記パワーモジュール用基板及び前記半導体素子をモールド樹脂により封止する樹脂封止工程とを有する。
本発明によれば、エッチングにより容易に回路層にアンカー孔を形成することができ、モールド樹脂により封止されるパワーモジュール用基板の回路層とモールド樹脂との密着性を向上させることができるので、半導体素子の良好な接合性を維持することができ、長期的に信頼性の高いパワーモジュール用基板及びそのパワーモジュール用基板を用いたパワーモジュールを製造することが可能となる。
本発明に係るパワーモジュールの製造方法により製造されるパワーモジュールを示す断面図であり、図2のA‐A線に沿う断面に相当する。 図1に示すパワーモジュールにおけるアンカー孔及び半導体素子の位置を示す平面図である。 本発明の第1実施形態に係るパワーモジュール用基板の製造方法を工程毎に示す断面図である。 本発明の第2実施形態に係るパワーモジュール用基板の製造方法を工程毎に示す断面図である。 本発明の第3実施形態に係るパワーモジュール用基板の製造方法を工程毎に示す断面図である。 本発明のパワーモジュール用基板の製造方法に用いる加圧装置の正面図である。
以下、本発明の実施形態について、図面を参照して説明する。
図1は、本発明に係る第1実施形態のパワーモジュールの製造方法により製造されるパワーモジュールを示している。この図1に示すパワーモジュール100は、パワーモジュール用基板70の回路層10の表面に半導体素子30が搭載され、半導体素子30にはリードフレーム50が接合され、さらに半導体素子30とパワーモジュール用基板70とリードフレーム50とをエポキシ樹脂等からなるモールド樹脂80により封止することで構成される。
なお、このように構成されるパワーモジュール100は、図1に示すように、ヒートシンク110の上面に熱伝導グリス40を介して接触させ、クランプ等により押し付けて使用される。
パワーモジュール用基板70は、複数の金属の平板が積層されてなる回路層10と、絶縁層であるセラミックス基板20と、放熱層21とを備える。
回路層10は、絶縁層としてのセラミックス基板20の一方の面に接合された第一金属層13と、その第一金属層13のセラミックス基板20とは反対の面に接合された第二金属層14とを備える。そして、放熱層21は、セラミックス基板20の回路層10と反対面に接合された第一金属層11と、第一金属層11のセラミックス基板20とは反対面に接合された第二金属層12とを備える。
以下、これら回路層10と放熱層21とを区別するために、回路層10に用いられる両金属層を回路層用第一金属層、回路層用第二金属層とし、放熱層21に用いられる両金属層を放熱層用第一金属層、放熱層用第二金属層とする。
パワーモジュール用基板70を構成するセラミックス基板20は、AlN(窒化アルミニウム)からなり、厚さは0.635mmとされる。また、回路層用第一金属層13を構成する金属板は、純度99.00質量%以上のアルミニウム(いわゆる2Nアルミニウム)からなり、厚さ0.6mmとされる。そして、回路層用第二金属層14を構成する金属板は、純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)からなり、厚さは0.25mmとされる。
放熱層用第一金属層11を構成する金属板は、純度99.99%質量以上のアルミニウム(いわゆる4Nアルミニウム)からなり、厚さは0.6mmとされる。また、放熱層用第二金属層12を構成する金属板は、A3003合金からなり、厚さは0.25mmとされる。この放熱層用第二金属層12を構成する金属板の面積は、図1及び図2に示す例では、放熱層用第一金属層11の2倍以上となるように広く形成され、2枚の放熱層用第一金属層11が並列に接合されている。
なお、これら各金属層11〜14及びセラミックス基板20は、ろう付けされる。
そして、図1及び図2に示すように、回路層10には、はんだ接合される半導体素子30の搭載予定位置の直下を除く位置に、封止用のモールド樹脂80が食い込み可能なアンカー孔9が形成されている。
このアンカー孔9は、図1及び図3(d)に示すように、回路層用第二金属層14を貫通し、回路層用第一金属層13の少なくとも途中まで到達して形成される。また、アンカー孔9は、アンカー孔9の開口部側を構成する回路層用第二金属層14側の直径d1よりも、アンカー孔9の底部側を構成する回路層用第一金属層13側の直径d2が大きな直径を形成している。この場合、アンカー孔9の回路層用第二金属層14の表面の開口部の直径d1は、0.2mm〜2.0mmの範囲内に設定される。
そして、このパワーモジュール用基板70の回路層10の表面、すなわち回路層用第二金属層14の表面に、半導体素子30がはんだ付けされる。
なお、必要とされる機能に応じてIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、FWD(Free Wheeling Diode)等の種々の半導体素子30が選択される。そして、半導体素子30を接合するはんだ材は、例えばSn‐Sb系、Sn‐Ag系、Sn‐Cu系、Sn‐In系、もしくはSn‐Ag‐Cu系のはんだ材(いわゆる鉛フリーはんだ材)とされる。
リードフレーム50は、半導体素子30にはんだ等を用いて接合されている。そして、パワーモジュール用基板70及び半導体素子30、リードフレーム50が、エポキシ樹脂等からなるモールド樹脂80により樹脂封止され、パワーモジュール100が形成されている。
次に、このような構成のパワーモジュール用基板70及びパワーモジュール100を製造する第1実施形態のパワーモジュール用基板の製造方法及びパワーモジュールの製造方法について説明する。
パワーモジュール用基板70は、セラミックス基板20と回路層用第一金属層13となる金属板及び放熱層用第一金属層11となる金属板とを接合するとともに、この回路層用第一金属層13となる金属板と回路層用第二金属層14となる金属板とを接合する第一接合工程、第一接合工程で得られた積層体23に放熱層用第二金属層12となる金属板を接合する第二接合工程、回路層10をエッチングすることにより回路層用第二金属層14を貫通して回路層用第一金属層13の少なくとも途中まで到達するアンカー孔9を形成するアンカー孔エッチング工程を経て製造される。以下、これらの工程を説明する。
(第一接合工程)
図3(a)に示すように、セラミックス基板20の一方の面にろう材22を介して回路層用第一金属層13となる金属板13aを積層し、さらに回路層用第一金属層13となる金属板13aの上面にろう材22を介して回路層用第二金属層14となる金属板14aを積層するとともに、セラミックス基板20の他方の面にろう材22を介して放熱層用第一金属層11となる金属板11aを積層して、これらを一体に接合する。ろう材22は、Al‐Si系等の合金を箔の形態で用いるとよい。
具体的には、セラミックス基板20、回路層用第一金属層13となる金属板13a、回路層用第二金属層14となる金属板14a及び放熱層用第一金属層11となる金属板11aとを、図3(a)に示すようにろう材22を介して積層した積層体Sを図6に示す加圧装置110を用いて積層方向に加圧した状態とする。
この加圧装置110は、ベース板111と、ベース板111の上面の四隅に垂直に取り付けられたガイドポスト112と、これらガイドポスト112の上端部に固定された固定板113と、これらベース板111と固定板113との間で上下移動自在にガイドポスト112に支持された押圧板114と、固定板113と押圧板114との間に設けられて押圧板114を下方に付勢するばね等の付勢手段115とを備えている。
固定板113および押圧板114は、ベース板111に対して平行に配置されており、ベース板111と押圧板114との間に前述の積層体Sが配置される。積層体Sの両面には加圧を均一にするためにクッションシート116が配設される。クッションシート116は、カーボンシートとグラファイトシートの積層板で形成されている。この加圧装置110により加圧した状態で、加圧装置110ごと図示略の加熱炉内に設置し、真空雰囲気下で接合温度に加熱してセラミックス基板20に回路層用第一金属層13と放熱層用第一金属層11とをろう付け接合するとともに、回路層用第一金属層13に回路層用第二金属層14をろう付け接合する。この場合の加圧力としては例えば0.1MPa以上3.4MPa以下、接合温度としては610℃以上650℃以下、加熱時間としては1分以上60分以下とされる。
(第二接合工程)
図3(b)に示すように、放熱層用第二金属層12となる金属板12aの上面に、ろう材25を介して第一接合工程で得られた積層体23を2個並列に並べて積層する。
ろう材25には、例えばアルミニウム合金(A3003合金)からなる芯材の両面にAl‐Si‐Mg系のろう材層が形成された両面ろうクラッド材を用いるとよく、この両面クラッド材を用いたフラックスレスろう付け方法により、第一接合工程で得られた積層体23の放熱層用第一金属層11と放熱層用第二金属層12とを接合する。
具体的には、これら放熱層用第二金属層12と2個の積層体23とを、ろう材25を介して積層した積層体を図6に示す加圧装置110と同様の加圧装置を用いて積層方向に加圧した状態とし、0.01MPa以上0.5MPa以下に加圧し、窒素等の不活性雰囲気下で接合温度559℃以上620℃以下で加熱して第一接合工程で得られた積層体23と放熱層用第二金属層12とを接合する。
(アンカー孔エッチング工程)
図3(c)に示すように、回路層10及び放熱層21の表面に、エッチング除去部、すなわちアンカー孔形成予定部90を残してフォトレジスト法によりエッチングマスク91を形成した後、これをエッチング液に浸漬して、回路層10のエッチングをする。なお、エッチングマスク91は、レジストインキをスクリーン印刷によってアンカー孔形成予定部90を残したパターン上に塗布し、紫外線を照射して硬化を行うことにより形成してもよい。
このアンカー孔エッチング工程においては、回路層用第一金属層13に対するエッチングレートが回路層用第二金属層14に対するエッチングレートよりも高いエッチング液を用いることにより、図3(d)に示すように、回路層用第一金属層13に、回路層用第二金属層14に形成されるアンカー孔9の開口部に対して半径方向外方に張り出す部分を形成する。
具体的には、回路層用第一金属層13に対するエッチングレートが回路層用第二金属層14に対するエッチングレートよりも高いエッチング液として、塩化第二鉄を主成分とするもの(FeCl:42質量%、50℃)を用いることができ、このエッチング液にエッチングマスク91を形成した積層体24を15分浸漬することにより回路層10にアンカー孔9を形成する。回路層用第一金属層13の2Nアルミニウムと回路層用第二金属層14の4Nアルミニウムとは、含有される不純物成分の含有量が相違しており、この不純物含有量、特にFe及びSiの含有量が、回路層用第一金属層13の方が回路層用第二金属層14に比べて多いので、回路層用第一金属層13の方がエッチングにより腐食され易く、エッチングレートが大きくなる。すなわち、このような各金属層13,14のFe及びSiの含有量の関係により、エッチング液による回路層用第一金属層13のエッチングレートは、回路層用第二金属層14のエッチングレートの1.5倍〜4倍速くなる。
このため、エッチングが進行して回路層用第二金属層14に貫通孔が形成され、回路層用第二金属層14を介して回路層用第一金属層13のエッチングが開始されるようになると、回路層用第一金属層13のエッチングレートが回路層用第二金属層14のエッチングレートよりも速いため、次第に、回路層用第一金属層13にアンカー孔9の底部となる開口部(直径d1で示す部分)に対して半径方向外方に張り出す部分(直径d2で示す部分)が形成される。
このようにして、回路層10をエッチングすることにより、回路層用第二金属層14を貫通して回路層用第一金属層13の少なくとも途中まで到達するアンカー孔9を形成することができる。
なお、エッチング処理後に酸を用いて残存するエッチング液を洗浄する。洗浄に用いる酸は、塩酸、硫酸、硝酸等を用いることができるが、塩酸が好適に用いられる。その後、水酸化ナトリウム水溶液等でエッチングマスク91を剥離することにより、図3(d)に示すように、パワーモジュール用基板70が製造される。
また、パワーモジュール100は、上記の製造方法により製造されたパワーモジュール用基板70の回路層10(回路層用第二金属層14)の表面上に半導体素子30をはんだ付けするはんだ付け工程と、パワーモジュール用基板及び半導体素子30をモールド樹脂80により封止する樹脂封止工程とを経て製造される。
(はんだ付け工程)
パワーモジュール用基板70の回路層10の上面、すなわち回路層用第二金属層14の上面に半導体素子30をはんだ付けする。さらに、半導体素子30にはリードフレーム50が接合される。
(樹脂封止工程)
次に、パワーモジュール用基板70の放熱層用第二金属層12の下面と、リードフレーム50の外部接続端子部分50aとを除き、半導体素子30とパワーモジュール用基板70とリードフレーム50とをモールド樹脂80により封止する。
具体的には、例えばエポキシ樹脂等からなる封止材を用いてトランスファーモールディング方法によってモールド樹脂80を形成し封止する。このようにしてパワーモジュール100を製造する。
上記のようにして製造されるパワーモジュール100は、回路層10に複数のアンカー孔9を有していることで、回路層10表面上に半導体素子30が搭載された後にモールド樹脂80により樹脂封止がされる際に、そのモールド樹脂80がアンカー孔9へ入り込み、半導体素子実装面である回路層10とモールド樹脂80との密着性を向上させることができる。
また、アンカー孔9を形成する際に、回路層用第一金属層13(アンカー孔9の底部)に、平面視において、回路層用第二金属層14に形成される開口部よりも半径方向外方に張り出す部分を形成することにより、モールド樹脂80がアンカー孔9の底部に開口部よりも半径方向外方に張り出したモールド樹脂部分を形成することができるので、モールド樹脂80が剥がれにくくなり、回路層10とモールド樹脂80との良好な密着性を維持することができる。
そして、回路層10へのアンカー孔9の形成は、回路層用第二金属層14よりも回路層用第一金属層13に対するエッチングレートが高いエッチング液を用いて行うので、回路層10の表面側の回路層用第二金属層14を介して回路層用第一金属層13がエッチングされる際に、回路層用第一金属層13にアンカー孔9の底部となる開口部に対して半径方向外方に張り出す部分を形成することができる。このように、回路層10をエッチングすることによりアンカー孔9を形成するので、回路層10にディンプル加工によりディンプルを形成する場合のように、形状が潰れたり回路層に変形を生じさせることなく、容易にアンカー形状を形成することができる。
図4及び図5は、本発明の他の実施形態のパワーモジュール用基板の製造方法を示している。
図3に示す第1実施形態のパワーモジュール用基板の製造方法では、回路層10に使用する金属板の組合せを、回路層用第一金属層13は純度99.00質量%以上のアルミニウム(いわゆる2Nアルミニウム)、回路層用第二金属層14は純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)とした組合せとしていたが、回路層10の構成はこの組合せに限定するものではなく、例えば、以下の第2実施形態及び第3実施形態に示す組合せとした場合においても、エッチングによりアンカー孔9の形成を行うことができる。
図4に示す第2実施形態のパワーモジュール用基板の製造方法により製造されるパワーモジュール用基板72(図4(d))は、回路層用第一金属層13を純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)、回路層用第二金属層14を純度99.96質量%以上の銅(無酸素銅)とする組合せにより構成される。
また、このパワーモジュール用基板71を構成するセラミックス基板20は、AlN(窒化アルミニウム)からなり、厚さは0.635mmとされる。回路層用第一金属層13を構成する金属板は、前述したようにいわゆる4Nアルミニウムからなり、厚さ0.4mmとされる。そして、回路層用第二金属層14を構成する金属板は無酸素銅からなり、厚さは0.3mmとされる。
放熱層用第一金属層11を構成する金属板は、純度99.99%質量以上のアルミニウム(いわゆる4Nアルミニウム)からなり、厚さは0.6mmとされる。また、放熱層用第二金属層12を構成する金属板は、回路層用第二金属層14を構成する金属板と同様に、無酸素銅からなり、厚さは0.3mmとされる。この放熱層用第二金属層12を構成する金属板の面積は、放熱層用第一金属層11の2倍以上となるように広く形成され、2枚の放熱層用第一金属層11が並列に接合されている。
そして、図4(d)に示すように、回路層10には、はんだ接合される半導体素子の搭載予定位置の直下を除く位置に、封止用のモールド樹脂が食い込み可能なアンカー孔9が形成されている。このアンカー孔9は、図4(d)に示すように、回路層用第二金属層14を貫通し、回路層用第一金属層13の少なくとも途中まで到達して形成される
このパワーモジュール用基板72は、セラミックス基板20と回路層用第一金属層13となる金属板13a及び放熱層用第一金属層11となる金属板11aとを接合する第一接合工程、第一接合工程で得られた積層体23に回路層用第二金属層14となる金属板14a及び放熱層用第二金属板12となる金属板12aを接合する第二接合工程、回路層10をエッチングすることにより回路層用第二金属層14を貫通して回路層用第一金属層13の少なくとも途中まで到達するアンカー孔9を形成するアンカー孔エッチング工程を経て製造される。以下、これらの工程を説明する。
(第一接合工程)
まず、セラミックス基板20に回路層用第一金属層13と放熱層用第一金属層14とを一体に接合する。具体的には、図4(a)に示すように、セラミックス基板20の一方の面にろう材22を介して回路層用第一金属層13となる金属板13aを積層し、さらに、他方の面にろう材22を介して放熱層用第一金属層11となる金属板11aを積層する。ろう材22は、Al‐Si系等の合金を箔の形態で用いるとよい。
そして、このセラミックス基板20と回路層用第一金属層13となる金属板13a及び放熱層用第一金属層11となる金属板11aとを、図4(a)に示すようにろう材22を介して積層した積層体を積層方向に加圧した状態で、真空雰囲気下で接合温度に加熱することにより、セラミックス基板20に回路層用第一金属層13と放熱層用第一金属層11とをろう付け接合する。この場合の加圧力としては例えば0.1MPa以上3.4MPa以下、接合温度としては610℃以上650℃以下、加熱時間としては1分以上60分以下とされる。
(第二接合工程)
図4(b)に示すように、放熱層用第二金属層12となる金属板12aの上面に、第一接合工程で得られた積層体23を2個並列に並べ、その各々の積層体23の放熱層用第二金属層12とは反対側の面に、回路層用第二金属層14となる金属板14aをそれぞれ積層する。
そして、これら放熱層用第二金属層12と2個の積層体23と回路層用第二金属層14とからなる積層体を積層方向に0.1MPa以上3.4MPa以下に加圧し、真空雰囲気下で接合温度400℃以上548℃以下に1分以上60分以下に加熱することにより、第一接合工程で得られた積層体23と回路層用第二金属層14及び放熱層用第二金属層12とを固相拡散接合する。
(アンカー孔エッチング工程)
次に、図4(c)に示すように、回路層10及び放熱層21の表面に、エッチング除去部、すなわちアンカー孔形成予定部90を残してエッチングマスク91を形成した後、これをエッチング液に浸漬して、回路層10のエッチングをする。このアンカー孔エッチング工程においては、回路層用第一金属層13に対するエッチングレートが回路層用第二金属層14に対するエッチングレートよりも高いエッチング液を用いることにより、回路層用第一金属層13に、回路層用第二金属層14に形成されるアンカー孔9の開口部に対して半径方向外方に張り出す部分を形成する。
具体的には、回路層用第一金属層13に対するエッチングレートが回路層用第二金属層14に対するエッチングレートよりも高いエッチング液として、塩化第二鉄を主成分とするもの(FeCl:42質量%、50℃)を用いることができ、このエッチング液に18分浸漬することにより、図4(d)に示すように、回路層10にアンカー孔9を形成する。
この塩化第二鉄を主成分とするエッチング液においては、回路層用第二金属層14を構成する無酸素銅よりも回路層用第一金属層13を構成する4Nアルミニウムの方がエッチングにより腐食され易く、回路層用第一金属層13のエッチングレートは回路層第二金属層14のエッチングレートの1.5倍〜4倍速くなる。
このため、エッチングが進行して回路層用第二金属層14に貫通孔が形成され、回路層用第二金属層14を介して回路層用第一金属層13のエッチングが開始されるようになると、回路層用第一金属層13のエッチングレートが回路層用第二金属層14のエッチングレートよりも速いため、次第に、回路層用第一金属層13にアンカー孔9の底部となる開口部に対して半径方向外方に張り出す部分が形成される。
このようにして、回路層10をエッチングすることにより、回路層用第二金属層14を貫通して回路層用第一金属層13の少なくとも途中まで到達するアンカー孔9を形成することができる。
そして、エッチング処理後に酸を用いて残存するエッチング液を洗浄した後、水酸化ナトリウム水溶液等でエッチングマスク91を剥離することにより、パワーモジュール用基板72が製造される。
なお、このパワーモジュール用基板72を用いたパワーモジュールの製造方法は、はんだ付け工程及び樹脂封止工程が、第1実施形態と同じ工程を経て施される。
図5は、第3実施形態のパワーモジュール用基板の製造方法を示している。
図3に示す第1実施形態、及び図4に示す第2実施形態のパワーモジュール用基板の製造方法では、アンカー孔エッチング工程により、回路層用第二金属層14を貫通して回路層用第一金属層13の途中まで到達するアンカー孔9を形成することとしていたが、図5に示す第3実施形態のパワーモジュール用基板の製造方法では、アンカー孔エッチング工程の前に、事前エッチング工程を設け、これら二段階のエッチング処理を経ることにより、アンカー孔9を形成する。
図5に示す第3実施形態のパワーモジュール用基板の製造方法により製造されるパワーモジュール用基板73は、回路層用第一金属層13を純度99.96質量%以上の銅(無酸素銅)や純度99.90質量%以上の銅(タフピッチ銅)、三菱伸銅株式会社製のZC合金(Cu99.98質量%‐Zr0.02質量%)等とし、回路層用第二金属層14を純度99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)とする組合せにより構成される。
このパワーモジュール用基板73を構成するセラミックス基板20はAlN(窒化アルミニウム)からなり、厚さは0.635mmとされる。回路層用第一金属層13を構成する金属板13aは例えば無酸素銅からなり、厚さ0.3mmとされる。そして、回路層用第二金属層14を構成する金属板14aは4Nアルミニウムからなり、厚さは0.2mmとされる。
また、放熱層用第一金属層11を構成する金属板11aは、回路層用第一金属層13と同様に、無酸素銅からなり、厚さは0.3mmとされる。また、放熱層用第二金属層12を構成する金属板12aは、A3003合金、A6063合金等のアルミニウム合金からなり、厚さは0.4mmとされる。この放熱層用第二金属層12を構成する金属板12aの面積は、放熱層用第一金属層11の2倍以上となるように広く形成され、2枚の放熱層用第一金属層11が並列に接合されている。
そして、図5(e)に示すように、回路層10には、はんだ接合される半導体素子の搭載予定位置の直下を除く位置に、封止用のモールド樹脂が食い込み可能なアンカー孔9が形成されている。このアンカー孔9は、回路層用第二金属層14を貫通し、回路層用第一金属層13の少なくとも途中まで到達して形成される。
図5に示す第3実施形態のパワーモジュール用基板の製造方法について詳述する。
(第一接合工程)
まず、セラミックス基板20に回路層用第一金属層13と放熱層用第一金属層14とを一体に接合する。具体的には、図5(a)に示すように、AlNからなるセラミックス基板20の一方の面にろう材22を介して回路層用第一金属層13となる金属板13aを積層し、さらに、他方の面にろう材22を介して放熱層用第一金属層11となる金属板11aを積層する。ろう材22は、Ag‐Cu‐Ti系やAg‐Ti系等の合金を箔の形態で用いるとよい。
そして、このセラミックス基板20と回路層用第一金属層13となる金属板13a及び放熱層用第一金属層14となる金属板14aとをろう材22を介して積層した積層体を積層方向に加圧した状態で、真空雰囲気下で接合温度に加熱することにより、セラミックス基板20に回路層用第一金属層13と放熱層用第一金属層14とをろう付け接合する。この場合の加圧力としては例えば0.01MPa以上0.35MPa以下、接合温度としては790℃以上850℃以下、加熱時間としては5分以上60分以下とされる。
(第二接合工程)
次に、図5(b)に示すように、第一接合工程で得られた積層体23の回路層用第一金属層13と回路層用第二金属層14、及び放熱層用第一金属層11と放熱層用第二金属層12とをそれぞれ接合する。具体的には、放熱層用第二金属層12となる金属板12aの上面に、第一接合工程で得られた積層体23を2個並列に並べ、その各々の積層体23の放熱層用第二金属層12とは反対側の面に回路層用第二金属層14となる金属板14aをそれぞれ積層し、これら放熱層用第二金属層12と2個の積層体23と回路層用第二金属層14とからなる積層体を積層方向に0.1MPa以上3.4MPa以下に加圧し、真空雰囲気下で接合温度400℃以上548℃以下に1分以上60分以下に加熱することにより、第一接合工程で得られた積層体23と回路層用第二金属層14及び放熱層用第二金属層12とを固相拡散接合する。
(事前エッチング工程)
次に、図5(c)に示すように、回路層10及び放熱層21の表面に、エッチング除去部、すなわちアンカー孔形成予定部90を残してエッチングマスク91を形成する。そして、これを回路層第一金属層13に対しては高い腐食性を有するが、回路層用第二金属層14に対する腐食性を殆ど有さないエッチング液に浸漬してエッチングすることにより、図5(d)に示すように、回路層用第二金属層14貫通する下孔92を形成する。このようなエッチング液として、塩化第二銅を主成分とするもの(CuCl:21質量%、50℃)を用いることができ、このエッチング液にエッチングマスク91を形成した積層体24を塩化第二銅を15分浸漬することにより、回路層用第二金属層14を貫通する下孔92を形成することができる。
(アンカー孔エッチング工程)
次に、事前エッチング工程において回路層用第二金属層14を貫通する下孔92を形成した積層体26を、回路層用第一金属層13に対するエッチングレートが回路層用第二金属層14に対するエッチングレートよりも高いエッチング液に浸漬することにより、回路層用第一金属層13をエッチングする。このようなエッチング液として、硝酸を主成分とするもの(HNO:30質量%、40℃)を用いることができ、このエッチング液に積層体26を10分浸漬することにより、回路層用第二金属層14に形成された下孔92を介して回路層用第一金属層13のエッチングを行い、回路層10にアンカー孔9を形成することができる。
この硝酸を主成分とするエッチング液においては、回路層用第一金属層13の無酸素銅に対しては高い腐食性を有するが、回路層用第二金属層14の4Nアルミニウムに対する腐食性を殆ど有さない。したがって、アンカー孔9の開口部側を形成する回路層用第二金属層14のエッチングレートを低く抑えることでき、アンカー孔9の底部、すなわち回路層用第一金属層13に、開口部よりも半径方向外方に張り出した部分を容易に形成することができる。したがって、回路層用第二金属層14を貫通して回路層用第一金属層13の少なくとも途中まで到達するアンカー孔9を容易に形成することができる。
そして、エッチング処理後に、水酸化ナトリウム水溶液等でエッチングマスク91を剥離することにより、図5(e)に示すように、パワーモジュール用基板73が製造される。
なお、このパワーモジュール用基板73を用いたパワーモジュールの製造方法は、はんだ付け工程及び樹脂封止工程が、第1実施形態と同じ工程を経て施される。
以上の第2実施形態及び第3実施形態で示したパワーモジュール用基板の製造方法においても、第1実施形態と同様に、回路層をエッチングすることによりアンカー孔9を形成することができ、回路層にディンプル加工によりディンプルを形成する場合のように、形状が潰れたり回路層に変形を生じさせることなく、容易にアンカー形状を形成することができる。
そして、このようにして製造されるパワーモジュール用基板72,73は、回路層10に複数のアンカー孔9を有していることで、回路層10の表面上に半導体素子30が搭載された後にモールド樹脂80により樹脂封止がされる際に、そのモールド樹脂80がアンカー孔9へ入り込み、半導体素子実装面である回路層10とモールド樹脂80との密着性を向上させることができる。
また、アンカー孔9を形成する際に、回路層用第一金属層13(アンカー孔9の底部)に、平面視において回路層用第二金属層14に形成される開口部よりも半径方向外方に張り出す部分を形成することにより、モールド樹脂80がアンカー孔9の底部に開口部よりも半径方向外方に張り出したモールド樹脂部分を形成することができるので、モールド樹脂80が剥がれにくくなり、回路層10とモールド樹脂80との良好な密着性を維持することができる。
なお、本発明は、上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
9…アンカー孔
10…回路層
11…放熱層用第一金属層
12…放熱層用第二金属層
13…回路層用第一金属層
14…回路層用第二金属層
20…セラミックス基板
21…放熱層
30…半導体素子
50…リードフレーム
70,72,73…パワーモジュール用基板
80…モールド樹脂
91…エッチングマスク
92…下孔
100…パワーモジュール
110…加圧装置

Claims (3)

  1. セラミックス基板の一方の面に積層された回路層と他方の面に積層された放熱層とを備え、前記回路層が前記セラミックス基板に接合される第一金属層と該第一金属層の前記セラミックス基板とは反対の面に接合された第二金属層とを有するパワーモジュール用基板の製造方法であって、
    前記回路層をエッチングすることにより前記第二金属層を貫通して前記第一金属層の少なくとも途中まで到達する複数のアンカー孔を形成するアンカー孔エッチング工程を有し、
    前記アンカー孔エッチング工程は、前記第一金属層に対するエッチングレートが前記第二金属層に対するエッチングレートよりも高いエッチング液を用いて行われ、
    前記第一金属層に前記第二金属層に形成される前記アンカー孔の開口部に対して半径方向外方に張り出す部分を形成するパワーモジュール用基板の製造方法。
  2. 前記アンカー孔エッチング工程の前に、前記第二金属層をエッチングすることにより該第二金属層を貫通する下孔を形成する事前エッチング工程を備え、
    前記アンカー孔エッチング工程は、前記下孔を介して前記第一金属層のエッチングが行われる請求項1に記載のパワーモジュール用基板の製造方法。
  3. 請求項1又は請求項2に記載のパワーモジュール用基板の製造方法により製造された前記パワーモジュール用基板の前記回路層の表面上に半導体素子をはんだ付けするはんだ付け工程と、
    前記パワーモジュール用基板及び前記半導体素子をモールド樹脂により封止する樹脂封止工程とを有するパワーモジュールの製造方法。
JP2015030525A 2015-02-19 2015-02-19 パワーモジュール用基板の製造方法及びパワージュールの製造方法 Active JP6439489B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015030525A JP6439489B2 (ja) 2015-02-19 2015-02-19 パワーモジュール用基板の製造方法及びパワージュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030525A JP6439489B2 (ja) 2015-02-19 2015-02-19 パワーモジュール用基板の製造方法及びパワージュールの製造方法

Publications (2)

Publication Number Publication Date
JP2016152384A true JP2016152384A (ja) 2016-08-22
JP6439489B2 JP6439489B2 (ja) 2018-12-19

Family

ID=56695642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030525A Active JP6439489B2 (ja) 2015-02-19 2015-02-19 パワーモジュール用基板の製造方法及びパワージュールの製造方法

Country Status (1)

Country Link
JP (1) JP6439489B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452146B2 (ja) 2020-03-19 2024-03-19 株式会社オートネットワーク技術研究所 回路構成体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558557A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Resin mold type electronic component and lead frame used therefor
JPH0575006A (ja) * 1991-09-18 1993-03-26 Fujitsu Ltd リードフレーム及び樹脂封止型半導体装置
JPH05129512A (ja) * 1991-10-31 1993-05-25 Nec Corp リードフレーム
JPH06177280A (ja) * 1992-12-09 1994-06-24 Fuji Electric Co Ltd 樹脂封止形半導体装置
JP2011253950A (ja) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp 電力半導体装置
JP2015028998A (ja) * 2013-07-30 2015-02-12 株式会社豊田自動織機 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558557A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Resin mold type electronic component and lead frame used therefor
JPH0575006A (ja) * 1991-09-18 1993-03-26 Fujitsu Ltd リードフレーム及び樹脂封止型半導体装置
JPH05129512A (ja) * 1991-10-31 1993-05-25 Nec Corp リードフレーム
JPH06177280A (ja) * 1992-12-09 1994-06-24 Fuji Electric Co Ltd 樹脂封止形半導体装置
JP2011253950A (ja) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp 電力半導体装置
JP2015028998A (ja) * 2013-07-30 2015-02-12 株式会社豊田自動織機 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452146B2 (ja) 2020-03-19 2024-03-19 株式会社オートネットワーク技術研究所 回路構成体

Also Published As

Publication number Publication date
JP6439489B2 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
JP4438489B2 (ja) 半導体装置
JP4635564B2 (ja) 半導体装置
JP6048558B2 (ja) 冷却器付パワーモジュール用基板及びその製造方法
JP2006240955A (ja) セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
JP5067187B2 (ja) ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP4037425B2 (ja) セラミック回路基板およびそれを用いた電力制御部品。
JP2010010561A (ja) パワーモジュール用基板及びその製造方法
JP2010097963A (ja) 回路基板及びその製造方法、電子部品モジュール
US10798824B2 (en) Method for manufacturing insulated circuit board, insulated circuit board, and thermoelectric conversion module
JP2016152385A (ja) パワーモジュール用基板及びパワーモジュール
JP6357917B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法、パワーモジュール
JP6129090B2 (ja) パワーモジュール及びパワーモジュールの製造方法
JP2006351988A (ja) セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
JP6439489B2 (ja) パワーモジュール用基板の製造方法及びパワージュールの製造方法
JP6631333B2 (ja) パワーモジュール用基板の製造方法
JP2012146801A (ja) ヒートシンク、ヒートシンク付パワーモジュール用基板、パワーモジュール及びヒートシンクの製造方法。
JP6481409B2 (ja) パワーモジュール用基板及びパワーモジュール
JP6565735B2 (ja) パワーモジュール用基板及びパワーモジュール並びにパワーモジュール用基板の製造方法
JP2018157115A (ja) 絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP2017168635A (ja) パワーモジュール用基板及びパワーモジュールの製造方法
JP2016152383A (ja) パワーモジュール用基板及びパワーモジュール
CN109219878B (zh) 绝缘电路基板的制造方法、绝缘电路基板及热电转换模块
JP7166490B2 (ja) 半導体装置及びその製造方法
WO2016060079A1 (ja) 冷却器付パワーモジュール用基板及びその製造方法
WO2024014532A1 (ja) 複層接合体及びそれを用いた半導体装置、並びにこれらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150