JP2016151197A - 排気浄化システム - Google Patents

排気浄化システム Download PDF

Info

Publication number
JP2016151197A
JP2016151197A JP2015027977A JP2015027977A JP2016151197A JP 2016151197 A JP2016151197 A JP 2016151197A JP 2015027977 A JP2015027977 A JP 2015027977A JP 2015027977 A JP2015027977 A JP 2015027977A JP 2016151197 A JP2016151197 A JP 2016151197A
Authority
JP
Japan
Prior art keywords
maf
nox
value
injection
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015027977A
Other languages
English (en)
Other versions
JP6492733B2 (ja
Inventor
輝男 中田
Teruo Nakada
輝男 中田
隆行 坂本
Takayuki Sakamoto
隆行 坂本
長岡 大治
Taiji Nagaoka
大治 長岡
裕之 遊座
Hiroyuki Yuza
裕之 遊座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015027977A priority Critical patent/JP6492733B2/ja
Priority to PCT/JP2016/054200 priority patent/WO2016133026A1/ja
Publication of JP2016151197A publication Critical patent/JP2016151197A/ja
Application granted granted Critical
Publication of JP6492733B2 publication Critical patent/JP6492733B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】吸入空気量が十分に下がった状態で噴射系制御を行えるようにする。【解決手段】エンジン10の排気通路に設けられて排気空燃比がリーン状態では排気中のNOxを吸蔵するNOx還元型触媒32と、エンジン10の吸入空気量を検出するMAFセンサ40と、吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御を併用してリーン状態からリッチ状態に切り替えることで、吸蔵されたNOxを還元浄化してNOx還元型触媒32から放出させるECU50を備える排気浄化システムであって、ECU50は、第1MAF目標値MAFL_Trgtと第2MAF目標値MAFNPL_Trgtとの差分値であるMAF目標値変化量△MAFTrgtと、第1MAF目標値MAFL_Trgtと実MAF値MAFActの差分値である実MAF変化量ΔMAFActの比率(実MAF変化率ΔMAFRatio)に基づき、噴射系制御の開始時期を判定する。【選択図】図5

Description

本発明は、排気浄化システムに関する。
従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。このNOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合は、NOx吸蔵能力を回復させるべく、ポスト噴射や排気管噴射によって排気をリッチ状態にする所謂NOxパージを定期的に行う必要がある(例えば、特許文献1参照)。
特開2008−202425号公報
上述のNOxパージを、ポスト噴射や排気管噴射による噴射系制御のみで行うと、燃料消費量が過多となり燃費性能を悪化させる。このため、噴射系制御と吸気スロットルバルブやEGRバルブの開度調整により吸入空気量を減少させる空気系制御とを併用することが好ましい。
噴射系制御と空気系制御を併用する場合、空気系制御で吸入空気量を十分に下げてから噴射系制御を行うことが望ましい。排気の空気過剰率を十分に下げることができ、NOx吸蔵還元型触媒によってNOxを確実に還元浄化できるからである。しかしながら、空気系制御によって所望の吸入空気量に下げるための時間にはばらつきがある。このため、吸入空気量が十分に下がっていない状態で噴射系制御を行ってしまう可能性もあり、噴射系制御時間の増加に伴う燃料排出量の増加や燃費の悪化といった課題がある。
開示のシステムは、吸入空気量が十分に下がった状態で噴射系制御を行えるようにすることを目的とする。
開示のシステムは、内燃機関の排気通路に設けられて排気空燃比がリーン状態では排気中のNOxを吸蔵するNOx還元型触媒と、前記内燃機関の吸入空気量を検出する吸入空気量センサと、吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して前記排気空燃比を前記リーン状態からリッチ状態に切り替えることで、吸蔵されたNOxを還元浄化して前記NOx還元型触媒から放出させる制御部と、を備え、前記制御部は、前記リーン状態の第1目標吸入空気量と前記リッチ状態の第2目標空気量との第1差分値と、前記第1目標吸入空気量と前記吸入空気量との第2差分値の比率に基づき、前記噴射系制御の開始時期を判定する。
開示のシステムによれば、吸入空気量が十分に下がった状態で噴射系制御を行うことができる。
本実施形態に係る排気浄化システムを示す全体構成図である。 本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。 本実施形態に係るNOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 本実施形態に係るNOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 本実施形態に係る噴射系制御開始判定部の処理を模式的に説明する図である。 本実施形態に係るMAF追従制御のリーン状態からリッチ状態への切り替えを説明するフロー図である。 本実施形態に係るMAF追従制御のリッチ状態からリーン状態への切り替えを説明するフロー図である。 リーン状態からリッチ状態又はリッチ状態からリーン状態に移行する際の実MAF値とMAF目標値とのずれを説明する図である。 本実施形態に係るインジェクタの噴射量学習補正の処理を示すブロック図である。 本実施形態に係る学習補正係数の演算処理を説明するフロー図である。 本実施形態に係るMAF補正係数の設定処理を示すブロック図である。
以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。
図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射するインジェクタ11がそれぞれ設けられている。これら各インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。
エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。
EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。
排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気管噴射装置34が設けられている。
酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気管噴射装置34又はインジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。
NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。
フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中の粒子状物質(以下、PMともいう)を隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ再生が実行される。フィルタ再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。
第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、NOx吸蔵還元型触媒32とフィルタ33との間に設けられており、フィルタ33に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。
ECU50は、本発明の制御部の一例であり、エンジン10等の各種制御を行う。ECU50は、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40〜46のセンサ値が入力される。また、ECU50は、フィルタ再生制御部51と、NOxパージ制御部70と、MAF追従制御部80と、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
[フィルタ再生制御]
フィルタ再生制御部51は、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると、排気管噴射装置34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。このフィルタ再生処理は、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下すると終了される。なお、終了判定は、フィルタ再生開始からの上限経過時間や上限累積噴射量を基準にしてもよい。
[NOxパージ制御]
NOxパージ制御部70は、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御(以下、この制御をNOxパージ制御という)を実行する。
図2に示すように、NOxパージ制御を開始するNOxパージフラグFNPは、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えるとオンにされる(図2の時刻t参照)。あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に、NOxパージフラグFNPはオンにされる。
本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。
[NOxパージリーン制御のMAF目標値設定]
図3は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
まず、第1目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(1)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。
MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFNPがオン(図2の時刻t参照)になるとランプ処理部73に入力される。ランプ処理部73は、各ランプ係数マップ73A,73Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部74に入力する。
バルブ制御部74は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
このように、本実施形態では、第1目標空気過剰率設定マップ71から読み取られる空気過剰率目標値λNPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
[NOxパージリッチ制御の燃料噴射量設定]
図4は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。
噴射系制御開始判定部75は、NOxパージ制御部70による噴射系制御の開始タイミングを判定する。噴射系制御開始判定部75には、MAFセンサ40の検出信号が入力されると共に、リーン状態からリッチ状態への切り替え前(リーン状態)のMAF目標値である第1MAF目標値MAFL_Trgtと、切り替え後(リッチ状態)のMAF目標値である第2MAF目標値MAFNPL_Trgtと、噴射系制御の開始タイミングの到来を判定するための判定用閾値とが参照される。本実施形態における判定用閾値はECU50の記憶部(不図示)に記憶されており、最大値から最小値の範囲内で変更可能である。
図5の時刻tに示すように、NOxパージフラグFNPがオン(FNP=1)にされると、噴射系制御開始判定部75は、第2MAF目標値MAFNPL_Trgtから第1MAF目標値MAFL_Trgtを減算することで、切り替え前後のMAF目標値変化量ΔMAFTrgt(=MAFNPL_Trgt−MAFL_Trgt)を演算する。このMAF目標値変化量ΔMAFTrgtは、本発明の第1差分値の一例である。
次に、噴射系制御開始判定部75は、MAFセンサ40で検出される現在の実MAF値MAFActから第1MAF目標値MAFL_Trgtを減算することで、MAF追従制御の開始から現在までの実MAF変化量ΔMAFAct(=MAFAct−MAFL_Trgt)を演算する。この実MAF変化量ΔMAFActは、本発明の第2差分値の一例である。
そして、噴射系制御開始判定部75は、実MAF変化量ΔMAFActを切り替え前後のMAF目標値変化量ΔMAFTrgtで除算することで、実MAF変化率ΔMAFRatio(=ΔMAFAct/ΔMAFTrgt)を演算する。この実MAF変化率ΔMAFRatioは、本発明の第1差分値と第2差分値の比率の一例である。
さらに、噴射系制御開始判定部75は、実MAF変化率ΔMAFRatioをリアルタイムで演算すると共に判定用閾値と比較し、実MAF変化率ΔMAFRatioが判定用閾値以上となった場合に、MAFが十分に下がったとして、噴射量目標値演算部77に対して開始信号を出力し、噴射系制御の開始を指示する。図5の例では、時刻tで実MAF変化率ΔMAFRatioが判定用閾値に到達したことから、噴射量目標値演算部77に対して噴射系制御の開始が指示されている。これにより、時刻t以降にポスト噴射や排気管噴射が行われる。
第2目標空気過剰率設定マップ76は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
まず、第2目標空気過剰率設定マップ76から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部77に入力される。
噴射量目標値演算部77では、以下の数式(2)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。この演算は、噴射系制御開始判定部75からの開始信号が入力されたことを条件に行われる。
NPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Trgt×RoFuel×AFRsto)−Qfnl_corrd・・・(2)
数式(2)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
噴射量目標値演算部77によって演算される目標噴射量QNPR_Trgtは、各インジェクタ11又は排気管噴射装置34に噴射指示信号として送信される(図2及び図5の時刻t)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図2の時刻t)にされるまで継続される。これにより、各インジェクタ11によるポスト噴射や排気管噴射装置34による排気管噴射が行われる。
このように、本実施形態では、空気系制御(NOxパージリーン制御)によるMAF値の目標到達度を、噴射系制御開始判定部75で演算された実MAF変化率ΔMAFRatioに基づいて判定している。そして、噴射系制御開始判定部75は、実MAF変化率ΔMAFRatioが所定の判定用閾値に到達した場合に、噴射系制御(ポスト噴射,排気管噴射)を開始させている。その結果、MAFが十分に下がった状態で未燃燃料が供給される。言い換えれば、リッチ制御によるNOx還元の効果が見込める状況下で未燃燃料が供給される。その結果、噴射系制御時間が短縮されて燃費の向上が図れる。
また、ECU50は、判定用閾値に関し、最大値から最小値までの範囲内で数値を変更可能に記憶しているので、システムに適した判定基準を容易に設定できる。
また、本実施形態では、第2目標空気過剰率設定マップ76から読み取られる空気過剰率目標値λNPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
[NOxパージ制御の空気系制御禁止]
ECU50は、エンジン10の運転状態が低負荷側の領域では、MAFセンサ40のセンサ値に基づいて吸気スロットルバルブ16やEGRバルブ24の開度をフィードバック制御している。一方、エンジン10の運転状態が高負荷側の領域では、ECU50はブースト圧センサ46のセンサ値に基づいて可変容量型過給機20による過給圧をフィードバック制御している(以下、この領域をブースト圧FB制御領域という)。
このようなブースト圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の制御が可変容量型過給機20の制御と干渉してしまう現象が生じる。このため、上述の数式(1)で設定されるMAF目標値MAFNPL_Trgtに基づいて空気系をフィードバック制御するNOxパージリーン制御を実行しても、吸入空気量をMAF目標値MAFNPL_Trgtに維持できない課題がある。その結果、ポスト噴射や排気管噴射を実行するNOxパージリッチ制御を開始しても、空気過剰率をNOxパージに必要な第2目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させられない可能性がある。
このような現象を回避すべく、本実施形態のNOxパージ制御部70は、ブースト圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の開度を調整するNOxパージリーン制御を禁止し、排気管噴射又はポスト噴射のみで空気過剰率を第2目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させる。これにより、ブースト圧FB制御領域においても、NOxパージを確実に行うことが可能になる。なお、この場合、上述の数式(2)のMAF目標値MAFNPL_Trgtには、エンジン10の運転状態に基づいて設定されるMAF目標値を適用すればよい。
[NOxパージ制御の終了判定]
NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図2の時刻t参照)。
このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。
[MAF追従制御]
MAF追従制御部80は、(1)通常運転のリーン状態からNOxパージ制御によるリッチ状態への切り替え期間及び、(2)NOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(以下、この制御をMAF追従制御という)を実行する。
NOxパージリーン制御の空気系動作によってエンジン10の燃焼室内に大量のEGRガスが導入されると、通常運転のリーン状態と同じ燃料噴射タイミングでは着火遅れが生じる。そのため、リーン状態からリッチ状態に切り替える場合は、噴射タイミングを所定量ほど進角させる必要がある。また、リッチ状態から通常のリーン状態に切り替える際は、噴射タイミングを遅角により通常の噴射タイミングに戻す必要がある。しかしながら、噴射タイミングの進角や遅角は、空気系動作よりも迅速に行われる。このため、空気系動作によって空気過剰率が目標空気過剰率に達する前に噴射タイミングの進角や遅角が完了してしまい、NOx発生量や燃焼騒音やトルク等の急増加によるドライバビリティーの悪化を招く課題がある。
このような現象を回避すべく、MAF追従制御部80は、図6,7のフローチャートに示すように、MAF変化に応じて噴射タイミングの進角や遅角、噴射量を増減補正するMAF追従制御を実行する。
まず、図6に基づいて、リーン状態からリッチ状態への切り替え期間のMAF追従制御を説明する。
ステップS100で、NOxパージフラグFNPがオン(FNP=1)にされると、ステップS110では、MAF追従制御の経過時間を計測すべくタイマによる計時が開始される。
ステップS120では、切り替え後(リッチ状態)のMAF目標値MAFNPL_Trgtから切り替え前(リーン状態)のMAF目標値MAFL_Trgtを減算することで、切り替え前後のMAF目標値変化量ΔMAFTrgt(=MAFNPL_Trgt−MAFL_Trgt)が演算される。
ステップS130では、現在の実MAF変化率ΔMAFRatioが演算される。より詳しくは、MAFセンサ40で検出される現在の実MAF値MAFActから切り替え前のMAF目標値MAFL_Trgtを減算することで、MAF追従制御の開始から現在までの実MAF変化量ΔMAFAct(=MAFAct−MAFL_Trgt)が演算される。そして、この実MAF変化量ΔMAFActを切り替え前後のMAF目標値変化量ΔMAFTrgtで除算することで、実MAF変化率ΔMAFRatio(=ΔMAFAct/ΔMAFTrgt)が演算される。
ステップS140では、現在の実MAF変化率ΔMAFRatioに応じて、各インジェクタ11の噴射タイミングを進角又は遅角させる係数(以下、噴射タイミング追従係数Compと称する)及び、各インジェクタ11の噴射量を増加又は減少させる係数(以下、噴射量追従係数Compと称する)が設定される。より詳しくは、ECU50の図示しない記憶部には、予め実験等により作成した実MAF変化率MAFRatioと噴射タイミング追従係数Compとの関係を規定した噴射タイミング追従係数設定マップM1及び、実MAF変化率MAFRatioと噴射量追従係数Compとの関係を規定した噴射量追従係数設定マップM2が記憶されている。噴射タイミング追従係数Comp及び、噴射量追従係数Compは、これらのマップM1,M2から、ステップS130で演算した実MAF変化率ΔMAFRatioに対応する値をそれぞれ読み取ることで設定される。
ステップS150では、目標進角量に噴射タイミング追従係数Compを乗じた分だけ各インジェクタ11の噴射タイミングが進角されると共に、目標噴射増加量に噴射量追従係数Compを乗じた分だけ各インジェクタ11も燃料噴射量が増加される。
その後、ステップS160では、MAFセンサ40で検出される現在の実MAF値MAFActが切り替え後(リッチ状態)のMAF目標値MAFNPL_Trgtに達したか否かが判定される。実MAF値MAFActがMAF目標値MAFNPL_Trgtに達していない場合(No)は、ステップS170を経由してステップS130に戻される。すなわち、実MAF値MAFActがMAF目標値MAFNPL_Trgtになるまで、ステップS130〜S150の処理を繰り返すことで、時々刻々と変化する実MAF変化率MAFRatioに応じた噴射タイミングの進角及び、噴射量の増加が継続される。ステップS170の処理についての詳細は後述する。一方、ステップS160の判定で、実MAF値MAFActがMAF目標値MAFNPL_Trgtに達すると(Yes)、本制御は終了する。
ステップS170では、MAF追従制御の開始からタイマによって計時された累積時間TSumが、所定の上限時間TMaxを超えたか否かが判定される。
図8(A)に示すように、リーン状態からリッチ状態に移行する際に、バルブ制御遅れ等の影響で実MAF値MAFActが移行期間中のMAF目標値MAFL−R_Trgtに追いつけず、実MAF値MAFActがMAF目標値MAFL−R_Trgtよりも高い状態に維持される場合がある(時刻t〜t参照)。このような状態でMAF追従制御を継続すると、実際の燃料噴射量が目標噴射量まで増加されず、エンジン10の燃焼が不安定になり、トルク変動やドライバビリティーの悪化等を招く可能性がある。
本実施形態では、このような現象を回避すべく、ステップS170にて、累積時間TSumが上限時間TMaxを超えたと判定された場合(Yes)、すなわち、実MAF値MAFActが所定時間継続して所定値以上変化しなかった場合は、ステップS180に進み、噴射タイミング追従係数Comp及び、噴射量追従係数Compを強制的に「1」に設定する。これにより、MAF追従制御が強制的に終了されて、トルク変動やドライバビリティーの悪化を効果的に防止することができる。
次に、図7に基づいて、リッチ状態からリーン状態への切り替え時のMAF追従制御を説明する。
ステップS200で、NOxパージフラグFNPがオフ(FNP=0)にされると、ステップS210では、MAF追従制御の経過時間を計測すべくタイマによる計時が開始される。
ステップS220では、切り替え後(リーン状態)のMAF目標値MAFL_Trgtから切り替え前(リッチ状態)のMAF目標値MAFNPL_Trgtを減算することで、切り替え前後のMAF目標値変化量ΔMAFTrgt(=MAFL_Trgt−MAFNPL_Trgt)が算出される。
ステップS230では、現在の実MAF変化率ΔMAFRatioが演算される。より詳しくは、MAFセンサ40で検出される現在の実MAF値MAFActから切り替え前のMAF目標値MAFNPL_Trgtを減算することで、MAF追従制御の開始から現在までの実MAF変化量ΔMAFAct(=MAFAct−MAFNPL_Trgt)が演算される。そして、この実MAF変化量ΔMAFActを切り替え前後のMAF目標値変化量ΔMAFTrgtで除算することで、実MAF変化率ΔMAFRatio(=ΔMAFAct/ΔMAFTrgt)が演算される。
ステップS240では、噴射タイミング追従係数設定マップM1から実MAF変化率ΔMAFRatioに対応する値が噴射タイミング追従係数Compとして読み取られると共に、噴射量追従係数設定マップM2から実MAF変化率ΔMAFRatioに対応する値が噴射量追従係数Compとして読み取られる。
ステップS250では、目標遅角量に噴射タイミング追従係数Compを乗じた分だけ各インジェクタ11の噴射タイミングが遅角されると共に、目標噴射減少量に噴射量追従係数Compを乗じた分だけ各インジェクタ11も燃料噴射量が減少される。
その後、ステップS260では、MAFセンサ40で検出される現在の実MAF値MAFActが切り替え後(リーン状態)のMAF目標値MAFL_Trgtに達したか否かが判定される。実MAF値MAFActがMAF目標値MAFL_Trgtに達していない場合(No)は、ステップS270を経由してステップS230に戻される。すなわち、実MAF値MAFActがMAF目標値MAFL_Trgtになるまで、ステップS230〜S250の処理を繰り返すことで、時々刻々と変化する実MAF変化率MAFRatioに応じた噴射タイミングの遅角及び、噴射量の減少が継続される。ステップS270の処理についての詳細は後述する。一方、ステップS260の判定で、実MAF値MAFActがMAF目標値MAFL_Trgtに達すると(Yes)、本制御は終了する。
ステップS270では、MAF追従制御の開始からタイマによって計時された累積時間TSumが、所定の上限時間TMaxを超えたか否かが判定される。
図8(B)に示すように、リーン状態からリッチ状態に移行する際に、バルブ制御遅れ等の影響で実MAF値MAFActが移行期間中のMAF目標値MAFL−R_Trgtに追いつけず、実MAF値MAFActがMAF目標値MAFL−R_Trgtよりも低い状態を維持する場合がある(時刻t〜t参照)。このような状態でMAF追従制御を継続すると、実際の燃料噴射量が目標噴射量よりも多くなり、トルク変動やドライバビリティーの悪化等を招く可能性がある。
本実施形態では、このような現象を回避すべく、ステップS270にて、累積時間TSumが上限時間TMaxを超えたと判定された場合(Yes)、すなわち、実MAF値MAFActが所定時間継続して所定値以上変化しなかった場合は、ステップS280に進み、噴射タイミング追従係数Comp及び、噴射量追従係数Compを強制的に「1」に設定する。これにより、MAF追従制御が強制的に終了されて、トルク変動やドライバビリティーの悪化を効果的に防止することができる。
[MAF追従制御の禁止]
上述したように、ブースト圧FB制御領域では、MAFセンサ40のセンサ値に基づいて空気系をフィードバック制御するNOxパージリーン制御を禁止している。MAF追従制御も吸入空気量の変化率に応じて噴射タイミングの進角や噴射量の増加を制御しているため、ブースト圧FB制御領域では正確な制御を行えない可能性がある。
そこで、本実施形態は、ブースト圧FB制御領域ではMAF追従係数Comp1,2を「1」に設定することで、MAF追従制御の実行を禁止するようになっている。これにより、MAF追従制御が不正確になることで引き起こされるエンジン10のトルク変動やドライバビリティーの悪化が効果的に防止される。
[噴射量学習補正]
図9に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、酸化触媒31でHCの酸化反応が生じないため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。このため、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図10のフローに基づいて説明する。
ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。
ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst−λAct)×K×K)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数Kは、図9に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。
ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。
ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。
ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図9参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。
ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図9に示す噴射量補正部92に入力される。
噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。
このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各インジェクタ11に燃料噴射量を補正することで、各インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。
[MAF補正係数]
MAF補正係数演算部95は、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
本実施形態において、各インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。
図11は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。
MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部72及び噴射量目標値演算部77に送信する。これにより、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。
[その他]
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
10 エンジン
11 インジェクタ
12 吸気通路
13 排気通路
16 吸気スロットルバルブ
24 EGRバルブ
31 酸化触媒
32 NOx吸蔵還元型触媒
33 フィルタ
34 排気管噴射装置
40 MAFセンサ
45 NOx/ラムダセンサ
50 ECU

Claims (2)

  1. 内燃機関の排気通路に設けられて排気空燃比がリーン状態では排気中のNOxを吸蔵するNOx還元型触媒と、前記内燃機関の吸入空気量を検出する吸入空気量センサと、吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して前記排気空燃比を前記リーン状態からリッチ状態に切り替えることで、吸蔵されたNOxを還元浄化して前記NOx還元型触媒から放出させる制御部と、を備える排気浄化システムであって、
    前記制御部は、前記リーン状態の第1目標吸入空気量と前記リッチ状態の第2目標空気量との第1差分値と、前記第1目標吸入空気量と前記吸入空気量との第2差分値の比率に基づき、前記噴射系制御の開始時期を判定する
    排気浄化システム。
  2. 前記制御部は、数値を変更可能に記憶されている判定用閾値と前記比率とを比較し、前記比率が前記判定用閾値に到達した場合に、前記噴射系制御の開始時期であると判定する
    請求項1に記載の排気浄化システム。
JP2015027977A 2015-02-16 2015-02-16 排気浄化システム Expired - Fee Related JP6492733B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015027977A JP6492733B2 (ja) 2015-02-16 2015-02-16 排気浄化システム
PCT/JP2016/054200 WO2016133026A1 (ja) 2015-02-16 2016-02-12 排気浄化システム及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027977A JP6492733B2 (ja) 2015-02-16 2015-02-16 排気浄化システム

Publications (2)

Publication Number Publication Date
JP2016151197A true JP2016151197A (ja) 2016-08-22
JP6492733B2 JP6492733B2 (ja) 2019-04-03

Family

ID=56689223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027977A Expired - Fee Related JP6492733B2 (ja) 2015-02-16 2015-02-16 排気浄化システム

Country Status (2)

Country Link
JP (1) JP6492733B2 (ja)
WO (1) WO2016133026A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019785A (ja) * 2017-07-19 2019-02-07 いすゞ自動車株式会社 排気浄化システム
JP2019027293A (ja) * 2017-07-26 2019-02-21 マツダ株式会社 過給機付エンジンの制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844576B2 (ja) * 2018-04-09 2021-03-17 株式会社デンソー 空燃比制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209644A (ja) * 1984-04-02 1985-10-22 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2002371889A (ja) * 2001-06-13 2002-12-26 Nissan Motor Co Ltd ディーゼルエンジンの制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182439A (ja) * 1985-02-06 1986-08-15 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置
JPH11236841A (ja) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp 内燃機関の燃料噴射制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209644A (ja) * 1984-04-02 1985-10-22 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2002371889A (ja) * 2001-06-13 2002-12-26 Nissan Motor Co Ltd ディーゼルエンジンの制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019785A (ja) * 2017-07-19 2019-02-07 いすゞ自動車株式会社 排気浄化システム
JP7019983B2 (ja) 2017-07-19 2022-02-16 いすゞ自動車株式会社 排気浄化システム
JP2019027293A (ja) * 2017-07-26 2019-02-21 マツダ株式会社 過給機付エンジンの制御装置

Also Published As

Publication number Publication date
WO2016133026A1 (ja) 2016-08-25
JP6492733B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
CN106795823B (zh) 排气净化系统
JP6476930B2 (ja) 排気浄化システム
JP2016133050A (ja) 排気浄化システム
JP6492733B2 (ja) 排気浄化システム
JP2016133064A (ja) 排気浄化システム
JP6455237B2 (ja) 排気浄化システム
JP6447097B2 (ja) 排気浄化システム
WO2016143902A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6550772B2 (ja) 排気浄化システム
WO2016190315A1 (ja) 排気浄化装置、制御装置、及び制御方法
JP6418014B2 (ja) 排気浄化システム
JP6492703B2 (ja) 排気浄化システム
JP6468005B2 (ja) 排気浄化システム
JP2016133063A (ja) 排気浄化システム
JP6432401B2 (ja) 排気浄化システム
JP6398505B2 (ja) 排気浄化システム
JP6471854B2 (ja) 排気浄化システム
JP6443033B2 (ja) 排気浄化システム
JP6481392B2 (ja) 排気浄化システム
JP2016123909A (ja) 排気浄化システム
WO2016117612A1 (ja) 排気浄化システム及び触媒再生方法
JP2016169623A (ja) 排気浄化システム
JP2016153618A (ja) 排気浄化システム
JP2016160857A (ja) 排気浄化システム
JP2016133049A (ja) 排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees