JP2016145972A - 量子ドットの製造方法と量子ドット - Google Patents

量子ドットの製造方法と量子ドット Download PDF

Info

Publication number
JP2016145972A
JP2016145972A JP2016008999A JP2016008999A JP2016145972A JP 2016145972 A JP2016145972 A JP 2016145972A JP 2016008999 A JP2016008999 A JP 2016008999A JP 2016008999 A JP2016008999 A JP 2016008999A JP 2016145972 A JP2016145972 A JP 2016145972A
Authority
JP
Japan
Prior art keywords
quantum dot
layer
plane
base material
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008999A
Other languages
English (en)
Other versions
JP6664969B2 (ja
Inventor
拓也 風間
Takuya Kazama
拓也 風間
渉 田村
Wataru Tamura
渉 田村
康之 三宅
Yasuyuki Miyake
康之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Publication of JP2016145972A publication Critical patent/JP2016145972A/ja
Application granted granted Critical
Publication of JP6664969B2 publication Critical patent/JP6664969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】信頼性が高く、効率のよい量子ドットを得る。【解決手段】量子ドットの製造方法は、II族元素としてZn,Mgの少なくとも1つを含むII−VI族半導体材料で形成された母材粒子を準備する工程と、液相中において、前記母材粒子をエッチして、特定面方位を有する、ナノシード粒子に加工する加工工程と、を有する。【選択図】 図4

Description

本発明は、量子ドットの製造方法と量子ドットに関する。
半導体材料を含む量子ドットの用途として、蛍光体がある。高エネルギーの光や粒子線を受けて所定波長の蛍光を発することが可能である。量子ドットを均等に分布させ、蛍光を発生させることにより、面光源を得ることができる。
CdSe,CdS,InP,GaP等のコアをZnS,ZnSe等のシェル層で覆ったコアシェル構造の量子ドットが提案されている(例えば特許文献1)。また、III−V族半導体(InGaN)のコアをII−VI族半導体(ZnO,ZnS,ZnSe,ZnTe等)のシェルで覆う構造が提案されている(例えば特許文献2)。
現在、可視光域の量子ドットとしてエネルギーギャップの小さいコアにエネルギーギャップの大きいシェルを積層したCdSe/ZnSやInP/ZnS等が利用されている。異なる化合物材料でコアシェル構造を構成した場合、格子不整合(CdSe/ZnS:11.1%、InP/ZnS:7.8%)が生じる。格子不整合は、結晶格子を歪ませ、発
光効率や信頼性を低下させる原因となるであろう。
課題として、格子不整合による発光効率の低下を記載し、III−V族In1−xGaA混晶(A=NまたはP)のコアをIII−V族In1−xnGaxnA混晶の複数のシェル層で被覆し、x<xn<xn+1とした、ナノ粒子蛍光体(III−V族半導体混晶の多層コアシェル構造)が提案されている(例えば特許文献3)。
特開2011−76827号公報 特開2010−155872号公報(登録4936338号公報) 特開2012−87220号公報
蛍光体等として、信頼性が高く、効率のよい量子ドットを得ることが望まれる場合がある。
実施例によれば、
II族元素としてZn,Mgの少なくとも1つを含むII−VI族半導体材料で形成された母材粒子を準備する工程と、
液相中において、前記母材粒子をエッチして、特定面方位を有する、ナノシード粒子に加工する加工工程と、
を有する量子ドットの製造方法
が提供される。
特定面方位の上には、信頼性が高く、効率のよい結晶層を形成しやすい。
図1は、ZnOS混晶系、GaInN混晶系、AlInN混晶系の格子定数とエネルギーギャップの関係を示すグラフである。 図2は、ZnO1−x混晶系、Ga1−xInN混晶系、Al1−xInN混晶系の組成xに対する格子定数の変化を示すグラフである。 図3A−3Dは、第1実施例による量子ドットの製造プロセスを概略的に示す断面図、図3Eは変形例を概略的に示す断面図、図3Fは変形例を概略的に示す斜視図である。 図4A−4Eは、第2実施例による量子ドットの製造プロセスを概略的に示す断面図、図4Fは変形例を概略的に示す断面図である。 図5は、反応容器の例を概略的に示す側面図である。 図6は、エッチング装置の例を概略的に示す側面図である。 図7は、加圧反応容器の例を概略的に示す側面図である。
11 母材粒子、 13 InGaN、 15,31 InAlN,
39 フラスコ、 16 ポート、 17 シリンジ、 18 温度測定部、
19 ヒータ、 27 励起光源、 28 モノクロメータ, 32 反応容器、
33 温度センサ(熱電対)、 34 ヒータ、
35 撹拌機構(回転羽根)、 36〜38 吸気口/排気口。
図1は、ZnOS混晶系、GaInN混晶系、AlInN混晶系の格子定数とエネルギーギャップの関係を示すグラフである。「混晶系」は、両端物質と中間の混晶を含む系を表す用語である。横軸がnm(ナノメータ)を単位とする格子定数を示し、縦軸がeV(エレクトロンボルト)を単位とするエネルギーギャップを示す。発光波長を決定するエネルギーギャップは、ZnO:3.2eV、ZnS:3.8eV、AlN:6.2eV、GaN:3.4eV、InN:0.64eVである。
6方晶系の結晶をc軸方向に結晶成長する場合、成長面内の格子定数としてa軸方向の格子定数を用いる。ZnO、ZnSの格子定数はa軸0.324nm、0.382nm、AlN、GaN、InNの格子定数はa軸0.311nm、0.320nm、0.355nmである。
化合物を対とする場合、格子定数の1番近い組み合わせでも、ZnOの0.324nmとGaNの0.320nmであり、1%を超える格子不整が存在する。
図2は、ZnO1−x混晶系、Ga1−xInN混晶系、Al1−xInN混晶系の組成xに対する格子定数(a軸方向)の変化を概略的に示すグラフである。横軸が組成xを示し、縦軸が格子定数を示す。ZnOSとAlGaInNは同じ六方晶系のウルツ鉱結晶構造を持つ。混晶を形成すると両端物質の中間の格子定数を調整でき、格子整合を実現できる。
格子定数、エネルギーギャップ、組成は一定の関係にあり、図2は、基本的に図1と同じ内容を示す。着目するパラメータに従って、グラフを使い分ける。例えば、格子整合する組成は、図2において、縦軸(格子定数)」が同一となる組成である。好ましい格子整合の整合範囲は、小さい方の格子定数を基準(100%)として、格子定数の差が±1.0%以内であろう。
ZnO1−xとAl1−xInN、Ga1-xInNとが格子整合可能な領域を四角で囲って示す。Al1−xInN(x:0.3〜1.0)、Ga1−yInN(y:0.15〜1.0)、ZnO1−z(z:0.47〜1.0)の組成範囲において、ZnOSとAlInN,GaInNの格子整合が可能である。
ZnOSを下地結晶とし、その上に格子整合するAlGaInNを成長する場合、界面における歪みを低減できる。歪みを低減することにより、結晶欠陥を防止し、高効率な量子ドットを実現できよう。結晶は、結晶方位により特性が変化することが多い。特定の結晶面方位の表面が得られれば、特性を制御しやすい。特定の面方位を有するように母材粒子を加工すると、その上に特性を制御したエピタキシャル層を成長しやすい。
製造しやすいZnOSを用いて母材粒子を形成し、特定面を露出するエッチング加工を行い、その上に格子整合するAlGaInN結晶をヘテロエピタキシャル成長させると、信頼性の高い量子ドットを製造できる。さらにその上に他のAlGaInN結晶を積層成長することも可能である。
第1実施例
図3Dは、第1実施例による量子ドットを概略的に示す断面図である。例えば、C(0001)面である特定面12を有するZnO0.720.28ナノシード粒子11上に、(0001)面を有するIn0.60Ga0.40N層13、その上に(0001)面を有するIn0.67Al0.33N層15が形成されている。図2に示されるように、ZnO0.720.28、In0.60Ga0.40N、In0.67Al0.33Nは格子整合する。各結晶のバンドギャップは、図1に示されるように、In0.60Ga0.40N<In0.67Al0.33N<ZnO0.720.28の関係を満たす。In0.60Ga0.40N層13が発光層として機能し、キャリア再結合によりバンド端発光すると、両側のZnO0.720.28層11およびIn0.67Al0.33N15は、その光を透過させる障壁層として機能する。また、各結晶の(0001)面方位が揃っており、所望の特性が得やすい。
図3A−3Dを参照して、量子ドットの製造方法の例を説明する。1粒の量子ドットを示すが、以下に説明する液相合成によれば、多数の量子ドットが同時に製造される。量子ドットの大きさは、反応条件などによって制御できる。例えば、平均粒子径を、50nm以下として、液相中で懸濁可能にできる。
まず、ホットインジェクションにより、ZnO0.720.28母材粒子を合成する。
図5に示すように、300mlの石英製フラスコ40を反応容器として準備する。フラスコ40は、取出し口の他、不活性ガスで置換できるポート16、反応前駆体を注入できるシリンジ17を備える複数の専用ポート、熱電対を取り付けた温度測定部18を備える。不活性ガスとしてはアルゴン(Ar)を用いる。フラスコ40はマントルヒータ19上に設置する。
反応前駆体として、不活性ガスで封入したジエチル亜鉛(Zn(C)、酸素をバブリングしたオクチルアミン(C17NH)、ビス(トリメチルシリル)スルフィド(bis(trimethylsilyl) sulfide) が充填されたシリンジ17をそれぞれ用意する。ジエチル亜鉛(Zn(C)が4.0mmol、酸素ガスをバブリングしたオクチルアミン(C17NH)が2.8mmol、ビス(トリメチルシリル)スルフィド(bis(trimethylsilyl) sulfide)が1.2mmolとなるように、ジエチル亜鉛を410μl、オクチルアミンを460μl、ビス(トリメチルシリル)スルフィドを250μl調合する。ここで酸素をバブリングしたオクチルアミンは、予めオクチルアミン(C17NH)に酸素を2分間バブリングすることで作製しておく。なお、反応前駆体の比率を変更すると、ナノ粒子の組成を変更できる。
反応溶媒であるトリnオクチルフォスフィンオキサイド(tri-n-octylphosphine oxide,TOPO)8gとヘキサデシルアミンhexadecylamine(HDA)4gを反応容器40に入れる。不活性ガス(Ar)雰囲気とし、スターラで撹拌しつつマントルヒータ19を使用して300℃に加熱し、すべてを溶解させる。
反応溶媒が300℃に達したら、反応前駆体をそれぞれのシリンジより素早く投入する。反応前駆体の熱分解によりZnO0.720.28の結晶核が生成する。反応前駆体を注入した直後に、温度を200℃まで急冷する。300℃のままにすると反応前駆体の多くが核形成に費やされてしまい時間経過とともにさまざまなサイズの核が生成されてしまう。急冷により反応溶媒中での新たな核形成を防ぐことができる。その後、反応溶媒を240℃まで再加熱し、240分間一定の温度に保ちZnO0.720.28の成長を行う。これにより、図3Aで示すような、20nmを中心サイズとした粒径分布を有するナノサイズの母材粒子が合成できる。
その後、反応容器を100℃まで自然放冷で冷却し、100℃で1時間熱処理を行う。これにより母材粒子の表面の安定化が行える。これを表面安定化処理と呼ぶ。その後、室温まで冷却し、反応液に母材粒子の凝集防止の為に、凝固防止剤としてブタノールを添加し、10時間攪拌する。これを凝集防止処理と呼ぶ。溶媒(TOPO)が溶解する脱水メタノールと、母材粒子を分散させるトルエンを交互に用いた遠心分離(4000rpm、10分間)を繰り返して精製する。繰り返すことで、不要な原料や溶媒を完全に除去する。これを精製処理と呼ぶ。
図3Bに示すように、ZnO0.720.28母材粒子をエッチング加工して、特定面として(0001)面(C面)を有するナノシードを形成する。上記工程で合成したZnO0.720.28母材粒子は表面処理、凝集防止処理、精製処理を施しており、メタノールに分散した状態である。メタノールを気化させ母材粒子を濃縮する。但し、完全に気化させてしまうと母材粒子が凝集してしまうので、わずかにメタノールを残し、光エッチング液である超純水を加える。更に、特定面方位である(0001)面を選択的に露出させる為に、硝酸(61容量%)を加える。エッチング液21の配合比は超純水:硝酸(61容量%)=600:1とする。25℃に保ったこの溶液に酸素を5分間バブリングする。
図6は、光エッチング装置の構成を概略的に示す側面図である。水銀ランプなどの光源27からの光をモノクロメータ28で単波長化し、ロッドレンズ29を介して、フラスコ40内の溶液に入射できる。
フラスコ40にバブリングが終わった混合溶液(エッチング液)21を収容する。ZnO0.720.28母材粒子の吸収端波長よりも十分短波長の光である、発光波長405nm(3.06eV)、半値幅6nmの光をエッチング液に照射する。光源には水銀ランプをモノクロメーターで分光した光を用いる。粒子サイズの違いにより吸収端波長がばらばらなZnO0.720.28母材粒子は光を吸収して光溶解反応が生じ、表面が光溶解液に溶解して徐々に径が小さくなっていく。
エッチングが進行するにつれ吸収端波長が短波長にシフトしていく。加えて選択的なエッチング効果のある硝酸により、光エッチングをアシストすることで、(0001)結晶面が現れる。吸収端波長が照射光の波長より短くなり光溶解反応が停止するまで光を照射する。照射時間は20時間とする。エッチングが終了したら、エッチング液を完全に置換する為、十分な水洗を行う。このようにして、(0001)面(C面)を支配的に有するZnO0.720.28ナノシード粒子を得ることができる。
尚、特定面はC面に限らない。ZnO1−zナノシードをC面でなくM面で形成したい場合は、エッチング液に王水を用いる。この場合、c軸方向に比べm軸方向のエッチングレートが100倍程度早い為、M面制御が可能である。また、C面に対してオフ方向面制御したい場合は、エチレンジアミン4酢酸・2Naとエチレンジアミン混合液を用いることができる。ナノシード表面に、アニオンやアミン、チオール、有機高分子などの表面修飾基をつけても良い。
図3Cに示すように、C面である特定面を露出したZnO0.720.28ナノシード11表面に、In0.60Ga0.40N層13を成長する。In0.60Ga0.40Nは、ZnO0.720.28と格子整合するので、良好な結晶性を有するエピタキシャル層を成長できる。C面を有するIn0.60Ga0.40N層13が成長する。
図7に示すように、まず、反応容器32を用意する。反応容器32は、外側がステンレス、内側がハステロイにより構成される。反応容器32には、少なくとも2つの吸気口36,37と排気口38と、が設けられている。
吸気口36,37には、それぞれバルブを介して,たとえばArガス供給源およびNガス供給源に接続されており、吸気口36,37から反応容器32内に、ArガスおよびNガスを供給することができる。また、排気口38には、バルブを介して、排気ポンプが接続されており、反応容器32内の雰囲気(ガス)を排気することができる。各バルブの調整により、反応容器38内における各種ガスの分圧、特にNガスの分圧を、精確に制御することができる。
また、反応容器32には、温度センサ33、ヒータ34、撹拌機構35等が取り付けられている。温度センサ33は、反応容器31内の収容物の温度を測定することができる。ヒータ34は、当該収容物を加熱することができる。撹拌機構35(回転羽根)は、当該収容物を撹拌することができる。
本工程の試料調整に関する全ての操作は、真空乾燥(140℃)した器具および装置を用いてグローブボックス内で実施する。
図3Bの工程で形成した(0001)面を支配的に有するZnO0.72S0.28ナノシード11を含んだ水溶液6mlを抜き取り、凍結乾燥する。ガリウムの供給源であるヨウ化ガリウム(108mg、0.24mmol)、インジウムの供給源であるヨウ化インジウム(165mg、0.36mmol)、窒素の供給源であるナトリウムアミド(500mg、12.8mmol)、キャッピング剤であるヘキサデカンチオール(380μl、1.0mmol)とステアリン酸亜鉛(379mg、0.6mol)を、溶媒であるジフェニルエーテル(20ml)の入った反応容器31に投入する。
溶媒であるジフェニルエーテルに凍結乾燥後のナノ粒子を予め投入し、超音波により分散させておく。この混合液を225℃まで急速に加熱し、225℃のまま80分間保持する。合成中の窒素分圧は、1500Torrとする。その後再度反応容器を100℃まで自然放冷で冷却し、100℃で1時間熱処理を行う。これによりナノ粒子の表面の安定化が行える。その後、室温まで冷却した反応液にナノ粒子の凝集防止の為に、凝固防止剤としてブタノールを添加し、10時間攪拌する。最後に溶媒(TOPO)が溶解する脱水メタノールと、ナノ粒子を分散させるトルエンを交互に用いた遠心分離(4000rpm、10分間)を繰り返して精製する。不要な原料や溶媒を完全に除去する。
図3Cに示すように、このような手順を経ることで、ZnO0.720.28ナノシード11のC(0001)面12上に厚み4.0nmのIn0.60Ga0.40N窒化物半導体層13がエピタキシャル成長した量子ドットを得ることができる。なお、合成した量子ドット表面の修飾基を配位子交換により、アニオンやアミン、有機高分子などの別の表面修飾基に置き換えてもよい。
図3Dに示すように、In0.60Ga0.40N窒化物半導体層13の上に、In0.67Al0.33N窒化物半導体層15を形成する。また試料調整に関する全ての操作は、真空乾燥(140℃)した器具および装置を用いてグローブボックス内で実施する。
C(0001)面を支配的に有するIn0.60Ga0.40N層13を含む粒子を含んだ水溶液6mlを抜き取り、凍結乾燥する。アルミニウムの供給源であるヨウ化アルミニウム(80mg、0.20mmol)、インジウムの供給源であるヨウ化インジウム(185mg、0.40mmol)、窒素供給源であるナトリウムアミド(500mg、12.8mmol)、キャッピング剤であるヘキサデカンチオール(380μl、1.0mmol)とステアリン酸亜鉛(379mg、0.6mol)を、溶媒であるジフェニルエーテル(20ml)の入ったフラスコに投入する。
溶媒であるジフェニルエーテルには、凍結乾燥後のナノ粒子を予め投入し、超音波により分散させて置く。この混合液を225℃まで急速に加熱し、225℃のまま100分間保持する。合成中の窒素分圧は、1500Torrとする。
その後再度反応容器を100℃まで自然放冷で冷却し、100℃で1時間熱処理を行う。これによりナノ粒子の表面の安定化が行える。その後、室温まで冷却した反応液にナノ粒子の凝集防止の為に、凝固防止剤としてブタノールを添加し、10時間攪拌する。最後に溶媒(ジフェニルエーテル)が溶解する脱水メタノールと、ナノ粒子を分散させるトルエンを交互に用いた遠心分離(4000rpm、10分間)を繰り返して精製する。これを繰り返すことで、不要な原料や溶媒を完全に除去する。このような手順を経ることで、In0.60Ga0.40N層13上に厚み5nmのIn0.67Al0.33N窒化物半導体層15をエピタキシャル成長させた窒化物量子ドットを得ることが出来る。
以上の工程を経ることで、平均粒子径が12nmの窒化物量子ドットが形成できる。なお、合成した量子ドット表面の修飾基を配位子交換により、アニオンやアミン、有機高分子などの別の表面修飾基に置き換えてもよい。
図3Eに示すように、ZnO0.720.28ナノシード11を除去してもよい。このプロセスは必須ではない。ZnO0.720.28ナノシードとIn0.60Ga0.40N層、In0.67Al0.33N層に対するエッチング速度が異なるエッチング液に投入し、ZnO0.720.28を選択的にエッチングする。エッチング液には、例えば、ZnO0.720.28を選択的にはエッチングできる希塩酸を用いる。エッチング液の配合比は、例えば、塩酸(36容量%):純水=1:100とする。エッチングが終了したら、エッチング液を完全に置換する為、十分な水洗を行う。
なお、任意のZnO1−z混晶組成のナノ粒子を合成する為には、反応前駆体を構成する材料の比率を適宜変更すればよい。ZnO0.72S0.28で形成されたナノシードとIn0.60Ga0.40N窒化物半導体層の格子不整合率はほぼゼロである。実際上、反応のバラツキによる変動は許容される。格子不整合の範囲は、格子定数の小さい方を100%として、±1%以内であればよい。組成範囲に直すと、0.67≦z≦0.78となる。
選択的エッチングにより特定面を露出したナノシードは、例えば、板状の形状となる。但し、少なくとも1つの特定面が露出すればよい。図3Fは、1つの特定面12が露出したZnO0.720.28ナノシード11を示す。
ナノシード母材粒子としてZnO1−Z混晶組成を例として選択したが、II−VI属半導体材料であるAB(AはZn、Mgから少なくとも1つ選ばれる元素、BはO、S、Se、Teから少なくとも1つ選ばれる元素)であればよいであろう。たとえば、シード粒子の材料として硫黄を含む材料ビス(トリメチルシリル)スルフィドの一部もしくは全部を、セレンを含む材料トリ−n−オクチルホスフィンセレニドに替えれば、同様の手順でZnOSSeもしくはZnOSeを作製できるであろう。ホットインジェクション法を用いる例を説明したが、高温高圧のアルコール溶媒中での反応を用いるソルボサーマル法を用いてもよい。合成したナノシード母材粒子表面の修飾基を配位子交換により、アニオンやアミン、チオール、有機高分子などの別の表面修飾基に置き換えてもよい。
第2実施例
図4Eは、第2実施例による量子ドットを概略的に示す断面図である。例えば、C(0001)面である特定面12を有するZnO0.720.28ナノシード粒子11上に、(0001)面を有するIn0.67Al0.33N層31、(0001)面を有するIn0.60Ga0.40N層13、その上に(0001)面を有するIn0.67Al0.33N層15が形成されている。
第1実施例と較べると、ZnO0.720.28ナノシード粒子11とIn0.60Ga0.40N層13との間に、In0.67Al0.33N層31が形成されている。In0.60Ga0.40N層13の両側に、In0.67Al0.33N層31、15が配置され、対称的な構成を形成している。
ZnO0.720.28ナノシード粒子11の(0001)面の上に、(0001)面を有し、ナノシード粒子11と格子整合する、In0.67Al0.33N層31、In0.60Ga0.40N層13、In0.67Al0.33N層15の3層が積層された構成である。In0.60Ga0.40N層13が発光層として機能すると、両側のIn0.67Al0.33N層31、15が障壁層として機能する。
図4A〜4Eを参照して、第2実施例による量子ドットの製造方法を説明する。
図4Aは、ZnO0.720.28母材粒子の合成プロセス、図4Bは母材粒子の特定面を露出する加工プロセスを示す。これらのプロセスは、基本的に図3A,3Bに示す第1実施例のプロセスと同じであり、説明を省略する。
図4Cに示すように、C(0001)面12を露出したナノシード粒子11の上に、In0.67Al0.33N層31を形成する。図3Dに示すIn0.67Al0.33N層15の成長プロセスと基本的に同じプロセスである。
試料調整に関する全ての操作は、真空乾燥(140℃)した器具および装置を用いてグローブボックス内で実施する。
C(0001)面を支配的に有するZnO0.72S0.28ナノシード11を含んだ水溶液6mlを抜き取り、凍結乾燥する。アルミニウムの供給源であるヨウ化アルミニウム(80mg、0.20mmol)、インジウムの供給源であるヨウ化インジウム(185mg、0.40mmol)、窒素供給源であるナトリウムアミド(500mg、12.8mmol)、キャッピング剤であるヘキサデカンチオール(380μl、1.0mmol)とステアリン酸亜鉛(379mg、0.6mol)を、溶媒であるジフェニルエーテル(20ml)の入ったフラスコに投入する。溶媒であるジフェニルエーテルには凍結乾燥後のナノ粒子を予め投入し、超音波により分散させて置く。
混合液を225℃まで急速に加熱し、225℃のまま40分間保持する。合成中の窒素分圧は、1500Torrとする。その後再度反応容器を100℃まで自然放冷で冷却し、100℃で1時間熱処理を行う。これによりナノ粒子の表面の安定化が行える。
その後、室温まで冷却した反応液にナノ粒子の凝集防止の為に、凝固防止剤としてブタノールを添加し、10時間攪拌する。最後に溶媒(ジフェニルエーテル)が溶解する脱水メタノールと、ナノ粒子を分散させるトルエンを交互に用いた遠心分離(4000rpm、10分間)を繰り返して精製する。繰り返すことで、不要な原料や溶媒を完全に除去する。ナノシード11上に厚み2.0nmのIn0.67Al0.33N層31を形成することができる。
図4Dに示すように、In0.67Al0.33N層31の上に、In0.60Ga0.40N層13を成長する。In0.67Al0.33Nの(0001)面の上に、In0.60Ga0.40N層を成長する点で、図3Cのプロセスと基本的に同じプロセスである。
試料調整に関する全ての操作は、真空乾燥(140℃)した器具および装置を用いてグローブボックス内で実施する。
C(0001)面を支配的に有するZnO0.72S0.28ナノシード11/In0.67Al0.33N層31で形成された量子ドットを含んだメタノール分散液6mlを抜き取り、ガリウムの供給源であるヨウ化ガリウム(108mg、0.24mmol)、インジウムの供給源であるヨウ化インジウム(165mg、0.36mmol)、窒素の供給源であるナトリウムアミド(500mg、12.8mmol)、キャッピング剤であるヘキサデカンチオール(380μl、1.0mmol)とステアリン酸亜鉛(379mg、0.6mol)と一緒に、溶媒であるジフェニルエーテル(20ml)の入った反応容器に投入する。
この混合液を225℃まで急速に加熱し、225℃のまま80分間保持する。合成中の窒素分圧は、1500Torrとする。In0.60Ga0.40N層13が成長する。
その後再度反応容器を100℃まで自然放冷で冷却し、100℃で1時間熱処理を行う。これによりナノ粒子の表面の安定化が行える。その後、室温まで冷却した反応液にナノ粒子の凝集防止の為に、凝固防止剤としてブタノールを添加し、10時間攪拌する。最後に溶媒(ジフェニルエーテル)が溶解する脱水メタノールと、ナノ粒子を分散させるトルエンを交互に用いた遠心分離(4000rpm、10分間)を繰り返して精製する。繰り返すことで、不要な原料や溶媒を完全に除去する。このような手順を経ることで、In0.67Al0.33N層31上に厚み4.0nmのIn0.60Ga0.40N層13を形成した量子ドットを得ることができる。
なお、合成した量子ドット表面の修飾基を配位子交換により、アニオンやアミン、有機高分子などの別の表面修飾基に置き換えても良い。
図4Eに示すように、In0.60Ga0.40N層13の上にIn0.67Al0.33N層15を形成する。このプロセスは、基本的に図3Dに示すIn0.67Al0.33N層15の形成プロセスと同じであり、説明を省略する。In0.60Ga0.40N層13上に厚み4.0nmのIn0.67Al0.33N層を形成した量子ドットを得ることができる。
図4Fは、ZnO0.720.28ナノシードの除去プロセスを示す。このプロセスは必須ではない。ZnO0.720.28ナノシード11/In0.67Al0.33N層31/In0.60Ga0.40N層13 /In0.67Al0.33N15層を含む粒子はメタノールに分散した状態である。メタノールを気化させナノ粒子を濃縮させる。わずかにメタノールを残す。
続いて溶液を、ZnO0.720.28ナノシードとIn0.60Ga0.40N層、In0.67Al0.33N層に対するエッチング速度が異なるエッチング液に投入し、ZnO0.720.28ナノシードをエッチング除去する。エッチング液には、ZnO0.720.28ナノシードを選択的にエッチングできる希塩酸を用いる。エッチング液の配合比は、塩酸(36容量%):純水=1:100とする。エッチングが終了したら、エッチング液を完全に置換する為、十分な水洗を行う。In0.67Al0.33N層31/In0.60Ga0.40N 層13/In0.67Al0.33N層15の積
層で形成された、平均粒子径12nmの窒化物量子ドットを得ることができる。
以上、実施例に沿って、本発明を説明したが、本発明はこれらに制限されるものではない。実施例で示した格子整合の範囲は一例であり、格子整合するよう組成を調整すれば、その積層構成を自由に組み合わせることが可能である。また、実施例に示した量子ドットの合成方法は一例であり、アルコール溶媒中での高温反応を利用するソルボサーマル法を用いるなど他の方法で、ナノ粒子を溶液から合成してもよい。その他種々変更、改良、組み合わせ等が可能なことは当業者に自明であろう。

Claims (10)

  1. II族元素としてZn,Mgの少なくとも1つを含むII−VI族半導体材料で形成された母材粒子を準備する工程と、
    液相中において、前記母材粒子をエッチして、特定面方位を有する、ナノシード粒子に加工する加工工程と、
    を有する量子ドットの製造方法。
  2. 前記準備する工程は、液相中において、II−VI族半導体材料で形成された母材粒子を合成する合成工程、
    を含む請求項1に記載の量子ドットの製造方法。
  3. 前記ナノシード粒子の特定面上に、In(AlGa1−xN(0.15≦x≦1.0、m+n=1.0)で形成された第1の窒化物半導体層をエピタキシャル成長する第1成長工程と、
    前記第1の窒化物半導体層上にIn(AlGa1−yN(0.15≦y≦1.0、p+q=1.0)で形成され、第1の窒化物半導体層とは組成の異なる第2の窒化物半導体層をエピタキシャル成長させる第2成長工程と、
    を更に有する請求項2に記載の量子ドットの製造方法。
  4. 前記第2の窒化物半導体層上に、前記第1の窒化物半導体層と等しい組成を持つ第3の窒化物半導体層をエピタキシャル成長させる第3成長工程と、
    を更に有する請求項3に記載の量子ドットの製造方法。
  5. 前記特定面方位がC面であり、前記加工工程が硝酸を含むエッチング液を用いる、請求項1〜4のいずれか1項に記載の量子ドットの製造方法。
  6. 前記特定面方位がM面であり、前記加工工程が王水を含むエッチング液を用いる、請求項1〜4のいずれか1項に記載の量子ドットの製造方法。
  7. II族元素としてZn,Mgの少なくとも1つを含むII−VI族半導体材料で形成され、特定面方位の面を有する母材粒子と、
    前記特定面方位の面の上に形成され、In(AlGa1−xN(0.15≦x≦1.0、m+n=1.0)で形成されたエピタキシャル層と、
    を有する量子ドット。
  8. 前記エピタキシャル層の径が、20nm以下である請求項7に記載の量子ドット。
  9. 前記特定面方位がC面である請求項7または8に記載の量子ドット。
  10. 前記特定面方位がM面である請求項7または8に記載の量子ドット。
JP2016008999A 2015-02-02 2016-01-20 量子ドットの製造方法と量子ドット Active JP6664969B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018477 2015-02-02
JP2015018477 2015-02-02

Publications (2)

Publication Number Publication Date
JP2016145972A true JP2016145972A (ja) 2016-08-12
JP6664969B2 JP6664969B2 (ja) 2020-03-13

Family

ID=56686339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008999A Active JP6664969B2 (ja) 2015-02-02 2016-01-20 量子ドットの製造方法と量子ドット

Country Status (1)

Country Link
JP (1) JP6664969B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070423A (ja) * 2016-11-01 2018-05-10 スタンレー電気株式会社 ウルツ鉱構造のZnOS混晶粒子の製造方法
JP2019218527A (ja) * 2018-06-22 2019-12-26 スタンレー電気株式会社 ナノ粒子集合体とその製造方法
JP7535425B2 (ja) 2020-09-30 2024-08-16 スタンレー電気株式会社 窒化物ナノ粒子及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070423A (ja) * 2016-11-01 2018-05-10 スタンレー電気株式会社 ウルツ鉱構造のZnOS混晶粒子の製造方法
JP2019218527A (ja) * 2018-06-22 2019-12-26 スタンレー電気株式会社 ナノ粒子集合体とその製造方法
JP7072169B2 (ja) 2018-06-22 2022-05-20 スタンレー電気株式会社 ナノ粒子集合体とその製造方法
JP7535425B2 (ja) 2020-09-30 2024-08-16 スタンレー電気株式会社 窒化物ナノ粒子及びその製造方法

Also Published As

Publication number Publication date
JP6664969B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2016125435A1 (ja) 量子ドットの製造方法および量子ドット
JP7049012B2 (ja) 予め作製されたナノ粒子の化学的切断による2dフレークの形成とそれを用いて製造されたファンデルワールスヘテロ構造デバイス
TWI537206B (zh) 使用膦所製造的量子點
JP2016135863A (ja) コアシェル構造を有する量子ドットとその製造方法
TWI740865B (zh) 製造複合GaN奈米柱之方法及由此方法製得之發光結構
JP6664969B2 (ja) 量子ドットの製造方法と量子ドット
EP3050935A1 (en) Quantum dot ensemble and manufacturing method thereof
CN109923065A (zh) 量子点的制造方法和有机膦
JP6836133B2 (ja) 量子ドット
JP6606418B2 (ja) 量子ドット集合体の製造方法
JP6764230B2 (ja) 半導体ナノ粒子の製造方法
Li et al. The growth behaviors and high controllability of GaN nanostructures on stripe-patterned sapphire substrates
JP6815602B2 (ja) 量子ドット
Viswanath GaN nanostructure-based light emitting diodes and semiconductor lasers
JP7072171B2 (ja) 半導体ナノ粒子および光源装置
JP7072169B2 (ja) ナノ粒子集合体とその製造方法
JP6764231B2 (ja) 半導体ナノ粒子の製造方法、および、半導体ナノ粒子
JP7274163B2 (ja) 半導体ナノ粒子、および、波長変換部材
JP7072170B2 (ja) 窒化物ナノ粒子及びその製造方法
Tian et al. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H 2-decomposed GaN epilayer
Zhang et al. Multiwavelength Emission from InGaN/GaN MQW Truncated Pyramids Grown on a GaN Dodecagonal Pyramid Template
KR102425135B1 (ko) 발광성이 향상된 양자점 및 이의 제조 방법
Zhao et al. A Facile Synthesis Routine of Ag2S–CdS Heterostructure Nanorods with Enhanced Trap Emissions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6664969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250