JP2016131927A - 有機性廃棄物の安定化促進方法 - Google Patents

有機性廃棄物の安定化促進方法 Download PDF

Info

Publication number
JP2016131927A
JP2016131927A JP2015008010A JP2015008010A JP2016131927A JP 2016131927 A JP2016131927 A JP 2016131927A JP 2015008010 A JP2015008010 A JP 2015008010A JP 2015008010 A JP2015008010 A JP 2015008010A JP 2016131927 A JP2016131927 A JP 2016131927A
Authority
JP
Japan
Prior art keywords
waste
air permeability
specific
organic waste
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015008010A
Other languages
English (en)
Other versions
JP6621006B2 (ja
Inventor
太郎 滝本
Taro Takimoto
太郎 滝本
堀井 安雄
Yasuo Horii
安雄 堀井
貴雄 楠田
Takao Kusuda
貴雄 楠田
正明 海老原
Masaaki Ebihara
正明 海老原
樋口 壯太郎
Sotaro Higuchi
壯太郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Fukuoka University
Kubota Environmental Service Co Ltd
Original Assignee
Taisei Corp
Fukuoka University
Kubota Environmental Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Fukuoka University, Kubota Environmental Service Co Ltd filed Critical Taisei Corp
Priority to JP2015008010A priority Critical patent/JP6621006B2/ja
Publication of JP2016131927A publication Critical patent/JP2016131927A/ja
Application granted granted Critical
Publication of JP6621006B2 publication Critical patent/JP6621006B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Abstract

【課題】最終処分場の閉鎖から廃止までの期間を効果的に短縮することができる有機性廃棄物の安定化促進方法を提供する。【解決手段】熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質剤を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質剤を混合する通気性改質剤混合ステップと、通気性改質剤が混合された特定廃棄物の堆積層に通気する通気ステップと、を含む有機性廃棄物の安定化促進方法。数式1 : φ = (σ・d) / (p・s)、但し、φは透気係数(L・cm/分・kP・cm2)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm2)、dは長さ(cm)。【選択図】図1

Description

本発明は、有機性廃棄物の安定化促進方法に関する。
底部に遮水工と浸出水の集排水設備が設置された埋立地に廃棄物が埋立処理される管理型最終処分場等の最終処分場は、閉鎖つまり埋立終了した後、「一般廃棄物の最終処分及び産業廃棄物の最終処分に係る技術上の基準を定める命令」で法定された廃止基準を満たすことによって廃止することができる。例えば浸出水の性状、埋立層の温度、埋立ガスの発生状況等に廃止基準が定められている。
しかし、浸出水等についての廃止基準は非常に厳しく、最終処分場の閉鎖から廃止までに要する期間が長期に渡ると、その期間の維持管理費の増大や跡地利用の制限等の問題が生じる。
特に、最終処分場に埋め立てられた有機性廃棄物は好気性微生物による生物処理によって分解が進み、浸出水のBODやCODが低下するようになるが、実際には埋立地表面や集排水管の近傍にしか酸素が供給されないために好気性生物処理が円滑に進まなかったり、好気性微生物で容易に分解できないフミン酸やフルボ酸等の難分解性有機物が含まれていたりするので、CODや窒素が低下し辛く、廃止までに相当な長期間を要していた。
そこで、特許文献1には、最終処分場を閉鎖してから廃止するまでの期間を短縮するために、廃棄物層に空気を送り込んで、微生物による易分解性有機物の分解を促進させ、BODとCODとが廃止基準Aに達するまで、酸化剤を複数回に分けて廃棄物層に注入する最終処分場の廃止時期短縮方法が提案されている。
また、特許文献2には、埋立前に廃棄物を機械的に洗浄することで、廃棄物に含まれる有機物や塩類を洗い出して廃棄物を安定化する方法や、埋立前に廃棄物に散水および通気して、廃棄物中の有機物や塩類、重金属等を洗い出し、或いは不溶化する方法が示されている。
さらに特許文献3には、固体状の産業廃棄物で、パッキングしたときの実積率が、60%以下の廃棄物を浄水場発生汚泥、下水処理場発生汚泥、廃水処理施設での発生汚泥、建設工事に伴って発生する汚泥と配合した後に、最終処分場に埋め立てることを特徴とする汚泥の最終処分方法が提案されている。
特開2005−224674号公報 特開2009−241053号公報 特開2009−45566号公報
しかし、特許文献1に記載された方法を採用する場合、最終処分場に厚く埋め立てた廃棄物層に一様に空気を供給するのは容易ではないため、廃止までの期間を効果的に短縮できないという問題があった。
また、特許文献2に記載された方法を採用する場合、廃棄物を最終処分場に搬入する前に外部で前処理する必要があり、前処理設備を構築する敷地の確保難という問題ばかりでなく、前処理によって発生する排水等を処理するための水処理設備等の費用が嵩むという問題があり、容易に前処理することができなかった。
そのため、現状、廃棄物は前処理されることなく最終処分場で直接埋立処理されている。具体的にトラックで搬入された有機性汚泥を含む様々な廃棄物は、敷地の端部から順に遮水工の上に一定量埋め立てられる度に覆土が施され、さらにその上に新たな廃棄物が埋め立てられ、上限に達すると最終覆土が施されている。
特に最終処分場に搬入された有機性廃棄物、例えば熱灼減量が15%以上で括られる有機性汚泥は、通気性及び通水性が悪く、埋立層内で団粒構造となって内部が嫌気化し、BOD,COD,T−N等の発生源となり、浸出水処理設備への原水の水質悪化をもたらし、最終処分場の廃止までの期間短縮の阻害要因となっている。このような有機性廃棄物には、有機性汚泥に限らず熱灼減量が15%未満の無機性汚泥や僅かでも有機物が含まれる焼却灰等が含まれる。
特許文献3には、パッキングしたときの実積率が60%以下の廃棄物として、シュレッダーダストが開示されているが、金属類以外にガラスや土砂等が混入しており、その組成によっては通気性が十分に確保できないという問題もあった。
本発明の目的は、上述した問題点に鑑み、最終処分場の閉鎖から廃止までの期間を効果的に短縮することができる有機性廃棄物の安定化促進方法を提供する点にある。
上述の目的を達成するため、本発明による有機性廃棄物の安定化促進方法の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、最終処分場に埋め立てられる有機性廃棄物の安定化促進方法であって、熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合する通気性改質材混合ステップと、通気性改質材が混合された特定廃棄物の堆積層に通気する通気ステップと、を含む点にある。
数式1 : φ = (σ・d) / (p・s)
φは透気係数(L・cm/分・kP・cm)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm)、dは長さ(cm)点にある。
本願発明者らは、鋭意試験研究を重ねた結果、熱灼減量が15%以上となり、極めて通気性の悪い特定有機性廃棄物であっても、通気性改質材混合ステップで、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇するまで通気性改質材が混合されると、通気ステップで、特定廃棄物の堆積層に十分な空気がほぼ均等に供給可能となり、好気性生物処理が効果的に促進されるようになることが判明した。その結果、最終処分場の閉鎖から廃止までに要する期間が効果的に短縮可能になった。
同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記通気性改質材混合ステップは、通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードを特定有機性廃棄物に混合するステップである点にある。
通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードを用いると、著しい通気性改善効果が表れるようになった。
同第三の特徴構成は、同請求項3に記載した通り、上述の第一の特徴構成に加えて、前記通気ステップは、通気性改質材が混合された特定廃棄物の堆積層に5〜30L/(min.・m)の通気量で通気するステップである点にある。
通気性改質材混合ステップで通気性改質材が混合された特定廃棄物の堆積層に、通気量5〜30L/(min.・m)で通気すると、好気性生物処理が効果的に促進されるようになる。
同第四の特徴構成は、同請求項4に記載した通り、上述の第三の特徴構成に加えて、前記通気ステップは、通気性改質材が混合された特定廃棄物の堆積層に15〜30L/(min.・m)の通気量で通気するステップである点にある。
さらに、15〜30L/(min.・m)の通気量で通気すると、好気性生物処理が顕著に促進される。
同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、特定有機性廃棄物に有機性汚泥、生ごみ及び/または食品残渣が含まれる点にある。
特定有機性廃棄物として、下水汚泥や浄化槽汚泥等の有機性汚泥、生ごみ、食品工場等で発生する食品残渣等を最終処分場に廃棄する場合に、効果的に安定化を促進できるようになる。
同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記通気ステップが最終処分場に埋め立てる前の特定廃棄物の堆積層で実行され、前記通気ステップで硝化処理された特定廃棄物を最終処分場に埋め立てる埋立ステップをさらに含む点にある。
本願発明者らが鋭意研究を重ねた結果、通気性改質材混合ステップで、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇するまで通気性改質材が混合されると、通気ステップで、特定廃棄物の堆積層に十分な空気がほぼ均等に供給可能となり、好気性生物処理が促進され、その結果、特定廃棄物に含まれるアンモニア性窒素の硝化処理が促進されるという新知見が得られた。そこで、硝化処理が促進された特定廃棄物を最終処分場に埋め立てると、嫌気性条件下で微生物による脱窒素処理が促進され、最終処分場の堆積層に通気設備を設けなくても、最終処分場の閉鎖から廃止までに要する期間が効果的に短縮できるようになった。
以上説明した通り、本発明によれば、最終処分場の閉鎖から廃止までの期間を効果的に短縮することができる有機性廃棄物の安定化促進方法を提供することができるようになった。
管理型最終処分場の要部の断面図 (a)は透気係数算出モデルの説明図、(b)は透気係数計測のための試験装置の説明図 (a)は埋立前処理施設の説明図、(b)は候補となる通気性改質材が混入された特定有機性廃棄物に対する通気性試験結果の説明図 (a)は通気性試験に用いた供試廃棄物の組成の明図、(b),(c)は通気性試験結果の説明図 ライシメータの説明図 (a)は安定化試験に用いた供試廃棄物の組成の説明図、(b)はライシメータへの供試廃棄物の充填量の説明図、(c)は実験スケジュールの説明図 (a)から(f)は溶出試験の結果説明図 (a)から(f)は浸出水試験の結果説明図 (a),(b)は浸出水に対する窒素総和法による試験の結果説明図
以下、本発明による管理型最終処分場に埋め立てられる有機性廃棄物の安定化促進方法の実施形態を説明する。
図1には、クローズドタイプ(「被覆型」とも呼ばれる。)の管理型最終処分場10の構造が示されている。管理型最終処分場10(以下、単に「最終処分場10」と記す場合もある。)は、廃棄物の処理及び清掃に関する法律で定められる構造基準と維持管理基準に基づいて設置及び運営され、同法に定められた廃棄物の区分に従って埋立処分される。
管理型最終処分場10は、埋立地となる山間部の谷間や掘削地盤が堰堤3で仕切られ、埋立地の底面や斜面等にゴムシート等の難透水性の層または壁で構成される遮水工11が施され、さらに被埋立物からの浸出水を集排水する溝や管を備えた集排水設備12が設置されている。
堰堤3の近傍に集排水設備12を経由した浸出水の集水ピット4が設けられ、ポンプで浸出水処理設備17に送水される。また、図には示していないが、雨水や地下水が浸出水に混入しないように、遮水工11の外側に地下水集排水管が設けられて調整池等に集水されている。
最終処分場10は、不特定人が安易に進入できないように塀等で閉鎖されており、埋立地から発生する様々な臭気ガスが外部に漏洩しないように、また雨水が滲入しないように被覆施設2で覆われている。被覆施設2は、鋼製の柱で骨組みが組まれ、金属製の板状体が配置されて外気と分離されている。
尚、被覆施設2の構造として、ラーメン構造、アーチ構造、平面トラス構造、高剛性曲げ材と高引張強度のケーブルを組み合わせた自己釣合型のハイブリッド構造、スペースフレーム構造、シェル構造、空気支持構造、サスペンション構造等、公知の様々な支持構造が採用可能である。
被覆施設2の下方空間には散水機構13を構成するスプリンクラーが設置され、被埋立物表面から粉塵が舞い上がらないように、また被埋立物の微生物処理が促進されるように散水機構13によって散水されるように構成されている。散水機構13は浸出水処理設備17で浄化処理された処理水を供給する給水機構6に接続されている。尚、散水機構13としてスプリンクラー等の固定設備に替えて、車両等の移動体にレインガン等を搭載した散水機構を複数備えていてもよい。被埋立物からの蒸発が激しい夏場には、浸出水処理設備17の処理水のみでは不足するため、井水や上水も活用してもよい。
最終処分場10には、特定有機性廃棄物、焼却灰、廃プラスチック、スラグ、コンクリートくず、ガラスくず、陶磁器くず、鉱滓、瓦礫くず等が搬入されて埋め立てられる。特定有機性廃棄物とは熱灼減量が15%以上で括られる有機性汚泥を意味し、具体的に下水汚泥や浄化槽汚泥、生ごみ、食品工場等で発生する食品残渣等、或いはそれらの混合物が含まれる。
トラックで搬入された様々な廃棄物は、特定有機性廃棄物、通気性改質材として利用可能な破砕処理された廃プラスチック及び/または廃石膏ボード、その他の廃棄物に分別され、特定有機性廃棄物と通気性改質材が混合された後に、敷地の端部から順に遮水工11の上に埋め立てられる。
通気性改質材が混合された特定有機性廃棄物が一定量埋め立てられる度に覆土23が施され、さらにその上に新たな廃棄物が埋め立てられ、上限に達すると最終覆土23が施される。最下層または各層22の下部に通気管21が設置され、特定有機性廃棄物に通気される。
焼却灰、スラグ、コンクリートくず、ガラスくず、陶磁器くず、鉱滓、瓦礫くず等のその他の廃棄物は、上述した特定有機性廃棄物の埋立層とは別の区画(図1には示されていない)に埋め立てられる。
つまり、最終処分場に埋め立てられる有機性廃棄物の安定化促進方法は、熱灼減量が15%以上となる特定有機性廃棄物に通気性改質材を混合する通気性改質材混合ステップと、通気性改質材が混合された特定廃棄物の堆積層に通気する通気ステップとを備えている。
尚、通気性改質材混合ステップで通気性改質材が混合された特定有機性廃棄物を直ちに最終処分場に埋め立てて通気ステップが実行されるように構成してもよいし、最終処分場に埋め立てる前に前処理設備で少量の特定有機性廃棄物に対して通気ステップが実行され、その後最終処分場に埋め立てられて、さらに通気ステップが実行されるように構成してもよい。
通気性改質材混合ステップでは、特定有機性廃棄物に、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材が混合される。通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードが効果的に用いられる。
数式1 : φ = (σ・d) / (p・s)
φは透気係数(L・cm/分・kP・cm)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm)、dは長さ(cm)
通気ステップでは、通気性改質材が混合された特定廃棄物の堆積層に、通気管21を介して5〜30L/(min.・m)の通気量、好ましくは15〜30L/(min.・m)の通気量で空気が供給される。
以下に、本発明の別実施形態を説明する。
上述した実施形態では、通気性改質材混合ステップで通気性改質材が混合された特定有機性廃棄物を最終処分場10に埋設した後に通気ステップが実行される態様を説明したが、通気性改質材が混合された特定有機性廃棄物を最終処分場10に埋設する前に通気ステップが実行される態様を採用することも可能である。
通気ステップが実行されることにより、アンモニア成分が含まれる特定有機性廃棄物が好気性微生物により効率的に硝化処理される。そして、硝化処理された特定有機性廃棄物を最終処分場に埋め立てる埋立ステップを実行することにより、嫌気性の雰囲気下で脱窒素処理が促進されるようになる。この場合、埋立層に通気管21を設置する必要はない。
図2(a)に示すように、一定の面積sを持った長さdの空気路に入出の差圧pをかけたときに流れる空気量をσとする。空気の粘性と圧力変化に対する空気の体積変化が無視できるものと仮定すると数式2が成り立つ。φは比例乗数である。比例乗数φを透気係数と定義し、数式2を変形することによって既述した数式1が得られる。
数式2 : σ = φ・p・s / d (L/min.)
図2(b)に示すように、直径250mm、高さ127mmの鋳物筒状体30の両端に通気性メッシュ31を介して通気管32a,32bが装着された上下蓋体33a,33bで閉塞した試験装置を用いて通気性試験を行なった。この装置は、土の透水係数を測定する場合に一般的に使われている装置を改造したものである。
鋳物筒状体30内部に特定有機性廃棄物と通気性改質材との混合物(以下、「供試廃棄物」と記す。)を充填して、下蓋33bの通気管32bから空気を供給したときに上蓋33aの通気管32aから流出する空気量を計測する。尚、混合物を充填する前に、流量計、鋳物筒状体30、通気管32a,32b等で生じる圧力損失を予め計測して、実際の測定値から減算補正する必要がある。
鋳物筒状体30に充填する供試廃棄物の通気性は締固め状態によって大きく変化するので、図3(a)に示す埋立前処理施設モデルと同程度の加重となるように締固めている。尚、数式1で算出される透気係数は供試廃棄物の締固め状態や試験装置のサイズ等に左右されることはない。試験装置では出が大気圧、入が圧力計の指示値であり、入出の差圧pはそれらの差となる。
具体的に、埋立前処理施設モデルは、有機性廃棄物を1.0〜1.5mの厚さで充填し、下から通気、上から乾燥しない程度に散水して、埋立前に有機物の安定化を促進するモデル施設である。廃棄物を厚さ1.0〜1.5m充填した時の積載荷重は単位体積の重量を1t/mとすると9.8〜14.7kN/m(0.1〜0.15kgf/cm)となる。
これは直径5cm、重量2.5kgのランマを静置した時の荷重12.5kN/m(0.127kgf/cm)とほぼ同様であることから、供試廃棄物の上面に2.5kgランマを置くという単純操作により締固めた。実験では、平面的に均等にランマを置く方法(1/2ずつ重ねて置く方法)で高さ127mmを3層に分けてそれぞれ締固めた。
複数種類の通気性改質材候補として廃プラスチック、廃石膏ボード、焼却灰(A社)、焼却灰(B社)、焼却灰(C社)、不燃破砕物、溶融スラグをそれぞれ有機性汚泥に30容積%混合して通気性試験を行なった結果が図3(b)に示されている。図3(b)から、通気性改質材として廃プラスチック及び廃石膏ボードが好適であることが判明した。尚、図3(b)は、各透気係数の計測値のうち最も高い値で正規化されたデータである。
次に、有機性汚泥、及び、有機性汚泥に廃プラスチック、廃石膏ボードまたは焼却灰の何れかを混合した複数種類の供試廃棄物を準備して、上述の試験装置を用いて通気性試験を行なった。図4(a)には、供試廃棄物の組成が示されている。
試験装置では、通気する空気流量が少ないと流量計等による誤差が大きくなるため、6L/min.の値で実験を行なった。これを有機性汚泥1m当たりの通気量に換算すると960L/mとなり、埋立前処理モデルの有機性廃棄物への通気量を5〜30L(min.・m)とすると、数十から数百倍程度の流量に相当する。
図4(b),(c)に示すように、有機性汚泥に廃プラスチック、廃石膏ボードを少なくとも5体積%混合すると、有機性汚泥のみの透気係数よりも50%上昇することが確認された。尚、燃殻が混合比5〜10体積%の間でフラットになっている原因は、5体積%から10体積%に増加させたときに単位重量が増加しているためと考えられ、再実験を行なってもこの傾向は変わらない。
次に、有機性汚泥、有機性汚泥に廃プラスチックまたは廃石膏ボードを5体積%混合した供試廃棄物を調整して、図5に示す試験装置(以下、「ライシメータ」と記す。)に充填し、有機性汚泥の安定化傾向の確認試験を行なった。図6(a)には8種類の供試廃棄物の組成が示されている。
ライシメータ40は、直径300mm、長さ1000mmの筒状容器41と、傾斜底面に形成された底部42と、底部に配置されたドレン管43と、筒状容器41を覆う保温シート54とを備えて構成されている。底部42に最小厚さ100mmの砕石層46が形成され、その厚み方向中央部に散気管44が設置され、エアポンプ45からの空気が散気管44を介して筒状容器41の内部に供給されるように構成されている。散気管44から供給される空気量を計測する流量計47、筒状容器41に充填された供試廃棄物の上部領域の温度を計測する温度センサ48及び下部領域の温度を計測する温度センサ49が設けられている。
図6(b)に示す充填量で、砕石層46の上部に各供試廃棄物が充填され、図6(c)に示す実験スケジュールに従って所定の間隔で散水した後に、ドレン管43に備えたバルブを解放操作して浸出水を採水して、その組成を分析した。尚、初回は液固比0.1(散水量約7L)、2回目以降は液固比0.033(散水量約2.3L)で各供試廃棄物に散水した。尚、8本のライシメータに各供試廃棄物を充填する際、10回程度に分割して充填し、その都度ランマの自重で締め固めた。汚泥の充填高さは1.0mHである。
実験No.B−0は、有機性汚泥のみの供試廃棄物で通気量0である。実験No.WP5−0からWP5−30は、有機性汚泥に廃プラスチックを5体積%混合した供試廃棄物で、通気量を0,15,30L/mに割り振っている。実験No.PC5−0からPC5−30は、有機性汚泥に廃石膏ボードを5体積%混合した供試廃棄物で、通気量を0,5,15,30L/mに割り振っている。尚、通気量0のライシメータ40は、ドレン管43に備えたバルブを解放操作して、ドレン管からの外気の自然流入を許容する準好気性状態とし、その他のライシメータ40は、ドレン管43に備えたバルブを閉塞して散気管44から所定量の給気を行なった。
実験開始から104日後に、ライシメータ40内の表土から10cmの領域の中心部から溶出試験用のサンプルを取り出した。
図7(a),(b)には、実験開始前後の有機性廃棄物のBODの溶出試験結果が示されている。B−0は、実験終了後濃度が上昇したのに対し、廃プラスチックまたは廃石膏ボードを5体積%混合した有機性廃棄物は濃度が低下した。廃棄物を混合することにより通気性が改善され、速やかにBODが分解されたためである。
図7(c),(d)には、実験開始前後の有機性廃棄物のCODの溶出試験結果が示されている。廃プラスチック及び廃石膏ボードとも通気を15L/min・m以上与えると、実験終了後のCODは実験開始時より高くなった。通気を行なうことにより高分子状の難分解性有機物が分解されて低分化し、CODとして検出されたと推測される。高分子状の難分解性有機物が低分子化することにより易分解性有機物となり分解が促進する。
図7(e),(f)には、実験開始前後の有機性廃棄物のT−N(トータル窒素)の溶出試験結果が示されている。T−NもCODと同様に、通気を15L/min・m以上与えると、実験開始前より実験終了後の方が、高い値を示すことが確認された。通気により低分子化が進みT−Nとして検出された結果、濃度が高くなったと推測される。
図8(a),(b)には、浸出水のBODの分析結果が示されている。どの供試廃棄物も実験開始直後からBODが低下していることが確認された。特に通気量が15L/min以上の供試廃棄物は、廃プラスチック及び廃石膏ボードともに速やかにかつ安定的に低下することが確認できた。
図8(c),(d)には、浸出水のCODの分析結果が示されている。廃プラスチック及び廃石膏ボードともに、通気量が15L/min以上の供試廃棄物は、通気を与えない供試廃棄物に比べて浸出水のCODが高くなった。通気により高分子状の物質が低分子化し、浸出水に可溶化し易くなったため濃度が上昇したものと推測される。
図8(e),(f)には、浸出水のT−Nの分析結果が示されている。CODと同様に、通気量が15L/min以上の供試廃棄物は、通気を与えない試料に比べてT−Nが高くなった。
以上の結果、熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合することにより、通気による特定有機性廃棄物の安定化を促進可能なことが判った。
通気性改質材として粒径数mmから十数mm程度に破砕された廃プラスチック及び廃石膏ボードを好適に用いることができるが、これら以外であっても、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合することにより、通気による特定有機性廃棄物の安定化を促進することができる。
また、その際に、通気量を5〜30L/minに設定することにより、通気性を改善した特定有機性廃棄物の安定化が効果的に促進されることが判明した。そして、通気量を15〜30L/minに設定することにより、難分解性有機物の分解が一層促進されることが推察された。
図9(a),(b)には、供試廃棄物WP5−30の浸出水の窒素総和法による分析結果が示されている。図9(a)は図9(b)の窒素のそれぞれの形態を割合で示したものである。通気を行うと硝酸性窒素の割合が増え、アンモニア性窒素の割合が低下し、好気性微生物による硝化処理が進んでいることが確認された。この図から、硝化が進んだ段階で通気を止めて嫌気化すると埋立層内で脱窒が可能となるという新知見が得られた。
つまり、熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合する混合ステップと、通気性改質材が混合された特定廃棄物の堆積層に通気する通気ステップと、前記通気ステップで硝化処理された特定廃棄物を最終処分場に埋め立てる埋立ステップと、を含む有機性廃棄物の安定化促進方法を実施することにより、最終処分場に埋め立てられた特定有機性廃棄物は、嫌気性条件下で脱窒素処理が促進されるようになる。
透気係数φを計測する際の試験装置は、上述した構造の試験装置に限るものではない。計測の際に廃棄物を締め固める加重は、上述の埋立前処理施設モデルを基準とする場合には0.1〜0.15kgf/cmが好ましいが、異なる埋立前処理施設モデルを採用する場合にはそれに応じて適宜設定すればよい。つまり、通常埋め立てられる際の条件に応じて締め固めた状態で透気係数φを計測すればよい。
以上説明した各実施形態は、何れも本発明の一例に過ぎず、該記載により本発明の技術的範囲が限定されるものではなく、各部の具体的な構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。
10:最終処分場
11:遮水工
12:集排水設備
13:散水機構
14:吸引装置
17:浸出水処理機構
21:通気管
22:埋立層
23:覆土

Claims (6)

  1. 最終処分場に埋め立てられる有機性廃棄物の安定化促進方法であって、
    熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合する通気性改質材混合ステップと、
    通気性改質材が混合された特定廃棄物の堆積層に通気する通気ステップと、
    を含む有機性廃棄物の安定化促進方法。
    数式1 : φ = (σ・d) / (p・s)
    φは透気係数(L・cm/分・kP・cm)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm)、dは長さ(cm)
  2. 前記通気性改質材混合ステップは、通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードを特定有機性廃棄物に混合するステップである請求項1記載の有機性廃棄物の安定化促進方法。
  3. 前記通気ステップは、通気性改質材が混合された特定廃棄物の堆積層に5〜30L/(min.・m)の通気量で通気するステップである請求項1または2記載の有機性廃棄物の安定化促進方法。
  4. 前記通気ステップは、通気性改質材が混合された特定廃棄物の堆積層に15〜30L/(min.・m)の通気量で通気するステップである請求項3記載の有機性廃棄物の安定化促進方法。
  5. 特定有機性廃棄物に有機性汚泥、生ごみ及び/または食品残渣が含まれる請求項1から4の何れかに記載の有機性廃棄物の安定化促進方法。
  6. 前記通気ステップが最終処分場に埋め立てる前の特定廃棄物の堆積層で実行され、前記通気ステップで硝化処理された特定廃棄物を最終処分場に埋め立てる埋立ステップをさらに含む請求項1から5の何れかに記載の有機性廃棄物の安定化促進方法。
JP2015008010A 2015-01-19 2015-01-19 有機性廃棄物の安定化促進方法 Expired - Fee Related JP6621006B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008010A JP6621006B2 (ja) 2015-01-19 2015-01-19 有機性廃棄物の安定化促進方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008010A JP6621006B2 (ja) 2015-01-19 2015-01-19 有機性廃棄物の安定化促進方法

Publications (2)

Publication Number Publication Date
JP2016131927A true JP2016131927A (ja) 2016-07-25
JP6621006B2 JP6621006B2 (ja) 2019-12-18

Family

ID=56434959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008010A Expired - Fee Related JP6621006B2 (ja) 2015-01-19 2015-01-19 有機性廃棄物の安定化促進方法

Country Status (1)

Country Link
JP (1) JP6621006B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168621A (ja) * 2019-04-05 2020-10-15 中国電力株式会社 堆積灰小山除去方法および堆積灰小山除去冶具

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544444A (en) * 1977-06-14 1979-01-13 Taisei Corp Method of reclaiming land from waste
JPS5632391A (en) * 1979-08-27 1981-04-01 Japan Steel Works Ltd Composting method by aerating organic sludge
JPS5786271A (en) * 1980-11-20 1982-05-29 Nippon Kokan Kk <Nkk> Fermentation treatment of shellfishes
JPS60260488A (ja) * 1984-06-04 1985-12-23 株式会社日本製鋼所 高水分汚泥の堆肥化処理方法
JP2000153295A (ja) * 1998-11-17 2000-06-06 Ishizaki Sangyo Kk 余剰汚泥処理法
JP2003236591A (ja) * 2003-01-31 2003-08-26 Toyo Clean Kagaku Kk 汚泥の好気的中高温醗酵処理方法
JP2004050033A (ja) * 2002-07-19 2004-02-19 Seiwa Consultant:Kk 最終処分場の早期安定化方法
JP2005111374A (ja) * 2003-10-08 2005-04-28 Taiheiyo Cement Corp 有機汚泥の処理方法
JP2009045566A (ja) * 2007-08-21 2009-03-05 Taiheiyo Cement Corp 汚泥の最終処分方法
JP2013094724A (ja) * 2011-10-31 2013-05-20 Fukuoka Univ 廃棄物処分方法及び廃棄物処分設備

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544444A (en) * 1977-06-14 1979-01-13 Taisei Corp Method of reclaiming land from waste
JPS5632391A (en) * 1979-08-27 1981-04-01 Japan Steel Works Ltd Composting method by aerating organic sludge
JPS5786271A (en) * 1980-11-20 1982-05-29 Nippon Kokan Kk <Nkk> Fermentation treatment of shellfishes
JPS60260488A (ja) * 1984-06-04 1985-12-23 株式会社日本製鋼所 高水分汚泥の堆肥化処理方法
JP2000153295A (ja) * 1998-11-17 2000-06-06 Ishizaki Sangyo Kk 余剰汚泥処理法
JP2004050033A (ja) * 2002-07-19 2004-02-19 Seiwa Consultant:Kk 最終処分場の早期安定化方法
JP2003236591A (ja) * 2003-01-31 2003-08-26 Toyo Clean Kagaku Kk 汚泥の好気的中高温醗酵処理方法
JP2005111374A (ja) * 2003-10-08 2005-04-28 Taiheiyo Cement Corp 有機汚泥の処理方法
JP2009045566A (ja) * 2007-08-21 2009-03-05 Taiheiyo Cement Corp 汚泥の最終処分方法
JP2013094724A (ja) * 2011-10-31 2013-05-20 Fukuoka Univ 廃棄物処分方法及び廃棄物処分設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168621A (ja) * 2019-04-05 2020-10-15 中国電力株式会社 堆積灰小山除去方法および堆積灰小山除去冶具
JP7275784B2 (ja) 2019-04-05 2023-05-18 中国電力株式会社 堆積灰小山除去方法

Also Published As

Publication number Publication date
JP6621006B2 (ja) 2019-12-18

Similar Documents

Publication Publication Date Title
Stessel et al. A lysimeter study of the aerobic landfill concept
Fellner et al. Comparing field investigations with laboratory models to predict landfill leachate emissions
Manassero et al. Solid waste containment systems
Valencia et al. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills
Valencia et al. The effect of hydraulic conditions on waste stabilisation in bioreactor landfill simulators
Beaven et al. Clogging of landfill tyre and aggregate drainage layers by methanogenic leachate and implications for practice
Singh et al. Optimization of bioclogging in vermifilters: A statistical approach
Mönkäre et al. Scaling up the treatment of the fine fraction from landfill mining: Mass balance and cost structure
Kaushik et al. Geo-Environmental prospectives and development plans for a new MSW landfill site using tirechips as leachate drainage material
Stegmann et al. Discussion of criteria for the completion of landfill aftercare
JP6621006B2 (ja) 有機性廃棄物の安定化促進方法
Khasawneh et al. Landfill leachate collection and characterization
JP6484524B2 (ja) 廃棄物の安定化方法及び通気構造
JP2005319456A (ja) 廃棄物埋立処分場の安定化促進工法
JP2015150525A (ja) 管理型最終処分場の埋立構造及び埋立処理方法
CN111540414B (zh) 一种污泥农用后有机化学品暴露浓度的预测方法
Malyovanyy et al. Ways to minimize environmental hazards from pollution of the environment in the zone of influence of the Hrybovychi landfill
Boni et al. Co-landfilling of pretreated waste: Disposal and management strategies at lab-scale
Stegmann Development of waste management in the last 30 years
Heyer et al. Landfill Aftercare—Scope for Actions, Duration, Costs and Quantitative Criteria for the Completion
Hupe et al. Water infiltration for enhanced in situ stabilization
JP2015116515A (ja) 有機性廃棄物の前処理設備、前処理方法、及び埋立処理方法
Chung et al. Utilization of stabilized and solidified sewage sludge as a daily landfill cover material
JP2009045566A (ja) 汚泥の最終処分方法
Madon Development of a sustainable msw landfill as an intrinsic part of a low-priced, integrated waste management facility

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191108

R150 Certificate of patent or registration of utility model

Ref document number: 6621006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees