JP2016127678A - 給電システム、移動体および給電装置 - Google Patents

給電システム、移動体および給電装置 Download PDF

Info

Publication number
JP2016127678A
JP2016127678A JP2014265682A JP2014265682A JP2016127678A JP 2016127678 A JP2016127678 A JP 2016127678A JP 2014265682 A JP2014265682 A JP 2014265682A JP 2014265682 A JP2014265682 A JP 2014265682A JP 2016127678 A JP2016127678 A JP 2016127678A
Authority
JP
Japan
Prior art keywords
antenna
power
power supply
electromagnetic field
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014265682A
Other languages
English (en)
Other versions
JP6492651B2 (ja
Inventor
田能村 昌宏
Masahiro Tanomura
昌宏 田能村
周平 吉田
Shuhei Yoshida
周平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014265682A priority Critical patent/JP6492651B2/ja
Publication of JP2016127678A publication Critical patent/JP2016127678A/ja
Application granted granted Critical
Publication of JP6492651B2 publication Critical patent/JP6492651B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】給電対象である移動体を給電位置に精度よく誘導し、誘導した移動体に対して水中で給電することを可能とする給電システムを提供する。【解決手段】水中環境下において指向性を有する送信アンテナを有し、送信アンテナから電磁界エネルギーを送信する給電装置と、水中環境下において指向性を有する受信アンテナを有し、給電装置から送信された電磁界エネルギーを受信する移動体とを備える給電システムとする。移動体は、受信アンテナが受信する電磁界エネルギーが大きくなる方向に自身を導き、給電装置から無線給電を受ける給電位置に自身を誘導する制御手段を有する。【選択図】 図1

Description

本発明は、給電システム、移動体および給電装置に関する。特に、水中で給電を行う給電システム、移動体および給電装置に関する。
近年、陸上資源の枯渇が進んでおり、金・銀などを含む赤粘土堆積物やコバルト・リッチ・クラスト、マンガン団塊などの海底資源の重要性が注目されている。このような海底資源の探索には、海中を航行できる無人潜水艇(以下、UUV)が用いられる(UUV:Underwater Unmanned Vehicle)。一般に、UUVは、航行用の電池を搭載している。
通常、UUVの電池には一次電池や二次電池が用いられる。UUVの電池残量が少なくなった場合、一次電池では電池交換が必要となり、二次電池では充電が必要となる。一次電池および二次電池のいずれであっても、UUVの荷重に耐えうる大型クレーンによってUUVを支援母船に引き揚げた後に、電池交換や充電が実施される。
しかしながら、UUVの運用時間延長やメンテナンスコスト抑制の観点から、UUVを支援母船に引き揚げずに海中で給電することが求められる。なぜならば、海中でUUVに給電することが可能になれば、海上にUUVを引き上げて電池交換や充電を行い、再びUUVを海中に戻す作業を簡略化できるからである。さらに、海中でUUVに給電することができれば、UUVを支援母船に引き揚げるための大型クレーンが不要になるため、母船の設備を簡略化することもできる。
海中においては、送電器と受電器とが接触しなくても給電できる無線給電が適している。第一の理由は、無線給電によれば、送電器と受電器とを互いに固定するための固定手段を省略できるからである。第二の理由は、海中では送受電を行う部位に貝や藻などが付着することによって送電器と受電器とが接触できなくなることが想定されるためである。しかしながら、海水中で無線給電する際には、海水が4S/m程度の高い導電率を有するため、電磁波の電磁エネルギーの損失が大きく、高効率・長距離な給電を行うことが難しいという問題点がある。
特許文献1には、海水中であっても高効率・長距離な無線給電を可能とする電力伝送装置が開示されている。特許文献1の電力伝送装置は、誘電体で包含した電力伝送用コイルのインピーダンスと、海水等の良導体媒質のインピーダンスとによって定まる周波数で共振させることによって電力伝送を行う。特許文献1の電力伝送装置によれば、図24のように、海水100中に、無線送電器101と無線受電器102との間に鉛直なポインティングベクトル103を形成することが可能となる。そのため、特許文献1の電力伝送装置によれば、高い導電率を有する海水中であっても長距離・高効率な無線給電を行うことが可能となる。なお、ポインティングベクトルは、エネルギーフローとも呼ばれ、磁界と電界の積である。図24中には、電界105を併せて示している。
ところで、無線送受電器間に鉛直なポインティングベクトルを形成するためには、無線送電器と無線受電器とを互いに適切な位置関係に合わせる必要がある。
特許文献2には、相対位置を接触センサによって検出し、海水中で給電することができる親子式自律型潜水機システムが開示されている。特許文献2の親子式自律型潜水機システムでは、親潜水機が、子潜水機から送信される接続準備信号に応答して、親音響トランスポンダから信号を送信しつつ所定の速度・方位・深度で航行する。子潜水機は、親音響トランスポンダからの信号をホーミングして親潜水機に接近し、親潜水機に設けられたガイドによってお互いの結合部の位置が一致するように誘導される。子潜水機は、親潜水機のガイドに設けられた接触センサで検出された検出情報に基づいて、お互いの結合部の相対位置を検出し、自身の結合部を親潜水機の結合部に押し付ける。親潜水機および子潜水機の結合部が嵌合されると充電用接続部が当接し合うため、親潜水機から子潜水機へと充電することができる。
国際公開第2014/034491号 特許第4585367号公報
特許文献2の親子式自律型潜水機システムによれば、子潜水機を海水中から引き上げなくても親潜水機から子潜水機へと給電することができる。しかしながら、特許文献2の親子式自律型潜水機システムでは、子潜水機を親潜水機に正確に誘導することが難しいという問題点がある。なぜならば、ソナーの測位精度は数10cm程度しかないため、子潜水機は、親音響トランスポンダからの信号をホーミングした際に、親潜水機のガイドの位置を正確に把握することができないためである。また、親潜水機に子潜水機が接近すると、親潜水機と子潜水機との間における反射などに起因したマルチパスが原因となって、正確な測位が難しくなってしまう。また、音響の代わりに可視画像などの光を用いる誘導方法もあるが、海中のように透明度が低い環境下において実現することは難しい。
本発明は、給電対象である移動体を給電位置に精度よく誘導し、誘導した移動体に対して水中で給電することを可能とする給電システムを提供することを目的とする。
本発明の給電システムは、水中環境下において指向性を有する送信アンテナを有し、送信アンテナから電磁界エネルギーを送信する給電装置と、水中環境下において指向性を有する受信アンテナを有し、給電装置から送信された電磁界エネルギーを受信する移動体とを備え、移動体は、受信アンテナが受信する電磁界エネルギーが大きくなる方向に自身を導き、給電装置から無線給電を受ける給電位置に自身を誘導する制御手段を有する。
本発明の移動体は、水中環境下において指向性を有し、給電装置から送信された電磁界エネルギーを受信する受信アンテナと、受信アンテナが受信した電磁界エネルギーが大きくなる方向に自身を導き、給電装置から無線給電を受ける給電位置に誘導する制御手段とを備える。
本発明の給電装置は、電磁界エネルギーを発生する電磁界エネルギー発生手段と、水中環境下において指向性を有し、電磁界エネルギーに導かれる移動体に向けて電磁界エネルギーを送信する送信アンテナと、電磁界エネルギーが大きくなる方向に導かれて無線給電を受ける給電位置に誘導された移動体に給電する給電手段とを備える。
本発明によれば、給電対象の移動体を給電位置に精度よく誘導し、誘導した移動体に対して水中で給電することを可能とする給電システムを提供することが可能になる。
本発明の第1の実施形態に係る給電システムの構成を示す概念図である。 本発明の第1の実施形態に係る給電システムの水中給電ステーションの機能構成を示すブロック図である。 本発明の第1の実施形態に係る給電システムの潜水艇の機能構成を示すブロック図である。 本発明の第1の実施形態に係る給電システムの潜水艇が有する制御手段の機能構成を示すブロック図である。 本発明の第1の実施形態に係る送信アンテナおよび受信アンテナの構成の一例を示す概念図である。 本発明の第1の実施形態に係る送信アンテナと受信アンテナとの間の横方向の位置ずれを説明するための概念図である。 本発明の第1の実施形態に係る送信アンテナと受信アンテナとの間の横方向の位置ずれ割合と受信アンテナが受信する受電力との関係を示すグラフである。 本発明の第1の実施形態に係る送信アンテナと受信アンテナとの距離を説明するための概念図である。 本発明の第1の実施形態に係る送信アンテナと受信アンテナとの距離と、受信アンテナが受信する受電力との関係を示すグラフである。 本発明の第1の実施形態に係る給電システムの動作を説明するためのフローチャートである。 本発明の第1の実施形態に係る給電システムの変形例1における水中給電ステーションの機能構成を示すブロック図である。 本発明の第1の実施形態に係る給電システムの変形例1における潜水艇の機能構成を示すブロック図である。 本発明の第1の実施形態に係る給電システムの変形例2における水中給電ステーションの機能構成を示すブロック図である。 本発明の第1の実施形態に係る給電システムの変形例2における潜水艇の機能構成を示すブロック図である。 本発明の第2の実施形態に係る給電システムの送信アンテナの構成例を示す概念図である。 本発明の第2の実施形態に係る給電システムの受信アンテナの構成例を示す概念図である。 送信アンテナと受信アンテナとの間でマルチパスが発生する場合の電磁界エネルギーについて説明するための概念図である。 本発明の第3の実施形態に係る給電システムの送信アンテナと受信アンテナとの距離を受電力または可変通信レートで判断する場合のグラフである。 本発明の第4の実施形態に係る給電システムの送信アンテナおよび受信アンテナの構成を示す概念図である。 第4の実施形態に係る給電システムにおける電磁界エネルギーの流れをシミュレーションした結果の一例である。 本発明の第4の実施形態に係る給電システムの変形例の送信アンテナおよび受信アンテナの構成を示す概念図である。 本発明の第4の実施形態に係る給電システムの別の変形例の送信アンテナおよび受信アンテナの構成を示す概念図である。 本発明の第4の実施形態に係る給電システムの別の変形例における給電効率について説明するためのグラフである。 無線送電器と無線受電器との間に鉛直なポインティングベクトルを形成させる一例について説明するための概念図である。
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由が無い限り、同様箇所には同一符号を付し、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。
(第1の実施形態)
まず、本発明の第1の実施形態に係る給電システムについて、図面を参照しながら説明する。
<構成>
図1は、本発明の第1の実施形態に係る給電システム1の構成を示す概念図である。図1のように、本実施形態に係る給電システム1は、海水(良導体媒体とも呼ぶ)などの水の中に設置された水中給電ステーション10(給電装置とも呼ぶ)から、海中のような水中を航行できる潜水艇20(移動体とも呼ぶ)に無線給電する給電システムである。
〔水中ステーション〕
図2は、本実施形態に係る水中給電ステーション10の構成を示すブロック図である。図2のように、水中給電ステーション10は、送信アンテナ11、給電手段13、電磁界エネルギー発生手段17を備える。
送信アンテナ11は、海中などの水中環境下において指向性を有する。送信アンテナ11は、電磁界エネルギー発生手段17と接続されており、電磁界エネルギー発生手段17が発生させた電磁化エネルギー30を海中に送信する。
なお、図1においては、送信アンテナ11を1台とする例を示しているが、送信アンテナ11を2台以上としてもよい。また、送信アンテナ11は、誘導用の電磁界エネルギー30だけでなく、潜水艇20と通信するための通信用アンテナとして利用してもよいし、給電用途の送電アンテナとして利用してもよい。
給電手段13は、送信アンテナ潜水艇20に給電を行うための手段である。給電手段13は、外部電力や蓄電池などの電源に接続され、潜水艇20に無線給電するためのアンテナを有する。給電手段13は、例えば1〜300kHzの周波数帯の電磁波を用いて無線給電を行う。この周波数帯により、0.1〜1m程度の高効率な給電が可能になる。なお、送信アンテナ11から無線給電することができる場合は、給電手段13を省略してもよい。
通信手段15(第1の通信手段とも呼ぶ)は、潜水艇20と通信を行うため手段である。通信手段15は、潜水艇20に対して水中給電ステーション10の位置を通知したり、潜水艇20の位置を受信したり、潜水艇20を水中給電ステーション10まで誘導したりするための通信機能を有する。通信手段15は、例えば1〜300kHzの周波数帯の電磁波を用いた無線通信や超音波、有線で通信を行う。給電用の周波数と通信用の周波数とを同一周波数帯とすることで、周波数発生器などを共用することが可能になり、低コストになる。通信手段15は、慣性航法システムやソナー測位システムなどを実現するための通信機能を備えていてもよい。なお、送信アンテナ11が通信機能を有する場合は、通信手段15を省略してもよい。
電磁界エネルギー発生手段17は、潜水艇20を誘導するための電磁界エネルギー30を発生する。電磁界エネルギー発生手段17は、例えば1〜300kHz程度の波長帯の電磁界エネルギーを発生させる。電磁界エネルギー発生手段17は、送信アンテナ11に接続され、自身が発生させた電磁界エネルギー30を送信アンテナ11に送る。なお、電磁界エネルギー発生手段17は、電磁界エネルギー30として、正弦波のCW信号や、可変通信レートのデジタル通信信号を送信してもよい(CW:Continuous Wave)。
〔潜水艇〕
図3は、本実施形態に係る潜水艇20の構成を示すブロック図である。
潜水艇20は、受信アンテナ21、制御手段22、受電手段23、蓄電手段24、通信手段25、水中給電ステーション10から送信された電磁界エネルギー30を受信する受信手段27を備える。
受信アンテナ21は、海中などの水中環境下において指向性を有する。受信アンテナ21は、水中給電ステーション10が発生させた電磁界エネルギー30を受信する。受信アンテナ21は、例えば1〜300kHz程度の波長帯の電磁界エネルギーを受信する。受信アンテナ21は、受信手段27と接続されており、受信した電磁界エネルギー30を受信手段27に送る。
なお、図3において、受信アンテナ21を1台とする例を示しているが、受信アンテナ21を2台以上としてもよい。また、受信アンテナ21は、誘導用の電磁界エネルギー30だけでなく、水中給電ステーション10と通信するための通信用アンテナとして利用してもよい。また、受信アンテナ21は、給電用途の受電アンテナとして利用してもよい。
制御手段22は、水中給電ステーション10に潜水艇20を誘導するように制御する手段である。また、図4のように、制御手段22は、受信手段22が受信した信号に基づいて潜水艇20を誘導する誘導機能28を有する。制御手段22は、受信アンテナ21が受信した電磁界エネルギー30を解析する。そして、制御手段22は、誘導機能28によって、受信アンテナ21の受電力が大きくなる方向に潜水艇20を導く。
なお、制御手段22は、受信アンテナ21の受電力が最大となる位置に潜水艇20を誘導することが望ましいが、給電手段13から受電手段23への給電が可能となる位置に潜水艇20を誘導しさえすればよい。給電手段13から受電手段23への給電を開始する閾値は、受信アンテナ21が受電する電磁界エネルギー30の受電力で設定すればよい。
制御手段22は、例えばCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、補助記憶装置を備えるコンピュータによって実現できる。CPUは、プログラムを不揮発性記憶装置や補助記憶装置から読み出して実行する。ROMには、潜水艇20を適切な位置に誘導するための基本プログラムが記憶されている。ワークエリアとしてのRAMには、データが一時的に格納される。補助記憶装置には、後述するデータ処理における処理ルーチンを実行するためのプログラムが記憶されている。
制御手段22は、例えば、誘導制御を実行するための専用のコンピュータやマイクロコンピュータなどの情報処理装置によって実現される。また、制御手段22は、例えば、デスクトップPC(Personal Computer)、ノートPC、タブレット、スマートフォンなどの情報処理装置によって実現してもよい。
受電手段23は、水中給電ステーション10から給電された電力を受電する手段である。受電手段23は、水中給電ステーションからの無線給電を受けるためのアンテナを有する。受電手段23は、制御手段22の制御によって、水中給電ステーション10の給電手段13からの給電を受けやすい位置に誘導される。受電手段23は、例えば1〜300kHzの波長帯の電磁波を用いた無線給電を受ける。受電手段23は、蓄電手段24に接続され、受電した電力を蓄電手段24に送る。なお、受信アンテナ21が無線給電を受けることができる場合は、受電手段23を省略してもよい。
蓄電手段24は、受電手段23に接続され、受電手段23が受電した電力を蓄電する手段である。蓄電手段24は、例えば鉛蓄電池やリチウムイオン二次電池、リチウムイオンポリマー二次電池、ニッケル・水素蓄電池、ニッケル・カドニウム蓄電池、酸化銀・亜鉛蓄電池などの蓄電池によって実現される。なお、受信アンテナ21が無線給電を受けることができる場合、蓄電手段24は、受信アンテナ21に接続される。
通信手段25(第2の通信手段とも呼ぶ)は、水中給電ステーション10と通信を行うための手段である。また、通信手段25は、潜水艇20の母船と通信するためにも使われる。通信手段25は、水中給電ステーション10に対して潜水艇20の位置を通知したり、水中給電ステーション10の位置を受信したり、潜水艇20を水中給電ステーション10まで誘導したりするための通信機能を有する。通信手段25は、例えば1〜300kHz帯の電磁波を用いた無線通信や超音波、有線で通信を行う。通信手段25は、慣性航法システムやソナー測位システムなどを実現するための通信機能を備えていることが好ましい。なお、受信アンテナ21が通信機能を有する場合は、通信手段25を省略してもよい。
受信手段27は、水中給電ステーション10から送信された電磁界エネルギー30を受信する。受信手段27は、受信アンテナ21および制御手段22と接続される。受信手段27は、受信アンテナ21から電磁界エネルギー30を受け取ると、受け取った電磁界エネルギー30を制御手段22に送信する。なお、受信手段27は、電磁界エネルギー30そのものではなく、電磁界エネルギー30に関する情報を制御手段22に送るようにしてもよい。
〔アンテナ〕
図5に、本実施形態の送信アンテナ11および受信アンテナ21を構成するアンテナの一例を示す。
本実施形態のアンテナは、例えばコイルを含む。本実施形態のアンテナを構成するコイルは、銅線などの導体を螺旋状や渦巻状に一巻き以上巻いたものであり、一般的なヘリカルコイルやスパイラルコイルなどを用いることができる。ただし、本実施形態のアンテナに含まれるコイルは、電磁界エネルギー30を送受信できるものであればよく、コイルの材質や形状、巻き数、長さ、太さなどに関して特に限定はしない。
なお、送信アンテナ11および受信アンテナ21を給電や通信に用いる場合は、複数種類の電磁波を送受信できるように、複数の種類の材質や形状、巻き数、長さ、太さなどからなるコイルを組み合わせてもよい。また、コイルの材質や形状、巻き数、長さ、太さなどを変えずに、コイルで送受信する電磁波の種類を変更できるように構成してもよい。
〔潜水艇の誘導〕
ここで、潜水艇20を適切な給電位置に誘導する原理について、図6〜図9を参照しながら詳細に説明する。
図6は、海中環境下において指向性を有する送信アンテナ11と、海中環境下において指向性を有する受信アンテナ21との横方向の位置ずれについて説明するための概念図である。図7は、送信アンテナ11と受信アンテナ21との横方向の位置ずれ割合と、受信アンテナ21の受電力との関係を検証した実験データである。なお、横方向の位置ずれ割合は、以下の式1によって求められる。ただし、式1におけるAおよびBは、図6において、Aは送信アンテナ11や受信アンテナ21の横方向の長さ、Bは送信アンテナ11と受信アンテナ21の横方向の位置ずれを示す。
(A−B)/A×100・・・(1)
図8は、海中環境下において指向性を有する送信アンテナ11と、海中環境下において指向性を有する受信アンテナ21との間の鉛直方向の距離について説明するための概念図である。図9は、送信アンテナ11と受信アンテナ21の距離と、受信アンテナ21の受電力との関係を検証した実験データである。
図6や図8のように、電磁界エネルギー30は、送信アンテナ11から受信アンテナ21に向かって送信される。電磁界エネルギー30は指向性を有するため、図7のように、送信アンテナ11と受信アンテナ21との間における横方向のずれが大きくなるにつれて、受信アンテナ21の受電力が低下していく。また、図9のように、送信アンテナ11と受信アンテナ21の距離が大きくなるにつれて、受信アンテナ21の受電力が低下していく。
図7から、受信アンテナ21の受電力は、横方向の位置ずれ割合が大きくなるにつれて単調減少することがわかる。また、図9から、受信アンテナ21の受電力は、鉛直方向の距離が大きくなるにつれて単調減少することがわかる。
図7および図9から、送信アンテナ11と受信アンテナ21との間における横方向のずれを小さくし、送信アンテナ11と受信アンテナ21との間の鉛直方向の距離が小さくすれば、受信アンテナ21の受電力が大きくなることがわかる。すなわち、受電力が最大となる給電位置に受信アンテナ21を誘導すれば、最も効率的に給電できる。
以上のように、受信アンテナ21の受電力が大きくなる方向に潜水艇20を誘導することによって、水中給電ステーション10から潜水艇20への給電が可能となる。また、本実施形態においては、無線給電によって給電を行うため、水中給電ステーション10に対して潜水艇20を固定する必要がない。
以上が、本実施形態に係る給電システム1の構成についての説明である。
<動作>
次に、本実施形態に係る給電システム1の動作について、図10のフローチャートを参照しながら説明する。
図10において、まず、潜水艇20は、慣性航法システムやソナー測位システムなどを用いて水中ステーション20近傍まで移動する(ステップS11)。
次に、潜水艇20は、通信手段25によって、水中給電ステーション10に向けて「電磁界エネルギー送信開始」の信号を送信する(ステップS12)。
次に、水中給電ステーション10は、潜水艇20が送信した「電磁界エネルギー送信開始」信号を受信すると、電磁界エネルギーを送信する(ステップS13)。
次に、潜水艇20の制御手段22は、水中給電ステーション10が送信した電磁界エネルギーを受信すると、受信する電磁界エネルギーが大きくなる方向に潜水艇20を誘導する(ステップS14)。
ここで、潜水艇20の受信アンテナ21で受信される電磁界エネルギーが閾値以上に到達すると、潜水艇20は、通信手段25を介して給電を開始することを求める信号を送信する(ステップS15)。なお、受信アンテナ21が受信する電磁界エネルギーの閾値は、蓄電手段24の容量を基に設定すればよい。
水中給電ステーション10は、潜水艇20からの給電開始を求める信号を通信手段15で受信すると、給電手段13によって給電を開始する(ステップS16)。潜水艇20は、水中給電ステーション10の給電手段13からの給電を受電手段23で受電し、受電した電力を蓄電手段24に蓄電する。
以上が、本実施形態に係る給電システム1の動作についての説明である。なお、図10のフローチャートに沿った動作は一例であって、状況に応じて、必要な処理を追加したり、不要な処理を削除したりしてもよい。また、水中給電ステーション10から潜水艇20への給電は、無線給電によって行われることを想定しているが、水中給電ステーション10の一部と潜水艇20の一部とが接触していてもよい。
以上のように、本実施形態においては、指向性を有するアンテナを用い、受信したエネルギー量の大小で潜水艇の誘導方向を決定する。その結果、本実施形態によれば、給電装置である水中ステーションに給電対象の移動体である潜水艇を精度よく誘導し、水中ステーションに潜水艇を固定させなくても給電することが可能となり、海中の潜水艇に対しても給電を行うことが可能となる。
ここで、第1の実施形態に係る給電システム1の変形例について説明する。
(変形例1)
図11および図12は、第1の実施形態に係る給電システム1の変形例1に関するブロック図である。
図11は、変形例1の水中給電ステーション10−1の機能構成を示すブロック図である。水中給電ステーション10−1では、送信アンテナ11−1が通信機能150を有する。通信機能150は、通信手段15の機能を有する。そのため、送信アンテナ11−1を通信用とのアンテナとして用いることができ、図2の通信手段15を省略できる。
図12は、変形例1の潜水艇20−1の機能構成を示すブロック図である。潜水艇20−1では、受信アンテナ21−1が通信機能250を有する。通信機能250は、通信手段25の通信機能を有する。そのため、受信アンテナ21−1を通信用とのアンテナとして用いることができ、図3の通信手段25を省略できる。
以上のように、変形例1によれば、送信アンテナおよび受信アンテナに通信機能をもたせ、通信専用のアンテナを省くことによって低コストにすることができる。なお、送信アンテナおよび受信アンテナのうち少なくともいずれか一方に通信機能をもたせるように構成してもよい。
(変形例2)
図13および図14は、第1の実施形態に係る給電システム1の変形例2に関するブロック図である。
図13は、変形例2の水中給電ステーション10−2の機能構成を示すブロック図である。水中給電ステーション10−2では、送信アンテナ11−2が給電機能130を有する。給電機能130は、給電手段13の機能である。そのため、送信アンテナ11−2を給電用とのアンテナとして用いることができ、図2の給電手段13を省略できる。
図14は、変形例2の潜水艇20−2の機能構成を示すブロック図である。潜水艇20−2では、受信アンテナ21−2が受電機能230を有する。受電機能230は、受電手段23の機能である。そのため、受信アンテナ21−2を受電用とのアンテナとして用いることができ、図3の受電手段23を省略できる。
以上のように、変形例2によれば、送信アンテナに給電機能をもたせ、受信アンテナに受電機能をもたせる。給電線用および受電専用のアンテナを省くことによって低コストにすることができる。なお、送信アンテナおよび受信アンテナのうち少なくともいずれか一方に給電・受電機能をもたせてもよい。
なお、変形例1および変形例2では、送信アンテナおよび受信アンテナのうち少なくとも一方に通信機能または給電・受電機能をもたせる例を示した。送信アンテナおよび受信アンテナのうち少なくとも一方に通信機能および給電・受電機能をもたせてもよい。
(第2の実施形態)
次に、本発明の第2の実施形態に係る給電システムについて、図面を参照しながら説明する。本実施形態に係る給電システムは、送信アンテナおよび受信アンテナの構成が第1の実施形態とは異なる。なお、本実施形態に係る給電システムは、送信アンテナおよび受信アンテナの構成以外は第1の実施形態に係る給電システム10と同様であり、給電システム10と同様の動作をする。
図15および図16は、本実施形態に係る給電システムのアンテナに関する概念図である。
図15は、本実施形態の送信アンテナ110である。送信アンテナ110は、第1のアンテナ111、第2のアンテナ112、第3のアンテナ113、第4のアンテナ114を含む。すなわち、送信アンテナ110は、複数のアンテナを含む。なお、図15は一例であって、送信アンテナ110は、少なくとも二つの送信アンテナを含むように構成すればよい。
図15の送信アンテナ110においては、例えば制御手段(図示しない)によって第1〜第4のアンテナ111〜114の各々から送信する電磁界エネルギーの大きさや向きを制御し、電磁界エネルギー300の方向を任意の方向に向けることができる。
図16は、第2の実施形態の受信アンテナ120である。受信アンテナ120は、第1のアンテナ121、第2のアンテナ122、第3のアンテナ123、第4のアンテナ124を含む。すなわち、受信アンテナ120は、複数のアンテナを含む。なお、図16は一例であって、受信アンテナ120は、少なくとも二つの受信アンテナを含むように構成すればよい。
図16の受信アンテナ120によれば、例えば制御手段22によって受信手段27を制御し、任意の方向から電磁界エネルギー300を受信することができる。
以上の本実施形態においては、送信アンテナを複数のアンテナで構成し、電磁界エネルギーの送信方向を任意の方向に制御できる。そのため、送信アンテナと受信アンテナとの間に正対する箇所が無い状態であっても潜水艇の誘導を開始することができる。同様に、受信アンテナを複数のアンテナで構成した場合も、任意の方向から電磁界エネルギーを受電することができるため、送信アンテナと受信アンテナとの間に正対する箇所が無い状態であっても潜水艇の誘導を開始することができる。送信アンテナおよび受信アンテナの両方が複数のアンテナで構成されていれば、電磁界エネルギーの送受信の方向を任意に設定できるため、潜水艇を適切な給電位置に誘導しやすくなる。なお、送信アンテナおよび受信アンテナのうちいずれか一方が複数のアンテナで構成され、他方が単一のアンテナで構成されていてもよい。
(第3の実施形態)
次に、本発明の第3の実施形態に係る給電システムについて、図面を参照しながら説明する。本実施形態に係る給電システムは、送信アンテナと受信アンテナの距離を電磁界エネルギーの受電力ではなく、デジタル信号の通信レートによって判断する点が第1の実施形態と異なる。なお、本実施形態に係る給電システムは、第1の実施形態に係る給電システム10と同様の構成を有し、給電システム10と同様の動作をする。
図17は、本実施形態の送受信アンテナに関する概念図である。また、図18は、送信アンテナと受信アンテナの距離を受電力によって判断する場合と、デジタル信号の通信レートによって判断する場合とを比較するグラフである。なお、図18において、実線は、マルチパスの影響がある場合の受電力の距離依存性を示す。また、図18において、破線は、マルチパスの影響がある場合の受電力の距離依存性と、可変通信レートの距離依存性とを示す。
本実施形態において、水中給電ステーション10は、電磁界エネルギー発生手段17によって、可変通信レートのデジタル信号を発生させる。水中給電ステーション10は、送信アンテナ11から、電磁界エネルギー発生手段17が生成した可変通信レートのデジタル信号を海中に送信する。
潜水艇20は、受信アンテナ21によって、送信アンテナ11から送信されたデジタル信号を受信する。潜水艇20の制御手段22は、受信したデジタル信号の通信レートを解析し、通信レートが高くなる方向に潜水艇20が誘導されるように制御する。
図17のように、送信アンテナ11と受信アンテナ21の距離が小さい場合、受電力(実線)で距離を判断すると、受信アンテナ21がマルチパスに起因する電磁界エネルギー31を受信することがある。図18のように、距離が小さい場合、受信アンテナ21はマルチパスに起因する電磁界エネルギー31を余分に受信してしまうため、距離が小さくなるにつれて受電力の変化量が小さくなる。その結果、送信アンテナ11と受信アンテナ21の距離を正確に把握しにくくなり、潜水艇20を正確な給電位置に誘導しにくくなる。
それに対し、送信アンテナ11と受信アンテナ21の距離を通信レートによって判断する場合は、マルチパスの影響がない。そのため、図18のように、送信アンテナ11と受信アンテナ21の距離が小さくなっても、受信アンテナ21が受信するデジタル信号の通信レート(破線)の変化量が小さくなることはない。そのため、送信アンテナ11と受信アンテナ21とが近づいても、距離を正確に把握することができ、潜水艇20を正確な給電位置に誘導することができる。
なお、送信アンテナ11と受信アンテナ21の距離は、受信アンテナ21が受信する電磁界エネルギー30の受電力と、デジタル信号の通信レートとの両方を用いて判断してもよい。
本実施形態によれば、可変通信レートのデジタル通信信号を用いることによって、マルチパスの影響を除去することが可能になる。その結果、より高い精度で潜水艇を給電場所に誘導することが可能になる。
(第4の実施形態)
次に、本発明の第4の実施形態に係る給電システムについて、図面を参照しながら説明する。本実施形態に係る給電システムは、送信アンテナおよび受信アンテナの構造が第1の実施形態とは異なる。なお、本実施形態に係る給電システムは、送信アンテナおよび受信アンテナの構造以外は第1の実施形態に係る給電システム10と同様であり、給電システム10と同様の動作をする。
図19のように、本実施形態に係る送信アンテナ211は、コイル213と、コイル213を内含する包含部217とによって構成される。同様に、本実施形態に係る受信アンテナ221は、コイル223と、コイル223を内含する包含部227とによって構成される。
コイル213およびコイル223は、第1の実施形態に係る給電システム1のコイルと同様の構成をもつ。
包含部217および包含部227は、それぞれコイル213およびコイル223を被覆する誘電体である。包含部217および包含部227は、例えばポリエチレンやポリイミド、フッ素樹脂、アクリルなどの誘電体で構成することが好ましい。なお、包含部217および包含部227を構成する誘電体は、ここに挙げた限りではない。また、包含部217および包含部227を構成する誘電体は、複数種類の誘電体材料を組み合わせた構成としてもよい。
なお、本実施形態においては、送信アンテナ211と受信アンテナ221とを同じ構造としているが、同じ構造としなくてもよい。
図20は、本実施形態の送信アンテナ211および受信アンテナ221を用いた場合のポインティングベクトル(電磁界エネルギー30)の流れをシミュレーションした結果である。なお、図20においては、三角形または多角形によって表現された矢尻の先端がポインティングベクトルの方向を示す。ポインティングベクトルの強弱は矢尻の濃淡で表しており、濃い矢尻ほど強度が大きく、淡い矢尻ほど強度が小さい。
図20のように、本実施形態によれば、海中環境下において、送信アンテナ211から指向性を有する電磁界エネルギーを放射することが可能になる。その結果、給電場所である水中給電ステーションに給電対象である潜水艇20を精度よく誘導することができる。
(変形例)
図21および図22は、本実施形態の送信アンテナ311および受信アンテナ321の変形例である。
図21の変形例の送信アンテナ311は、上面コイル313(第1のコイルとも呼ぶ)と、底面コイル314(第2のコイルとも呼ぶ)と、誘電部315と、包含部317とによって構成される。
送信アンテナ311の上面コイル313および底面コイル314のそれぞれは、第1の実施形態に係るコイルと同様の構成をもつ。なお、上面コイル313の巻線方向と、底面コイル314の巻線方向とは、互いに磁界を強めあうような巻線方向に配置されていることが好ましい。誘電部315は、上面コイル313と底面コイル314との間に配置される。包含部317は、上面コイル313、誘電部315および底面コイル314を内含する誘電体である。なお、誘電部315の比誘電率E1は、包含部317の比誘電率E2よりも大きいことが好ましい。すなわち、比誘電率E1と比誘電率E2とは、以下の式1を満たすことが好ましい
E1>E2・・・(1)
同様に、図21の変形例の受信アンテナ321は、上面コイル323と、底面コイル324と、誘電部325と、包含部327とによって構成される。受信アンテナ321の上面コイル323、底面コイル324、誘電部325および包含部327は、それぞれ送信アンテナ311の上面コイル313、底面コイル314、誘電部315および包含部317に対応して同様の構成をもつ。
図21の変形例によれば、上面コイルと底面コイルとを磁界を強めあう向きに配置し、かつ上面コイルと底面コイルとの間に包含部よりも高い誘電率の誘電体を挟むことによって、同一サイズでありながらより低い周波数で動作することが可能になる。その結果、小型でありながら、より高い指向性を有する電磁界エネルギーを放射するアンテナを構成することが可能になる。
図22の変形例は、図21の変形例において、上面コイル側と底面コイル側とで包含部の厚みが異なるように構成する例である。
図22の変形例の送信アンテナ411は、上面コイル413と、底面コイル414と、誘電部415と、包含部417とによって構成される。同様に、図22の変形例の受信アンテナ421は、上面コイル423と、底面コイル424と、誘電部425と、包含部427とによって構成される。
送信アンテナ411では、底面コイル414側に比べて上面コイル413側の包含部417の厚みが小さい。同様に、受信アンテナ421では、底面コイル424側に比べて上面コイル423側の包含部427の厚みが小さい。すなわち、送信アンテナ411および受信アンテナ421において、上面コイル側の包含部の厚みXと、底面コイル側の包含部の厚みYとの間には、以下の式2の関係が成り立つ。
X<Y・・・(2)
図23は、図22の変形例について、Y/Xと給電効率との関係をプロットしたグラフである。図23のように、図22の変形例によれば、底面コイル側の包含部の厚みYに比べて上面コイル側の包含部の厚みXを小さくするのにつれて、アンテナにおける損失が低減して給電効率が向上する。その結果、給電効率が向上するため、潜水艇への高効率な給電が可能になる。
以上の本発明の各実施形態に関しては、移動体として潜水艇、給電装置として水中給電ステーションを想定して説明した。しかしながら、本発明の各実施形態に係る移動体および給電装置は、潜水艇および水中給電ステーションに限定されない。例えば、移動体としては、潜水艇の母船や船舶、ロボット、漁船、水夫などを想定することができる。また、例えば、給電装置としては、潜水艇の母船や大型船、ロボット、給電用船舶、発電所、海洋資源開発施設、港湾施設などを想定することができる。
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1 給電システム
10 水中給電ステーション
11 送信アンテナ
13 給電手段
15 通信手段
17 電磁界エネルギー発生手段
20 潜水艇
21 受信アンテナ
22 制御手段
23 受電手段
24 蓄電手段
25 通信手段
27 受信手段
28 誘導機能
211、311、411 送信アンテナ
213、223 コイル
217、227、317、327、417、427 包含部
221、321、421 受信アンテナ
313、323、413、423 上面コイル
314、324、414、424 底面コイル
315、325、415、425 誘電部

Claims (10)

  1. 水中環境下において指向性を有する送信アンテナを有し、前記送信アンテナから電磁界エネルギーを送信する給電装置と、
    水中環境下において指向性を有する受信アンテナを有し、前記給電装置から送信された前記電磁界エネルギーを受信する移動体とを備え、
    前記移動体は、
    前記受信アンテナが受信する前記電磁界エネルギーが大きくなる方向に自身を導き、前記給電装置から無線給電を受ける給電位置に自身を誘導する制御手段を有する給電システム。
  2. 前記給電装置は、
    前記電磁界エネルギーを発生させ、発生させた前記電磁界エネルギーを前記送信アンテナに送る電磁界エネルギー発生手段と、
    前記移動体に無線給電する給電手段と、
    前記移動体と通信する第1の通信手段とを有する請求項1に記載の給電システム。
  3. 前記移動体は、
    前記受信アンテナが受信した前記電磁界エネルギーを受け取り、前記制御手段に前記電磁界エネルギーに関する情報を送信する受信手段と、
    前記給電手段から無線給電によって電力を受電する受電手段と、
    前記受電手段によって受電された電力を蓄電する蓄電手段と、
    前記給電装置と通信する第2の通信手段とを有する請求項2に記載の給電システム。
  4. 前記送信アンテナおよび前記受信アンテナのうち少なくとも一方が複数のアンテナで構成される請求項1乃至3のいずれか一項に記載の給電システム。
  5. 前記送信アンテナは、
    可変通信レートのデジタル信号を水中に送信し、
    前記受信アンテナは、
    前記送信アンテナによって送信された前記デジタル信号を前記受信アンテナで受信し、
    前記制御手段は、
    受信した前記デジタル信号の通信レートが大きくなる方向に前記移動体を誘導する請求項1乃至4のいずれか一項に記載の給電システム。
  6. 前記送信アンテナおよび前記受信アンテナのうち少なくとも一方が、
    一巻以上の導線によって構成されたコイルと、
    前記コイルを内含する誘電体である包含部とを含む請求項1乃至5のいずれか一項に記載の給電システム。
  7. 前記送信アンテナおよび前記受信アンテナのうち少なくとも一方が、
    一巻以上の導線によって構成される第1のコイルと、
    一巻以上の導線によって構成され、前記第1のコイルと互いに磁界を強め合うように配置された第2のコイルと、
    前記第1および第2のコイルによって挟まれた誘電体である誘電部と、
    前記第1のコイル、前記第2のコイルおよび前記誘電体を内含し、前記誘電部よりも比誘電率が小さい誘電体である包含部とを含む請求項1乃至5のいずれか一項に記載の給電システム。
  8. 前記送信アンテナおよび前記受信アンテナのうち少なくとも一方の前記包含部において、前記第1のコイル側の厚みと比べて前記第2のコイル側の厚みの方が大きい請求項7に記載の給電システム。
  9. 水中環境下において指向性を有し、給電装置から送信された電磁界エネルギーを受信する受信アンテナと、
    前記受信アンテナが受信した前記電磁界エネルギーが大きくなる方向に自身を導き、前記給電装置から無線給電を受ける給電位置に誘導する制御手段とを備える移動体。
  10. 電磁界エネルギーを発生する電磁界エネルギー発生手段と、
    水中環境下において指向性を有し、前記電磁界エネルギーに導かれる移動体に向けて前記電磁界エネルギーを送信する送信アンテナと、
    前記電磁界エネルギーが大きくなる方向に導かれて無線給電を受ける給電位置に誘導された移動体に給電する給電手段とを備える給電装置。
JP2014265682A 2014-12-26 2014-12-26 給電システム、移動体および給電装置 Active JP6492651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265682A JP6492651B2 (ja) 2014-12-26 2014-12-26 給電システム、移動体および給電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265682A JP6492651B2 (ja) 2014-12-26 2014-12-26 給電システム、移動体および給電装置

Publications (2)

Publication Number Publication Date
JP2016127678A true JP2016127678A (ja) 2016-07-11
JP6492651B2 JP6492651B2 (ja) 2019-04-03

Family

ID=56358244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265682A Active JP6492651B2 (ja) 2014-12-26 2014-12-26 給電システム、移動体および給電装置

Country Status (1)

Country Link
JP (1) JP6492651B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796433B1 (ko) * 2016-10-19 2017-11-09 한국과학기술원 최적의 충전위치의 측정이 가능한 급·집전 장치 및 방법
WO2018221022A1 (ja) 2017-05-29 2018-12-06 三菱電機株式会社 電波測定システム、無線送電装置および空中移動体への送電システム
WO2018220996A1 (ja) 2017-05-29 2018-12-06 三菱電機株式会社 電波測定システム、および無線送電装置
KR102276397B1 (ko) * 2020-11-09 2021-07-12 경원산업 주식회사 수중 음향 태그 및 그의 제어 시스템 및 제어 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125641A (ja) * 1999-10-29 2001-05-11 Sony Corp 移動ロボットのための充電システム、充電ステーションを探索する方法、移動ロボット、コネクタ、及び、電気的接続構造
JP2011188733A (ja) * 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd 移動体、無線給電システムおよび無線給電方法
US20120298030A1 (en) * 2011-05-24 2012-11-29 Pei-Jun Lee Underwater robot
JP2013046561A (ja) * 2011-08-26 2013-03-04 Toshiba Corp 送電装置
JP2013070571A (ja) * 2011-09-26 2013-04-18 Minebea Co Ltd 自走電子装置
JP2013215038A (ja) * 2012-04-02 2013-10-17 Sharp Corp 載置台
WO2014034491A1 (ja) * 2012-08-31 2014-03-06 日本電気株式会社 電力伝送装置及び電力伝送方法
WO2014185490A1 (ja) * 2013-05-15 2014-11-20 日本電気株式会社 電力伝送システム、送電装置、受電装置、及び電力伝送方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125641A (ja) * 1999-10-29 2001-05-11 Sony Corp 移動ロボットのための充電システム、充電ステーションを探索する方法、移動ロボット、コネクタ、及び、電気的接続構造
JP2011188733A (ja) * 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd 移動体、無線給電システムおよび無線給電方法
US20120298030A1 (en) * 2011-05-24 2012-11-29 Pei-Jun Lee Underwater robot
JP2013046561A (ja) * 2011-08-26 2013-03-04 Toshiba Corp 送電装置
JP2013070571A (ja) * 2011-09-26 2013-04-18 Minebea Co Ltd 自走電子装置
JP2013215038A (ja) * 2012-04-02 2013-10-17 Sharp Corp 載置台
WO2014034491A1 (ja) * 2012-08-31 2014-03-06 日本電気株式会社 電力伝送装置及び電力伝送方法
WO2014185490A1 (ja) * 2013-05-15 2014-11-20 日本電気株式会社 電力伝送システム、送電装置、受電装置、及び電力伝送方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796433B1 (ko) * 2016-10-19 2017-11-09 한국과학기술원 최적의 충전위치의 측정이 가능한 급·집전 장치 및 방법
KR20200109385A (ko) 2017-05-29 2020-09-22 미쓰비시덴키 가부시키가이샤 무선 송전 장치 및 공중 이동체로의 송전 시스템
EP3770616A1 (en) 2017-05-29 2021-01-27 Mitsubishi Electric Corporation Radio wave measurement system and wireless power transmission device
KR20200003837A (ko) 2017-05-29 2020-01-10 미쓰비시덴키 가부시키가이샤 전파 측정 시스템
KR20200003839A (ko) 2017-05-29 2020-01-10 미쓰비시덴키 가부시키가이샤 전파 측정 시스템
US10782333B2 (en) 2017-05-29 2020-09-22 Mitsubishi Electric Corporation Radio wave measurement system
WO2018221022A1 (ja) 2017-05-29 2018-12-06 三菱電機株式会社 電波測定システム、無線送電装置および空中移動体への送電システム
KR20200143507A (ko) 2017-05-29 2020-12-23 미쓰비시덴키 가부시키가이샤 무선 송전 장치 및 공중 이동체로의 송전 시스템
WO2018220996A1 (ja) 2017-05-29 2018-12-06 三菱電機株式会社 電波測定システム、および無線送電装置
US10962579B2 (en) 2017-05-29 2021-03-30 Mitsubishi Electric Corporation Wireless power transmission device and power transmission system to aerial moving body
EP3798647A1 (en) 2017-05-29 2021-03-31 Mitsubishi Electric Corporation Wireless power transmission device and power transmission system to aerial moving body
EP3809146A1 (en) 2017-05-29 2021-04-21 Mitsubishi Electric Corporation Radio wave measurement system, wireless power transmission device, and system for transmitting power to flying body
EP3828559A1 (en) 2017-05-29 2021-06-02 Mitsubishi Electric Corporation Radio wave measurement system, wireless power transmission device, and system for transmitting power to flying body
US11137433B2 (en) 2017-05-29 2021-10-05 Mitsubishi Electric Corporation Radio wave measurement system
KR102276397B1 (ko) * 2020-11-09 2021-07-12 경원산업 주식회사 수중 음향 태그 및 그의 제어 시스템 및 제어 방법

Also Published As

Publication number Publication date
JP6492651B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6492651B2 (ja) 給電システム、移動体および給電装置
US11502550B2 (en) Power transmitting device that transmits power to power receiving device having power receiving coil in water
CN104937812B (zh) 非接触供电系统
JP6531942B2 (ja) 送電装置
JP7222035B2 (ja) 送電装置
CN104849717A (zh) 一种自动探鱼系统
JP5761829B2 (ja) 水中通信システム
JP6467919B2 (ja) 電力伝送装置及び電力伝送方法
US20070297290A1 (en) Systems and Methods for Providing Connectivity in an Underwater Environment
US20190334380A1 (en) Electric power transmission device
US20200284903A1 (en) Method for tracking underwater objects
CN102684276A (zh) 一种水下非接触供电方法及装置
US11569689B2 (en) Power receiving device, power transmitting device, and underwater power supply system
JP7248262B2 (ja) 水中音響通信システム
JP2019166959A5 (ja) 水中探査を行うシステム及び情報処理装置
JP2016207872A (ja) 無線給電システムおよび無線給電方法
CN110190898A (zh) 一种岸上远程控制潜标的通信方法
WO2016170769A1 (ja) 無線給電システムおよび無線給電方法
JP2017178198A (ja) 水中設備への自律型無人潜水機のアプローチシステム
JP2019121167A (ja) 海中給電装置
CN207833019U (zh) 一种多波束系统和水面研究船
JP2016127626A (ja) 無線給電システム、移動体および情報収集システム
WO2018051934A1 (ja) 無線給電装置
KR101584228B1 (ko) 수중 무선 통신 마스트
KR101631937B1 (ko) 수중 가시광 송수신 단말기 및 그 단말기를 이용한 정보 송수신 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150