JP2016126056A - 光走査装置及びそれを備える画像形成装置 - Google Patents

光走査装置及びそれを備える画像形成装置 Download PDF

Info

Publication number
JP2016126056A
JP2016126056A JP2014264714A JP2014264714A JP2016126056A JP 2016126056 A JP2016126056 A JP 2016126056A JP 2014264714 A JP2014264714 A JP 2014264714A JP 2014264714 A JP2014264714 A JP 2014264714A JP 2016126056 A JP2016126056 A JP 2016126056A
Authority
JP
Japan
Prior art keywords
scanning device
deflector
scanning
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014264714A
Other languages
English (en)
Other versions
JP2016126056A5 (ja
JP6478627B2 (ja
Inventor
昌泰 寺村
Masayasu Teramura
昌泰 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014264714A priority Critical patent/JP6478627B2/ja
Publication of JP2016126056A publication Critical patent/JP2016126056A/ja
Publication of JP2016126056A5 publication Critical patent/JP2016126056A5/ja
Application granted granted Critical
Publication of JP6478627B2 publication Critical patent/JP6478627B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】十分な走査画角を確保し、光源への戻り光の時分割走査に対する影響を小さくしつつ、効率良く時分割走査を行うことができる光走査装置を提供する。
【解決手段】本発明に係る光走査装置は、第1の発光点を有する光源と、第1の発光点から射出された光束を第1及び第2の光束に分離する分離手段と、第1及び第2の光束のそれぞれを第1及び第2の偏向面によって偏向する偏向器と、偏向器によって偏向された第1及び第2の光束のそれぞれを第1及び第2の被走査面に導光する第1及び第2の結像光学系と、を備え、主走査断面内における第1の光束の第1の偏向面に対する第1の入射方向と第2の光束の第2の偏向面に対する第2の入射方向との成す角度θが適切に設定される。
【選択図】図1

Description

本発明は、レーザービームプリンタや複写機などの画像形成装置に用いられる光走査装置に関する。
近年、光源から射出された光束を分離し、分離された各光束をそれぞれ複数の偏向面によって偏向させることによって複数の被走査面を時分割走査する光走査装置が提案されている。
特許文献1は、光源から射出された光束を光束分離手段によって分離し、分離された各光束をそれぞれ4面ポリゴンミラーの複数の偏向面に対して45度方向から入射させ、そして偏向させることによって複数の被走査面を時分割走査する光走査装置を開示している。
特許文献2は、光源から射出された光束を光束分離手段によって分離し、分離された各光束をそれぞれ6面ポリゴンミラーの複数の偏向面に対して30度方向から入射させ、そして偏向させることによって複数の被走査面を時分割走査する光走査装置を開示している。
特開2008−257169号公報 特開2012−194333号公報
しかしながら、特許文献1及び2に開示されている光走査装置では、単一の光源から複数の被走査面に書き込みを行うことで低コスト化は図れるが、45度以下の走査画角しか確保できないため、十分な走査画角を確保することができない。
そこで、本発明は、十分な走査画角を確保し、光源への戻り光の時分割走査に対する影響を小さくしつつ、効率良く時分割走査を行うことができる光走査装置を提供することを目的とする。
本発明に係る光走査装置は、第1の発光点を有する光源と、第1の発光点から射出された光束を第1及び第2の光束に分離する分離手段と、第1及び第2の光束のそれぞれを第1及び第2の偏向面によって偏向する偏向器と、偏向器によって偏向された第1及び第2の光束のそれぞれを第1及び第2の被走査面に導光する第1及び第2の結像光学系と、を備え、第1の偏向面から偏向器の回転方向に沿って数えたときの第2の偏向面をL番目の偏向面とし、主走査断面内における第1の光束の第1の偏向面に対する第1の入射方向と第2の光束の第2の偏向面に対する第2の入射方向との成す角度をθ、偏向器の偏向面の総数をN、とするとき、
Figure 2016126056
なる条件式を満たすことを特徴とする。
本発明の光走査装置によれば、十分な走査画角を確保し、光源への戻り光の時分割走査に対する影響を小さくしつつ、効率良く時分割走査を行うことができる。
第一実施形態に係る光走査装置の主走査断面図。 第一実施形態に係る光走査装置における時分割走査を説明する図。 第一実施形態に係る光走査装置の部分拡大図。 第一実施形態に係る光走査装置において時分割走査を行うための構成を示した図。 第一実施形態に係る光走査装置において、2つの偏向面によって同時に正反射が発生している様子を示した図。 第一実施形態に係る光走査装置における偏向器の回転角度に対する各被走査面上の走査タイミングチャートを示した図。 本発明に係る光走査装置が搭載されたカラー画像形成装置の要部概略図。
以下、本発明に係る光走査装置について図面に基づいて説明する。なお、以下に示す図面は、本発明を容易に理解できるようにするために、実際とは異なる縮尺で描かれている場合がある。
なお、以下の説明において、主走査方向(Y方向)は、偏向器の回転軸及び結像光学系の光軸(X方向)に垂直な方向に対応し、副走査方向(Z方向)は、偏向器の回転軸に平行な方向に対応する。また、主走査断面は、副走査方向に垂直な断面に対応し、副走査断面は、結像光学系の光軸及び副走査方向を含む断面(主走査方向に垂直な断面)に対応する。
近年、光走査装置において、高速化、小型化や低コスト化が求められている。
まず、光走査装置の高速化を達成するために、一度に複数本の走査線を書き込むことができるマルチビーム化が提案されている。
特に最近では、VCSEL(Vertical Cavity Surface Emitting LASER(垂直共振器面発光レーザー))と呼ばれる面発光型の半導体レーザーの開発が進んでいる。VCSELを用いることによって、光走査装置は、従来の端面発光型の半導体レーザーでは実現が困難な数の発光点を有する光源を備えることが可能となる。
しかしながら、光走査装置の高速化を達成するために、光源としてVCSELなどの一度に複数本の走査線を書き込むことができるマルチビーム光源を使用すると、コストが高くなる。
また、光走査装置の高速化を達成するために、ポリゴンミラーの面数を増やすことも考えられるが、ポリゴンミラーの面数が増えると走査画角が小さくなるため、ある一定の走査領域を確保するためには光学素子の焦点距離を長くする必要があり、小型化に適さない。
以上のように、光走査装置の高速化を達成するために、マルチビーム光源を用いたり、ポリゴンミラーの面数を増やしても、走査画角を確保しつつ、光走査装置の小型化及び低コスト化を達成するには困難が伴う。
図1は、本発明の第一実施形態に係る光走査装置100の主走査断面図である。
光走査装置100は、光源101、コリメータレンズ102、光束分離素子(分離手段)103、シリンドリカルレンズ104a及び104b、反射ミラー105a及び105b、開口絞り106a及び106bを備えている。また、光走査装置100は、偏向器107、第1のfθレンズ108a及び108b、第2のfθレンズ109a及び109b、防塵手段110a及び110b、被走査面111a及び111bを備えている。なお、被走査面111a及び111bは、不図示の感光体の表面であってもよい。
光源101は、少なくとも一つの発光点(第1の発光点)を有しており、例えば端面発光型のレーザーやVCSEL等の面発光型の半導体レーザーなどが用いられる。
コリメータレンズ102は、光源101より出射した光束を略平行光束に変換する。なおここで、略平行光束とは、弱発散光束、弱収束光束及び平行光束を含むものとする。
光束分離素子103は、コリメータレンズ102を通過した光束を異なる方向に進行する2つの光束(第1の光束及び第2の光束)に分離する。例えば、光束分離素子103は、プリズムなどによって構成される。
シリンドリカルレンズ104a及び104bはそれぞれ、副走査断面内に有限のパワー(屈折力)を有しており、光束分離素子103によって分離された各光束を副走査方向に集光する。
反射ミラー105a及び105bはそれぞれ、シリンドリカルレンズ104a及び104bを通過した光束を偏向器107に向けて反射する。
開口絞り106a及び106bはそれぞれ、反射ミラー105a及び105bによって反射された光束の光束幅を制限する。
このようにして、各光束は、偏向器107の偏向面の近傍において副走査方向にのみ集光され、主走査方向に長い線像として結像される。
なお、光源101、コリメータレンズ102、光束分離素子103、シリンドリカルレンズ104a及び104b、反射ミラー105a及び105b、開口絞り106a及び106bによって、光走査装置100の入射光学系が構成される。
偏向器107は、不図示のモータにより図中矢印A方向に回転することにより、異なる偏向面に入射した各光束を被走査面111a及び111bに向けて偏向する。例えば、偏向器107は、ポリゴンミラーなどで構成される。
第1のfθレンズ108a及び108b、第2のfθレンズ109a及び109bは、主走査断面内と副走査断面内とで異なるパワーを有するアナモフィック結像レンズであり、偏向器107によって偏向された各光束を被走査面111a及び111b上に集光(導光)する。
防塵手段110a及び110bは、光走査装置100の内部へのゴミ等の侵入を防ぐために設けられており、例えば、ガラス板などで構成される。
なお、第1のfθレンズ108a、第2のfθレンズ109aによって、光走査装置100の第1の結像光学系が構成される。第1のfθレンズ108b、第2のfθレンズ109bによって、光走査装置100の第2の結像光学系が構成される。また、第1の結像光学系及び第2の結像光学系をまとめて結像光学系と呼ぶ場合がある。
従って、偏向器107及び結像光学系によって、被走査面111a及び111bが走査される。なお、偏向器107は図中矢印A方向に回転しているので、被走査面111a及び111bは図中矢印B方向に走査される。
なお、被走査面111a及び111bにおける副走査方向の露光箇所の移動は、第1及び第2の結像光学系において主走査方向に走査して露光する毎に、被走査面111a及び111bを副走査方向に移動させることによって実行している。
次に、本実施形態に係る光走査装置100の入射光学系及び結像光学系の諸特性をそれぞれ以下の表1及び表2に示す。
Figure 2016126056
Figure 2016126056
なお、表1及び表2において、各レンズ面と光軸との交点を原点としたときの、光軸方向、主走査断面内において光軸と直交する軸、及び副走査断面内において光軸と直交する軸をそれぞれ、X軸、Y軸及びZ軸としている。また、表1及び表2において、「E−x」は、「×10-x」を意味している。
本実施形態のコリメータレンズ102は、収差補正の為の非球面形状を有する回転対称なガラスモールドレンズである。その形状は、以下の式(1)で表される。
Figure 2016126056
ここで、Rは曲率半径、kは離心率、C(i=2,4,6)は非球面係数である。
第1のfθレンズ108a及び108b、第2のfθレンズ109a及び109bにおける各レンズ面の主走査断面における非球面形状は、以下の式(2)で表される。
Figure 2016126056
ここで、Rは曲率半径、kは離心率、B(i=4、6、8、…、16)は非球面係数である。なお、yに関してプラス側とマイナス側で係数Bが異なる場合は、表2にあるように、プラス側の係数には添字uを付し(すなわち、Biu)、マイナス側の係数には添字lを付している(すなわち、Bil)。
第1のfθレンズ108a及び108b、第2のfθレンズ109a及び109bにおける各レンズ面の副走査断面における非球面形状は、以下の式(3)で表される。
Figure 2016126056
ここで、Mj_4(j=0、2、4、6、8)は非球面係数である。なお、yに関してプラス側とマイナス側で係数Mj_4が異なる場合は、表2にあるように、プラス側の係数には添字uを付し(すなわち、Mj_4u)、マイナス側の係数には添字lを付している(すなわち、Mj_4l)。
また、副走査断面の曲率半径r’は、レンズ面のy座標に従って、以下の式(4)のように連続的に変化する。
Figure 2016126056
ここで、rは光軸上における副走査断面の曲率半径、E(j=2、4、6、8、10)は副走査断面の曲率半径の変化係数である。なお、yに関してプラス側とマイナス側で係数Eが異なる場合は、表2にあるように、プラス側の係数には添字uを付し(すなわち、Eju)、マイナス側の係数には添字lを付している(すなわち、Ejl)。
次に、本実施形態に係る光走査装置100において、偏向器107から光源101へ戻る光束(以下、戻り光と称する。)が発生しないように、時分割走査を行う構成について説明する。
図2(a)及び(b)は、本実施形態に係る光走査装置100における時分割走査を説明する図である。具体的に、図2(a)は偏向器107によって偏向された光束が被走査面111aを走査し始めた状態を示しており、図2(b)は偏向器107によって偏向された光束が被走査面111aを走査し終えた状態を示している。
ここで、時分割走査とは、図2(a)及び(b)に示されるように、一方の被走査面111aを光束が走査しているときに、他方の被走査面111bの画像領域(有効走査領域)内に光束が到達しない走査方法のことを指す。
図2(a)に示されるように、被走査面111aの画像領域を光束201aが走査し始めると、光束201bは被走査面111bの画像領域に入射することなく、被走査面111bの画像領域より外側を走査する。
そして、図2(b)に示されるように、被走査面111aの画像領域を光束202aが走査し終えると、光束202bは被走査面111bの画像領域に入射することなく、被走査面111bの画像領域より外側を走査する。そして、偏向器107の隣の偏向面で反射した光束202cは被走査面111bの画像領域に入射しない。
さらに、光束が被走査面111aを走査している間に、光束202cが偏向面の法線方向に反射する正反射は起こらず、従って光源101への戻り光も発生しない。
続いて、光束が被走査面111bの画像領域を走査するときは、光束は被走査面111aの画像領域に入射することなく、被走査面111aの画像領域より外側を走査し、且つ、光源101への戻り光も発生しない。
次に、本実施形態に係る光走査装置100において、光源101への戻り光が発生せずに時分割走査を可能にするための各光学素子の配置条件等を説明する。
図3は、本実施形態に係る光走査装置100の部分拡大図を示している。
図3において、θは反射ミラー105aによって反射された光束と反射ミラー105bによって反射された光束との間の角度である。また、θinは反射ミラー105aによって反射された光束と第1のfθレンズ108aの光軸との間の角度である。
本実施形態に係る光走査装置100では、θ及びθinはそれぞれ、56度及び62度に設定されている。このように配置することで図2に示されるような時分割走査を行うことができる。
その理由を説明するために、次に、光源101への戻り光が発生せずに時分割走査を可能にするための幾何学的な条件について説明する。
図4は、本実施形態に係る光走査装置100において時分割走査を行うための構成を示している。
入射光束401a及び401bはそれぞれ、偏向器107の偏向面403及び405に入射する光束である。出射光束402a及び402bはそれぞれ、偏向器107の偏向面403及び405によって反射され出射する光束である。
点Oは、偏向器107の回転中心である。点Dは、入射光束401aと偏向面403との交点である。点Eは、入射光束401bと偏向面405との交点である。点Fは、入射光束401aの延長線と入射光束401bの延長線との交点である。
偏向器107は、面数がN面(すなわち、Nは偏向器107の偏向面の総数)ある、外角βの正多角形のポリゴンミラーである。偏向面403は、偏向器107の第m番目(mは任意の整数)の面であり、偏向面404は、偏向器107の第m+L番目(Lは任意の整数)の面である。偏向面405は、偏向面404が外角βの1/2だけ点Oを中心に回転したときの偏向面である。
入射光束401aと出射光束402aとの間の角度は2αである。偏向面403の法線と偏向面404の法線との間の角度はLβである。入射光束401aと入射光束401bとの間の角度はθ1である。
偏向器107が正多角形のポリゴンミラーの場合、第m番目の偏向面によって被走査面を走査し終えた後に、偏向器107が外角βだけ回転すると、第m+1番目の面が被走査面を走査し始める。つまり、偏向器107の走査周期は外角βに対応する。
最も効率良く時分割走査を行うためには、各々の被走査面を交互に走査することが必要となる。
そのためには、一方の被走査面を第m番目の偏向面によって走査した後に、他方の被走査面を第m+L番目の偏向面が走査周期の1/2だけずれて走査し始めればよい。
従って、最も効率良く時分割走査を行うためには、一方の被走査面を第m番目の偏向面403によって走査した後に、他方の被走査面を第m+L番目の偏向面404が外角βの1/2だけ回転した状態、すなわち偏向面405によって走査し始めるようにすればよい。
図4から、角度θ1(度)は以下の式(5)で表される。
Figure 2016126056
また、角度α(度)は以下の式(6)で表される。
Figure 2016126056
従って、式(5)及び式(6)より、角度θ1は以下の式(7)で表される。
Figure 2016126056
ここで、角度β(度)は正N角形の外角なので、式(7)は以下の式(8)に書き直せる。
Figure 2016126056
従って、角度θ1を式(8)のように設定することで、最も効率よく時分割走査を行うことができる。
次に、光源101への戻り光の時分割走査に対する影響を最も小さくするための条件について議論する。
まず、入射光束の偏向面への入射方向が偏向面の法線と一致したときに、光源101への戻り光が発生する。
従って、対向する各被走査面に対する時分割走査において、光源101への戻り光の影響を最も小さくするためには、対向する各被走査面を走査する各偏向面によって同時に正反射が発生することが好ましい。
図5は、本実施形態に係る光走査装置100において、各偏向面503及び504によって同時に正反射が発生している様子を示している。
入射光束501a及び501bはそれぞれ、偏向器107の偏向面503及び504に入射する光束である。
点Oは、偏向器107の回転中心である。点Dは、入射光束501aと偏向面503との交点である。点Eは、入射光束501bと偏向面504との交点である。
偏向面503は、偏向器107の第m番目(mは任意の整数)の面であり、偏向面504は、偏向器107の第m+L番目(Lは任意の整数)の面である。
入射光束501aと入射光束501bとの間の角度はθ2である。
図5において、角度θ2(度)は以下の式(9)で表される。
Figure 2016126056
ここで、角度β(度)は正N角形の外角なので、式(9)は以下の式(10)のように書き直される。
Figure 2016126056
以上より、反射ミラー105aによって反射された光束と反射ミラー105bによって反射された光束との間の角度θ(度)が以下の式(11)を満たすようにすることが好ましい。
Figure 2016126056
すなわち、光源への戻り光の時分割走査に対する影響を小さくしつつ、効率良く時分割走査を行うためには、角度θが式(11)を満たすように、本実施形態に係る光走査装置100の各光学素子を配置することが好ましい。
従って、式(11)に式(8)及び式(10)を代入すると、以下の式(12)が得られる。
Figure 2016126056
ただし、式(12)の条件式を満たすためには、(2L+1)×(360/N)−180<L×(360/N)より、0<L<(N/2)−1の関係を満たさなければならない。
なお、角度θが式(12)の下限を下回ると、各被走査面の画像領域の走査が分離されず重なってしまい、すなわち時分割走査ができなくなる。一方で、角度θが式(12)の上限を上回っても、光源への戻り光の時分割走査に対する影響を小さくしつつ、効率良く時分割走査を行うことが可能ではあるが、好ましい設計とはならない。
また、式(11)の条件式は、反射ミラー105aによって反射された光束と第1のfθレンズ108aの光軸との間の角度θin(度)が以下の式(13)を満たすことであると換言することもできる。
Figure 2016126056
ここで、γ(度)は、入射光束501aと第1のfθレンズ108aの光軸との間の角度である。
ここで、偏向器107への各入射光束と第1のfθレンズ108a及び108bの各光軸がy−z平面に対して対称となるように各光学素子が配置される場合、角度2α(度)は以下の式(14)のように書き表すことができる。
Figure 2016126056
また、角度γ(度)は以下の式(15)のように書き表すことができる。
Figure 2016126056
従って、式(13)は、以下の式(16)のように書き直すことができる。
Figure 2016126056
ただし、式(16)の条件式を満たすためには、90−(L/2)×(360/N)<180−((2L+1)/2)×(360/N)より、0<L<(N/2)−1の関係を満たさなければならない。
本実施形態では、偏向器107は正五角形のポリゴンミラーであり、隣接する2つの偏向面で時分割走査を行うこととする。従って、N及びLはそれぞれ、5及び1となる。
従って、式(12)及び式(16)はそれぞれ、以下の式(17)及び式(18)のようになる。
Figure 2016126056
Figure 2016126056
次に、本実施形態に係る光走査装置100における実際の時分割走査に対する条件式(17)及び(18)の影響について議論する。
図6(a)、(b)及び(c)はそれぞれ、本実施形態に係る光走査装置100における偏向器107の回転角度に対する各被走査面上の走査タイミングチャートを示している。具体的には、図6(a)は、θが56度、θinが62度になるように各光学素子が配置された場合における走査タイミングチャートを示している。図6(b)は、θが36度、θinが72度になるように各光学素子が配置された場合における走査タイミングチャートを示している。図6(c)は、θが72度、θinが54度になるように各光学素子が配置された場合における走査タイミングチャートを示している。
すなわち、図6(b)は、最も効率よく時分割走査を行うことができるように各光学素子が配置された場合における走査タイミングチャートを示している。一方で、図6(c)は、対向する各被走査面に対する時分割走査において、光源101への戻り光の影響を最も小さくするように各光学素子が配置された場合における走査タイミングチャートを示している。
図6(a)に対応する各光学素子の配置(θが56度、θinが62度)は、式(17)及び式(18)を満たしている。一方で、図6(b)に対応する各光学素子の配置(θが36度、θinが72度)及び図6(c)に対応する各光学素子の配置(θが72度、θinが54度)は、式(17)及び式(18)を満たしていない。
図6(a)、(b)及び(c)において、601、602及び603で囲まれている領域の偏向器107の回転角度で、被走査面111aの画像領域が走査されている。601の領域では、偏向器107の第1面によって被走査面111aの画像領域が走査されている。602の領域では偏向器107の第2面によって被走査面111aの画像領域が走査されている。603の領域では偏向器107の第3面によって被走査面111aの画像領域が走査されている。
また、604、605及び606で囲まれている領域の偏向器107の回転角度で、被走査面111bの画像領域が走査されている。604の領域では、偏向器107の第5面によって被走査面111bの画像領域が走査されている。605の領域では偏向器107の第1面によって被走査面111bの画像領域が走査されている。606の領域では偏向器107の第2面によって被走査面111bの画像領域が走査されている。
607、608、609及び610は、光源101への戻り光が発生している偏向器107の回転角度領域を示している。607の領域では、偏向器107の第1面で正反射した光束が開口絞り106aを通過して光源101へ戻っており、608の領域では、偏向器107の第2面で正反射した光束が開口絞り106aを通過して光源101へ戻っている。609の領域では、偏向器107の第5面で正反射した光束が開口絞り106bを通過して光源101へ戻っており、610の領域では、偏向器107の第1面で正反射した光束が開口絞り106bを通過して光源101へ戻っている。
図6(a)を見ると、領域601乃至610がすべて重なることなく分離することができていることがわかる。従って、θが56度、θinが62度になるように各光学素子が配置することによって、光源への戻り光の時分割走査に対する影響を小さくしつつ、効率良く時分割走査を行うことができる。
一方で、図6(b)を見ると、領域601乃至606は、本実施形態に係る光走査装置100が最も効率よく時分割走査を行うことができていることがわかる。しかしながら、領域607、608、609及び610はそれぞれ、領域605、606、601及び602に重なっているため、被走査面111a及び111bの画像領域の時分割走査中に光源101への戻り光が発生していることがわかる。
光源101への戻り光が発生した場合、光源101の発光が不安定となるため、一般に、光源101への戻り光が発生しているときには、光源101は発光させない。
そのため、図6(b)に対応する配置では、被走査面111a及び111bの画像領域の時分割走査中に光源101への戻り光が回避できなくなる。そのため、被走査面111a及び111b上の画像形成時に光源101が発光しない時間領域ができてしまい、良好な画像形成を行うことができなくなる。
また、図6(c)を見ると、領域607と609、及び領域608と610がそれぞれ同一の角度領域で重なっており、且つ、領域607乃至610が領域601乃至606と重なっていない。そのため、対向する被走査面111a及び111bに対する時分割走査において、光源101への戻り光の影響が最も小さくなっていることがわかる。しかしながら、領域601と604の一部、領域602と605の一部、及び領域603と606の一部がそれぞれ重なっているため、時分割走査ができていないことがわかる。
図7は、本発明に係る光走査装置が搭載されたカラー画像形成装置90の要部概略図である。本発明に係るカラー画像形成装置は、複数の光走査装置を並べ、各々並行して像担持体である感光ドラム面上に画像情報を記録するタンデムタイプのカラー画像形成装置である。
カラー画像形成装置90は、本発明に係る光走査装置11、12、像担持体としての感光ドラム(感光体)23、24、25、26を備えている。また、カラー画像形成装置90は、現像器15、16、17、18、搬送ベルト91、定着器94、及び用紙カセット95を備えている。
カラー画像形成装置90には、パーソナルコンピュータ等の外部機器92からR(レッド)、G(グリーン)、B(ブルー)の各色信号(コードデータ)が入力する。外部機器92から出力されたこれらの色信号は、装置内のプリンタコントローラ93によって、C(シアン),M(マゼンタ),Y(イエロー)、K(ブラック)の各画像データ(画像信号)に変換される。これらの画像データは、それぞれ光走査装置11、12に入力される。そして、光走査装置11、12からは、各画像データに応じて変調された光束19、20、21、22が出射し、これらの光ビームによって感光ドラム23、24、25、26の感光面が主走査方向に走査される。
感光ドラム23乃至26は、不図示のモータによって回転させられる。そして、この回転に伴って、感光ドラム23乃至26の感光面が光ビーム19乃至22に対して、主走査方向と直交する副走査方向に移動する。感光ドラム23乃至26の上方には、感光ドラム23乃至26の表面を一様に帯電せしめる不図示の帯電ローラが表面に当接するように設けられている。そして、帯電ローラによって帯電された感光ドラム23乃至26の表面に、光走査装置11、12から射出される光束19乃至22が照射されるようになっている。
先に説明したように、光束19乃至22は、画像データに基づいて変調されており、光ビーム19乃至22を照射することによって感光ドラム23乃至26の表面、すなわち感光面上に静電潜像が形成される。この静電潜像は、光束19乃至22の照射位置よりもさらに感光ドラム23乃至26の回転方向の下流側で感光ドラム23乃至26に当接するように配設された現像器15乃至18によってトナー像として現像される。
現像器15乃至18によって現像されたトナー像は、感光ドラム23乃至26の下方で、感光ドラム23乃至26に対向するように配設された不図示の転写ローラ(転写器)によって、被転写材たる不図示の用紙上に順に転写される。用紙は感光ドラム23乃至26の前方(図7において下側)の用紙カセット95内に収納されているが、手差しでも給紙が可能である。用紙カセット95の端部には、不図示の給紙ローラが配設されており、給紙ローラによって用紙カセット95内の用紙が搬送ベルト91へ送り込まれ、搬送ベルト91が用紙を感光ドラム23乃至26まで搬送する。
以上のようにして、未定着トナー像が転写された用紙は、さらに感光ドラム23乃至26の後方(図7において左側)の定着器94へ搬送される。定着器94は、内部に定着ヒータ(不図示)を有する定着ローラとこの定着ローラに圧接するように配設された加圧ローラとで構成されている。そして、搬送されてきた用紙を定着ローラと加圧ローラの圧接部にて加圧しながら加熱することにより用紙上の未定着トナー像を定着せしめる。さらに定着器94の後方には不図示の排紙ローラが配設されており、定着された用紙を画像形成装置90の外部に排出する。
なお、プリンタコントローラ93は、先に説明したデータの変換だけでなく、感光ドラム23乃至26を駆動するモータに加えて、画像形成装置90内の各構成要素や、光走査装置11、12内のポリゴンモータなどの制御を行う。
また、外部機器92としては、例えばCCDセンサを備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置90とで、カラーデジタル複写機が構成される。
本発明で使用される画像形成装置の記録密度は、特に限定されない。しかしながら、記録密度が高くなればなるほど、高画質が求められることを考えると、1200dpi以上の画像形成装置において本発明に係る光走査装置の構成はより効果を発揮する。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
本発明の第一実施形態に係る光走査装置100では、光源101から射出された光束を光束分離素子103によって異なる方向に進行する2つの光束に分離して、それぞれの光束が2つの被走査面111a及び111bを走査していた。しかしながら、本発明はこれに限られず、光源から射出された光束を光束分離素子によって異なる方向に進行する3つ以上の光束に分離して、それぞれの光束が3つ以上の被走査面を走査するように構成することもできる。
また、本発明は、奇数枚の偏向面を有する偏向器を備える光走査装置に有効である。
100 光走査装置
101 光源
103 光束分離素子(分離手段)
107 偏光器
108a 第1のfθレンズ(第1の結像光学系)
108b 第1のfθレンズ(第2の結像光学系)
109a 第2のfθレンズ(第1の結像光学系)
109b 第2のfθレンズ(第2の結像光学系)
111a 被走査面(第1の被走査面)
111b 被走査面(第2の被走査面)

Claims (10)

  1. 第1の発光点を有する光源と、
    前記第1の発光点から射出された光束を第1及び第2の光束に分離する分離手段と、
    前記第1及び第2の光束のそれぞれを第1及び第2の偏向面によって偏向する偏向器と、
    前記偏向器によって偏向された前記第1及び第2の光束のそれぞれを第1及び第2の被走査面に導光する第1及び第2の結像光学系と、を備え、
    前記第1の偏向面から前記偏向器の回転方向に沿って数えたときの前記第2の偏向面をL番目の偏向面とし、主走査断面内における前記第1の光束の前記第1の偏向面に対する第1の入射方向と前記第2の光束の前記第2の偏向面に対する第2の入射方向との成す角度をθ、前記偏向器の偏向面の総数をN、とするとき、
    Figure 2016126056
    なる条件式を満たすことを特徴とする光走査装置。
  2. 主走査断面内における前記第1の入射方向と前記第1の結像光学系の光軸方向との成す角度をθinとするとき、
    Figure 2016126056
    なる条件式を満たすことを特徴とする請求項1に記載の光走査装置。
  3. 前記第1の入射方向と前記第2の入射方向とは、前記第1の結像光学系の光軸に垂直な平面に対して互いに対称であることを特徴とする請求項1または2に記載の光走査装置。
  4. 前記第1の結像光学系の光軸方向と前記第2の結像光学系の光軸方向とは、前記第1の結像光学系の光軸に垂直な平面に対して互いに対称であることを特徴とする請求項1乃至3のいずれか1項に記載の光走査装置。
  5. 前記第1の光束が前記第1の被走査面における有効走査領域に入射するとき、前記第2の光束は前記第2の被走査面における有効走査領域に入射しないことを特徴とする請求項1乃至4のいずれか一項に記載の光走査装置。
  6. 前記偏向器の偏向面の総数は、奇数であることを特徴とする請求項1乃至5のいずれか1項に記載の光走査装置。
  7. 前記光源は、複数の発光点を有することを特徴とする請求項1乃至6のいずれか1項に記載の光走査装置。
  8. 前記光源は、面発光レーザを含むことを特徴とする請求項7に記載の光走査装置。
  9. 請求項1乃至8のいずれか一項に記載の光走査装置と、該光走査装置によって前記第1及び第2の被走査面上に形成された静電潜像をトナー像として現像する現像器と、現像された前記トナー像を被転写材に転写する転写器と、転写された前記トナー像を前記被転写材に定着させる定着器と、を備えることを特徴とする画像形成装置。
  10. 外部機器から出力されたコードデータを画像信号に変換して前記光走査装置に入力するプリンタコントローラをさらに備えることを特徴とする請求項9に記載の画像形成装置。
JP2014264714A 2014-12-26 2014-12-26 光走査装置及びそれを備える画像形成装置 Expired - Fee Related JP6478627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014264714A JP6478627B2 (ja) 2014-12-26 2014-12-26 光走査装置及びそれを備える画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014264714A JP6478627B2 (ja) 2014-12-26 2014-12-26 光走査装置及びそれを備える画像形成装置

Publications (3)

Publication Number Publication Date
JP2016126056A true JP2016126056A (ja) 2016-07-11
JP2016126056A5 JP2016126056A5 (ja) 2018-02-15
JP6478627B2 JP6478627B2 (ja) 2019-03-06

Family

ID=56359406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014264714A Expired - Fee Related JP6478627B2 (ja) 2014-12-26 2014-12-26 光走査装置及びそれを備える画像形成装置

Country Status (1)

Country Link
JP (1) JP6478627B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097086A (ja) * 2016-12-09 2018-06-21 キヤノン株式会社 光走査装置及びそれを備える画像形成装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010001580A1 (en) * 1998-01-21 2001-05-24 David M. Rowe High duty cycle synchronized multi-line scanner
JP2006195238A (ja) * 2005-01-14 2006-07-27 Canon Inc 光走査装置の調整方法及びそれを用いたカラー画像形成装置
JP2006227350A (ja) * 2005-02-18 2006-08-31 Sharp Corp 光ビーム走査装置
JP2008257169A (ja) * 2007-03-09 2008-10-23 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2010262245A (ja) * 2009-05-11 2010-11-18 Konica Minolta Business Technologies Inc 光走査装置
JP2011186202A (ja) * 2010-03-09 2011-09-22 Ricoh Co Ltd 光走査装置及び該光走査装置を備える画像形成装置
JP2012018337A (ja) * 2010-07-09 2012-01-26 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012163867A (ja) * 2011-02-09 2012-08-30 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012194333A (ja) * 2011-03-16 2012-10-11 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2014002335A (ja) * 2012-06-21 2014-01-09 Ricoh Co Ltd 光走査装置および画像形成装置
JP2014142432A (ja) * 2013-01-23 2014-08-07 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2014167504A (ja) * 2013-02-28 2014-09-11 Canon Inc 光走査装置及びそれを用いた画像形成装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010001580A1 (en) * 1998-01-21 2001-05-24 David M. Rowe High duty cycle synchronized multi-line scanner
JP2006195238A (ja) * 2005-01-14 2006-07-27 Canon Inc 光走査装置の調整方法及びそれを用いたカラー画像形成装置
JP2006227350A (ja) * 2005-02-18 2006-08-31 Sharp Corp 光ビーム走査装置
JP2008257169A (ja) * 2007-03-09 2008-10-23 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2010262245A (ja) * 2009-05-11 2010-11-18 Konica Minolta Business Technologies Inc 光走査装置
JP2011186202A (ja) * 2010-03-09 2011-09-22 Ricoh Co Ltd 光走査装置及び該光走査装置を備える画像形成装置
JP2012018337A (ja) * 2010-07-09 2012-01-26 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012163867A (ja) * 2011-02-09 2012-08-30 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012194333A (ja) * 2011-03-16 2012-10-11 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2014002335A (ja) * 2012-06-21 2014-01-09 Ricoh Co Ltd 光走査装置および画像形成装置
JP2014142432A (ja) * 2013-01-23 2014-08-07 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2014167504A (ja) * 2013-02-28 2014-09-11 Canon Inc 光走査装置及びそれを用いた画像形成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018097086A (ja) * 2016-12-09 2018-06-21 キヤノン株式会社 光走査装置及びそれを備える画像形成装置
JP7009058B2 (ja) 2016-12-09 2022-01-25 キヤノン株式会社 光走査装置及びそれを備える画像形成装置

Also Published As

Publication number Publication date
JP6478627B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP5483805B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5106033B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5116559B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4819392B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP2007114484A (ja) 光走査装置及びそれを用いた画像形成装置
JP5100018B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5197045B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2010049061A (ja) 光走査装置及びそれを用いた画像形成装置
JP4708862B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2015125210A5 (ja)
JP5173879B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2007045094A (ja) 走査光学系及びそれを用いた画像形成装置
JP5300505B2 (ja) 光走査装置の調整方法
JP6478627B2 (ja) 光走査装置及びそれを備える画像形成装置
JP2008170487A (ja) 光走査装置及びそれを用いた画像形成装置
JP4715418B2 (ja) 光走査装置及び画像形成装置
JP2017097012A (ja) 光走査装置
JP5094221B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP4902279B2 (ja) 画像形成装置
JP4975138B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2018097086A (ja) 光走査装置及びそれを備える画像形成装置
JP5826365B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP5344653B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP2006113552A (ja) 光走査装置及びそれを用いた画像形成装置
JP2018063277A (ja) 光走査装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R151 Written notification of patent or utility model registration

Ref document number: 6478627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees