JP2016121264A - 蛍光体及びその製造方法 - Google Patents

蛍光体及びその製造方法 Download PDF

Info

Publication number
JP2016121264A
JP2016121264A JP2014261811A JP2014261811A JP2016121264A JP 2016121264 A JP2016121264 A JP 2016121264A JP 2014261811 A JP2014261811 A JP 2014261811A JP 2014261811 A JP2014261811 A JP 2014261811A JP 2016121264 A JP2016121264 A JP 2016121264A
Authority
JP
Japan
Prior art keywords
phosphor
melt
raw material
supercooled
material lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014261811A
Other languages
English (en)
Inventor
健二 篠崎
Kenji Shinozaki
健二 篠崎
剛 本間
Takeshi Honma
剛 本間
高行 小松
Takayuki Komatsu
高行 小松
佐藤 史雄
Fumio Sato
史雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Nagaoka University of Technology NUC
Original Assignee
Nippon Electric Glass Co Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Nagaoka University of Technology NUC filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014261811A priority Critical patent/JP2016121264A/ja
Publication of JP2016121264A publication Critical patent/JP2016121264A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】従来の蓄光性蛍光体よりも優れた長残光特性を有する蛍光体を提供する。【解決手段】賦活物質でドープされたRO−Al2O3系結晶化ガラス(RはCa、Sr及びBaから選択される少なくとも1種)からなる蛍光体であって、過冷却融体の結晶化により作製されたことを特徴とする蛍光体。蛍光体の製造方法は、原料塊12を浮遊させて保持した状態で、原料塊12を加熱融解させて融体を得た後に、融体を冷却することにより過冷却融体とし、さらに過冷却融体中からRO−Al2O3系結晶を析出させる工程を備える。【選択図】図1

Description

本発明は、夜光材料等に好適な蛍光体及びその製造方法に関する。
従来、道路標識、避難誘導板、時計の文字盤、アクセサリー等の種々の用途で、蓄光性を有する蛍光体を含有する夜光材料が用いられている。当該蛍光体は、励起光を照射することにより、数十分〜数時間にわたって残光が維持される。
例えば特許文献1には、MAl(MはCa、Sr及びBaから選択される少なくとも1種)からなる化合物を母結晶にした蓄光性蛍光体が開示されている。当該蛍光体は、従来の硫化物系蛍光体に比べて長時間の残光特性(長残光特性)を有することが記載されている。
特開平7−11250号公報
特許文献1に記載の蛍光体はある程度の長残光特性を有するものの、近年、さらなる長残光特性の向上が要求されている。
以上に鑑み、本発明は、従来の蓄光性蛍光体よりも優れた長残光特性を有する蛍光体を提供することを目的とする。
本発明の蛍光体は、賦活物質でドープされたRO−Al系結晶化ガラス(RはCa、Sr及びBaから選択される少なくとも1種)からなる蛍光体であって、過冷却融体の結晶化により作製されたことを特徴とする。
本発明者等の研究によれば、RO−Al系蛍光体を、過冷却融体を結晶化させて作製するにより、固相反応法等の従来の結晶作製方法と異なり、結晶中に点欠陥や線欠陥の準安定相が形成されやすく、この準安定相が蛍光体の残光寿命を長くする要因になることがわかった。なお、「過冷却融体」とは、融体の冷却過程において本来相転移する(結晶化する)はずの温度以下に冷却しても、相転移しない状態を保っている融体をいう。「過冷却融体」は必ずしも液体状である必要はなく、冷却により相転移せずに固化したもの(固体状のガラス材)も含む。
本発明の蛍光体は、過冷却融体の降温過程における結晶化により作製されたことが好ましい。
本発明者らの検討によると、過冷却融体の降温過程で結晶を析出させる場合は、過冷却融体の熱処理により結晶化させる場合(例えば、融体を冷却して一旦ガラス材を得た後、当該ガラス材に熱処理を施して結晶化する場合)と比較して、上記のような準安定相が形成されやすく、蛍光体の残光寿命が長くなりやすいことがわかった。このように、結晶化のさせ方によって準安定相形成の仕方に違いが生じる理由は以下のように考えられる。
ガラス材に熱処理を施して結晶化した場合は、昇温に伴い、まず比較的低温域で多数の結晶核が形成され、その後さらに昇温することにより、比較的高温域で各結晶核を起点として低速で結晶が成長する。そのため、微小結晶が比較的均質に析出しやすい。一方、過冷却状態にある融体を降温過程で結晶化させる場合は、融体を降温していく過程で、結晶成長速度が大きい温度域を通過する。その温度域では、熱力学的に非平衡の相転移が生じやすい。特に、過冷却度が大きいほど相転移の駆動力が大きく、これが点欠陥や線欠陥の準安定相形成を促進する要因となる。
本発明の蛍光体において、賦活物質が、Eu、Dy、Nd、Ce、Mn及びPbから選択される少なくとも1種であることが好ましい。
本発明の蛍光体において、RO−Al系結晶化ガラスが、モル%で、RO 20〜80%、Al 20〜80%を含有することが好ましい。
本発明の蛍光体において、RO−Al系結晶化ガラスがBを含有することが好ましい。
はRO−Al系結晶に固溶して、RO−Al系結晶中に準安定相が形成されやすくなる。また、RO−Al系ガラスがBを含有することで、ガラス化が容易となる。
本発明の蛍光体の製造方法は、上記の蛍光体を製造するための方法であって、原料塊を浮遊させて保持した状態で、原料塊を加熱融解させて融体を得た後に、融体を冷却することにより過冷却状態とし、さらに過冷却状態にある融体中からRO−Al系結晶を析出させる工程を備えることを特徴とする。
本発明によれば、従来の蓄光性蛍光体よりも優れた長残光特性を有する蛍光体を提供することができる。
本発明の蛍光体を製造するための装置の一実施形態を示す模式的断面図である。
本発明の蛍光体は、賦活物質でドープされたRO−Al系結晶化ガラス(RはCa、Sr及びBaから選択される少なくとも1種)からなることを特徴とする。
RO−Al系ガラスとしては、モル比で、RO:Alが好ましくは0.2:0.8〜0.8:0.2、より好ましくは0.3:0.7〜0.7:0.3、さらに好ましくは0.4:0.6〜0.6:0.4、特に好ましくは0.45:0.55〜0.55:0.45である。各成分の比率が上記範囲外になると、RO−Al系結晶が析出しにくくなり、蛍光体の残光特性が低下しやすくなる。
RO−Al系ガラスには、Bを含有させることが好ましい。BはRO−Al系結晶に固溶して、RO−Al系結晶中に準安定相が形成されやすくなる。また、RO−Al系ガラスがBを含有することで、ガラス化が容易となる。Bの含有量は、RO−Al系ガラスに対するモル比で、0〜0.3、0.005〜0.2、0.01〜0.25、特に0.02〜0.2の範囲で含有させることが好ましい。Bが多すぎると、結晶が析出しにくくなったり、蛍光体の長残光特性が低下するおそれがある。
賦活物質としては、RO−Al系結晶に所望の蛍光特性を付与するものであれば特に限定されず、例えばEu、Dy、Nd、Ce、Mn及びPbから選択される少なくとも1種が挙げられる。賦活物質の含有量は、R元素との合量に対するモル比(合量を1モルとした場合のモル量)で、0.001以上、0.005以上、0.01以上、特に0.02以上が好ましい。賦活物質が少なすぎると、残光特性が低下しやすくなる。一方、上限は特に限定されないが、賦活物質が多すぎても長残光特性はあまり改善がみられず、むしろ原料コストが高くなることから、R元素との合量に対するモル比で、0.1以下、特に0.05以下が好ましい。
本発明の蛍光体は、過冷却融体の結晶化により作製されたことを特徴とする。既述の通り、過冷却融体を結晶化させると、粗大な結晶が生成しやすく、これが点欠陥や線欠陥の準安定相形成の要因となるため、蛍光体の残光寿命を長くすることができる。具体的には、本発明の蛍光体に常用蛍光ランプD65を20分間照射した場合、照射終了後600秒経過した時点での輝度が100.2mcd/m以上、100.5mcd/m以上、特に100.8mcd/m以上であることが好ましい。
なお、本発明におけるRO−Al系ガラスは、結晶化傾向が強く、過冷却融体を相転移させずに安定に保つことが困難である。これは、一般に、ガラス材は原料を坩堝等の溶融容器内で溶融し、冷却することで作製されるため、融体と溶融容器との接触界面を起点として結晶の析出が進行しやすくなるからである。
本発明におけるRO−Al系ガラスであっても、溶融容器との界面での接触をなくすことにより過冷却融体を安定に保つことが可能となる。このような方法として、原料を浮遊させた状態で溶融、冷却する無容器浮遊法が知られている。当該方法を用いると、融体が溶融容器にほとんど接触することがないため、溶融容器との界面を起点とする結晶の析出を防止することができ、過冷却融体を安定に保つことが可能となる。なお、過冷却融体の冷却速度は特に限定されないが、降温過程で結晶を析出させるためには、冷却速度をなるべく小さくすることが好ましい。具体的には、過冷却融体の冷却速度は500℃/s以下、特に200℃/s以下が好ましい。一方、下限については特に限定されないが、現実的には1℃/s以上、5℃/s以上、特に10℃/s以上である。
図1は、無容器浮遊法により本発明の蛍光体を作製するための製造装置の一例を示す模式的断面図である。蛍光体の製造装置1は、成形型10を有する。成形型10は溶融容器としての役割も果たす。成形型10は、成形面10aと、成形面10aに開口している複数のガス噴出孔10bとを有する。ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。ガスの種類は特に限定されず、例えば、空気や酸素であってもよいし、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスであってもよい。
製造装置1を用いて蛍光体を製造するに際しては、まず、原料塊12を成形面10a上に配置する。原料塊12としては、例えば、原料粉末をプレス成形等により一体化したものや、原料粉末をプレス成形等により一体化した後に焼結させた焼結体や、目標ガラス組成と同等の組成を有する結晶の集合体等が挙げられる。
次に、ガス噴出孔10bからガスを噴出させることにより、原料塊12を成形面10a上で浮遊させる。すなわち、原料塊12を、成形面10aに接触していない状態で保持する。その状態で、レーザー光照射装置13からレーザー光を原料塊12に照射する。これにより原料塊12を加熱溶融して、融体を得る。その後、融体を冷却することにより過冷却融体とし、過冷却融体中からRO−Al系結晶を析出させる。具体的には、過冷却融体の降温過程でRO−Al系結晶を析出させる、あるいは、融体を冷却して得られたガラス材に熱処理(例えば、800℃以上、さらには900℃以上)を施すことによりRO−Al系結晶を析出させる。これにより、本発明の蛍光体を得ることができる。原料塊12を加熱溶融する工程と、融体を冷却して結晶析出が完了する、あるいはガラス材を得るまでは、少なくともガスの噴出を継続し、原料塊12または融体と成形面10aとの接触を抑制することが好ましい。なお、加熱溶融する方法としては、レーザー光を照射する方法以外にも、輻射加熱であってもよい。
以下、実施例に基づいて、本発明を詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
原料粉末を結晶組成:Eu0.01Dy0.02Sr0.97Al−0.1Bとなるよう秤量し、混合することにより原料バッチを調製した。原料バッチにCOレーザーを照射し熔解することで原料塊を得た。
次に、図1に準じた無容器浮遊装置を用いて原料塊を溶融した。具体的には、ガス噴出孔が配置された成形面からアルゴンガスを噴出させて、原料塊を成形面の上方に浮遊させた状態で、出力100Wの二酸化炭素レーザーを照射し、原料塊を2100〜2400℃で30秒間加熱して融体を得た。その後、融体を10℃/秒で降温させることにより、冷却固化させると同時に結晶化させた。その結果、上記組成を有する直径2mmの略球形の蛍光体が得られた。
得られた蛍光体の蛍光寿命を以下のようにして測定した。蛍光体に対して常用蛍光ランプD65を20分間照射した。照射終了後600秒経過した時点での輝度を測定したところ102.57mcd/mであった。
(実施例2)
結晶組成:Eu0.01Dy0.02Sr0.97Al−0.3Bとなるように原料バッチを調製したこと以外は、実施例1と同様に蛍光体を作製した。その結果、上記組成を有する直径2mmの蛍光体が得られた。得られた蛍光体について、実施例1と同様にして蛍光寿命を測定したところ、輝度は102.37mcd/mであった。
(実施例3)
実施例2と同様にして原料バッチを作製し、原料塊を得た。原料塊を実施例2と同様に溶融し、得られた融体を700℃/秒で降温させることにより、冷却固化させた。その結果、直径2mmの略球形のガラス材が得られた。
得られたガラス材を水素ガス雰囲気下、1000℃で1時間熱処理することにより結晶化させ、上記組成を有する蛍光体を得た。
得られた蛍光体について、実施例1と同様にして蛍光寿命を測定したところ、輝度は101.54mcd/mであった。
(比較例1)
実施例2と同様にして原料バッチを作製し、原料塊を得た。次に、原料塊を電気炉内に静置し、水素雰囲気下で1200℃、3時間焼成した後、大気雰囲気下で1400℃、2時間焼成することにより蛍光体を得た。得られた蛍光体について、実施例1と同様にして蛍光寿命を測定したところ、輝度は100.85mcd/mであった。
1:蛍光体の製造装置
10:成形型
10a:成形面
10b:ガス噴出孔
11:ガス供給機構
12:原料塊
13:レーザー光照射装置

Claims (6)

  1. 賦活物質でドープされたRO−Al系結晶化ガラス(RはCa、Sr及びBaから選択される少なくとも1種)からなる蛍光体であって、過冷却融体の結晶化により作製されたことを特徴とする蛍光体。
  2. 過冷却融体の降温過程における結晶化により作製されたことを特徴とする請求項1に記載の蛍光体。
  3. 賦活物質が、Eu、Dy、Nd、Ce、Mn及びPbから選択される少なくとも1種であることを特徴とする請求項1または2に記載の蛍光体。
  4. RO−Al系結晶化ガラスが、モル%で、RO 20〜80%、Al 20〜80%を含有することを特徴とする請求項1〜3のいずれか一項に記載の蛍光体。
  5. RO−Al系結晶化ガラスがBを含有することを特徴とする請求項1〜4のいずれか一項に記載の蛍光体。
  6. 請求項1〜5のいずれか一項に記載の蛍光体を製造するための方法であって、
    原料塊を浮遊させて保持した状態で、前記原料塊を加熱融解させて融体を得た後に、前記融体を冷却することにより過冷却融体とし、さらに過冷却融体中からRO−Al系結晶を析出させる工程を備えることを特徴とする、蛍光体の製造方法。
JP2014261811A 2014-12-25 2014-12-25 蛍光体及びその製造方法 Pending JP2016121264A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261811A JP2016121264A (ja) 2014-12-25 2014-12-25 蛍光体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261811A JP2016121264A (ja) 2014-12-25 2014-12-25 蛍光体及びその製造方法

Publications (1)

Publication Number Publication Date
JP2016121264A true JP2016121264A (ja) 2016-07-07

Family

ID=56328183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261811A Pending JP2016121264A (ja) 2014-12-25 2014-12-25 蛍光体及びその製造方法

Country Status (1)

Country Link
JP (1) JP2016121264A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066239A1 (ja) * 2016-10-07 2018-04-12 日本電気硝子株式会社 ガラス材及びその製造方法
JP2018062457A (ja) * 2016-10-07 2018-04-19 日本電気硝子株式会社 ガラス材及びその製造方法
WO2018124106A1 (ja) * 2016-12-28 2018-07-05 国立研究開発法人産業技術総合研究所 蓄光を有する蛍光体及びその製造方法、並びに蓄光性発光製品

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066239A1 (ja) * 2016-10-07 2018-04-12 日本電気硝子株式会社 ガラス材及びその製造方法
JP2018062457A (ja) * 2016-10-07 2018-04-19 日本電気硝子株式会社 ガラス材及びその製造方法
CN109715575A (zh) * 2016-10-07 2019-05-03 日本电气硝子株式会社 玻璃材料及其制造方法
US10829406B2 (en) 2016-10-07 2020-11-10 Nippon Electric Glass Co., Ltd. Glass material and method for manufacturing same
JP2021193066A (ja) * 2016-10-07 2021-12-23 日本電気硝子株式会社 ガラス材及びその製造方法
CN109715575B (zh) * 2016-10-07 2022-03-01 日本电气硝子株式会社 玻璃材料及其制造方法
JP7109746B2 (ja) 2016-10-07 2022-08-01 日本電気硝子株式会社 ガラス材及びその製造方法
WO2018124106A1 (ja) * 2016-12-28 2018-07-05 国立研究開発法人産業技術総合研究所 蓄光を有する蛍光体及びその製造方法、並びに蓄光性発光製品

Similar Documents

Publication Publication Date Title
Yoshikawa et al. Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method
CN104962994B (zh) 导模法生长特定尺寸稀土掺杂含镓石榴石系列晶体的方法
CN109987848B (zh) 一种含CsPbBr3量子点超晶格结构玻璃及其制备方法
WO2021004078A1 (zh) 一种掺谱钪酸钆可见波段激光晶体及其制备方法
WO2015072136A1 (ja) SiC単結晶の製造方法
CN104562183A (zh) 大尺寸稀土掺杂氟化钇钡单晶生长方法
JP2016121264A (ja) 蛍光体及びその製造方法
WO2014203577A1 (ja) ガーネット型単結晶とその製造方法
JP5919961B2 (ja) セラミック複合体の製造方法
JPH033606B2 (ja)
JP2014214078A (ja) 結晶成長方法
JP2015182944A (ja) サファイア単結晶の製造方法
JP5446241B2 (ja) 融液組成制御一方向凝固結晶成長装置および結晶成長方法
CN103469306A (zh) 一种生长Ce:YAG单晶荧光材料的方法
JP5688589B2 (ja) 融液組成制御一方向凝固結晶成長装置および結晶成長方法
CN108560053A (zh) 一种镧、镝、铈共掺的硅酸钇镥闪烁材料及其晶体生长方法
JP2022533397A (ja) 圧電単結晶m3re(po4)3およびその育成方法および応用
KR101250350B1 (ko) 희토류 금속을 함유한 황화납(PbS) 양자점을 포함하는 실리케이트 글래스의 제조방법
RU2616648C1 (ru) Способ получения стеклокристаллического материала с наноразмерными кристаллами ниобатов редкоземельных элементов
CN100547125C (zh) Y和Zn双掺杂钨酸铅晶体及其制备方法
CN115536056A (zh) 一种钙钛矿量子点及其合成方法和用途
CN100497759C (zh) Yb和Zn双掺杂钨酸铅晶体及其制备方法
JP2017110042A (ja) 蛍光体及びその製造方法
JP4304424B2 (ja) 希土類珪酸塩単結晶インゴットの製造方法およびその製造方法により得られる希土類珪酸塩単結晶インゴット
JPH0710694A (ja) テルビウムアルミネート並びにその製法