JP2016114000A - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
JP2016114000A
JP2016114000A JP2014254766A JP2014254766A JP2016114000A JP 2016114000 A JP2016114000 A JP 2016114000A JP 2014254766 A JP2014254766 A JP 2014254766A JP 2014254766 A JP2014254766 A JP 2014254766A JP 2016114000 A JP2016114000 A JP 2016114000A
Authority
JP
Japan
Prior art keywords
engine
clutch
torque
control unit
engine stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014254766A
Other languages
English (en)
Inventor
太郎 岡田
Taro Okada
太郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2014254766A priority Critical patent/JP2016114000A/ja
Publication of JP2016114000A publication Critical patent/JP2016114000A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

【課題】マニュアル式のクラッチを備えた車両において、クラッチの急係合時におけるクラッチの係合ショックを抑制し、マニュアルトランスミッションやデファレンシャルにかかる負荷を低減する。【解決手段】車両用駆動装置1は、エンジン2とマニュアルトランスミッション4の入力軸41との間において伝達されるトルクであるクラッチトルクTcを可変とするクラッチ3と、クラッチトルクTcを可変に操作するためのクラッチペダル53と、クラッチペダル53のクラッチストロークStcを検出するクラッチストロークセンサ54と、クラッチストロークStcに基づいて、クラッチ3の急係合が判断された場合に、エンジン2を停止させる指令である「エンジン停止指令」をエンジン制御部9に出力するエンジン停止制御部10と、を有し、エンジン制御部9は、「エンジン停止指令」が入力された場合に、エンジン2を停止させる。【選択図】図1

Description

本発明は、マニュアル式のクラッチを備えた車両を駆動する車両用駆動装置に関するものである。
マニュアルトランスミッション及びマニュアル式のクラッチを備えた車両においては、車両の発進時に運転者は、クラッチペダルを踏込んでクラッチを切断し、シフトレバーを操作してマニュアルトランスミッションを1速に変速する。その後、運転者は、アクセルペダルを踏込んでエンジンの回転速度を上昇させつつ、クラッチペダルを徐々に戻してクラッチを係合させ、エンジントルクを駆動輪に伝達させて、車両を発進させる。このように、車両の発進時に運転者は、クラッチペダルを踏み込んだうえでシフトレバーを操作し、アクセルペダルを踏み込みつつクラッチペダルを徐々に戻すという複雑な一連の操作を実行する必要がある。
そこで特許文献1には、クラッチの係合時にエンジン回転速度が発進時目標エンジン回転速度となるようにエンジンをフィードバック制御することにより、エンジン回転速度の低下を防止して、車両の発進を容易に行なうことができる発進制御装置が提案されている。この特許文献1に示される発進制御装置では、フィードバック制御中にエンジン回転速度が低下から上昇に転じた以後には、フィードバック制御量が上限値を越えないように、フィードバック制御の効きが低下される。これにより、エンジン回転速度が発進時目標エンジン回転速度以上にオーバーシュートすることが抑制される。
特開2014−9604号公報
特許文献1に示される技術では、運転者が、急激にクラッチペダルを戻し、クラッチが急係合され、クラッチトルクが急激に増大すると、エンジン回転速度の低下量が大きくなり、フィードバック制御量が大きくなる。この場合には、上述したようにフィードバック制御の効きが低下されるが、エンジンの応答遅れにより、フィードバック制御量が上限値を越える可能性がある。もし、フィードバック制御量が上限値を越えると、エンジンからのエンジントルクが急激にマニュアルトランスミッションに入力され、クラッチの係合ショックが大きくなる。
また、停車している車両においてクラッチが急係合され、フィードバック制御量が上限値を越えると、内部のギヤが回転を停止しているマニュアルトランスミッションやデファレンシャルに、エンジンからのエンジントルクが急激に入力される。すると、マニュアルトランスミッションやデファレンシャルに高負荷がかかる。
本発明は、上述した各問題を解消するためになされたもので、マニュアル式のクラッチを備えた車両において、クラッチの急係合時におけるクラッチの係合ショックを抑制し、マニュアルトランスミッションやデファレンシャルにかかる負荷を低減することを目的とする。
上記の課題を解決するため、請求項1に係る車両用駆動装置の発明は、エンジントルクを出力するエンジンと、前記エンジンを制御するエンジン制御部と、前記エンジントルクが入力される入力軸と、車両の駆動輪にデファレンシャルを介して回転連結された出力軸とを備え、前記入力軸の回転速度を前記出力軸の回転速度で除した変速比がそれぞれ異なる複数の変速段を有するマニュアルトランスミッションと、前記エンジンと前記入力軸との間に設けられ、前記エンジンと前記入力軸との間において伝達されるトルクであるクラッチトルクを可変とするクラッチと、前記クラッチトルクを可変に操作するためのクラッチ操作部と、前記クラッチ操作部のストローク又は前記クラッチのストロークであるクラッチストロークを検出するクラッチストローク検出部と、前記クラッチストローク検出部によって検出された前記クラッチストロークに基づいて、前記クラッチの急係合を判断するクラッチ急係合判断部と、前記クラッチ急係合判断部によって前記クラッチの急係合が判断された場合に、前記エンジンを停止させる指令であるエンジン停止指令を前記エンジン制御部に出力するエンジン停止指令出力部と、を有し、前記エンジン制御部は、前記エンジン停止指令出力部から出力された前記エンジン停止指令が入力された場合に、前記エンジンを停止させる。
このように、クラッチ急係合判断部は、クラッチストロークに基づいて、クラッチの急係合を判断する。そして、エンジン停止指令出力部は、クラッチ急係合検出部によってクラッチの急係合が判断された場合に、エンジンを停止させる指令であるエンジン停止指令をエンジン制御部に出力する。そして、エンジン制御部は、エンジン停止指令が入力された場合に、エンジンを停止させる。これにより、クラッチストロークに基づいてクラッチの急係合が判断されると、エンジンが停止される。このため、クラッチの急係合時に、クラッチの係合ショックが抑制される。また、クラッチの急係合時に、エンジンからマニュアルトランスミッションやデファレンシャルへのエンジントルクの入力が停止され、マニュアルトランスミッションやデファレンシャルにかかる負荷が低減される。
本実施形態の車両用駆動装置が搭載された車両の構成を示す構成図である。 車両の発進時のタイムチャートであり、エンジン回転速度Ne、入力軸回転速度Ni、エンジントルクTe、アクセルストロークSta、クラッチストロークStc、及びクラッチストローク速度Spcとの関係を表した図である。 図1に示すエンジン停止制御部が実行する「エンジン停止制御」のフローチャートである。
(車両の説明)
図1に基づき、本発明の実施形態による車両用駆動装置1が搭載された車両100について説明する。図1において、太線は各装置間の機械的な接続を示し、破線による矢印は制御用の信号線を示している。図1に示すように、車両100には、エンジン2、クラッチ3、マニュアルトランスミッション4、デファレンシャル17が、この順番に、直列に設けられている。デファレンシャル17には、車両100の駆動輪18R、18Lが接続されている。なお、駆動輪18R、18Lは、車両100の前輪又は後輪、或いは、前後輪である。また、車両100は、エンジン制御部9、エンジン停止制御部10、アクセルペダル51、アクセルストロークセンサ52、クラッチペダル53、クラッチストロークセンサ54、及びマスタシリンダ55を有している。
アクセルペダル51は、エンジン2が出力するエンジントルクTeを可変に操作するためのものである。アクセルストロークセンサ52は、アクセルペダル51のストロークであるアクセルストロークStaを検出し、その検出信号をエンジン制御部9に出力する。
エンジン2は、ガソリンや軽油等の炭化水素系燃料を使用し、エンジントルクTeを出力するガソリンエンジンやディーゼルエンジン等である。エンジン2は、ピストン(不図示)により回転駆動されるクランクシャフト2aを有している。エンジン2には、エンジン2のシリンダ(不図示)に連通し、シリンダに供給される空気が流通する吸気マニホールド21が設けられている。また、吸気マニホールド21やエンジン2のシリンダヘッド2bには、燃料供給装置22が設けられている。燃料供給装置22は、ガソリンや軽油等の燃料を供給する装置である。
エンジン2がガソリンエンジンである場合には、吸気マニホールド21には、スロットル23が設けられている。スロットル23は、吸気マニホールド21の流路断面積を可変にすることより、シリンダに吸入される空気量(混合気量)を調整するものである。スロットル23は、バルブ23a、スロットルアクチュエータ23bを備えている。バルブ23aは、吸気マニホールド21の流路断面積を可変にするものであり、例えばバタフライバルブである。スロットルアクチュエータ23bは、エンジン制御部9からの指令によって、バルブ23aを駆動することにより、バルブ23aの開度(スロットル開度Pt)を調整するものである。エンジン2がガソリンエンジンである場合には、シリンダヘッド2bには、シリンダ(不図示)内の混合気を点火するための点火装置29が設けられている。
エンジン2には、エンジン2から排気される排気ガスが流通する排気マニホールド26が取り付けられている。排気マニホールド26の下流側の端部には、排気ガスが流通する排気管27が取り付けられている。排気管27には、排気ブレーキ装置28が設けられている。排気ブレーキ装置28は、排気管27内の流路断面積を調整することにより、エンジン2内の排気圧力を高めて、エンジン2によるエンジンブレーキを増大させる装置である。排気ブレーキ装置28は、バルブ28a、排気ブレーキアクチュエータ28bを備えている。バルブ28aは、排気管27の流路断面積を可変にするものであり、例えばバタフライバルブである。排気ブレーキアクチュエータ28bは、エンジン制御部9からの指令によって、バルブ28aを駆動することにより、バルブ28aの開度を調整するものである。
クランクシャフト2aに隣接する位置には、クランクシャフト2aの回転速度であるエンジン回転速度Neを検出して、その検出信号をエンジン制御部9に出力するエンジン回転速度検出センサ24が設けられている。
クラッチペダル53(クラッチ操作部)は、クラッチ3を切断状態又は接続状態とし、後述するクラッチトルクTcを可変に操作するためのものである。マスタシリンダ55は、クラッチペダル53のストロークに応じた作動圧を発生させる。クラッチストロークセンサ54(クラッチストローク検出部)は、クラッチペダル53のストロークであるクラッチストロークStcを検出し、その検出信号をエンジン停止制御部10に出力する。
クラッチ3は、エンジン2のクランクシャフト2aとマニュアルトランスミッション4の入力軸41との間に設けられている。クラッチ3は、運転者によるクラッチペダル53の操作により、クランクシャフト2aと入力軸41とを接続又は切断するマニュアル式のクラッチである。クラッチ3は、クランクシャフト2aと入力軸41との間において伝達されるトルクであるクラッチトルクTcを可変とすることができる。クラッチ3は、フライホイール31、クラッチディスク32、クラッチカバー33、ダイヤフラムスプリング34、プレッシャプレート35、レリーズベアリング37、及びスレーブシリンダ38を有している。
フライホイール31は、円板状であり、クランクシャフト2aに連結されている。クラッチディスク32は、フライホイール31よりもマニュアルトランスミッション4側に配置され、フライホイール31と対向している。クラッチディスク32は、円板状であり、その外周部の両面に摩擦材32aが設けられている。クラッチディスク32は、入力軸41の先端に軸線方向移動可能且つ相対回転不能にスプライン嵌合している。このような構成によって、クラッチディスク32は、フライホイール31に接触し、又はフライホイール31から離間する。
クラッチカバー33は、扁平な円筒状の円筒部33aと、この円筒部33aのマニュアルトランスミッション4側の端部から入力軸41の回転中心方向に延出するリング状のリング部33bとから構成されている。円筒部33aは、フライホイール31に連結している。このため、クラッチカバー33は、フライホイール31と一体に回転する。プレッシャプレート35は、フライホイール31の反対側において、クラッチディスク32と対向して、クラッチカバー33に対して軸線方向移動可能且つ相対回転不能に設けられている。プレッシャプレート35は、中心に挿通穴35aが形成された円板状である。プレッシャプレート35の挿通穴35aには、入力軸41が挿通している。
ダイヤフラムスプリング34は、リング状の基部34aと、この基部34aの内周縁から、内側に向かって延出する複数の板バネ部34bとから構成されている。板バネ部34bは、内側方向に向かって基部34aから徐々に離れるように傾斜している。板バネ部34bの先端は、入力軸41の軸線方向に沿って弾性変形可能となっている。ダイヤフラムスプリング34は、板バネ部34bの先端が軸線方向に圧縮された状態で、プレッシャプレート35とクラッチカバー33のリング部33bとの間に設けられている。ダイヤフラムスプリング34の基部34aは、プレッシャプレート35と当接している。ダイヤフラムスプリング34の板バネ部34bの中間部分は、クラッチカバー33のリング部33bの内周縁に接続されている。ダイヤフラムスプリング34の中心には、入力軸41が挿通している。
レリーズベアリング37は、クラッチ3のハウジング(不図示)に取り付けられている。レリーズベアリング37の中心には入力軸41が挿通し、レリーズベアリング37は入力軸41に対して軸線方向移動可能となっている。レリーズベアリング37は、互いに対向し、相対回転可能な第一部材37aと第二部材37bとを備えている。第一部材37aは、ダイヤフラムスプリング34の板バネ部34bの先端と当接している。
スレーブシリンダ38は、スレーブシリンダ38内の作動圧により進退するプッシュロッド38aを備えている。プッシュロッド38aの先端は、レリーズベアリング37の第二部材37bと当接している。スレーブシリンダ38とマスタシリンダ55とは、作動圧配管58により接続されている。
クラッチペダル53が踏まれていない状態では、マスタシリンダ55及びスレーブシリンダ38のいずれにも作動圧は発生していない。この状態では、クラッチディスク32は、プレッシャプレート35を介してダイヤフラムスプリング34によって、フライホイール31側に付勢されて、フライホイール31に押し付けられている。このため、摩擦材32aとフライホイール31との摩擦力、及び摩擦材32aとプレッシャプレート35との摩擦力により、クランクシャフト2a、フライホイール31、クラッチディスク32、クラッチカバー33、プレッシャプレート35、及び入力軸41とが一体回転し、クラッチ3が接続状態となっている。
一方で、クラッチペダル53が踏まれ、マスタシリンダ55内に作動圧が発生すると、スレーブシリンダ38内に作動圧が発生する。すると、スレーブシリンダ38のプッシュロッド38aがレリーズベアリング37をダイヤフラムスプリング34側に押圧する。すると、板バネ部34bがリング部33bの内周縁との接続部分を支点として変形し、ダイヤフラムスプリング34の付勢力が小さくなる。この結果、ダイヤフラムスプリング34の基部34aがプレッシャプレート35を介してクラッチディスク32をフライホイール31側に付勢する付勢力が小さくなり、クラッチトルクTcが低下する。クラッチペダル53が完全に踏まれると(クラッチストロークStcが0)、クラッチトルクTcは0となり、クラッチ3が切断状態となる。
マニュアルトランスミッション4は、クラッチ3とデファレンシャル17との間に設けられている。マニュアルトランスミッション4は、入力軸41及び出力軸42を備えている。入力軸41は、クラッチディスク32と連結している。入力軸41は、クラッチ3の接続時において、エンジン2からのエンジントルクTeが入力される。出力軸42は、デファレンシャル17を介して駆動輪18R、18Lに回転連結されている。マニュアルトランスミッション4は、入力軸41の回転速度(以下、入力軸回転速度Niと略す)を出力軸42の回転速度で除した変速比がそれぞれ異なる複数の変速段が選択機構(不図示)によって選択的に切り替えられる有段変速機である。
マニュアルトランスミッション4は、運転者によってシフトレバー45に付与された操作力を、選択機構を作動させる力に変換するシフト操作機構47を備えている。マニュアルトランスミッション4には、変速時において、入力軸41に回転連結されたドリブンギヤ(不図示)を出力軸42に同期させ、又は入力軸41を出力軸42に回転連結されたドライブギヤ(不図示)に同期させる周知のシンクロナイザ機構(不図示)が設けられている。マニュアルトランスミッション4には、マニュアルトランスミッション4においていずれの変速段が形成されていないニュートラル状態を検出し、その検出信号をエンジン2に出力するニュートラル検出センサ48が設けられている。入力軸41の近傍には、入力軸回転速度Niを検出し、その検出信号をエンジン停止制御部10に出力する入力軸回転速度検出センサ43が設けられている。
エンジン制御部9は、エンジン2を制御するものである。エンジン制御部9は、CPU、RAM、ROMや不揮発性メモリー等で構成された記憶部(いずれも不図示)を有している。CPUは、エンジン2を制御するプログラムを実行する。RAMは同プログラムの実行に必要な変数を一時的に記憶するものである。記憶部は上記プログラムや各種マップを記憶している。
エンジン制御部9は、アクセルストロークセンサ52によって検出されたアクセルストロークStaに基づいて、要求エンジントルクTerを演算する。エンジン2がガソリンエンジンである場合には、エンジン制御部9は、エンジン2が出力するエンジントルクTeが要求エンジントルクTerとなるように、燃料供給装置22の燃料供給量を調整するとともに、スロットル23の開度(スロットル開度Pt)を調整し、点火装置29を制御する(以下、単に「エンジン2を制御する」と略す)。エンジン2がディーゼルエンジンである場合には、エンジン制御部9は、エンジン2が出力するエンジントルクTeが要求エンジントルクTerとなるように、燃料供給装置22の燃料供給量を調整する(以下、単に「エンジン2を制御する」と略す)。なお、アクセルペダル51が踏まれていない場合には(アクセルストロークSta=0)、エンジン回転速度Neはアイドリング回転速度(例えば、700r.p.m.)に維持される。
エンジン停止制御部10は、クラッチ3の急係合が判断された場合に、エンジン2を停止させるものである。エンジン停止制御部10は、エンジン制御部9と同様に、CPU、RAM、ROMや不揮発性メモリー等で構成された記憶部を有している。エンジン停止制御部10は、エンジン制御部9と通信可能に接続され、エンジン制御部9から、アクセルストロークSta及びエンジン回転速度Neが入力される。
上記した、エンジン2、クラッチ3、マニュアルトランスミッション4、エンジン制御部9、エンジン停止制御部10、燃料供給装置22、スロットル23、エンジン回転速度検出センサ24、排気ブレーキ装置28、点火装置29、入力軸回転速度検出センサ43、ニュートラル検出センサ48、クラッチペダル53、クラッチストロークセンサ54、アクセルペダル51、アクセルストロークセンサ52、マスタシリンダ55、及び作動圧配管58を含めた構成が、本実施形態の車両用駆動装置1である。
(エンジン停止制御の概要)
以下に、「エンジン停止制御」の概要について説明する。運転者が車両100を発進させている状況において、運転者が完全に踏んでいる(クラッチストロークStcが0)クラッチペダル53を急激に戻したことにより、クラッチ3の急係合が判断された場合に(図2の時刻T8)、エンジン停止制御部10(エンジン停止指令出力部)は、エンジン制御部9に「エンジン停止指令」を出力して、エンジン2を停止させる。具体的には、エンジン停止制御部10は、実際にエンジン2が出力しているエンジントルクTe(以下、実エンジントルクTeと略す)が負となるようなエンジン停止トルクTesを演算する。そして、エンジン停止制御部10は、エンジン停止トルクTesを要求エンジントルクTerとしてエンジン制御部9に出力し、「エンジン停止命令」とする。「エンジン停止命令」が入力されたエンジン制御部9は、実エンジントルクTeがエンジン停止トルクTesとなるようにエンジン2を制御し、エンジン2を停止させる(図2の時刻T9)。ここで、エンジン停止トルクTesは、エンジンフリクショントルクに基づいて演算されるもので、エンジン回転速度Neに応じて設定される。
(エンジン停止制御)
以下に、図3に示すフローチャートを用いて「エンジン停止制御」について説明する。エンジン2が始動すると、エンジン停止制御部10は、図3に示す「エンジン停止制御」を開始させて、プログラムをステップS11に進める。なお、エンジン停止制御部10は、「エンジン停止制御」のステップS11〜ステップS33(ステップS41)の1サイクルを、規定時間(例えば10ms)ごとに実行する。
ステップS11において、エンジン停止制御部10は、ニュートラル検出センサ48からの検出信号に基づいて、マニュアルトランスミッション4がニュートラル状態であると判断した場合には(ステップS11:YES)、プログラムをステップS41に進める。一方で、エンジン停止制御部10は、マニュアルトランスミッション4がニュートラル状態でないと判断した場合、つまり、マニュアルトランスミッション4において変速段(1速、2速、後進を含む)が形成されていると判断した場合には(ステップS11:NO)、プログラムをステップS12に進める。
ステップS12において、エンジン停止制御部10は、車両100が発進状態であると判断した場合には(ステップS12:YES)、プログラムをステップS21に進める。一方で、エンジン停止制御部10は、車両100が発進状態でないと判断した場合には(ステップS12:NO)、プログラムをステップS41に進める。
エンジン停止制御部10は、以下に示す発進条件のうち、発進条件1及び発進条件2の両方の条件が成立したと判断した場合、又は発進条件1及び発進条件3の両方の条件が成立したと判断した場合に、車両100が発進状態であると判断する。一方で、エンジン停止制御部10は、発進条件1及び発進条件2の両方の条件が成立していないと判断した場合や、発進条件1及び発進条件3の両方の条件が成立していないと判断した場合に、車両100が発進状態で無いと判断する。
(発進条件1)クラッチストロークStcが第1判定ストローク以上(クラッチストロークセンサ54からの検出信号により判定)。
(発進条件2)アクセルストロークStaが第2判定ストローク以上(アクセルストロークセンサ52からの検出信号により判定)。
(発進条件3)入力軸回転速度Niが判定回転速度以上(入力軸回転速度検出センサ43からの検出信号により判定)。
なお、クラッチストロークStcが第1判定ストローク以上である場合には(図2の時刻T4)、クラッチ3は係合を開始して半クラッチ状態となっていて、クラッチ3はクラッチトルクTcを発生している。
また、アクセルストロークStaが第2判定ストローク以上である場合には(図2の時刻T2)、エンジン回転速度Neがアイドリング回転速度から上昇を開始する。
また、入力軸回転速度Niが判定回転速度以上である場合には(図2の時刻T5)、入力軸41が回転し始め、車両100が発進し始める。入力軸回転速度Niは、入力軸回転速度検出センサ43が検出可能な最低の回転速度であり、例えば、50r.p.m.である。
なお、発進条件1及び発進条件2の両方の条件が成立する場合は、運転者がアクセルペダル51を踏み込んで、車両100を発進させる場合である。また、発進条件1及び発進条件3の両方の条件が成立する場合には、運転者がアクセルペダル51を踏み込まずに、エンジン回転速度Neがアイドリング回転速度に制御されているエンジン2が出力するエンジントルクTeで、車両100を発進させる場合である。
このように、マニュアルトランスミッション4がニュートラル状態でない場合、つまり、マニュアルトランスミッション4において変速段が形成されている場合(ステップS11でNOと判断)に限り、ステップS12において、車両100が発進状態であるか否かが判断される。
ステップS21において、エンジン停止制御部10は、クラッチストロークセンサ54からの検出信号に基づいて、クラッチストロークStcを取得して、エンジン停止制御部10の記憶部に記憶させる。
ステップS22において、エンジン停止制御部10(クラッチストローク速度演算部)は、ステップS21において記憶部に記憶されたクラッチストロークStcに基づいて、クラッチストローク速度Spcを演算する。本実施形態では、エンジン停止制御部10は、今回ステップS21において記憶されたクラッチストロークStcから、数サイクル前(例えば4サイクル前)においてステップS21において記憶された(検出された)クラッチストロークStcを減算したクラッチストローク差分値ΔStcを演算する。そして、エンジン停止制御部10は、上記クラッチストローク差分値ΔStcを、数サイクル前のステップS21から今回のステップS21までの経過時間ΔTで除すことにより、クラッチストローク速度Spcを演算する。
ステップS23において、エンジン停止制御部10(クラッチ急係合判断部)は、ステップS22で演算されたクラッチストローク速度Spcが急係合判定速度以上であると判断した場合には(ステップS23:YES)、プログラムをステップS24に進める。一方で、エンジン停止制御部10は、ステップS22で演算されたクラッチストローク速度Spcが急係合判定速度未満であると判断した場合には(ステップS23:NO)、プログラムをステップS41に進める。
ステップS24において、エンジン停止制御部10(クラッチ急係合判断部)は、カウンタCを1カウントアップする。
ステップS25において、エンジン停止制御部10(クラッチ急係合判断部)は、カウンタCが規定数n(例えば4)よりも多いと判断した場合には(ステップS25:YES、図2の時刻T8)、クラッチ3が急係合していると判断し、プログラムをステップS31に進める。一方で、エンジン停止制御部10は、カウンタCが規定数n以下であると判断した場合には(ステップS25:NO)、プログラムをステップS11に戻す。
このように、規定時間(「エンジン停止制御」の1サイクル、例えば10ms)をおいて、クラッチストローク速度Spcが急係合判定速度よりも速くなった回数が規定数nよりも多くなった場合に、クラッチ3の急係合が判断される。
ステップS31において、エンジン停止制御部10(エンジン停止トルク演算部)は、例えば、エンジン回転速度Neとエンジン停止トルクTesとの関係を表すマップを参照して、このステップS31時点のエンジン回転速度Neに対応するエンジン停止トルクTesを演算する。このように演算されるエンジン停止トルクTesは、負トルクである。
ステップS32において、エンジン停止制御部10(エンジン停止指令出力部)は、エンジン制御部9に出力する要求エンジントルクTerとして、ステップS31で演算されたエンジン停止トルクTesをセットする。
ステップS33において、エンジン停止制御部10(エンジン停止指令出力部)は、ステップS32でセットされた要求エンジントルクTer(エンジン停止トルクTes)を「エンジン停止指令」として、エンジン制御部9に出力する。
ステップS41において、エンジン停止制御部10は、カウンタCをクリアする。
(エンジン停止トルクTesが入力されたエンジン制御部9による制御)
エンジン制御部9は、「エンジン停止指令」としての要求エンジントルクTer(エンジン停止トルクTes)が入力されると、実エンジントルクTeが負トルクであるエンジン停止トルクTesとなるようにエンジン2を制御し、エンジン2を停止させる。具体的には、エンジン制御部9は、燃料供給装置22によるエンジン2への燃料の供給を停止して、エンジン2内での燃焼を停止させて、エンジン2が発生するトルクを0とする。或いは、エンジン制御部9は、燃料供給装置22によるエンジン2への燃料の供給量を減少させることにより、エンジン2が発生するトルクを低下させる。
また、エンジン制御部9は、必要に応じて、点火装置29での点火を停止させる。また、エンジン制御部9は、必要に応じて、スロットル23のバルブ23aの開度を低下させて、吸気マニホールド21の流路断面積を減少させる。これにより、エンジン制御部9は、エンジン2の吸入抵抗を増大させて、エンジン2内でのポンピングロスを増大させ、エンジンブレーキを増大させ、実エンジントルクTeを負トルクとする。また、エンジン制御部9は、必要に応じて、排気ブレーキ装置28のバルブ28aの開度を低下させて、排気管27の流路断面積を減少させる。これにより、エンジン制御部9は、エンジン2の排気抵抗を増大させることにより、エンジン2内でのポンピングロスを増大させ、エンジンブレーキを増大させ、実エンジントルクTeを負トルクとする。
このように、エンジン2が出力する実エンジントルクTeが負トルクであるエンジン停止トルクTesとなると、エンジン2においてエンジンブレーキが発生して、エンジン2が停止する。このため、クラッチ3の急係合に伴う係合ショックやマニュアルトランスミッション4及びデファレンシャル17にかかる負荷が抑制される。
点火装置29での点火が停止され(エンジン2がガソリンエンジンの場合)、或いは、燃料供給装置22によるエンジン2への燃料の供給が停止されると、エンジン2が出力するエンジントルクTeが急激に減少し、急激なエンジンブレーキが発生し、エンジン2においてショックが発生する。これを防止するために、エンジン制御部9は、燃料供給装置22、スロットル23、排気ブレーキ装置28、点火装置29の少なくとも1つを制御して、エンジン2が出力するエンジントルクTeの急激な減少に伴うショックの発生を防止する。具体的には、エンジン制御部9は、点火装置29での点火を継続させ(エンジン2がガソリンエンジンの場合)、燃料供給装置22によるエンジン2への燃料の供給量を0より大きい供給量に減少させる。そして、エンジン制御部9は、スロットル23の開度の低下及び排気ブレーキ装置28の作動の少なくとも一方を実行することにより、エンジントルクTeをエンジン停止トルクTesにする。
(タイムチャートの説明)
以下に、図2に示すタイムチャートについて説明する。図2に示すタイムチャートにおいて、マニュアルトランスミッション4はニュートラル状態でなく、マニュアルトランスミッション4において変速段が形成されている。
運転者がアクセルペダル51を踏み始め(時刻T1)、アクセルストロークStaが第2判定ストロークを越えると(時刻T2)、図3のステップS12における発進条件2が成立する。すると、エンジン制御部9は実エンジントルクTeが要求エンジントルクTerとなるようにエンジン2を制御し、エンジン回転速度Neがアイドリング回転速度から上昇する。
運転者が、完全に踏んでいるクラッチペダル53を戻し始めると(時刻T3)、クラッチストロークStcが増大して、クラッチストローク速度Spcも0から増大する。しかし、図2に示す例では、クラッチストローク速度Spcは、急係合判定速度以上となっていない。そして、クラッチストロークStcが、第1判定ストローク以上となると(時刻T4)、図3のステップS12における発進条件1が成立し、クラッチトルクTcが0から増大し始める。
クラッチストロークStcの増大に伴う、クラッチトルクTcの増大によって、エンジン2から入力軸41にエンジントルクTeが入力される。すると、入力軸回転速度Niが上昇し始め、入力軸回転速度Niが判定回転速度以上となり(時刻T5)、図3のステップS12における発進条件3が成立する。
運転者がクラッチペダル53を急激に戻し始め(時刻T6)、クラッチストローク速度Spcが急係合判定速度以上となり(時刻T7、図3のステップS23でYESと判断)、クラッチストローク速度Spcが急係合判定速度よりも速くなった回数が規定数nよりも多くなり(時刻T8、図3のステップS25でYES判断)、クラッチ3の急係合であると判断される。すると、時刻T8において、エンジン停止制御部10(エンジン停止トルク演算部)は、エンジン停止トルクTesを演算し(図3のステップS31)、このエンジン停止トルクTesを要求エンジントルクTerにセットし(ステップS32)、この要求エンジントルクTerを「エンジン停止指令」として、エンジン制御部9に出力する(ステップS33)。「エンジン停止指令」が入力されたエンジン制御部9は、実エンジントルクTeがエンジン停止トルクTesとなるようにエンジン2を制御する。これにより、実エンジントルクTeは急激に低下し、エンジン2においてエンジンブレーキが発生する。そして、エンジン回転速度Neが低下し、エンジン2が停止する(時刻T9)。
(本実施形態の効果)
以上の説明から明らかなように、エンジン停止制御部10(クラッチ急係合判断部)は、クラッチストロークStcに基づいて、クラッチ3の急係合を判断する(図3のステップS23〜ステップS25)。そして、エンジン停止制御部10(エンジン停止指令出力部)は、クラッチ3の急係合が判断された場合に(ステップS25でYESと判断)、エンジン2を停止させる指令である「エンジン停止指令」をエンジン制御部9に出力する。そして、エンジン制御部9は、「エンジン停止指令」が入力された場合に、エンジン2を停止させる。これにより、クラッチストロークStcに基づいて、クラッチ3の急係合が判断されると、エンジン2が停止される。このため、クラッチ3の急係合時に、クラッチ3の係合ショックが抑制される。また、クラッチ3の急係合時に、エンジン2からマニュアルトランスミッション4やデファレンシャル17へのエンジントルクTeの入力が停止される。このため、クラッチ3の急係合時に、マニュアルトランスミッション4やデファレンシャル17にかかる負荷が低減される。
また、運転者によるクラッチペダル53の操作結果であるクラッチストロークStcに基づいて、クラッチ3の急係合が判断される。このため、運転者によるクラッチペダル53の操作後の車両用駆動装置1の挙動、例えば、エンジン回転速度Neや入力軸回転速度Niに基づいて、クラッチ3の急係合が判断される場合と比較して、クラッチ3の急係合がより早期に判断される。このため、クラッチ3が急係合された場合に、早期にエンジン2が停止され、クラッチ3の係合ショックが抑制されるとともに、マニュアルトランスミッション4やデファレンシャル17にかかる負荷が低減される。
エンジン停止制御部10(エンジン停止指令出力部)は、実エンジントルクTeが負となるようなエンジン停止トルクTesを演算し(図3のステップS31)、このエンジン停止トルクTesを要求エンジントルクTerにセットし(ステップS32)、要求エンジントルクTer(エンジン停止トルクTes)を「エンジン停止指令」として、エンジン制御部9に出力する(ステップS33)。そして、エンジン制御部9は、エンジン停止制御部10(エンジン停止指令出力部)から出力された「エンジン停止指令」である要求エンジントルクTer(エンジン停止トルクTes)が入力された場合に、実エンジントルクTeがエンジン停止トルクTesとなるようにエンジン2を制御し、エンジン2を停止させる。これにより、実エンジントルクTeがエンジン停止トルクTesとなり、エンジン2において確実にエンジンブレーキが発生して、エンジン2が停止する。このため、クラッチ3の急係合に伴うクラッチ3の係合ショックが確実に抑制される。このように、エンジン制御部9に「エンジン停止指令」として燃料供給装置22での燃料供給を停止させる旨の指令が入力されるのと異なり、エンジン制御部9に「エンジン停止指令」としてエンジン停止トルクTesが入力される。これにより、エンジン制御部9は、エンジン停止トルクTesに基づいて、適切にエンジン2を制御することができる。例えば、エンジン制御部9は、燃料供給装置22、スロットル23、排気ブレーキ装置28、点火装置29の少なくとも1つを制御することにより、車両100にショックが発生しないように制御することができる。また、エンジン停止制御部10からエンジン制御部9への指令信号が少なくて済む。
クラッチストローク速度Spcが所定の速度(急係合判定速度)を越えた場合には、将来にクラッチストロークStcが急激に増大し、将来にクラッチトルクTcが急激に増大し、クラッチ3が急係合する。そこで、エンジン停止制御部10(クラッチストローク速度演算部)は、クラッチストロークセンサ54(クラッチストローク検出部)によって検出されたクラッチストロークStcに基づいて、クラッチストロークStcの単位時間当たりの変化量であるクラッチストローク速度Spcを演算する(図3のステップS22)。そして、エンジン停止制御部10(クラッチ急係合判断部)は、クラッチストローク速度Spcに基づいて、クラッチ3の急係合を判断する(ステップS23〜S25)。このため、クラッチ3の急係合が早期に判断される。この結果、早期にエンジン2が停止され、クラッチ3の係合ショックが抑制されるとともに、マニュアルトランスミッション4やデファレンシャル17にかかる負荷が低減される。
エンジン停止制御部10(クラッチ急係合判断部)は、規定時間(「エンジン停止制御」の1サイクル)をおいて、クラッチストローク速度Spcが急係合判定速度よりも速くなった回数であるカウンタCが規定数nよりも多くなった場合に(図3のステップS25でYESと判断)、クラッチ3の急係合を判断する。つまり、クラッチストローク速度Spcが急係合判定速度よりも速くなったとしても、直ちにクラッチ3の急係合と判断されない。これにより、クラッチストロークセンサ54からの検出信号へのノイズの混入により、クラッチストローク速度Spcが急係合判定速度よりも速くなることに起因して、クラッチ3が急係合していないにも関わらず、クラッチ3が急係合していると判断される誤判定が防止される。
エンジン制御部9は、「エンジン停止指令」としてエンジン停止トルクTesがセットされた要求エンジントルクTerが入力された場合に、燃料供給装置22によるエンジン2への燃料の供給を停止し、又は燃料供給装置22によるエンジン2への燃料の供給量を減少させる。これにより、エンジン2内の燃料の燃焼によってエンジン2が発生するトルクが、0となり、又は低下する。このため、実エンジントルクTeが確実に低下し、実エンジントルクTeがエンジン停止トルクTesに制御される。
エンジン制御部9は、「エンジン停止指令」としてエンジン停止トルクTesがセットされた要求エンジントルクTerが入力された場合に、必要に応じて、スロットル23の開度を低下させて、吸気マニホールド21の流路断面積を減少させる。これにより、エンジン2の吸入抵抗が増大し、エンジン2内でのポンピングロスが増大し、エンジン2によるエンジンブレーキが増大する。このため、エンジントルクTeが確実に低下し、エンジントルクTeがエンジン停止トルクTesに制御される。また、点火装置29での点火の停止や、燃料供給装置22によるエンジン2への燃料の供給停止に比べて、エンジン2内でのポンピングロスの増大によるエンジントルクTeの減少は急でなく、緩やかである。このため、エンジントルクTeの急激な減少による、エンジン2でのショックの発生が抑制される。
エンジン制御部9は、「エンジン停止指令」としてエンジン停止トルクTesがセットされた要求エンジントルクTerが入力された場合には、必要に応じて、排気ブレーキ装置28によって排気管27の流路断面積を減少させる。これにより、エンジン2の排気抵抗が増大し、エンジン2内でのポンピングロスが増大し、エンジン2によるエンジンブレーキが増大する。このため、エンジントルクTeが確実に低下し、エンジントルクTeがエンジン停止トルクTesに制御される。また、点火装置29での点火の停止や、燃料供給装置22によるエンジン2への燃料の供給停止に比べて、エンジン2内でのポンピングロスの増大によるエンジントルクTeの減少は急でなく、緩やかである。このため、エンジントルクTeの急激な減少による、エンジン2でのショックの発生が抑制される。
クラッチ3が接続されていると、図3のステップS12において、クラッチストロークStcが第1判定ストローク以上であるので、発進条件1を満たす。そして、マニュアルトランスミッション4がニュートラル状態であると、ステップS12において、入力軸回転速度Niがエンジン回転速度Neと同一となっていて判定回転速度以上であるので、発進条件3を満たす。このため、クラッチ3が接続され、マニュアルトランスミッション4がニュートラル状態である場合に、ステップS12の処理が実行されると、車両100が発進状態でないにも関わらず、車両100が発進状態であると判断される。そこで、エンジン停止制御部10は、マニュアルトランスミッション4がニュートラル状態でなく、マニュアルトランスミッション4において変速段が形成されている場合(ステップS11でNOと判断)に限り、ステップS12において、車両100が発進状態であるか否かを判断する。これにより、クラッチ3が接続され、マニュアルトランスミッション4がニュートラル状態である場合に、車両100が発進状態でないにも関わらず、車両100が発進状態であると判断される誤判定が防止される。
(別の実施形態)
以上説明した実施形態では、エンジン停止制御部10が、エンジン停止トルクTesを演算して、このエンジン停止トルクTesを「エンジン停止指令」として、エンジン制御部9に出力している。しかし、エンジン停止制御部10が、「エンジン停止指令」として、エンジン制御部9においてエンジン停止トルクTesを演算させる旨の指令を、エンジン制御部9に出力する実施形態であっても差し支え無い。この実施形態の場合には、「エンジン停止指令」が入力されたエンジン制御部9は、エンジン停止トルクTesを演算し、実エンジントルクTeがエンジン停止トルクTesとなるようにエンジン2を制御する。
以上説明した実施形態では、エンジン停止制御部10は、エンジン停止トルクTesを要求エンジントルクTerにセットし(図3のステップS32)、「エンジン停止指令」として、エンジン制御部9に出力している(ステップS33)。しかし、エンジン停止制御部10が、燃料供給装置22での燃料の供給を停止させる旨等の指令を「エンジン停止指令」として、エンジン制御部9に出力する実施形態であっても差し支え無い。
以上説明した実施形態では、エンジン制御部9とエンジン停止制御部10は別体である。しかし、エンジン制御部9とエンジン停止制御部10が一体である実施形態であっても差し支え無い。
以上説明した実施形態では、クラッチストロークセンサ54は、クラッチペダル53のストロークをクラッチストロークStcとして検出している。しかし、クラッチストロークセンサ54は、クラッチ3のストロークをクラッチストロークStcとして検出するセンサであっても差し支え無い。この実施形態の場合には、クラッチストロークセンサ54は、クラッチディスク32、プレッシャプレート35、レリーズベアリング37、及びスレーブシリンダ38のいずれかストロークを検出する。
以上説明した実施形態では、クラッチペダル53の操作力は、マスタシリンダ55、作動圧配管58及びスレーブシリンダ38を介して、レリーズベアリング37に伝達させる。しかし、クラッチペダル53の操作力が、作動圧配管を伴う上述の構成ではなく、ワイヤ、ロッド、ギヤ等の機械的要素を介して、レリーズベアリング37に伝達される実施形態であっても差し支え無い。
以上説明した実施形態では、クラッチ3に運転者の操作力を伝達するクラッチ操作部材は、クラッチペダル53である。しかし、クラッチ操作部材は、クラッチペダル53に限定されず、例えば、クラッチレバーであっても差し支え無い。同様に、アクセルストロークStaを調整するアクセルペダル51の代わりに、例えば、アクセルストロークStaを調整するアクセルグリップであっても差し支え無い。そして、本実施形態の車両用駆動装置1を、自動二輪車やその他車両に適用しても、本発明の技術的思想が適用可能なことは言うまでもない。
エンジン2がディーゼルエンジンである場合において、エンジン2が発生するエンジンブレーキを増大させる目的で、エンジン2にスロットル23が設けられている実施形態であっても差し支え無い。
1…車両用駆動装置、2…エンジン、3…クラッチ、4…マニュアルトランスミッション、9…エンジン制御部、10…エンジン停止制御部(クラッチ急係合判断部、エンジン停止指令出力部、エンジン停止トルク演算部、クラッチストローク速度演算部)、17…デファレンシャル、18R、18L…駆動輪、22…燃料供給装置、23…スロットル、24…エンジン回転速度検出センサ(エンジン回転速度検出部)、27…排気管、28…排気ブレーキ装置、41…入力軸、42…出力軸、53…クラッチペダル(クラッチ操作部)、54…クラッチストロークセンサ(クラッチストローク検出部)、100…車両。

Claims (8)

  1. エンジントルクを出力するエンジンと、
    前記エンジンを制御するエンジン制御部と、
    前記エンジントルクが入力される入力軸と、車両の駆動輪にデファレンシャルを介して回転連結された出力軸とを備え、前記入力軸の回転速度を前記出力軸の回転速度で除した変速比がそれぞれ異なる複数の変速段を有するマニュアルトランスミッションと、
    前記エンジンと前記入力軸との間に設けられ、前記エンジンと前記入力軸との間において伝達されるトルクであるクラッチトルクを可変とするクラッチと、
    前記クラッチトルクを可変に操作するためのクラッチ操作部と、
    前記クラッチ操作部のストローク又は前記クラッチのストロークであるクラッチストロークを検出するクラッチストローク検出部と、
    前記クラッチストローク検出部によって検出された前記クラッチストロークに基づいて、前記クラッチの急係合を判断するクラッチ急係合判断部と、
    前記クラッチ急係合判断部によって前記クラッチの急係合が判断された場合に、前記エンジンを停止させる指令であるエンジン停止指令を前記エンジン制御部に出力するエンジン停止指令出力部と、を有し、
    前記エンジン制御部は、前記エンジン停止指令出力部から出力された前記エンジン停止指令が入力された場合に、前記エンジンを停止させる車両用駆動装置。
  2. 前記エンジン停止指令出力部は、前記エンジントルクが負トルクであるエンジン停止トルクとなるように前記エンジンを制御する指令を前記エンジン停止指令として前記エンジン制御部に出力し、
    前記エンジン制御部は、前記エンジン停止指令出力部から出力された前記エンジン停止指令が入力された場合に、前記エンジントルクが前記エンジン停止トルクとなるように前記エンジンを制御し、前記エンジンを停止させる請求項1に記載の車両用駆動装置。
  3. 前記エンジンの回転速度を検出するエンジン回転速度検出部と、
    前記エンジン回転速度検出部によって検出された前記エンジンの回転速度に応じてエンジン停止トルクを演算するエンジン停止トルク演算部と、を有する請求項2に記載の車両用駆動装置。
  4. 前記クラッチストローク検出部によって検出された前記クラッチストロークに基づいて、前記クラッチストロークの単位時間当たりの変化量であるクラッチストローク速度を演算するクラッチストローク速度演算部を有し、
    前記クラッチ急係合判断部は、前記クラッチストローク速度演算部によって演算された前記クラッチストローク速度に基づいて、前記クラッチの急係合を判断する請求項1〜請求項3のいずれか一項に記載の車両用駆動装置。
  5. 前記クラッチ急係合判断部は、規定時間をおいて前記クラッチストローク速度演算部によって演算された前記クラッチストローク速度が急係合判定速度よりも速くなった回数が規定数よりも多くなった場合に、前記クラッチの急係合を判断する請求項4に記載の車両用駆動装置。
  6. 前記エンジンに燃料を供給する燃料供給装置を有し、
    前記エンジン制御部は、前記エンジン停止指令出力部から出力された前記エンジン停止指令が入力された場合に、前記燃料供給装置による前記エンジンへの前記燃料の供給を停止し、又は前記燃料供給装置による前記エンジンへの前記燃料の供給量を減少させる請求項1〜請求項5のいずれか一項に記載の車両用駆動装置。
  7. 前記エンジンに供給される空気が流通する吸気マニホールドに設けられ、前記吸気マニホールドの流路断面積を可変に調整するスロットルを有し、
    前記エンジン制御部は、前記エンジン停止指令出力部から出力された前記エンジン停止指令が入力された場合に、前記スロットルによって前記吸気マニホールドの流路断面積を減少させる請求項1〜請求項6のいずれか一項に記載の車両用駆動装置。
  8. 前記エンジンから排気される排気ガスが流通する排気管に設けられ、前記排気管内の流路断面積を可変に調整し、前記エンジンにおけるエンジンブレーキを増大させる排気ブレーキ装置を有し、
    前記エンジン制御部は、前記エンジン停止指令出力部から出力された前記エンジン停止指令が入力された場合に、前記排気ブレーキ装置によって前記排気管内の流路断面積を減少させる請求項1〜請求項7のいずれか一項に記載の車両用駆動装置。
JP2014254766A 2014-12-17 2014-12-17 車両用駆動装置 Pending JP2016114000A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254766A JP2016114000A (ja) 2014-12-17 2014-12-17 車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254766A JP2016114000A (ja) 2014-12-17 2014-12-17 車両用駆動装置

Publications (1)

Publication Number Publication Date
JP2016114000A true JP2016114000A (ja) 2016-06-23

Family

ID=56141301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254766A Pending JP2016114000A (ja) 2014-12-17 2014-12-17 車両用駆動装置

Country Status (1)

Country Link
JP (1) JP2016114000A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203624A (ja) * 1990-11-30 1992-07-24 Fuji Heavy Ind Ltd 油圧式クラッチの制御装置
JP2004316432A (ja) * 2003-04-10 2004-11-11 Toyota Motor Corp 車両用駆動力源の制御装置
JP2005315190A (ja) * 2004-04-30 2005-11-10 Isuzu Motors Ltd ディーゼルエンジンの排気ガス後処理装置
JP2006002917A (ja) * 2004-06-21 2006-01-05 Aisin Ai Co Ltd 複数のクラッチを持つ変速装置
JP2007023921A (ja) * 2005-07-19 2007-02-01 Toyota Motor Corp 内燃機関の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203624A (ja) * 1990-11-30 1992-07-24 Fuji Heavy Ind Ltd 油圧式クラッチの制御装置
JP2004316432A (ja) * 2003-04-10 2004-11-11 Toyota Motor Corp 車両用駆動力源の制御装置
JP2005315190A (ja) * 2004-04-30 2005-11-10 Isuzu Motors Ltd ディーゼルエンジンの排気ガス後処理装置
JP2006002917A (ja) * 2004-06-21 2006-01-05 Aisin Ai Co Ltd 複数のクラッチを持つ変速装置
JP2007023921A (ja) * 2005-07-19 2007-02-01 Toyota Motor Corp 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP6036473B2 (ja) 車両用駆動装置
JP5849930B2 (ja) 車両用駆動装置
JP5045767B2 (ja) 車両の制御装置
JP5849928B2 (ja) 車両用駆動装置
US8574127B2 (en) Vehicle engine control device
WO2014174939A1 (ja) 車両用駆動装置
JP5849929B2 (ja) 車両用駆動装置
JP2008256189A (ja) 自動クラッチのトルク伝達開始点学習方法及びトルク伝達開始点学習装置
JP6648652B2 (ja) クラッチシステム
JP2016114000A (ja) 車両用駆動装置
EP2565429B1 (en) Vehicle engine controller
JP2017166338A (ja) 車両用駆動装置
JP5273309B1 (ja) 車両の制御装置
JP5472062B2 (ja) クラッチ制御装置
WO2016121261A1 (ja) 車両用駆動装置
JP5370066B2 (ja) 内燃機関の制御装置
JP2008304030A (ja) クラッチ機構の制御装置
JP6102499B2 (ja) クラッチ操作状態判定装置
JP2018040374A (ja) 車両の制御装置
JP6723649B2 (ja) 車両用制御装置
WO2016088223A1 (ja) 車両用駆動装置
JP2017110710A (ja) 車両用クラッチの制御装置
WO2016121162A1 (ja) クラッチトルクマップ演算装置
JP2023046963A (ja) 車両の制御装置
JP6127259B2 (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305