JP2016112900A - ハイブリッド車両のクラッチ制御装置 - Google Patents

ハイブリッド車両のクラッチ制御装置 Download PDF

Info

Publication number
JP2016112900A
JP2016112900A JP2013087252A JP2013087252A JP2016112900A JP 2016112900 A JP2016112900 A JP 2016112900A JP 2013087252 A JP2013087252 A JP 2013087252A JP 2013087252 A JP2013087252 A JP 2013087252A JP 2016112900 A JP2016112900 A JP 2016112900A
Authority
JP
Japan
Prior art keywords
clutch
torque
engine
torque capacity
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013087252A
Other languages
English (en)
Inventor
芦沢 裕之
Hiroyuki Ashizawa
裕之 芦沢
裕 ▲高▼村
裕 ▲高▼村
Yutaka Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013087252A priority Critical patent/JP2016112900A/ja
Priority to PCT/JP2014/058314 priority patent/WO2014171273A1/ja
Publication of JP2016112900A publication Critical patent/JP2016112900A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 運転者の所望する加速性能を実現できるハイブリッド車両のクラッチ制御装置を提供する。
【解決手段】 アクセル踏み込みに伴いエンジン2を始動する際、エンジン回転数の上昇に応じて第1クラッチ3の伝達トルク容量を減少させると共に、第2クラッチ4の伝達トルク容量を増加させる。
【選択図】 図1

Description

本発明は、ハイブリッド車両のクラッチ制御装置に関する。
従来、エンジンおよびモータジェネレータ間のトルク伝達を断続する第1クラッチと、モータジェネレータおよび駆動輪間のトルク伝達を断続する第2クラッチを有するハイブリッド車両が知られている。
特許文献1には、運転者のアクセル踏み込みに伴い第1クラッチを接続してエンジンを始動する際、クランキングトルクである第1クラッチトルク容量と車両の駆動トルクである第2クラッチトルク容量とを、モータ上限トルク範囲内で配分することで、モータトルクが上限トルクを超えるのを防止する技術が開示されている。このとき、運転者のアクセル踏み込み速度が高いほど、第1クラッチトルク容量の配分を大きくすることで、早期のエンジン始動による車両の加速を達成している。
特開2009-227277号公報
しかしながら、上記従来技術にあっては、エンジン始動中は常に両クラッチトルク容量の配分が一定であるため、加速度が停滞し、運転者の所望する加速性能が得られないという問題があった。
本発明の目的は、運転者の所望する加速性能を実現できるハイブリッド車両のクラッチ制御装置を提供することにある。
本発明では、アクセル踏み込みに伴いエンジンを始動する際、エンジン回転数の上昇に応じて第1クラッチの伝達トルク容量を減少させると共に、第2クラッチの伝達トルク容量を増加させる。
よって、本発明にあっては、エンジン回転数の上昇と共に車両の駆動トルクが増大するため、加速度の停滞を抑制でき、運転者の所望する加速性能を実現できる。
実施例1のクラッチ制御装置が適用されたハイブリッド車両のシステム図である。 統合コントローラ13の処理内容を示すフローチャートである。 車速とアクセル開度に応じた駆動トルク指令値演算マップである。 (a)クラッチトルク容量−クラッチ油圧変換マップ、(b)クラッチ油圧−電流変換マップである。 第2クラッチ制御モード設定方法を示すフローチャートである。 (a)基本第2クラッチトルク容量指令値と第2クラッチ油温とに基づく第2クラッチスリップ回転数目標値演算マップ、(b)エンジン始動配分モータトルクに基づく第2クラッチスリップ回転数目標値演算である。 第2クラッチ用フィードバック制御のブロック図である。 エンジン始動中の各クラッチのトルク容量指令値演算方法を示すフローチャートである。 エンジン始動下限トルク演算マップである。 モータ上限トルク演算マップである。 従来のクラッチ制御装置において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートである。 実施例1において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートである。
〔実施例1〕
[全体システム]
図1は、実施例1のクラッチ制御装置が適用されたハイブリッド車両のシステム図である。
モータジェネレータ(以下、モータ)1は交流同期モータであり、駆動トルク制御による左右駆動輪21a,21bの駆動およびエンジン始動や回生ブレーキ制御による車両運動エネルギーの高圧バッテリ9への回収を行うものである。
エンジン2は、希薄燃焼可能であり、スロットルアクチュエータによる吸入空気量とインジェクタによる燃料噴射量と、点火プラグによる点火時期の制御により、エンジントルクが指令値と一致するように制御される。
第1クラッチ3は、乾式クラッチであり、エンジン2およびモータ1間の締結/開放を行う。第1クラッチ3が完全締結状態である場合はモータトルク+エンジントルクが第2クラッチ4へと伝達され、開放状態である場合はモータトルクのみが第2クラッチ4へ伝達される。
第2クラッチ4は、湿式クラッチであり、クラッチ油圧(押付力)に応じて伝達トルク(クラッチトルク容量)が発生する。第2クラッチ4の伝達トルクは、変速機5およびファイナルギヤ19を介し、モータ1およびエンジン2(第1クラッチが締結されている場合)から出力されたトルクを左右ドライブシャフト20a,20bに伝達される。
変速機5は、有段変速機であり、複数の遊星歯車から構成される。変速機内部のクラッチならびにブレーキをそれぞれ締結/開放して力の伝達経路を変えることにより変速を行う。
第2クラッチ入力軸(モータ)回転数センサ6は、現在の第2クラッチ4の入力回転数を検出する。
第2クラッチ出力軸回転数センサ7は、現在の第2クラッチ4の出力軸回転数を検出する。
高電圧インバータ(以下、インバータ)8は、直流‐交流変換を行いモータ1の駆動電流を生成する。
高電圧バッテリ(以下、バッテリ)9は、モータ1からの回生エネルギーを蓄積する。
アクセルポジションセンサ10は、アクセル開度を検出する。
エンジン回転数センサ(エンジン回転数検出手段)11は、現在のエンジン回転数を検出する。
クラッチ油温センサ12は、第2クラッチ4の油温を検出する。
統合コントローラ13は、バッテリ状態、アクセル開度、および車速(変速機出力軸回転数に同期した値)から駆動トルク指令値を演算する。そして、その結果に基づき各アクチュエータ(モータ1、エンジン2、第1クラッチ3、第2クラッチ4および変速機5)に対する指令値を演算し、各コントローラ14〜17へと送信する。統合コントローラ13は、第1クラッチ3を切断しモータジェネレータ1のトルクにより走行するEV(電動車)モードから、第1クラッチ3を接続してエンジン2およびモータジェネレータ1のトルクにより走行するHEV(ハイブリッドモード)へ切り替わる際、モータジェネレータ1のトルクを利用してエンジン2を始動させる(エンジン始動手段)。
変速機コントローラ14は、統合コントローラ13からの変速指令を達成するように変速制御を行う。
クラッチコントローラ15は、統合コントローラ13からの各クラッチ油圧指令値に対してクラッチ油圧(電流)指令値を実現するようにソレノイドバルブの電流を制御する。
エンジンコントローラ16は、統合コントローラ13からのエンジントルク指令値を達成するようにエンジントルク制御を行う。
モータコントローラ17であり、統合コントローラ13からのモータトルク指令値を達成するようにモータトルク制御を行う。
バッテリコントローラ18であり、バッテリ9の充電状態を管理し、その情報を統合コントローラ13へと送信する。
各コントローラ13〜18間の通信は、通信線22を介して行われる。
[統合コントローラの制御]
図2は、統合コントローラ13の処理内容を示すフローチャートである。なお、この処理内容は、一定のサンプリング周期で実行されることとする。
ステップS1では、バッテリ充電量SOCや変速機5のシフト位置、第2クラッチ4の入出力軸回転数ωcl2ioエンジン回転数ωe、エンジンの動作状態Ests、車速Vsp等、他のコントローラが計測した車両状態を受信する。
ステップS2では、アクセル開度Apoをアクセルポジションセンサ10から計測する。
ステップS3(駆動トルク指令値演算手段)では、アクセル開度Apo、車速Vspから駆動トルク指令値Td *を演算する。実施例1では、例えば、図3に示すような車速Vspとアクセル開度Apoに応じた駆動トルク指令値演算マップを参照して演算する。図3において、駆動トルク指令値Td *は、アクセル開度Apoが高いほど大きくなるように設定し、車速Vspが高いほど小さくなるように設定する。
ステップS4では、バッテリ充電量SOCや駆動トルク指令値Td *および車速Vsp等の車両状態から第1クラッチ制御モードの設定(第1クラッチモードフラグfCL1の設定)を行う。ここではその詳細は省略するが、例えば、低加速での発進のように比較的エンジン2の効率が良くない走行シーンではモータ単独走行する(EVモード)ため、第1クラッチ3は開放(fCL1=0)する。また、急加速やバッテリ充電量SOCが所定値SOCth1以下、あるいは車速Vspが所定値Vspth1以上(モータ回転速度が許容回転速度を超える)となった場合にはEV走行は困難なため、エンジン2およびモータ1で走行する(HEVモード)ために第1クラッチ3を締結(fCL1=1)する。
ステップS5では、バッテリ充電量SOC、駆動トルク指令値Td *、第1クラッチ制御モードフラグfCL1および車速Vsp等の車両状態から第2クラッチ制御モードCL2MODE(締結、開放、スリップ)を設定する。なお、第2クラッチ制御モードの設定方法については後述する。
ステップS6では、各クラッチの制御モードと車両状態に基づき駆動トルク指令値Td *を基本エンジントルク指令値Te_base *、基本モータトルク指令値Tm_base *に配分する。配分方法については様々な手法が考えられるが、詳細については省略する。
ステップS7(伝達トルク容量配分手段)では、各クラッチの制御モード、エンジン回転数ωe、駆動トルク指令値Td *および各種車両状態から、エンジン始動中の各クラッチのトルク容量指令値Tcl1_ENG_START,Tcl2_ENG_STARTを演算する。なお、詳細な演算方法については後述する。
ステップS8では、第1クラッチ制御モードフラグfCL1、第2クラッチ入力回転数ωcl2i、およびエンジン回転数ωeからエンジン始動中か否かを判定する。実際には、第1クラッチ制御モードが締結モードであり、エンジン回転数が第2クラッチ入力回転数よりも低い場合は始動中と判断し始動フラグfENG_STをセットし、それ以外であれば始動中ではないと判断しフラグをクリアする。
ステップS9では、第2クラッチ4のスリップ回転数制御を実行するか否かの判断を行う。S5で第2クラッチ4がスリップ状態と設定され、かつ実際のスリップ回転数(入力軸−出力軸)の絶対値が所定値以上となった場合はスリップ回転数制御をONとしてステップS10へ進み、開放または締結と設定された場合は回転数制御をOFFとしてステップS14へ進む。
ステップS10では、基本第2クラッチトルク容量指令値Tcl2_base *を演算する。ここでは、例えば、駆動トルク指令値Td *と同値とする。
ステップS11では、第1クラッチ制御モードフラグfCL1、基本第2クラッチトルク容量指令値Tcl2_base *、第2クラッチ油温Tempcl2、バッテリ充電量SOC、および出力軸回転数計測値ωoから入力軸回転数目標値ωcl2i *を演算する。なお、詳細な演算方法については後述する。
ステップS12では、入力回転数目標値ωcl2i *と入力回転数計測値ωcl2iが一致するように回転数制御用モータトルク指令値Tm_FB_ONを演算する。演算(制御)方法は様々考えられるが、例えば、下式に基づき(PI制御)演算する。実際の演算はタスティン近似等で離散化して得られた漸化式を用いて算出する。
Figure 2016112900
ただし、
KPm:モータ制御用比例ゲイン
KIm:モータ制御用積分ゲイン
s:微分演算子
ステップS13では、基本第2クラッチトルク容量指令値Tcl2_base *と回転数制御用モータトルク指令値Tm_FB_ONとエンジントルク指令値Te_base *から回転数制御用第2クラッチトルク容量指令値Tcl_FB_ONを演算する。なお、詳細な演算方法については後述する。
ステップS14では、前述した回転数制御用モータトルク指令値Tm_FB_ONならびに回転数制御用第2クラッチトルク容量指令値Tcl_FB_ONを演算するための内部状態変数を初期化する。
ステップS15では、回転数制御を行わない場合、すなわち第2クラッチ4を締結/開放状態もしくは締結状態から回転数制御を行う(スリップ状態にする)までのクラッチトルク容量指令値Tcl2_FB_OFFを演算する。
1.締結する場合
(1) Tcl2_zl *<Td *×Ksafeであれば
Tcl2_FB_OFF=Tcl2_zl *+ΔTcl2LU …(2)
(2) Tcl2_zl *≧Td *×Ksafeであれば
Tcl2_FB_OFF=Td *×Ksafe …(3)
2.開放する場合
Tcl2_FB_OFF=0 …(4)
3.第2クラッチを締結→スリップ状態にする場合
Tcl2_FB_OFF=Tcl2_zl *−ΔTcl2slp …(5)
ただし、
Ksafe:第2クラッチ安全率係数(>1)
ΔTcl2LU:スリップ(または開放)→締結移行時のトルク容量変化率
ΔTcl2slp:締結→スリップ移行時トルク容量変化率
Tcl2_zl *:最終第2トルク指令値前回値
ステップS16では、以下の条件に基づき最終第2クラッチトルク容量指令値Tcl2 *を決定する。
1.スリップ回転数制御中において、
(1) エンジン始動中(fENG_ST=1)の場合
Tcl2 *=Tcl2_ENG_START …(6)
(2) 上記以外の場合
Tcl2 *=Tcl2_FB_ON …(7)
2.スリップ回転数制御停止の場合
Tcl2 *=Tcl2_FB_OFF …(8)
ステップS17では、第1クラッチ制御モードフラグfCL1に基づき第1クラッチトルク容量指令値TCL1 *を決定する。
1.第1クラッチ制御モードが締結モードにおいて、
(1) エンジン始動中(fENG_ST=1)の場合
TCL1 *=Tcl1_ENG_START …(9)
(2) 上記以外の場合
TCL1 *=Tcl1_max …(10)
ただし、
Tcl1_max:第1クラッチ最大トルク容量
2.第1クラッチ制御モードが開放モードになっている場合
TCL1 *=0 …(11)
ステップS18では、クラッチトルク容量指令値TCL1 *,TCL2 *から電流指令値ICL1 *,ICL2 *を演算する。実際にはあらかじめ取得した特性に基づいて作成した図4(a)のクラッチトルク容量−クラッチ油圧変換マップと、図4(b)のクラッチ油圧−電流変換マップとを参照して算出する。これにより、油圧や電流に対してクラッチトルク容量が非線形な特性を有している場合でも、制御対象を線形としてみなすことができるため、前述したような線形制御理論を適用することができる。
ステップS19では、以下の条件に基づき最終モータトルク指令値Tm *を決定する。
1.スリップ回転数制御中の場合
Tm *=Tm_FB_ON …(12)
2.スリップ回転数制御停止の場合
Tm *=Tm_base …(13)
ステップS20では、算出された指令値を各制御コントローラへと送信する。
[第2クラッチ制御モード設定処理]
図5は、第2クラッチ制御モード設定方法を示すフローチャートである。第2クラッチ4の制御モードCL2MODEは、バッテリ充電量SOC、駆動トルク指令値Td *、第1クラッチ制御モードフラグfCL1および車速Vsp等の車両状態から設定する。
ステップS51では、第1クラッチ制御モードを判別する。第1クラッチ制御モードが締結(エンジン始動)の場合(fCL1=1)はステップS55へ進み、開放モード(エンジン停止)の場合(fCL1=0)はステップS52へ進む。
ステップS52では、車速Vspがゼロ(停止)か否かを判定する。停止している場合はステップS53へ進み、それ以外はステップS54へ進む。
ステップS53では、第2クラッチ制御モードを締結モード(CL2MODE=1)とする。
ステップS54では、第2クラッチ制御モードをスリップモード(CL2MODE=2)とする。
ステップS55では、車速Vspが所定値Vth1(例えば、エンジンが始動できる最低車速)より高いか否かを判定する。低い場合はステップS56へ進み、高い場合はステップS58へ進む。
ステップS56では、駆動トルク指令値Td *の符号を判別し、正値の場合にはステップS54へ進み、負値の場合にはステップS57へ進む。
ステップS57では、第2クラッチ制御モードを開放モード(CL2MODE=0)とする。
ステップS58では、前回の第2クラッチ制御モードが締結モードか否かを判定する。締結モードの場合はステップS53へ進み、それ以外の場合はステップS59へ進む。
ステップS59では、エンジン回転数計測値ωe、第2クラッチスリップ回転数計測値ωcl2slp、およびスリップ回転数しきい値ωcl2slpthから、スリップ継続条件が成立するか否かを判断する。スリップ継続条件が成立する場合はステップS54へ進んでスリップを開始または継続し、成立しない場合にはステップS53へ進んでスリップを終了し締結モードへ移行する。スリップ継続条件は、以下の通りである。
ωe≠ωcl2i(第1クラッチ開放またはスリップ)、または、ωcl2slp>ωcl2slpth
[入力回転数目標値演算]
次に、入力回転数目標値ωcl2i *の演算方法の詳細について説明する。
まず、以下に基づき第2クラッチスリップ回転数目標値ωcl2_slp *を演算する。
1.EVモードの場合(fCL1=0)
ωcl2_slp *=fcl2_slp_cl1OP(Tcl2_base *,Tempcl2) …(14)
ここで、fcl2_slp_cl1OP()は基本第2クラッチトルク容量指令値Tcl2_base *および第2クラッチ油温Tempcl2を入力とした関数である。実際には、例えば、図6(a)に示すような基本第2クラッチトルク容量指令値Tcl2_base *と第2クラッチ油温Tempcl2とに基づく第2クラッチスリップ回転数目標値演算マップによって設定する。図6(a)に示すように、EVモードにおける第2クラッチスリップ回転数目標値ωcl2_slp *は、第2クラッチ油温Tempcl2が高いほど小さくなるように設定し、基本第2クラッチトルク容量指令値Tcl2_base *が大きいほど小さくなるように設定する。第2クラッチ4の「油温が高い」場合、または「クラッチ容量指令値が大きい」場合には、第2クラッチスリップ回転数目標値ωcl2_slp *を小さくすることにより、クラッチ油温の上昇を防止できる。
2.エンジントルク始動中の場合
ωcl2_slp *=fcl2_slp_cl1OP(Tcl2_base *,Tempcl2)+fcl2_Δωslp(Teng_start) …(15)
ここで、fcl2_slp_cl1OP()はエンジン始動時のためのスリップ回転数増加量を演算する関数であり、エンジン始動配分モータトルクTeng_startを入力とする。実際には、例えば、図6(b)に示すようなエンジン始動配分モータトルクTeng_startに基づく第2クラッチスリップ回転数目標値演算マップを用いる。図6(b)に示すように、エンジントルク始動中における第2クラッチスリップ回転数目標値ωcl2_slp *は、エンジン始動配分モータトルクTeng_startが低下するほど高くなるように設定する。これにより、第1クラッチ3からの外乱を完全に打ち消すことができず、回転数が低下した場合であっても、急な締結を防止でき、その結果、加速度変動が生じることもなくエンジン2を始動できる。
なお、エンジン始動後もスリップ制御を継続する場合、スリップ回転数はEV走行中同様とする(増加分は加算しない)。
次に、スリップ回転数目標値ωcl2_slp *と出力軸回転数計測値ωoから下式に基づき入力回転数目標値ωcl2i *を演算する。
ωcl2i *=ωcl2_slp *+ωo …(16)
最後に、上式から算出した入力回転数目標値ωcl2i *に上下限制限を施し、最終的な入力軸回転数目標値とする。なお、上下限制限値はエンジン回転数の上下限値とする。
[回転数制御用第2クラッチトルク容量指令値演算]
次に、回転数制御用第2クラッチトルク容量令値Tcl_FB_ONの演算方法の詳細について説明する。
図7は、第2クラッチ用フィードバック制御のブロック図である。本制御系は、フィードフォワード(F/F)補償とフィードバック(F/B)補償とからならなる2自由度制御手法で設計している。F/B補償部については様々な設計方法が考えられるが、今回はその一例としてPI制御としている。以下、その演算方法について説明する。
まず初めに、下式に示す位相補償フィルタGFF(s)に基づいて基本第2クラッチトルク容量指令値Tcl2_base *に位相補償を施し、F/F第2クラッチトルク容量指令値Tcl2_base *を演算する。実際の演算はタスティン近似等で離散化して得られた漸化式を用いて算出する。
Figure 2016112900
ただし、
τcl2:クラッチモデル時定数
τcl2_ref:クラッチ制御用規範応答時定数
次に、以下に基づき第2クラッチトルク容量目標値Tcl2_tを演算する。
1.EVモードの場合
Tcl2_t=Tcl2_base * …(18)
2.HEVモード(第1クラッチが締結状態)の場合
Tcl2_t=Tcl2_base *−Te_est …(19)
なお、HEVモードにおける第2クラッチトルク容量目標値は、全体(エンジン2およびモータ1)のトルク容量に対し、モータ分の容量を意味する。
Te_estはエンジントルク推定値であり、例えば、下式に基づき演算する。
Figure 2016112900
ただし、
τe:エンジン一次遅れ時定数
Le:エンジンむだ時間
次に、下式に基づき第2クラッチトルク容量規範値Tcl2_refを演算する。
Figure 2016112900
次に、第2クラッチトルク容量規範値Tcl2_refと前述した回転数制御用モータトルク指令値Tm_FB_ONから下式に基づきF/B第2クラッチ容量指令値Tcl2_FBを演算する。
Figure 2016112900
ただし、
KPcl2:第2クラッチ制御用比例ゲイン
KIcl2:第2クラッチ制御用積分ゲイン
また、下式のように入力回転数変化によって生じるトルク(イナーシャトルク)を考慮することにより、入力回転数が変化している場合にも精度よくトルク容量を制御できる。
Figure 2016112900
ここで、TIcl2_eSTはイナーシャトルク推定値であり、例えば、入力回転数変化量(微分値)に入力軸周りの慣性モーメントを乗算して求める。
そしてF/F第2クラッチトルク容量指令値Tcl2_FFとF/B第2クラッチ容量指令値Tcl2_FBとを加算し、最終的な回転数制御用第2クラッチ容量指令値Tcl2_FB_ONを演算する。
[トルク容量指令値演算]
次に、エンジン始動中の各クラッチのトルク容量指令値Tcl1_ENG_START,Tcl2_ENG_STARTの演算方法の詳細について説明する。図8は、エンジン始動中の各クラッチのトルク容量指令値演算方法を示すフローチャートである。
ステップS71では、第1クラッチ制御モードが開放モードか否かを判定する。開放モードでなければ(締結モードであれば)ステップS72へ進み、開放モードであれば処理を終了する。
ステップS72(エンジン始動下限トルク演算手段)では、エンジン回転数ωe、エンジン動作状態Ests(初爆後か否か)から現在のエンジン回転数においてクランキングに最低限必要なエンジン始動下限トルクTENG_STARTを演算する。実際には、初爆前であればあらかじめ実験などで求めた回転数毎のエンジンフリクショントルクにエンジン回転上昇に必要な分を加算した値で作成したエンジン始動下限トルク演算マップ(図9参照)を用いて演算する。また、初爆後についてはエンジン始動が所定の時間内に終了(第2クラッチ入力回転数まで上昇)するために必要なトルクにエンジン自体が出力しているトルクを差し引いた値となる。
ステップS73(モータ上限トルク演算手段)では、バッテリ充電量SOC(または端子電圧VB)および入力軸回転数ωcl2iからモータ上限トルクTm_HLMTを演算する。実際には、例えば、図10に示すようなモータ上限トルク演算マップを用いて演算する。
ステップS74(第2クラッチトルク容量上限値演算手段)では、エンジン始動下限トルクTENG_START、およびモータ上限トルクTm_HLMTから下式を用いて第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTを演算する。
Tcl2_ENG_START_HLMT=Tm_HLMT−TENG_START …(24)
ステップS75では、第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTと駆動トルク指令値Td *から以下に基づきエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTを決定する。
1.Td *>Tcl2_ENG_START_HLMTの場合
Tcl2_ENG_START=Tcl2_ENG_START_HLMT
2.Td *≦Tcl2_ENG_START_HLMTの場合
Tcl2_ENG_START=Td *
ステップS76では、モータ上限トルクTm_HLMT、およびエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTから、下式に基づきエンジン始動用第1クラッチトルク容量指令値Tcl1_ENG_STARTを演算する。
Tcl1_ENG_START=Tm_HLMT−Tcl2_ENG_START …(25)
次に、作用を説明する。
[トルク容量指令値演算作用]
図11は、従来のクラッチ制御装置において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートである。
従来技術では、エンジン始動中の各クラッチのトルク容量指令値が一定であるため、エンジン始動中は車両の駆動トルクとなる第2クラッチトルク容量が不変であり、駆動トルク指令値と乖離が生じている。これにより、加速度が停滞し、運転者の所望する加速性能が得られない。
これに対し、実施例1では、モータ1が出力可能なトルクであるモータ上限トルクTm_HLMTからエンジン始動に必要なエンジン始動下限トルクTENG_STARTを除いた残りの全て(第2クラッチトルク容量上限値Tcl2_ENG_START_HLMT)をエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTとし、モータ上限トルクTm_HLMTからエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTを差し引いた値をエンジン始動用第1クラッチトルク容量指令値Tcl1_ENG_STARTとしている。
ここで、エンジン始動下限トルクTENG_STARTは、図9に示したように、エンジン回転数ωeが高くなるほど小さくなる。特に、エンジン初爆後は、エンジン自身が燃焼トルクを発生するため、初爆前と比較してエンジン始動に必要なクランキングトルクはより小さくなる。一方、モータ上限トルクTm_HLMTは、図10に示したように、エンジン回転数ωeが高い領域では、エンジン回転数ωeが高くなるほど小さくなるものの、エンジン始動時のようにエンジン回転数ωeが低い領域では一定である。つまり、第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTは、エンジン回転数ωeが高くなるほど大きくなる。すなわち、実施例1では、アクセル踏み込みに伴いエンジン2を始動する際、エンジン回転数ωeの上昇に応じてエンジン始動用第1クラッチトルク容量指令値Tcl1_ENG_STARTを減少させると共に、エンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTを増加させている。
これにより、第1クラッチトルク容量と第2クラッチトルク容量との和をモータ上限トルクTm_HLMTに制限しつつ、モータトルクを最大限に活用して踏み込み直後から車両の駆動トルクを増大させることができる。図12は、実施例1において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートであり、実施例1では、図12に示すように、エンジン初爆後であってエンジン始動完了前の時点で駆動トルクを駆動トルク指令値Td *と一致させることが可能である。よって、上記従来技術に対して、加速停滞を大幅に改善でき、運転者の所望する加速性能を実現できる。
このとき、実施例1では、第1クラッチトルク容量の下限をエンジン始動下限トルクTENG_STARTで制限しているため、エンジン回転数ωeの上昇に応じて第1クラッチトルク容量は減少するものの、エンジン始動に最低限必要なクランキングトルクは確保できるため、確実にエンジン2を所定時間内に始動できる。
以上説明したように、実施例1にあっては以下に列挙する効果を奏する。
(1) エンジン2と、モータジェネレータ1と、エンジン2およびモータジェネレータ1間のトルク伝達を断続する第1クラッチ3と、モータジェネレータ1および駆動輪21a,21b間のトルク伝達を断続する第2クラッチ4と、第1クラッチ3を切断し前記モータジェネレータ1のトルクにより走行する電動車モードから、第1クラッチ3を接続してエンジン2およびモータジェネレータ1のトルクにより走行するハイブリッドモードへ切り替わる際、モータジェネレータ1のトルクを利用してエンジン2を始動する統合コントローラ13と、エンジン回転数ωeを検出するエンジン回転数センサ11と、モータ上限トルクTm_HLMTを算出するモータ上限トルク演算手段(ステップS73)と、アクセル踏み込みに伴いエンジン2を始動する際、モータ上限トルクTm_HLMTの範囲内で第1クラッチトルク容量と第2クラッチトルク容量とを配分する伝達トルク容量配分手段(ステップS7)と、を備え、伝達トルク容量配分手段は、アクセル踏み込みに伴いエンジン2を始動する際、エンジン回転数ωeの上昇に応じて第1クラッチトルク容量を減少させると共に、第2クラッチトルク容量を増加させる。
よって、エンジン回転数ωeの上昇と共に車両の駆動トルクが増大するため、加速度の停滞を抑制でき、運転者の所望する加速性能を実現できる。
(2) エンジン回転数ωeとエンジンが初爆後か否かに基づき、エンジン始動に必要なエンジン始動下限トルクTENG_STARTを演算するエンジン始動下限トルク演算手段(ステップS72)を備え、伝達トルク容量配分手段は、第1クラッチトルク容量の下限をエンジン始動下限トルクTENG_STARTで制限する。
よって、加速度の停滞を抑制しつつ、確実にエンジン2を始動できる。
(3) アクセル開度に基づいて駆動トルク指令値Td *を演算する駆動トルク指令値演算手段(ステップS3)と、モータ上限トルクTm_HLMTからエンジン始動下限トルクTENG_STARTを減じて、エンジン始動中に第2クラッチ4へ配分可能な第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTを演算する第2クラッチトルク容量上限値演算手段(ステップS74)と、を備え、伝達トルク容量配分手段は、駆動トルク指令値Td *の上限を第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTで制限した値を第2クラッチトルク容量とし、モータ上限トルクTm_HLMTから当該第2クラッチトルク容量を減じた値を第1クラッチトルク容量とする。
よって、モータ上限トルクTm_HLMTの範囲内で、エンジン2を確実に始動させつつ運転者が所望する駆動トルクを実現できるため、モータトルクを最大限に活用でき、加速性能が向上する。
(他の実施例)
以上、本発明を実施するための形態を、実施例に基づいて説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、
1 モータジェネレータ
2 エンジン
3 第1クラッチ
4 第2クラッチ
5 変速機
6 第2クラッチ入力軸回転数センサ
7 第2クラッチ出力軸回転数センサ
9 高圧バッテリ
10 アクセルポジションセンサ
11 エンジン回転数センサ
12 クラッチ油温センサ
13 統合コントローラ
14 変速機コントローラ
15 クラッチコントローラ
16 エンジンコントローラ
17 モータコントローラ
18 バッテリコントローラ
19 ファイナルギヤ
20a,20b 左右ドライブシャフト
21a,21b 左右駆動輪
22 通信線

Claims (3)

  1. エンジンと、
    モータジェネレータと、
    前記エンジンおよび前記モータジェネレータ間のトルク伝達を断続する第1クラッチと、
    前記モータジェネレータおよび駆動輪間のトルク伝達を断続する第2クラッチと、
    前記第1クラッチを切断し前記モータジェネレータのトルクにより走行する電動車モードから、前記第1クラッチを接続して前記エンジンおよび前記モータジェネレータのトルクにより走行するハイブリッドモードへ切り替わる際、前記モータジェネレータのトルクを利用して前記エンジンを始動するエンジン始動手段と、
    エンジン回転数を検出するエンジン回転数検出手段と、
    モータ上限トルクを算出するモータ上限トルク演算手段と、
    アクセル踏み込みに伴い前記エンジンを始動する際、前記モータ上限トルクの範囲内で前記第1クラッチの伝達トルク容量と前記第2クラッチの伝達トルク容量とを配分する伝達トルク容量配分手段と、
    を備え、
    前記伝達トルク容量配分手段は、アクセル踏み込みに伴い前記エンジンを始動する際、前記エンジン回転数の上昇に応じて前記第1クラッチの伝達トルク容量を減少させると共に、前記第2クラッチの伝達トルク容量を増加させることを特徴とするハイブリッド車両のクラッチ制御装置。
  2. 請求項1に記載のハイブリッド車両のクラッチ制御装置において、
    前記エンジン回転数と前記エンジンが初爆後か否かに基づき、エンジン始動に必要なエンジン始動下限トルクを演算するエンジン始動下限トルク演算手段を備え、
    前記伝達トルク容量配分手段は、前記第1クラッチの伝達トルク容量の下限を前記エンジン始動下限トルクで制限することを特徴とするハイブリッド車両のクラッチ制御装置。
  3. 請求項2に記載のハイブリッド車両のクラッチ制御装置において、
    アクセル開度に基づいて駆動トルク指令値を演算する駆動トルク指令値演算手段と、
    前記モータ上限トルクから前記エンジン始動下限トルクを減じて、エンジン始動中に前記第2クラッチへ配分可能な第2クラッチトルク容量上限値を演算する第2クラッチトルク容量上限値演算手段と、
    を備え、
    前記伝達トルク容量配分手段は、前記駆動トルク指令値の上限を前記第2クラッチトルク容量上限値で制限した値を前記第2クラッチの伝達トルク容量とし、前記モータ上限トルクから当該第2クラッチの伝達トルク容量を減じた値を前記第1クラッチの伝達トルク容量とすることを特徴とするハイブリッド車両のクラッチ制御装置。
JP2013087252A 2013-04-18 2013-04-18 ハイブリッド車両のクラッチ制御装置 Pending JP2016112900A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013087252A JP2016112900A (ja) 2013-04-18 2013-04-18 ハイブリッド車両のクラッチ制御装置
PCT/JP2014/058314 WO2014171273A1 (ja) 2013-04-18 2014-03-25 ハイブリッド車両のクラッチ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087252A JP2016112900A (ja) 2013-04-18 2013-04-18 ハイブリッド車両のクラッチ制御装置

Publications (1)

Publication Number Publication Date
JP2016112900A true JP2016112900A (ja) 2016-06-23

Family

ID=51731226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087252A Pending JP2016112900A (ja) 2013-04-18 2013-04-18 ハイブリッド車両のクラッチ制御装置

Country Status (2)

Country Link
JP (1) JP2016112900A (ja)
WO (1) WO2014171273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199186A (ja) * 2018-05-17 2019-11-21 スズキ株式会社 内燃機関の始動制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526372A (zh) * 2022-03-10 2022-05-24 雷沃工程机械集团有限公司 一种传动控制系统电磁阀标定方法及装载机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265567B2 (ja) * 2005-04-27 2009-05-20 日産自動車株式会社 ハイブリッド駆動装置のエンジン始動方法
JP2011031659A (ja) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd ハイブリッド車両
JP2012086701A (ja) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US9267481B2 (en) * 2010-10-21 2016-02-23 Nissan Motor Co., Ltd. Hybrid vehicle engine start control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199186A (ja) * 2018-05-17 2019-11-21 スズキ株式会社 内燃機関の始動制御装置
JP7110718B2 (ja) 2018-05-17 2022-08-02 スズキ株式会社 内燃機関の始動制御装置

Also Published As

Publication number Publication date
WO2014171273A1 (ja) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6070831B2 (ja) ハイブリッド車両のクラッチ制御装置
JP5223603B2 (ja) ハイブリッド車両の制御装置
JP5391654B2 (ja) ハイブリッド車両の制御装置
JP5168600B2 (ja) 制御装置
JP6019732B2 (ja) ハイブリッド自動車の制御装置
JP5195218B2 (ja) ハイブリッド車両の制御装置
JP2012086701A (ja) ハイブリッド車両の制御装置
JP5402060B2 (ja) 電動車両の制御装置
KR101776724B1 (ko) 하이브리드 차량의 엔진 클러치 접합점 학습 방법
JP5228810B2 (ja) ハイブリッド車両の制御装置
US9457794B2 (en) Hybrid vehicle control device
JP5387060B2 (ja) 電動車両の制御装置
JP2017047733A (ja) ハイブリッド車両の発進制御方法および発進制御装置
JP5029561B2 (ja) 車両の制御装置
JP2014061750A (ja) ハイブリッド車両の制御装置、およびハイブリッド車両の制御方法
JP5407328B2 (ja) ハイブリッド車両の制御装置
JP5293268B2 (ja) ハイブリッド車両のクラッチ制御装置
JP5257120B2 (ja) クラッチ制御装置
JP5104775B2 (ja) クラッチ制御装置
JP6044257B2 (ja) クラッチ制御装置
WO2014171273A1 (ja) ハイブリッド車両のクラッチ制御装置
JP6070388B2 (ja) ハイブリッド車両のクラッチ制御装置
JP2010188806A (ja) ハイブリッド車両の制御装置
JP6702085B2 (ja) 電動車両の制御方法および電動車両の制御装置
JP2015083438A (ja) ハイブリッド車両の制御装置