JP2016108356A - ポリアリーレンスルフィドフィルム及びその製造方法 - Google Patents

ポリアリーレンスルフィドフィルム及びその製造方法 Download PDF

Info

Publication number
JP2016108356A
JP2016108356A JP2014243965A JP2014243965A JP2016108356A JP 2016108356 A JP2016108356 A JP 2016108356A JP 2014243965 A JP2014243965 A JP 2014243965A JP 2014243965 A JP2014243965 A JP 2014243965A JP 2016108356 A JP2016108356 A JP 2016108356A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
group
acid
sulfide resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014243965A
Other languages
English (en)
Other versions
JP6617905B2 (ja
Inventor
渡辺 創
So Watanabe
創 渡辺
高志 古沢
Takashi Furusawa
高志 古沢
小川 智
Satoshi Ogawa
智 小川
十志和 高田
Toshikazu Takada
十志和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2014243965A priority Critical patent/JP6617905B2/ja
Publication of JP2016108356A publication Critical patent/JP2016108356A/ja
Application granted granted Critical
Publication of JP6617905B2 publication Critical patent/JP6617905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

【課題】ポリアリーレンスルフィド樹脂本来の特性を維持しつつ、容易に加工でき、製膜時のフィルム破れの発生を十分抑制して製造できるポリアリーレンスルフィド樹脂又はこれを含有する組成物からなるポリアリーレンスルフィドフィルム、及びその製造方法を提供すること。
【解決手段】ポリアリーレンスルフィド樹脂又はこれを含む組成物からなるポリアリーレンスルフィドフィルムが開示される。前記ポリアリーレンスルフィド樹脂は、スルホキシドと芳香族化合物とを反応させ、ポリ(アリーレンスルホニウム塩)を得る工程と、
前記ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化し、ポリアリーレンスルフィド樹脂を得る工程と、を含む方法により得ることのできるものであり、前記ポリアリーレンスルフィド樹脂が、FT−IR分光法で測定される赤外吸収スペクトルにおいて、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものである。
【選択図】図1

Description

本発明は、ポリアリーレンスルフィドフィルム及びその製造方法に関する。
近年、電気電子部品分野をはじめさまざまな分野で、環境に対する取り組みとして低ハロゲン化への動きが活発化している。
ポリフェニレンスルフィド樹脂(以下「PPS樹脂」と略すことがある。)に代表されるポリアリーレンスルフィド樹脂(以下「PAS樹脂」と略すことがある。)は、耐熱性、耐薬品性、電気絶縁性等に優れ、ハロゲン系難燃剤を用いなくとも高い難燃性が得られることから、ハロゲンフリー材料としても注目を集めている。
上記のようなPAS樹脂の優れた特性に着目し、各種用途展開が試みられている。
従来、ポリフェニレンスルフィド樹脂は、例えば、p−ジクロロベンゼンと、硫化ナトリウム、又は水硫化ナトリウム及び水酸化ナトリウムとを原料として、有機極性溶媒中で重合反応させる溶液重合により製造されている(例えば、特許文献1、2参照。)。現在市販されているポリフェニレンスルフィド樹脂は、一般にこの方法により生産されている。
しかし、この方法では高分子量体を得ることが難しい。フィルム等へ成形することを考えると、低分子量分が多く、加工性が充分でない場合がある。これを改善する方法として、一般的には、エラストマー成分等の添加又は併用が行われている。(例えば、特許文献3)。また、ポリフェニレンスルフィド樹脂は結晶化度の高いポリマーであるために、重合条件を調整して高分子量体を得た場合であっても、加工性向上のため可塑剤等の添加が求められる。
また、特許文献4には、成形加工性や歩留まりの改善を目的として、環状ポリフェニレンスルフィドを所定量添加する方法が開示されている。特許文献5には、耐熱性、成型性、金型汚れの発生を抑制した複合材料として、ポリアリーレンスルフィド樹脂と粒子のみからなる二軸配向ポリアリーレンスルフィドフィルムが開示されている。
一方で電気電子部品業界において環境保護の観点から、ハロゲン規制の動きが急速に拡大し、材料中のハロゲンに対して規制(900ppm以下)が適用される状況になっている。これを改善する方法として、ハロゲンの含有量を低減させたPASを得る方法として、例えば、環状アリーレンスルフィドオリゴマーを開環重合触媒存在下、加熱開環重合する方法などが開示されている(例えば、特許文献6、7参照。)。
米国特許第2,513,188号明細書 米国特許第2,583,941号明細書 特開2006−143793号公報 特開2012−233032号公報 特開2010−242066号公報 特開平5−163349号公報 特開2010−126621号公報
しかしながら、上記のような方法では、耐熱性等のポリアリーレンスルフィド樹脂本来の特性を維持しつつ加工性もよいポリアリーレンスルフィドフィルムを製造することが困難な場合がある。
また、特許文献6に記載された方法は、環状アリーレンスルフィドオリゴマーの選択的合成が困難であるという問題があり、特許文献7に記載された方法では、幾分かハロゲンを低減させることは可能だが、主に樹脂が主成分となるフィルムでは、前記ハロゲン含有量の規制値(900ppm以下)を満たすことは困難であった。
そこで、本発明が解決しようとする主な課題は、ハロゲン量が少なく、ポリアリーレンスルフィド樹脂本来の特性を維持しつつ、容易に加工でき、製膜時のフィルム破れなどの発生を十分抑制して製造できるポリアリーレンスルフィド樹脂又はこれを含有する組成物からなるポリアリーレンスルフィドフィルム、及びその製造方法を提供することにある。
本発明者らは種々の検討を行った結果、スルホキシドと、芳香族化合物とを反応させ、ポリ(アリーレンスルホニウム塩)を得る工程と、前記ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化し、ポリアリーレンスルフィド樹脂を得る工程と、含む方法で得られるポリアリーレンスルフィド樹脂又はこれを含む組成物からなるポリアリーレンスルフィドフィルムであり、該ポリアリーレンスルフィド樹脂の合成法を従来とは異なる反応経路から合成することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、ポリアリーレンスルフィド樹脂又はこれを含む組成物からなるポリアリーレンスルフィドフィルムであって、前記ポリアリーレンスルフィド樹脂は、下記一般式(1)で表されるスルホキシドと下記一般式(2)で表される芳香族化合物とを反応させ、下記一般式(10)で表される構成単位を有するポリ(アリーレンスルホニウム塩)を得る工程と、
前記ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化し、下記一般式(20)で表される構成単位を有するポリアリーレンスルフィド樹脂を得る工程と、
を含む方法により得ることのできるものであり、前記ポリアリーレンスルフィド樹脂が、FT−IR分光法で測定される赤外吸収スペクトルにおいて、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものである、ポリアリーレンスルフィドフィルムを提供する。
Figure 2016108356
Figure 2016108356
Figure 2016108356
Figure 2016108356
(式(1)、(2)、(10)又は(20)中、Rは、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を有していてもよいアリール基を表し、R2aは、水素原子、炭素原子数1〜10のアルキル基、−Ar、−S−Ar、−O−Ar、−CO−Ar、−SO−Ar又は−C(CF−Arを表し、R2bは、直接結合、−Ar−、−S−Ar−、−O−Ar−、−CO−Ar−、−SO−Ar−又は−C(CF−Ar−を表し、Ar、Ar、Ar3b及びArは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、Ar3a及びArは、それぞれ独立に、置換基を有してもよいアリール基を表し、Zは、直接結合、−S−、−O−、−CO−、−SO−又は−C(CF−を表し、Xは、アニオンを表す。)
本発明によれば、ポリアリーレンスルフィド樹脂本来の特性を維持しつつ、容易に加工でき、製膜時のフィルム破れの発生を十分抑制して製造できるポリアリーレンスルフィド樹脂又はこれを含有する組成物からなるポリアリーレンスルフィドフィルム、及びその製造方法を提供することができる。
また、樹脂中のハロゲン量を顕著に抑制でき、近年の環境負荷低減の要請にも応えることができる。さらに、本願で用いられる樹脂は良好な加工性も兼備している。
また、従来の重合法では、加熱により発生するガスの量が比較的多い。特に、溶融紡糸などにより紡糸する際には、ポリアリーレンスルフィド樹脂の融点以上に加熱するため、ガスの発生の問題が顕著となる傾向がある。しかしながら、本発明に係るポリアリーレンスルフィド樹脂は、加熱時のガス発生量が低く抑制されるために、ガス発生に起因するフィルムの品質低下を充分に抑制することができる。
さらに、上記発生ガスの量だけでなく、質に関しても本発明は優れている。本発明によれば、ポリアリーレンスルフィドの主鎖の末端がMeで封鎖されているため、従来の重合法のように末端がSH等になることはない。このため、重合のメカニズム上、チオフェノールやクロロ化合物等が発生せず、作業環境の改善につながる。
さらに、ポリアリーレンスルフィドの主鎖の末端がMeであることにより、従来の重合法のようなSHである場合に比べて分極率が低いため、洗浄工程時にガス発生の要因となる成分が除去されやすい。このため、新たな設備導入などのコスト低減に寄与する。
合成例1のPPS樹脂を、FT−IR分光法で測定した赤外吸収スペクトルを表す図である。 合成例2のPPS樹脂を、FT−IR分光法で測定した赤外吸収スペクトルを表す図である。 合成例3のPPS樹脂を、FT−IR分光法で測定した赤外吸収スペクトルを表す図である。 比較合成例のPPS樹脂を、FT−IR分光法で測定した赤外吸収スペクトルを表す図である。
以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
本実施形態に係るポリアリーレンスルフィドフィルムは、ポリアリーレンスルフィド樹脂又はこれを含む組成物からなるフィルムである。
本実施形態に用いられるポリアリーレンスルフィド樹脂は、スルホキシドと、芳香族化合物とを反応させ、ポリ(アリーレンスルホニウム塩)を得る工程と、前記ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化し、ポリアリーレンスルフィド樹脂を得る工程と、を含む方法により得ることができる。このような方法によれば、フィリップス法をはじめとする従来法に比べ、比較的高分子量の重合体としてポリアリーレンスルフィド樹脂を得ることができる。
本実施形態において使用されるスルホキシドは、下記一般式(1)で表される化合物であり、2つのスルフィニル基を有する。
Figure 2016108356
一般式(1)中、Rは、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を有していてもよいアリール基を表し、Ar及びArは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、Zは、直接結合、−S−、−O−、−CO−、−SO−又は−C(CF−を表す。また、一般式(1)において、Zが−S−であるとき、Rは炭素原子数2〜10のアルキル基又は炭素原子数2〜10のアルキル基を有していてもよいアリール基であるとしてもよい。
一般式(1)で表されるスルホキシドは、例えば、下記一般式(3)で表される化合物を酸化剤等と反応させることにより酸化させることで得ることができる。
Figure 2016108356
一般式(3)中、R、Ar、Ar及びZは、一般式(1)のR、Ar、Ar及びZと同様に定義される。
酸化剤は、特に制限されず種々の酸化剤を使用することができる。酸化剤としては、例えば、過マンガン酸カリウム、酸素、オゾン、有機ペルオキシド、過酸化水素、硝酸、メタ−クロロペルオキシ安息香酸、オキソン(登録商標) 、4酸化オスミニウム等を、使用することができる。
一般式(3)で表される化合物は、必要に応じて、下記一般式(4)で表される化合物とジメチルジスルフィド等とを用いて、Yで示されるハロゲン原子とスルフィド基とで置換反応させることで、スルフィド化合物を合成することができる。
Figure 2016108356
一般式(4)中、Yは、ハロゲン原子を表し、Ar、Ar及びZは、一般式(1)のAr、Ar及びZと同様に定義される。Yは、例えば、塩素原子、臭素原子、ヨウ素原子等であり、塩素原子であることが好ましい。
一般式(1)、(3)又は(4)で表される化合物において、Ar及びArは、例えば、フェニレン、ナフチレン、ビフェニレン等のアリーレン基であってもよい。Ar及びArは、同一であっても異なってもよいが、好ましくは、同一である。
Ar及びArの結合の態様は特に制限されるものではないが、アリーレン基中、遠い位置で結合するものであることが好ましい。例えば、Ar及びArがフェニレン基である場合、パラ位で結合する単位(1,4−フェニレン基)及びメタ位で結合する単位(1,3−フェニレン基)であることが好ましく、パラ位で結合する単位がより好ましい。パラ位で結合する単位で構成されることにより、得られる樹脂の耐熱性及び結晶性の面で好ましい。
Ar又はArで表されるアリーレン基が置換基を有する場合、置換基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基、ヒドロキシ基、アミノ基、メルカプト基、カルボキシル基又はスルホ基であることが好ましい。
一般式(1)で表される化合物としては、例えば、4,4’−ビス(メチルスルフィニル)ビフェニル、ビス[4−(メチルスルフィニル)フェニル]エーテル、ビス[4−(メチルスルフィニル)フェニル]スルフィド、ビス[4−(メチルスルフィニル)フェニル]スルホン、ビス[4−(メチルスルフィニル)フェニル]ケトン、2,2-ビス[4−(メチルスルフィニル)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン等が挙げられる。これらの化合物は単独で、又は組み合わせて使用することができる。
としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基や、フェニル、ナフチル、ビフェニル等の構造を有するアリール基が挙げられ、さらに当該アリール基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基を置換基として芳香環上に1〜4個の範囲で有していてもよい。
本実施形態において使用される芳香族化合物は、例えば、下記一般式(2)で表される。
Figure 2016108356
一般式(2)中、R2aは、水素原子、炭素原子数1〜10のアルキル基、−Ar、−S−Ar、−O−Ar、−CO−Ar、−SO−Ar又は−C(CF−Arを表し、Ar3a及びArは、それぞれ独立に、置換基を有してもよいアリール基を表す。R2aが、炭素原子数1〜10のアルキル基の場合には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。Ar3a又はArで表されるアリール基が置換基を有する場合、当該置換基は、アルキル基(メチル基等)、ヒドロキシ基、アミノ基、メルカプト基、カルボキシル基又はスルホ基であることが好ましい。Ar3a及びArは、例えば、フェニル、ナフチル、ビフェニル等の構造を有するアリール基が挙げられ、当該アリール基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基、ヒドロキシ基、アミノ基、メルカプト基、カルボキシ基及びスルホ基から選ばれる少なくとも1種の置換基を有していてもよい。Ar3a及びArは、同一であっても異なってもよい
が、好ましくは、同一である。
一般式(2)で表される化合物としては、例えば、ベンゼン、トルエン、ビフェニル、ジフェニルスルフィド、ジフェニルエーテル、ベンゾフェノン、ジフェニルスルフォン、ヘキサフルオロ−2,2−ジフェニルプロパン等が挙げられる。これらの化合物のうち、結晶性の観点から、ビフェニル、ジフェニルスルフィド又はジフェニルエーテルが好ましい。より高分子量体としてポリアリーレンスルフィド樹脂を得る観点からは、ジフェニルスルフィドが好ましい。ジフェニルスルフィドはまた、融点が低く、それ自体溶媒として機能させることが可能であり、反応温度の制御等の観点からも好ましい。ポリアリーレンスルフィド樹脂の融点を低下させる観点からは、ジフェニルエーテルが好ましい。ポリアリーレンスルフィド樹脂の耐熱性を向上させる観点からは、ベンゾフェノンが好ましい。非晶性のポリアリーレンスルフィド樹脂を得る観点からは、ジフェニルスルフォン又はヘキサフルオロ−2,2−ジフェニルプロパンが好ましい。非晶性とすることにより、ポリアリーレンスルフィド樹脂の成形加工性及び透明性を向上させることが可能である。
スルホキシドと芳香族化合物との反応は、酸存在下で行われることが好ましい。酸は、有機酸、無機酸のいずれも使用することができる。酸としては、例えば、塩酸、臭化水素酸、青酸、テトラフルオロほう酸等の非酸素酸;硫酸、リン酸、過塩素酸、臭素鍛、硝酸、炭酸、ホウ酸、モリブデン酸、イソポリ酸、ヘテロポリ酸等の無機オキソ酸;硫酸水素ナトリウム、リン酸二水素ナトリウム、プロトン残留ヘテロポリ酸塩、モノメチル硫酸、トリフルオロメタン硫酸等の硫酸の部分塩もしくは部分エステル;蟻酸、酢酸、プロピオン酸、ブタン酸、コハク酸、安息香酸、フタル酸等の1価もしくは多価のカルボン酸;モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、モノフルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸等のハロゲン置換カルボン酸;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンジスルホン酸等の1価もしくは多価のスルホン酸;ベンゼンジスルホン酸ナトリウム等の多価のスルホン酸の部分金属塩;五塩化アンチモン、塩化アルミニウム、臭化アルミニウム、四塩化チタン、四塩化スズ、塩化亜鉛、塩化銅、塩化鉄等のルイス酸などを挙げることができる。これらの酸のうち、反応性の観点から、トリフルオロメタンスルホン酸、メタンスルホン酸の使用が好ましい。これらの酸は、1種を単独で、又は2種以上を組み合わせて使用してもよい。
また本反応は脱水反応のため、脱水剤を併用してもよい。脱水剤としては、例えば、酸化リン、五酸化二リン等のリン酸無水物;ベンゼンスルホン酸無水物、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、パラトルエンスルホン酸無水物等のスルホン酸無水物;無水酢酸、無水フルオロ酢酸、無水トリフルオロ酢酸等のカルボン酸無水物;無水硫酸マグネシウム、ゼオライト、シリカゲル、塩化カルシウムなどを挙げることができる。これらの脱水剤は、1種を単独で、又は2種以上を組み合わせて使用してもよい。
スルホキシドと芳香族化合物との反応には、適宜溶媒を使用することができる。溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、アセトニトリルなどのニトリル系溶媒等、塩化メチレン、クロロホルム等の含ハロゲン系溶媒、ノルマルヘキサン、シクロヘキサン、ノルマルヘプタン、シクロヘプタン等の飽和炭化水素系溶媒、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒、スルホラン、DMSOなどの含硫黄系溶剤、テトラヒドロフラン、ジオキサン等のエーテル系溶媒などを挙げることができる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて使用してもよい。
スルホキシドと、芳香族化合物とを含有する混合物を反応させ、ポリ(アリーレンスルホニウム塩)を得る工程は、反応が適切に進行するように、条件を適宜調整することができる。反応温度は、−30〜150℃の範囲であることが好ましく、0〜100℃の範囲であることがより好ましい。
上記工程により得られるポリ(アリーレンスルホニウム塩)は、下記一般式(10)で表される構成単位を有する。
Figure 2016108356
一般式(10)中、R2bは、直接結合、−Ar−、−S−Ar−、−O−Ar−、−CO−Ar−、−SO−Ar−又は−C(CF−Ar−を表し、Ar3b及びArは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、Xは、アニオンを表し、Ar、Ar、R及びZは、一般式(1)のAr、Ar、R及びZと同様に定義される。Ar3b及びArは、例えば、フェニレン、ナフチレン、ビフェニレン等のアリーレン基であってもよい。Ar3b及びArは、同一であっても異なってもよいが、好ましくは、同一である。アニオンを表すXとしては、例えば、スルホネート、カルボキシレート、ハロゲンイオン等のアニオンが挙げられる。また、一般式(10)において、Ar、Ar及びAr3bが1,4−フェニレン基、且つR2bが直接結合であるとき、Zは、直接結合、−CO−、−SO−又は−C(CF−であるとしてもよく、Ar、Ar及びAr3bが1,4−フェニレン基、R2bが−Ar−、且つArが1,4−フェニレン基であるとき、Zは、−S−、−O−、−CO−、−SO−又は−C(CF−であるとしてもよい。
一般式(10)で表される構成単位において、Ar3b及びArの結合の態様は特に制限されるものではなく、一般式(1)、(3)、(4)のAr及びArの結合の態様と同様の考えを適用し得る。
Ar3b又はArで表されるアリーレン基が置換基を有する場合、置換基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基、ヒドロキシ基、アミノ基、メルカプト基、カルボキシル基又はスルホ基であることが好ましい。ただし、Ar、Ar、Ar3b及びArが置換基を有するアリーレン基である一般式(10)の構成単位の割合は、ポリアリーレンスルフィド樹脂の結晶化度及び耐熱性の低下を抑制する観点から、ポリ(アリーレンスルホニウム塩)全体の10質量%以下の範囲であることが好ましく、5質量%以下であることがより好ましい。
上記ポリ(アリーレンスルホニウム塩)が有する構成単位は、ポリアリーレンスルフィド樹脂の使用の目的等に合わせて、例えば、一般式(1)で表されるスルホキシドと一般式(2)で表される芳香族化合物との組み合わせを変更することにより、適宜選択することができる。
本実施形態に係るポリアリーレンスルフィド樹脂の製造方法は、ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化する工程を含む。ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化は、例えば、以下の反応式で表されるように進行すると考えられる。
Figure 2016108356
かかる工程では、脱アルキル化剤又は脱アリール化剤を使用することができる。脱アルキル化剤又は脱アリール化剤は、求核剤又は還元剤を含む。求核剤としては、含窒素芳香族化合物、アミン化合物、アミド化合物等を用いることができる。還元剤としては、金属カリウム、金属ナトリウム、塩化カリウム、塩化ナトリウム、ヒドラジン等を用いることができる。これらの化合物は、1種を単独で、又は2種以上を併用してもよい。
芳香族化合物としては、ピリジン、キノリン、アニリン等が挙げられる。これらの化合物のうち、汎用化合物であるピリジンが好ましい。
アミン化合物としては、トリアルキルアミン、アンモニア等が挙げられる。
アミド化合物としては芳香族アミド化合物、脂肪族アミド化合物を用いることができる。脂肪族アミド化合物は、例えば、下記一般式(30)で表される化合物で表される。
Figure 2016108356
一般式(30)中、R11、R12及びR13は、それぞれ独立に、水素原子又は炭素原子数1〜10のアルキル基を表し、R11とR13は結合して環状構造を形成していてもよい。炭素原子数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
一般式(30)で表される化合物は、例えば、下記反応式で表されるようにして、スルホニウム塩の硫黄原子と結合するアルキル基又アリール基を脱アルキル化又は脱アリール化する、脱アルキル化又は脱アリール化剤として機能すると考えられる。
Figure 2016108356
さらに、当該脂肪族アミド化合物は、芳香族アミド化合物に比べ水への混和性が高く、反応混合物の水洗によって容易に除去可能である。このため、芳香族アミド化合物を用いた場合に比べ、ポリアリーレンスルフィド樹脂中の脂肪族アミド化合物の残存量を低減することができる。
このように脂肪族アミド化合物を脱アルキル化剤又は脱アリール化剤として用いると、樹脂加工する際などのガス発生を抑制し、ポリアリーレンスルフィド樹脂成形品の品質向上や作業環境の改善、さらには金型のメンテナンス性を向上させることができるため好ましい。また、脂肪族アミド化合物は有機化合物の溶解性にも優れることから、当該脂肪族アミド化合物の使用は、反応混合物からポリアリーレンスルフィドのオリゴマー成分を容易に除去することも可能にする。その結果、ガス発生の一因にもなり得る当該オリゴマー成分を、当該脂肪族アミド化合物により除去することで、得られるポリアリーレンスルフィド樹脂の品質を相乗的に向上させ得ることができる。
このような脂肪族アミド化合物としては、例えば、ホルムアミド等の1級アミド化合物、β−ラクタム等の2級アミド化合物、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、テトラメチル尿素等の3級アミド化合物等を用いることができる。脂肪族アミド化合物は、ポリ(アリーレンスルホニウム塩)の溶解性及び水への溶解性の観点から、R12及びR13が脂肪族基である脂肪族3級アミド化合物を含むことが好ましく、3級アミド化合物の中でもN−メチル−2−ピロリドンが好ましい。
脂肪族アミド化合物は、脱アルキル化剤又は脱アリール化剤として機能するほか、溶解性に優れることから反応溶媒として用いることもできる。よって、脂肪族アミド化合物の使用量は、特に制限されるものではないが、ポリ(アリーレンスルホニウム塩)の総量に対し、下限が1.00当量以上の範囲であることが好ましく、1.02当量以上の範囲であることがより好ましく、1.05当量以上の範囲であることがさらに好ましい。脂肪族アミド化合物の使用量が、1.00当量以上であれば、ポリ(アリーレンスルホニウム塩)の脱アルキル化又は脱アリール化を充分に行うことができる。一方、上限は100当量以下であることが好ましく、10当量以下であることがより好ましい。反応溶媒として脂肪族アミド化合物のみを用いてもよいし、これとトルエン等の他の溶媒を併用してもよい。
本実施形態に係るポリ(アリーレンスルホニウム塩)と脂肪族アミド化合物とを反応させる際の条件は、脱アルキル化又は脱アリール化が適切に進行するように、適宜調整することができる。反応温度は、50〜250℃の範囲であることが好ましく、80〜220℃の範囲であることがより好ましい。
本実施形態に係るポリアリーレンスルフィド樹脂の製造方法は、ポリアリーレンスルフィド樹脂を水、水溶性溶媒又はこれらの混合溶媒で洗浄する工程を更に含んでもよい。このような洗浄工程を含むことにより、得られるポリアリーレンスルフィド樹脂に含まれる脱アルキル化剤又は脱アリール化剤等の残存量をより確実に低減することができる。この傾向は、脱アルキル化剤又は脱アリール化剤として、脂肪族アミド化合物を使用した際に、顕著となる。
洗浄工程を経ることにより、得られるポリアリーレンスルフィド樹脂中の脱アルキル化剤又は脱アリール化剤の残存量をより確実に低減することが可能である。樹脂中の脱アルキル化剤又は脱アリール化剤の残存量は、ポリアリーレンスルフィド樹脂と脱アルキル化剤又は脱アリール化剤等の他の成分とを含む樹脂の質量を基準として、1000ppm以下の範囲であることが好ましく、700ppm以下の範囲であることがより好ましく、100ppm以下の範囲であることがさらに好ましい。1000ppm以下とすることにより、得られるポリアリーレンスルフィド樹脂の品質に対する実質的な影響を低減できる。
かかる洗浄工程において使用する溶媒は、特に制限されるものではないが、未反応物を溶解させるものであることが好ましい。溶媒としては、例えば、水、塩酸水溶液、酢酸水溶液、シュウ酸水溶液、硝酸水溶液、等の酸性水溶液、トルエン、キシレン等の芳香族炭化水素系溶剤、メタノール、エタノール、プロパノール、イソプロピルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、アセトニトリルなどのニトリル系溶媒等、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒等、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム等の含ハロゲン溶剤などを挙げることができる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて使用してもよい。これらの溶媒のうち、反応試薬の除去及び樹脂のオリゴマー成分の除去の観点から、水、N−メチルピロリドンが好ましい。
本実施形態に係る製造方法により得られるポリアリーレンスルフィド樹脂は、下記一般式(20)で表される構成単位を有する。
Figure 2016108356
一般式(20)中、R2b、Ar、Ar、Ar3b及びZは、一般式(10)のR2b、Ar、Ar、Ar3b及びZと同様に定義される。また、一般式(20)において、Ar、Ar及びAr3bが1,4−フェニレン基、且つR2bが直接結合であるとき、Zは、直接結合、−CO−、−SO−又は−C(CF−であるとしてもよく、Ar、Ar及びAr3bが1,4−フェニレン基、R2bが−Ar−、且つArが1,4−フェニレン基であるとき、Zは、−S−、−O−、−CO−、−SO−又は−C(CF−であるとしてもよい。
一般式(20)で表される構成単位において、Ar、Ar、Ar3b及びArの結合の態様は特に制限されるものではなく、一般式(1)、(3)、(4)のAr及びArの結合の態様と同様の考えを適用し得る。
Ar、Ar、Ar3b及びArで表されるアリーレン基が置換基を有する場合、置換基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基、ヒドロキシ基、アミノ基、メルカプト基、カルボキシル基又はスルホ基であることが好ましい。ただし、Ar、Ar、Ar及びArが置換基を有するアリーレン基である一般式
(20)の構成単位の割合は、ポリアリーレンスルフィド樹脂の結晶化度及び耐熱性の低下を抑制する観点から、ポリアリーレンスルフィド樹脂全体の10質量%以下の範囲であることが好ましく、5質量%以下であることがより好ましい。
上記ポリアリーレンスルフィド樹脂が有する構成単位は、樹脂の使用の目的等に合わせて、例えば、一般式(1)で表されるスルホキシドと一般式(2)で表される芳香族化合物との組み合わせを変更することにより、適宜選択することができる。
本実施形態の製造方法により得られるポリアリーレンスルフィド樹脂のガラス転移温度は、50〜250℃の範囲であることが好ましく、80〜180℃の範囲であることがより好ましい。樹脂のガラス転移温度は、DSC装置により測定される値のことを示す。
本実施形態の製造方法により得られるポリアリーレンスルフィド樹脂の融点は、100〜400℃の範囲であることが好ましく、150〜300℃の範囲であることがより好ましい。樹脂の融点は、DSC装置により測定される値のことを示す。
本実施形態に係るポリアリーレンスルフィド樹脂のハロゲン含有量は、900ppm以下であることが好ましく、500ppm以下であることがより好ましい。
本実施形態に係るポリアリーレンスルフィド樹脂のMtopは、5000〜100000であることが好ましく、10000以上80000以下の範囲であることがより好ましい。また、Mwも同様の範囲である。本明細書において、Mtopはゲル浸透クロマトグラフィーにより測定されるクロマトグラムの検出強度が最大となる点の平均分子量(ピーク分子量)を示し、Mwは重量平均分子量を示す。
本実施形態に係るポリアリーレンスルフィド樹脂のMw/Mtopは、0.5以上3.5以下の範囲であり、好ましくは0.7以上2.5以下の範囲である。Mw/Mtopをこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、また得られるフィルムに適度な伸張性及び柔軟性を付与することができる。Mw/Mtopは、測定対象の分子量の分布を示し、通常、この値が1に近いと分子量の分布が狭いことを示し、この値が大きくなるにつれて、分子量の分布が広いことを示す。なお、ゲル浸透クロマトグラフィーの測定条件は、本明細書の実施例と同一の測定条件とする。ただし、Mw、Mw/Mtopの値に実質的な影響を及ぼさない範囲で、測定条件を変更することは可能である。
本実施形態に係るポリアリーレンスルフィド樹脂の非ニュートニアン指数は、0.5以上2.3以下の範囲であり、好ましくは0.9以上1.8以下の範囲である。非ニュートニアン指数をこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができる。本明細書において、非ニュートニアン指数は温度:融点+20℃の条件下におけるせん断速度とせん断応力との下記関係式を満たす指数をいう。非ニュートニアン指数は、測定対象の分子量、又は直鎖、分岐、架橋といった分子構造に関する指標となりえ、通常、この値が1に近いと樹脂の分子構造が直鎖状であることを示し、この値が大きくなるにつれて、分岐や架橋構造が多く含まれることを示す。
D=α×S
(上記式中、Dはせん断速度を表し、Sはせん断応力を表し、αは定数を表し、nは非ニュートニアン指数を表す。)
本実施形態に係るポリアリーレンスルフィドは、FT−IR分光法で測定した場合のFT−IRスペクトル(赤外吸収スペクトル)において、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものであり、これにより、低分子量体成分の溶剤に対する溶解性が良好である為、前述の洗浄プロセスで除かれやすく、発生ガス量が少ないポリマーとなる。
前記ピークは、メチルスルファニル基(−SMe)の伸縮振動に由来する(帰属する)ものである。
本実施形態に係るポリアリーレンスルフィド樹脂の融点+20℃における溶融粘度(V6)は、好ましくは1〜2000[Pa・s]の範囲、より好ましくは5〜1700[Pa・s]の範囲である。ここで、溶融粘度(V6)は、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比(オリフィス長/オリフィス径)が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を意味する。
本実施形態に係るポリアリーレンスルフィド樹脂の白色度(ホットプレスL値/L値)は、70〜90の範囲であることが好ましく、より好ましくは75〜85の範囲である。L値がこのような範囲とすることで、溶融紡糸時の着色が十分に抑制されたフィルムとすることができる。L値は、測定対象の白色度に関する指標であるが、酸化架橋の指標ともなり得る。ポリアリーレンスルフィド樹脂は熱酸化処理を受けると着色し、L値が低下する傾向にある。
本実施形態に係るポリアリーレンスルフィド樹脂の加熱時のガス発生量は、0.2質量%以下の範囲とすることができ、好ましくは0.15質量%以下の範囲とすることができる。加熱時のガス発生量を抑制することができることにより、紡糸の際の糸切れをより抑制することが可能であり、ガス発生に起因するフィルムの品質低下を充分に抑制することができる。
ポリアリーレンスルフィド樹脂を含む組成物は、本発明の趣旨を逸脱しない範囲で、1種又は2種以上の無機質充填剤をさらに含有することができる。無機質充填剤が配合されることにより、高剛性、高耐熱安定性をフィルムに付与することができる。無機質充填剤としては、例えばカーボンブラック、炭酸カルシウム、シリカ及び酸化チタン等の粉末状充填剤、タルク及びマイカ等の板状充填剤、ガラスビーズ、シリカビーズ及びガラスバルーン等の粒状充填剤、ガラス繊維、炭素繊維及びウォラストナイト繊維等の繊維状充填剤、並びにガラスフレークなどが挙げられる。ポリアリーレンスルフィド樹脂組成物は、ガラス繊維、炭素繊維、カーボンブラック、及び炭酸カルシウムからなる群より選ばれる少なくとも1種の無機質充填剤を含有することが特に好ましい。
無機質充填剤の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1〜300質量部の範囲、より好ましくは5〜200質量部の範囲、更に好ましくは15〜150質量部の範囲である。無機質充填剤の含有量がこれらの範囲にあることにより、フィルムとした際の引張強度等の引張特性の点でより優れた効果が得られる。
ポリアリーレンスルフィド樹脂組成物は、本発明の趣旨を逸脱しない範囲で、熱可塑性樹脂、エラストマー、及び架橋性樹脂から選ばれる、ポリアリーレンスルフィド樹脂以外の樹脂を含有することができる。これら樹脂は、無機質充填剤とともに樹脂組成物中に配合することもできる。
ポリアリーレンスルフィド樹脂組成物に配合される熱可塑性樹脂としては、例えば、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、シリコーン樹脂、及び液晶ポリマー(液晶ポリエステル等)が挙げられる。
ポリアミドは、アミド結合(−NHCO−)を有するポリマーである。ポリアミド樹脂としては、例えば、(i)ジアミンとジカルボン酸の重縮合から得られるポリマー、(ii)アミノカルボン酸の重縮合から得られるポリマー、及び(iii)ラクタムの開環重合から得られるポリマー等が挙げられる。ポリアミドは、単独で又は2種以上を組み合わせて使用することができる。
ポリアミドを得るためのジアミンの例としては、脂肪族系ジアミン、芳香族系ジアミン、及び脂環族系ジアミン類が挙げられる。脂肪族系ジアミンとしては、直鎖状又は側鎖を有する炭素数3〜18のジアミンが好ましい。好適な脂肪族系ジアミンの例としては、1,3−トリメチレンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、2−メチル−1,8−オクタンジアミン、1,9−ノナメチレンジアミン、1,10−デカメチレンジアミン、1,11−ウンデカンメチレンジアミン、1,12−ドデカメチレンジアミン、1,13−トリデカメチレンジアミン、1,14−テトラデカメチレンジアミン、1,15−ペンタデカメチレンジアミン、1,16−ヘキサデカメチレンジアミン、1,17−ヘプタデカメチレンジアミン、1,18−オクタデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、及び2,4,4−トリメチルヘキサメチレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
芳香族系ジアミンとしては、フェニレン基を有する炭素数6〜27のジアミンが好ましい。好適な芳香族系ジアミンの例としては、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、3,4−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルメタン、3,3'−ジアミノジフェニルスルフォン、4,4'−ジアミノジフェニルスルフォン、4,4'−ジアミノジフェニルスルフィド、4,4'−ジ(m−アミノフェノキシ)ジフェニルスルフォン、4,4'−ジ(p−アミノフェノキシ)ジフェニルスルフォン、ベンジジン、3,3'−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェニル)プロパン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4'−ジアミノ−3,3'−ジエチル−5,5'−ジメチルジフェニルメタン、4,4'−ジアミノ−3,3',5,5'−テトラメチルジフェニルメタン、2,4−ジアミノトルエン、及び2,2'−ジメチルベンジジンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
脂環族系ジアミンとしては、シクロヘキシレン基を有する炭素原子数4〜15のジアミンが好ましい。好適な脂環族系ジアミンの例としては、4,4'−ジアミノ−ジシクロヘキシレンメタン、4,4'−ジアミノ−ジシクロヘキシレンプロパン、4,4'−ジアミノ−3,3'−ジメチル−ジシクロヘキシレンメタン、1,4−ジアミノシクロヘキサン、及びピペラジンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
ポリアミドを得るためのジカルボン酸としては、脂肪族系ジカルボン酸、芳香族系ジカルボン酸、及び脂環族系ジカルボン酸を挙げることができる。
脂肪族系ジカルボン酸としては、炭素数2〜18の飽和又は不飽和のジカルボン酸が好ましい。好適な脂肪族系ジカルボン酸の例としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、プラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸、マレイン酸、及びフマル酸が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
芳香族系ジカルボン酸としては、フェニレン基を有する炭素原子数8〜15のジカルボン酸が好ましい。好適な芳香族系ジカルボン酸の例としては、イソフタル酸、テレフタル酸、メチルテレフタル酸、ビフェニル−2,2'−ジカルボン酸、ビフェニル−4,4'−ジカルボン酸、ジフェニルメタン−4,4'−ジカルボン酸、ジフェニルエーテル−4,4'−ジカルボン酸、ジフェニルスルフォン−4,4'−ジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、及び1,4−ナフタレンジカルボン酸が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。更に、トリメリット酸、トリメシン酸、及びピロメリット酸等の多価カルボン酸を、溶融成形可能な範囲内で用いることもできる。
アミノカルボン酸としては、炭素原子数4〜18のアミノカルボン酸が好ましい。好適なアミノカルボン酸の例としては、4−アミノ酪酸、6−アミノヘキサン酸、7−アミノヘプタン酸、8−アミノオクタン酸、9−アミノノナン酸、10−アミノデカン酸、11−アミノウンデカン酸、12−アミノドデカン酸、14−アミノテトラデカン酸、16−アミノヘキサデカン酸、及び18−アミノオクタデカン酸が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
ポリアミドを得るためのラクタムとしては、例えば、ε−カプロラクタム、ω−ラウロラクタム、ζ−エナントラクタム、及びη−カプリルラクタムが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
好ましいポリアミドの原料の組み合わせとしては、ε−カプロラクタム(ナイロン6)、1,6−ヘキサメチレンジアミン/アジピン酸(ナイロン6,6)、1,4−テトラメチレンジアミン/アジピン酸(ナイロン4,6)、1,6−ヘキサメチレンジアミン/テレフタル酸、1,6−ヘキサメチレンジアミン/テレフタル酸/ε−カプロラクタム、1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸、1,9−ノナメチレンジアミン/テレフタル酸、1,9−ノナメチレンジアミン/テレフタル酸/ε−カプロラクタム、1,9−ノナメチレンジアミン/1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸、及びm−キシリレンジアミン/アジピン酸が挙げられる。これらの中でも、1,4−テトラメチレンジアミン/アジピン酸(ナイロン4,6)、1,6−ヘキサメチレンジアミン/テレフタル酸/ε−カプロラクタム、1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸、1,9−ノナメチレンジアミン/テレフタル酸、1,9−ノナメチレンジアミン/テレフタル酸/ε−カプロラクタム、又は1,9−ノナメチレンジアミン/1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸から得られるリアミド樹脂が更に好ましい。
熱可塑性樹脂の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、更に好ましくは5〜45質量部の範囲である。ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂の含有量がこれらの範囲にあることにより、耐熱性、耐薬品性及び機械的物性の更なる向上という効果が得られる。
ポリアリーレンスルフィド樹脂組成物に配合されるエラストマーとしては、熱可塑性エラストマーが用いられることが多い。熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、弗素系エラストマー及びシリコーン系エラストマーが挙げられる。なお、本明細書において、熱可塑性エラストマーは、前記熱可塑性樹脂ではなくエラストマーに分類される。
エラストマー(特に熱可塑性エラストマー)は、官能基を有することが好ましい。これにより、接着性及び耐衝撃性等の点で特に優れた樹脂組成物を得ることができる。係る官能基としては、エポキシ基、アミノ基、水酸基、カルボキシ基、メルカプト基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1〜8のアルキル基を表す。)で表される基が挙げられる。係る官能基を有する熱可塑性エラストマーは、例えば、α−オレフィンと前記官能基を有するビニル重合性化合物との共重合により得ることができる。α−オレフィンは、例えば、エチレン、プロピレン及びブテン−1等の炭素原子数2〜8のα−オレフィン類が挙げられる。前記官能基を有するビニル重合性化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα、β−不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4〜10のα、β−不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、エポキシ基、カルボキシ基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1〜8のアルキル基を表す。)で表される基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体及びエチレン−ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。
エラストマーの含有量は、その種類、用途により異なるため一概に規定することはできないが、例えば、ポリアリーレンスルフィド樹脂100質量部に対して好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、さらに好ましくは5〜45質量部の範囲である。エラストマーの含有量がこれらの範囲にあることにより、フィルムの耐熱性、靭性の確保の点でより一層優れた効果が得られる。
ポリアリーレンスルフィド樹脂組成物に配合される架橋性樹脂は、2以上の架橋性官能基を有する。架橋性官能基としては、エポキシ基、フェノール性水酸基、アミノ基、アミド基、カルボキシ基、酸無水物基、及びイソシアネート基などが挙げられる。架橋性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、及びウレタン樹脂が挙げられる。
エポキシ樹脂としては、芳香族系エポキシ樹脂が好ましい。芳香族系エポキシ樹脂は、ハロゲン基又は水酸基等を有していてもよい。好適な芳香族系エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、及びビフェニルノボラック型エポキシ樹脂が挙げられる。これらの芳香族系エポキシ樹脂は、単独で又は2種以上を組み合わせて用いることができる。これら芳香族系エポキシ樹脂の中でも特に、他の樹脂成分との相溶性に優れる点から、ノボラック型エポキシ樹脂が好ましく、クレゾールノボラック型エポキシ樹脂がより好ましい。
架橋性樹脂の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、更に好ましくは5〜30質量部の範囲である。架橋性樹脂の含有量がこれら範囲にあることにより、フィルムの剛性及び耐熱性の向上という効果が特に顕著に得られる。
ポリアリーレンスルフィド樹脂組成物は、官能基を有するシラン化合物を含有することができる。係るシラン化合物としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4‐エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン及びγ−グリシドキシプロピルメチルジメトキシシラン等のシランカップリング剤が挙げられる。
シラン化合物の含有量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して0.01〜10質量部の範囲であることが好ましく、さらに0.1〜5質量部の範囲であることがより好ましい。シラン化合物の含有量がこれらの範囲にあることにより、ポリアリーレンスルフィド樹脂と前記他の成分との相溶性向上という効果が得られる。
本実施形態に係るポリアリーレンスルフィド樹脂組成物は、本発明の趣旨を逸脱しない範囲で、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤及び滑剤等のその他の添加剤を含有してもよい。添加剤の含有量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して、1〜10質量部の範囲であることが好ましい。
ポリアリーレンスルフィド樹脂は、ペレット状の形態で得ることができる。また、ポリアリーレンスルフィド樹脂を含む組成物は、ポリアリーレンスルフィド樹脂と、前記他の成分とを溶融混練する方法により、例えば、ペレット状のコンパウンド等の形態で得ることができる。溶融混錬の温度は、例えば、250〜400℃の範囲であることが好ましく、さらに270〜380℃の範囲であることがより好ましい。溶融混錬は、2軸押出機等を用いて行うことができる。
本実施形態に係るポリアリーレンスルフィド樹脂からなるフィルムは、例えば、前記樹脂を溶融押出機を利用して製膜することにより得られる。
まず、上述の方法で得られたペレット状のポリアリーレンスルフィド樹脂を、溶融部の温度が250〜400℃の範囲、好ましくは270〜380℃の範囲に加熱された溶融押出機に投入し、溶融させたポリマーをフィルターでろ過、Tダイの口金からフィルム状に吐出する。このフィルム状物を、表面温度が20〜70℃の範囲となるように設定された冷却ドラム上に密着させて冷却固化させることで、実質的に無配向状態の未延伸フィルムを得ることができる。フィルター部分及び口金の設定温度は、溶融押出機の溶融部の温度より0〜20℃高い温度範囲にすることが好ましく、5〜15℃高い温度範囲に設定することがより好ましい。
前記未延伸フィルムは、さらに二軸延伸等を行うことにより、二軸配向させることができる。延伸方法としては、逐次二軸延伸法(フィルムの長手方向の延伸と幅方向の延伸を別々に行う延伸法)、同時二軸延伸法(フィルムの長手方向と幅方向の延伸を同時に行う方法)が挙げられる。これらの延伸法は適宜組み合わせて用いてもよい。
逐次二軸延伸法においては、未延伸のポリアリーレンスルフィドフィルムを加熱ロール群で加熱し、前記ロールの回転速度の差を利用してフィルムを延伸する。延伸倍率はフィルムの熱成形性を向上させる観点から長手方向(MD方向)に2.0〜4.0倍の範囲とすることが好ましく、2.5〜3.5倍の範囲とすることがより好ましく、2.8〜3.2倍の範囲の範囲とすることがさらに好ましい。この延伸工程は、1段で行っても、2段以上に分けて行ってもよい。
MD方向への延伸工程における温度は、ポリアリーレンスルフィド樹脂のガラス転移温度をTgとした際に、Tg〜(Tg+30)℃の範囲とすることが好ましく、(Tg+5)〜(Tg+20)℃の範囲とすることがより好ましい。
MD方向への延伸後、幅方向(TD方向)の延伸方法としては、例えば、横延伸機(テンター)を用いる方法を挙げることができる。MD延伸後のフィルムの両端部をクリップで挟み、テンターに導き、TD向への延伸を行う。延伸倍率はフィルムの破断伸度を向上させる観点からTD方向に2.0〜4.0倍の範囲とすることが好ましく、2.5〜3.5倍の範囲とすることがより好ましい。
TD方向への延伸工程における温度は、Tg〜(Tg+30)℃の範囲とすることが好ましく、(Tg+5)〜(Tg+20)℃の範囲とすることがより好ましい。
TD方向へフィルムを延伸した状態で、延伸フィルムを熱固定及び緩和処理する。熱固定及び緩和処理は(融点−30℃)〜(融点+5)の範囲の温度で行われることが好ましい。熱固定及び緩和処理の合計時間は、フィルムの厚みが50μm未満の場合、1〜15秒の範囲、好ましくは5〜10秒の範囲である。また、フィルムの厚みが50μmを超える場合、熱固定と緩和処理の合計時間は、10〜40秒の範囲、好ましくは20〜30秒の範囲である。熱固定及び緩和処理は1段階で行ってもよく、2段以上に分けて行ってもよい。
さらに、フィルムを室温まで、必要ならば、MD方向及びTD方向に弛緩処理を施しながら、冷やして巻取り、目的とする二軸配向ポリアリーレンスルフィドフィルムを得ることができる。
ポリアリーレンスルフィドフィルムの160℃におけるフィルムのMDあるいはTD方向のどちらか一方について50%破断伸度は、100%以上の範囲であることが好ましく、110%以上の範囲であることがより好ましく、120%以上の範囲であることがより好ましい。また、160℃におけるポリアリーレンスルフィドフィルムのMD方向について50%平均破断強度は、30〜80MPaの範囲であることが好ましく、40〜70MPaの範囲であることがより好ましく、50〜60MPaの範囲であることがより好ましい。
ポリアリーレンスルフィドフィルムは、160℃におけるフィルムのMD方向又はTD方向のどちらか一方の破断伸度が100%以上であり、かつ、160℃におけるフィルムのMD方向又はTD方向のどちらか一方の破断応力が30〜80MPaの範囲であることが好ましい。破断伸度及び破断応力が上記関係を満たすことにより、製膜時のフィルム破れの発生をより抑制することが可能である。
破断伸度及び破断応力は、ASTM−D882に規定された方法に従い、インストロンタイプの引張試験機を用いて測定される値を示す。より具体的な方法は、測定方向を引張方向に切り出したサンプルを上下の引張試験機のチャック部分で挟んで引張試験を行い、フィルムサンプルが破断したときの伸度、応力をそれぞれ破断伸度、破断応力として測定する。試料サイズが幅10mm×長さ150mm、試長間100mmのフィルムに対して引張り速度を300mm/分として、160℃でインストロンタイプの引張試験機を用いて測定を行う。
ポリアリーレンスルフィドフィルムの熱収縮率は、150℃、30分の条件下で熱処理した際に、MD方向に2.5%以下であることが好ましく、TD方向に4.0%以下であることが好ましい。
ポリアリーレンスルフィドフィルムの厚さは特に限定されるものではないが、成形加工時の追従性の観点から、その下限が100μm以上であることが好ましく、150μm以上であることがより好ましい。一方、成膜性の観点から、その上限は1000μm以下の範囲であることが好ましく、さらに、500μm以下の範囲であることがより好ましい。なお、本発明において「フィルム」には、長さ、幅に特に制限はなく、平面状成形物であり、テープ類、リボン類を含むものとする。なお、平面状成形物は厚さにより、シートと称される場合もあり、例えば、高分子学会編集の高分子辞典(朝倉書店、1971年)によれば、200μm未満をフィルムとし、200μm以上をシートとする区別が記載されている。しかし、一般的には、フィルムとシートとを区別することは難しい。したがって、本発明では両者をあわせて「フィルム」と言うものとする。
上記製膜方法については、上記ポリアリーレンスルフィド樹脂を含む組成物に対しても適用することができる。
本実施形態に係るポリアリーレンスルフィド樹脂組成物は、単独で又は他の材料と組み合わせて、射出成形、押出成形、圧縮成形及びブロー成形のような各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形品に加工することができる。本実施形態に係るポリアリーレンスルフィド樹脂組成物は、加熱されたときのガス発生量が少ないことから、高品質の成形品の容易な製造を可能にする。
本実施形態に係るポリアリーレンスルフィドフィルムは、ポリアリーレンスルフィド樹脂が本来有する耐熱性、寸法安定性等の諸性能も具備しているので、例えば、コネクタ、プリント基板及び封止成形品等の電気・電子部品、ランプリフレクター及び各種電装品部品などの自動車部品、各種建築物、航空機及び自動車などの内装用材料、OA機器部品、カメラ部品及び時計部品などの精密部品等の分野で用いられるフィルムとして使用することができる。これらの用途に用いる際には、本実施形態に係るポリアリーレンスルフィドフィルムを単独で使用してもよく、その他のフィルムと適宜組み合わせて用いてもよい。
以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
以下に示す実施例では、下記の試薬を使用した。
ビス[4−(メチルチオ)フェニル]スルフィド:シグマアルドリッチ製 製品番号S203815−25MG
硝酸(1.38):和光純薬工業(株)製、試薬特級、含量60〜61%、密度1.38g/mL
ジフェニルスルフィド:和光純薬工業(株)製、和光特級
ジフェニルエーテル:和光純薬工業(株)製、和光特級
ビフェニル:和光純薬工業(株)製、和光特級
トリフルオロメタンスルホン酸:和光純薬工業(株)製、和光特級
メタンスルホン酸:和光純薬工業(株)製、和光特級
酸化リン(V):和光純薬工業(株)製、和光1級
ピリジン:和光純薬工業(株)製、試薬特級
N−メチルピロリドン:和光純薬工業(株)製、和光一級
<評価法>
1.評価法
1−1.同定方法(H−NMR、13C−NMR)
BRUKER製DPX−400の装置にて、各種重溶剤に溶解させて測定した。
1−2.残存ハロゲン量の分析
蛍光X線(理学電機工業株式会社製ZSX100e)にて、粉末を測定し、残存ハロゲン量を分析した。
2.モノマーの合成
Figure 2016108356
10Lの3つ口フラスコに、ビス[4−(メチルチオ)フェニル]スルフィド20.0[g]、ジクロロメタン5[L]を加えて溶解させ、氷浴にて冷却した。硝酸(1.38)14[mL]を少しずつ滴下し、室温下で72時間攪拌した。炭酸カリウム水溶液で中和して、ジクロロメタンにて抽出/分液操作を行い、有機層を回収した。無水硫酸マグネシウムにて有機層を乾燥した。ろ過後、ロータリーエバポレーターで溶媒を除去し、減圧乾燥することで粗生成物を得た。酢酸エチルを展開溶媒として、カラムクロマトグラフィーによって分離し、目的生成物を回収し、ロータリーエバポレーターで溶媒を除去し、減圧乾燥することでビス[4−(メチルスルフィニル)フェニル]スルフィド6.7g(収率30%)を得た。H−NMR測定により目的物が得られたことを確認した。また蛍光X線での分析により、残存ハロゲン量が検出範囲外であることが確認できた。
H−NMR(溶媒CDCl):2.75、7.49、7.61[ppm]
3.合成したポリアリーレンスルフィド樹脂の評価方法
3−1.ガラス転移温度及び融点
パーキンエルマー製DSC装置 Pyris Diamondを用いて、50mL/minの窒素流下、20℃/minの昇温条件で40〜400℃まで測定を行い、ガラス転移温度及び融点を求めた。
3−2.赤外吸収スペクトル
得られたPPS樹脂を融点+50℃の温度でプレスしたのち、急冷することによって非晶性を示すフィルムを作成し、フーリエ変換赤外分光装置(以下「FT−IR装置」と略記する。日本分光製FTIR―6100を用いた。)で測定した。
3−3.ポリアリーレンスルフィド樹脂の溶融粘度
ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT−500Cを用い、融点+20℃の温度で、荷重:1.96×10Pa、L/D=10/1にて、6分間保持した後に溶融粘度を測定した。
3−4.Mw及びMtop(分子量分布)
ポリアリーレンスルフィド樹脂の重量平均分子量及びピーク分子量を、ゲル浸透クロマトグラフィーを用いて、下記の測定条件により測定した。得られたMw及びMtopからMw/Mtopを算出した。6種類の単分散ポリスチレンを校正に用いた。
装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC−7000」)
カラム:UT−805L(昭和電工株式会社製)
カラム温度:210℃
溶媒:1−クロロナフタレン
測定方法:UV検出器(360nm)
3−5.ハロゲン量
ポリマー中の塩素含有量は、ダイアンインスツルメンツ燃焼ガス吸収装置でポリマーを燃焼させ発生したガスを純水に吸収させ、吸収液中の塩素イオンをダイオネクスイオンクロマトグラフで定量した。
3−6.色調L
白色度(ホットプレスL値)は、ポリアリーレンスルフィド樹脂を320℃で1.5分間予熱後、320℃で1.5分間、続けて130℃で1.5分間、30kg/cmの圧力でホットプレスにより加圧成形して円盤状プレートを作製した。これについて、色彩色差計(東京電色株式会社製、Color Ace)を用いて測定した。
3−7.非ニュートニアン指数
ポリアリーレンスルフィド樹脂をキャピラリーレオメーターにて、温度:融点+20℃の条件下、直径1mm、長さ40mmのダイスを用いて100〜1000(sec−1)の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。
3−8.発生ガス量
ガスクロマトグラフ質量分析装置を用いて、ポリアリーレンスルフィド樹脂又は樹脂組成物の所定量のサンプルを325℃で15分間加熱し、そのときの発生ガス量を質量%として定量した。
4.ポリアリーレンスルフィド樹脂の合成
合成例1
Figure 2016108356
500mLのセパラブルフラスコにビス[4−(メチルスルフィニル)フェニル]スルフィド0.932[g]を入れ、窒素雰囲気下にし、ジフェニルスルフィド0.560[g]を加え、さらに酸化リンを1[g]を加えた。氷浴にて冷却後、メタンスルホン酸5[mL]をゆっくり滴下した。室温まで昇温し、20時間攪拌した。反応溶液を水に入れて、10分攪拌した後、ろ過した後、水洗後ろ過し、固体を回収した。ロータリーエバポレーターで溶媒を除去し、減圧乾燥することで、ポリ[メタンスルホン酸メチル(4−フェニルチオフェニル)スルホニウム]2.25[g](収率99%)を得た。
分析用にサンプルの少量を分取し、重DMSOに溶解させたものについてH−NMR測定を行うことにより、目的物が合成されていることを確認した。
H−NMR(溶媒重DMSO):3.27、3.93、7.76、8.19[ppm]
ポリ[メタンスルホン酸メチル(4−フェニルチオフェニル)スルホニウム]2.00[g]を100mLナスフラスコに入れ、ピリジン100[mL]を加えて、室温で30分攪拌した後に、110℃に昇温し20時間攪拌した。反応溶液を室温まで冷却した後に、水に投入し、析出物をろ過にてろ別し、クロロホルム、NMP、水で洗浄した。洗浄後、固体を減圧乾燥することにより、ポリフェニレンスルフィド0.64[g](収率56%)を得た。
得られた樹脂について熱分析を行った結果、ガラス転移温度(Tg)93℃、融点273℃であった。
また、赤外吸収スペクトルを測定したところ、図1のように2917cm−1の位置(OKです)に吸収ピークの存在が認められた。
また、このポリマーの溶融粘度は1430Pa・sであり、Mtopは57000、Mwは60000であった。
また、ハロゲン量は50ppm以下と大幅な低減が認められた。
また、L値は74であり、非ニュートニアン指数は1.2であった。
また、発生ガス量は0.1[wt%]と少なかった。
合成例2
Figure 2016108356
500mLのセパラブルフラスコにビス[4−(メチルスルフィニル)フェニル]スルフィド0.932[g]を入れ、窒素雰囲気下にし、ジフェニルエーテル0.511[g]を加えた。氷浴にて冷却後、トリフルオロメタンスルホン酸7.5[mL]をゆっくり滴下した。室温まで昇温し、20時間攪拌した。反応溶液を水に入れて、10分攪拌した後、ろ過した後、水洗後ろ過し、固体を回収した。ロータリーエバポレーターで溶媒を除去し、減圧乾燥することで、ポリ[トリフルオロメタンスルホン酸メチル(4−フェニルオキシフェニル)スルホニウム−4’−メチル(4−フェニルチオフェニル)スルホニウム]2.19[g](収率98%)を得た。
分析用にサンプルの少量を分取し、過剰のメタンスルホン酸によってイオン交換後、重酢酸に溶解させたものについてH−NMR測定を行うことにより、目的物が合成されていることを確認した。
H−NMR(溶媒重酢酸):3.17、3.92、7.61、7.87、8.08、8.18[ppm]
ポリ[トリフルオロメタンスルホン酸メチル(4−フェニルオキシフェニル)スルホニウム−4’−メチル(4−フェニルチオフェニル)スルホニウム]2.00[g]を100mLナスフラスコに入れ、ピリジン100[mL]を加えて、室温で30分攪拌した後に、110℃に昇温し20時間攪拌した。反応溶液を室温まで冷却した後に、水に投入し、析出物をろ過にてろ別し、クロロホルム、NMP、水で洗浄した。洗浄後、固体を減圧乾燥することにより、ポリ[(フェニレンエーテル)−(フェニレンスルフィド)]0.54[g](収率48%)を得た。
得られた樹脂について熱分析を行った結果、ガラス転移温度(Tg)96℃、融点229℃であった。
また、赤外吸収スペクトルを測定したところ、図2のように2918cm−1の位置に吸収ピークの存在が認められた。
また、このポリマーの溶融粘度は100Pa・sであり、Mtopは10000、Mwは12000であった。
また、ハロゲン量は50ppm以下と大幅な低減が認められた。
また、L値は72であり、非ニュートニアン指数は1.5であった。
また、発生ガス量は0.05[wt%]と少なかった。
合成例3
Figure 2016108356
ジフェニルエーテルに代えて、ビフェニル0.463[g]を用いた以外は、合成例2と同様にして、ポリ[トリフルオロメタンスルホン酸メチル(4−フェニルチオフェニル)スルホニウム−4’−メチル(4−ビフェニル)スルホニウム]2.08[g](収率95%)を得た。
分析用にサンプルの少量を分取し、過剰のメタンスルホン酸によってイオン交換後、重アセトニトリルに溶解させたものについてH−NMR測定を行うことにより、目的物が合成されていることを確認した。
1H−NMR(重アセトニトリル):3.32、3.58、7.45、7.66、7.78、7.95[ppm]
ポリ[トリフルオロメタンスルホン酸メチル(4−フェニルチオフェニル)スルホニウム−4’−メチル(4−ビフェニル)スルホニウム]1.80[g]を100mLナスフラスコに入れ、ピリジン100[mL]を加えて、室温で30分攪拌した後に、110℃に昇温し20時間攪拌した。反応溶液を室温まで冷却した後に、水に投入し、析出物をろ過にてろ別し、クロロホルム、NMP、水で洗浄した。洗浄後、固体を減圧乾燥することにより、ポリ[(フェニレンスルフィド)−(ビフェニレンスルフィド)]0.87[g](収率88%)を得た。
得られた樹脂について熱分析を行った結果、ガラス転移温度(Tg)127℃、融点325℃であった。
また、赤外吸収スペクトルを測定したところ、図3のように2917cm−1の位置に吸収ピークの存在が認められた。
また、このポリマーの溶融粘度は330Pa・sであり、Mtopは16000、Mwは18000であった。
また、ハロゲン量は50ppm以下と大幅な低減が認められた。
また、L値は75であり、非ニュートニアン指数は1.3であった。
また、発生ガス量は0.1[wt%]と少なかった。
比較合成例
圧力計、温度計、コンデンサ−、デカンタ−を連結した撹拌翼付きジルコニウムライニングの1リットルオートクレーブにp−ジクロロベンゼン(以下、「p−DCB」と略記する。)220.5g(1.5モル)、NMP29.7g(0.3モル)、47.43質量%NaSH水溶液177.29g(1.5モル)、及び48.71質量%NaOH水溶液123.18g(1.5モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで2時間掛けて昇温して、水177.98gを留出させた後、釜を密閉した。その際、共沸により留出したp−DCBはデカンタ−で分離して、随時釜内に戻した。脱水終了後、内温を160℃に冷却し、NMP267.65g(2.7モル)を仕込み、230℃まで昇温し、230℃で5時間撹拌した後、250℃まで40分で昇温し、250℃で1時間撹拌した。冷却後、得られたスラリーを3リットルの水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び3リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返し、濾過後、熱風乾燥機を用いて120℃で一晩乾燥して白色の粉末状のPPS 154gを得た。
得られた固体について熱分析を行った結果、ガラス転移温度(Tg)92℃、融点277℃であったことから、ポリフェニレンスルフィド樹脂(PPS樹脂)が生成していることを確認した。
また、赤外吸収スペクトルを測定したところ、図4のように、2910cm−1〜2930cm−1の範囲に吸収ピークの存在は認めらなかった。
また、このポリマーの溶融粘度は220Pa・s、Mtopは45000、Mwは44000であった。
また、ハロゲン量は1700ppmであった。
また、L値は77、非ニュートン指数は1.1であった。
また、発生ガス量は0.5[wt%]だった。
5.ポリアリーレンスルフィドフィルムの製造と評価
合成例1〜3及び比較合成例で得られた白色粉末状のポリマーをタンブラーを用いて均一に混合した後、2軸混練押出機(TEM−35B、東芝機械)を用いて融点+20℃で溶融混練して、ペレット状のポリマーを得た。得られたペレットを溶融部が融点+40℃に加熱された押出機に供給した。押出機で溶融したポリマーを温度:融点+50℃に設定したフィルターでろ過した後、温度:融点+30℃に設定した口金から溶融押出して表面温度25℃のキャストドラムに正電荷を印加させながら密着させ冷却固化することで、未延伸フィルムを作製した。
この未延伸フィルムを、加熱された複数のロール群からなる縦延伸機を用い、米津後、ロールの巻取速度の差を利用して、ガラス転移温度+20℃のフィルム温度でフィルムの縦方向に3.2倍の延伸倍率で延伸した。その後、このフィルムの両端部をクリップで把持して、横延伸機(テンター)に導き、延伸温度ガラス転移温度+20℃、延伸倍率3.3倍でフィルムの幅方向に延伸を行い、引き続いて温度:ガラス転移温度+100℃で4秒間熱処理(1段目熱処理)を行い、続いて融点−40℃で4秒間熱処理(2段目熱処理)を行った。引き続き、融点−20℃の弛緩処理ゾーンで4秒間横方向に5%弛緩処理を行った後、室温まで冷却した後、フィルムエッジを除去し、厚さ100μmの二軸配向ポリアリーレンスルフィドフィルムを作製した。
得られた二軸配向ポリアリーレンスルフィドフィルムについて引張特性、熱収縮率、加工特性等の評価を行った。評価結果を表1に示す。
なお、合成例1のポリマーを用いたものを実施例1、合成例2のポリマーを用いたものを実施例2、合成例3のポリマーを用いたものを実施例3、比較合成例のポリマーを用いたものを比較例1と表記する。
5−1.引張特性(160℃・50%平均破断応力、160℃・50%平均破断伸度)
ASTM−D882に規定された方法に従って、インストロンタイプの引張試験機を用いて測定した。測定は下記の条件で行い、試料数10にて、フィルム長手方向、および幅方向のそれぞれについて平均値をとり、下記式にて50%平均破断応力、50%平均破断伸度を算出した。
50%平均破断応力=(フィルム長手方向における応力の平均値+フィルム幅方向における応力の平均値)/2
50%平均破断伸度=(フィルム長手方向における伸度の平均値+フィルム幅方向における伸度の平均値)/2
測定装置:オリエンテック(株)製フィルム強伸度自動測定装置“テンシロンAMF/RTA−100”
試料サイズ:幅10mm××長さ150mm、試長間100mm
引張り速度:300mm/分
5−2.熱収縮率
JIS C−2318に規定された方法にしたがって測定した。試料幅10mm、試料長200mmのサンプルをギアオーブンにより150℃、30分間の条件下で熱処理し、試料長の変化から、下記式により熱収縮率を算出した。
熱収縮率(%)=[(熱処理前の長さ−熱処理後の長さ)/熱処理前の長さ]×100
5−3.加工特性
160℃におけるフィルムの長手方向あるいは幅方向のどちらか一方の破断伸度が100%以上であり、かつ、160℃におけるフィルムの長手方向あるいは幅方向のどちらか一方の破断応力が30〜80MPaの範囲である場合に限り、加工特性を「○」とし、それ以外の場合を加工特性「×」とした。
5−4.製膜時のフィルム破れ
製膜時のフィルム破れは、合計時間24時間にわたり連続製膜を行った際、フィルム破れが5回以上起きた場合を「×」、フィルム破れが1回以上5回未満の範囲で起きた場合を「△」、フィルム破れが1回も発生しなかった場合を「○」とした。
Figure 2016108356
実施例1〜3は比較例1と比較して、ハロゲン量が圧倒的に少なく、発生ガス量も少ない。
また、表に示される結果から明らかなように、実施例1〜3は、高い引張特性と、充分に小さい熱収縮率といったポリアリーレンスルフィド樹脂本来の特性を有しつつ、製膜時のフィルム破れが抑制され、加工特性にも優れることが確認された。

Claims (4)

  1. ポリアリーレンスルフィド樹脂又はこれを含む組成物からなるポリアリーレンスルフィドフィルムであって、
    前記ポリアリーレンスルフィド樹脂が、下記一般式(1)で表されるスルホキシドと下記一般式(2)で表される芳香族化合物とを反応させ、下記一般式(10)で表される構成単位を有するポリ(アリーレンスルホニウム塩)を得る工程と、
    前記ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化し、下記一般式(20)で表される構成単位を有するポリアリーレンスルフィド樹脂を得る工程と、
    を含む方法により得ることのできるものであり、
    前記ポリアリーレンスルフィド樹脂が、FT−IR分光法で測定される赤外吸収スペクトルにおいて、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものである、ポリアリーレンスルフィドフィルム。
    Figure 2016108356

    Figure 2016108356

    Figure 2016108356

    Figure 2016108356
    (式(1)、(2)、(10)又は(20)中、Rは、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を有していてもよいアリール基を表し、R2aは、水素原子、炭素原子数1〜10のアルキル基、−Ar、−S−Ar、−O−Ar、−CO−Ar、−SO−Ar又は−C(CF−Arを表し、R2bは、直接結合、−Ar−、−S−Ar−、−O−Ar−、−CO−Ar−、−SO−Ar−又は−C(CF−Ar−を表し、Ar、Ar、Ar3b及びArは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、Ar3a及びArは、それぞれ独立に、置換基を有してもよいアリール基を表し、Zは、直接結合、−S−、−O−、−CO−、−SO−又は−C(CF−を表し、Xは、アニオンを表す。)
  2. 前記赤外吸収スペクトルのピークが、メチルスルファニル基由来のものである、請求項1に記載のポリアリーレンスルフィドフィルム。
  3. ポリアリーレンスルフィド樹脂又はこれを含む組成物を製膜する工程を有し、
    前記ポリアリーレンスルフィド樹脂が、下記一般式(1)で表されるスルホキシドと下記一般式(2)で表される芳香族化合物とを反応させ、下記一般式(10)で表される構成単位を有するポリ(アリーレンスルホニウム塩)を得る工程と、
    前記ポリ(アリーレンスルホニウム塩)を脱アルキル化又は脱アリール化し、下記一般式(20)で表される構成単位を有するポリアリーレンスルフィド樹脂を得る工程と、
    を含む方法により得ることのできるものであり、
    前記ポリアリーレンスルフィド樹脂が、FT−IR分光法で測定される赤外吸収スペクトルにおいて、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものである、ポリアリーレンスルフィドフィルムの製造方法。
    Figure 2016108356
    Figure 2016108356
    Figure 2016108356
    Figure 2016108356
    (式(1)、(2)、(10)又は(20)中、Rは、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を有していてもよいアリール基を表し、R2aは、水素原子、炭素原子数1〜10のアルキル基、−Ar、−S−Ar、−O−Ar、−CO−Ar、−SO−Ar又は−C(CF−Arを表し、R2bは、直接結合、−Ar−、−S−Ar−、−O−Ar−、−CO−Ar−、−SO−Ar−又は−C(CF−Ar−を表し、Ar、Ar、Ar3b及びArは、それぞれ独立に、置換基を有してもよいアリーレン基を表し、Ar3a及びArは、それぞれ独立に、置換基を有してもよいアリール基を表し、Zは、直接結合、−S−、−O−、−CO−、−SO−又は−C(CF−を表し、Xは、アニオンを表す。)
  4. 前記赤外吸収スペクトルのピークが、メチルスルファニル基由来のものである、請求項3に記載のポリアリーレンスルフィドフィルムの製造方法。
JP2014243965A 2014-12-02 2014-12-02 ポリアリーレンスルフィドフィルム及びその製造方法 Active JP6617905B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014243965A JP6617905B2 (ja) 2014-12-02 2014-12-02 ポリアリーレンスルフィドフィルム及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243965A JP6617905B2 (ja) 2014-12-02 2014-12-02 ポリアリーレンスルフィドフィルム及びその製造方法

Publications (2)

Publication Number Publication Date
JP2016108356A true JP2016108356A (ja) 2016-06-20
JP6617905B2 JP6617905B2 (ja) 2019-12-11

Family

ID=56123065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243965A Active JP6617905B2 (ja) 2014-12-02 2014-12-02 ポリアリーレンスルフィドフィルム及びその製造方法

Country Status (1)

Country Link
JP (1) JP6617905B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108673A (ja) * 2014-12-02 2016-06-20 Dic株式会社 ポリアリーレンスルフィド繊維及びその製造方法
CN115960354A (zh) * 2022-12-30 2023-04-14 四川大学 一种聚芳醚的纯化方法及高纯度聚芳醚

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239213A (ja) * 1992-02-29 1993-09-17 Res Inst For Prod Dev ポリ(アルキル−p−チオフェノキシフェニルスルホニウム塩)化合物
JPH07304872A (ja) * 1994-05-11 1995-11-21 Hidetoshi Tsuchida スルホン化ポリアリーレンスルフィド化合物の製造方法
JPH0948854A (ja) * 1995-08-08 1997-02-18 Res Dev Corp Of Japan ポリ(アリール−p−アリーレンスルホニウム塩)化合物及び該化合物並びにスルホニウム基を含む芳香族高分子化合物の製造方法
JPH10182823A (ja) * 1996-12-27 1998-07-07 Kagaku Gijutsu Shinko Jigyodan ポリ(チオアリーレン)化合物の製造法
JP2006199734A (ja) * 2005-01-18 2006-08-03 Toray Ind Inc ポリアリーレンスルフィドフィルム
JP2010070630A (ja) * 2008-09-18 2010-04-02 Toray Ind Inc 二軸配向ポリアリーレンスルフィドフィルムおよびそれを用いてなる接着材料
JP2015048448A (ja) * 2013-09-03 2015-03-16 Dic株式会社 ポリアリーレンスルフィド樹脂及びその製造方法、並びに成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239213A (ja) * 1992-02-29 1993-09-17 Res Inst For Prod Dev ポリ(アルキル−p−チオフェノキシフェニルスルホニウム塩)化合物
JPH07304872A (ja) * 1994-05-11 1995-11-21 Hidetoshi Tsuchida スルホン化ポリアリーレンスルフィド化合物の製造方法
JPH0948854A (ja) * 1995-08-08 1997-02-18 Res Dev Corp Of Japan ポリ(アリール−p−アリーレンスルホニウム塩)化合物及び該化合物並びにスルホニウム基を含む芳香族高分子化合物の製造方法
JPH10182823A (ja) * 1996-12-27 1998-07-07 Kagaku Gijutsu Shinko Jigyodan ポリ(チオアリーレン)化合物の製造法
JP2006199734A (ja) * 2005-01-18 2006-08-03 Toray Ind Inc ポリアリーレンスルフィドフィルム
JP2010070630A (ja) * 2008-09-18 2010-04-02 Toray Ind Inc 二軸配向ポリアリーレンスルフィドフィルムおよびそれを用いてなる接着材料
JP2015048448A (ja) * 2013-09-03 2015-03-16 Dic株式会社 ポリアリーレンスルフィド樹脂及びその製造方法、並びに成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENICHI OYAIZU ET AL.: "Convenient Syntheses of Methylsulfonioarylene and Thioarylene Polymers from 1,4-bis(Methylsulfinyl)b", JOURNAL OF MACROMOLECULAR SCIENCE, PART A: PURE AND APPLIED CHEMISTRY, vol. Volume 40, Issue 4, JPN6014044998, 2003, pages pages 415-423 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108673A (ja) * 2014-12-02 2016-06-20 Dic株式会社 ポリアリーレンスルフィド繊維及びその製造方法
CN115960354A (zh) * 2022-12-30 2023-04-14 四川大学 一种聚芳醚的纯化方法及高纯度聚芳醚
CN115960354B (zh) * 2022-12-30 2024-05-24 四川大学 一种聚芳醚的纯化方法及高纯度聚芳醚

Also Published As

Publication number Publication date
JP6617905B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
US10982049B2 (en) Polyarylene sulfide resin and manufacturing method therefor, poly(arylene sulfonium salt) and manufacturing method therefor, and sulfoxide
EP3034542B1 (en) Polyarylene sulfide resin, manufacturing method therefor, and molding
JP6607367B2 (ja) ポリアリーレンスルフィドフィルム及びその製造方法
JP6614426B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品
WO2015033855A1 (ja) ポリアリーレンスルフィド繊維及びその製造方法
JP6107959B2 (ja) ポリアリーレンスルフィドフィルム及びその製造方法
JP6617905B2 (ja) ポリアリーレンスルフィドフィルム及びその製造方法
JP6634681B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品、並びに電気自動車部品
JP6634682B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品、並びに電気自動車部品
JP6372700B2 (ja) ポリアリーレンスルフィド繊維及びその製造方法
JP6809048B2 (ja) ポリアリーレンスルフィド樹脂組成物、その成形品およびそれらの製造方法
JP6614427B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品
KR20200122406A (ko) 폴리아릴렌설피드 수지 성형품 및 그 제조 방법
JP6816408B2 (ja) ポリアリーレンスルフィド樹脂組成物及びその成形品
JP6394961B2 (ja) ポリアリーレンスルフィド繊維及びその製造方法
JP2019048995A (ja) ポリアリーレンスルフィド樹脂、及びポリ(アリーレンスルホニウム塩)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R151 Written notification of patent or utility model registration

Ref document number: 6617905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250