JP2016080269A - Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device - Google Patents

Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device Download PDF

Info

Publication number
JP2016080269A
JP2016080269A JP2014212478A JP2014212478A JP2016080269A JP 2016080269 A JP2016080269 A JP 2016080269A JP 2014212478 A JP2014212478 A JP 2014212478A JP 2014212478 A JP2014212478 A JP 2014212478A JP 2016080269 A JP2016080269 A JP 2016080269A
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
partition member
heat exchanging
exchange element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014212478A
Other languages
Japanese (ja)
Inventor
村山 拓也
Takuya Murayama
拓也 村山
洋祐 浜田
Yosuke Hamada
洋祐 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014212478A priority Critical patent/JP2016080269A/en
Publication of JP2016080269A publication Critical patent/JP2016080269A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a full heat exchanging type ventilation device in which hydrophobic ultra fine fibers are applied to form fine irregularity at its surface to attain partition member for full heat exchanging element satisfying both water-repellent property and moisture permeability to show a high resistance against dew condensation even under an environment in which a temperature difference and a humidity difference between an interior side and an exterior side are high.SOLUTION: This invention relates to a partition member 14 for a full heat exchanging element used at a full heat exchanging type ventilator device 2 provided with a full heat exchanging element 4 for heat exchanging between indoor air 15 and outdoor air 16. One surface of a porous sheet becoming a substrate part 18 is provided with an ultra fine fiber part 17. The ultra fine fiber part 17 is made of hydrophobic polymer, the indoor air 15 is flowed to the ultra fine fiber part 17 of the porous sheet and the outdoor air 16 is flowed at the other side so as to form the partition member 14 for a full heat exchanging element.SELECTED DRAWING: Figure 5

Description

本発明は、伝熱性と透湿性を有する全熱交換素子用仕切部材、およびその全熱交換素子用仕切部材を仕切板に用いた全熱交換素子、およびその全熱交換素子を用いた全熱交換形換気装置に関するものである。   The present invention relates to a partition member for a total heat exchange element having heat conductivity and moisture permeability, a total heat exchange element using the partition member for the total heat exchange element as a partition plate, and a total heat using the total heat exchange element The present invention relates to a replaceable ventilation device.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う全熱交換形換気装置が知られている。   2. Description of the Related Art Conventionally, a total heat exchange type ventilator that exchanges heat between air supply and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling or heating.

全熱交換形換気装置には、熱交換を行うための熱交換素子が含まれており、熱交換素子用仕切部材には給気と排気が交じり合わないようにするガスバリア性(主として二酸化炭素バリア性)と伝熱性が求められる。特に、温度と同時に湿度の交換も行う全熱交換素子用の仕切部材に関しては、高い透湿性も合わせて有する必要がある。   The total heat exchange type ventilator includes a heat exchange element for performing heat exchange, and the partition member for the heat exchange element has a gas barrier property (mainly a carbon dioxide barrier) that prevents supply air and exhaust gas from intermingling. Property) and heat conductivity. In particular, a partition member for a total heat exchange element that exchanges humidity at the same time as temperature must also have high moisture permeability.

また、寒冷地や熱帯地など室内外で温湿度差が大きな条件で使用する場合、素子内部に結露・結氷が発生するため、耐水性も必要である。特に、寒冷地の暖房条件では室内外で温湿度差が大きいため結露が起こりやすく、結露対策が必要である。   In addition, when used in indoor and outdoor conditions such as cold or tropical areas, condensation and icing occur inside the element, so water resistance is also required. In particular, under heating conditions in cold regions, condensation is likely to occur because of a large temperature and humidity difference between indoors and outdoors, and countermeasures against condensation are required.

これらを実現するために、この種の全熱交換素子に用いる全熱交換素子用仕切部材は、以下のような構成となっていた。   In order to realize these, the total heat exchange element partition member used for this type of total heat exchange element has the following configuration.

すなわち、セルロースパルプと熱可塑性高分子のナノファイバーを含む構成となっていた。   That is, it was the structure containing the nanofiber of a cellulose pulp and a thermoplastic polymer.

例えば、これに類似する先行文献として下記特許文献1参照。   For example, see the following Patent Document 1 as a similar prior document.

特開2010−248680号公報JP 2010-248680 A

上記従来例の課題は、セルロースパルプをベースに用いることにより、周囲の環境に応じてセルロースが吸湿することにある。上記寒冷地や熱帯地などの室内外で温湿度差が大きな条件で使用する場合、素子内部に結露・結氷が発生することでセルロースが水分を吸収し、膨張する。   The subject of the said prior art example is that cellulose absorbs moisture according to the surrounding environment by using cellulose pulp as a base. When used under conditions where the temperature and humidity are large both indoors and outdoors, such as in cold regions and tropical regions, the cellulose absorbs moisture and expands due to the formation of condensation and icing inside the device.

全熱交換素子は全熱交換形換気装置に入れて用いられるため、製品ごとに一定のサイズが決められており、そのサイズ内に一定の面積の全熱交換素子用仕切部材が収められている。例えば、所定の間隔をおいて全熱交換素子用仕切部材が積層されている静置型熱交換素子では、決められたサイズに切られた全熱交換素子用仕切部材が樹脂枠または間隔板等に固定されており、風路を形成している。   Since the total heat exchange element is used in a total heat exchange type ventilator, a certain size is determined for each product, and a partition member for the total heat exchange element of a certain area is accommodated within the size. . For example, in a stationary heat exchange element in which partition members for total heat exchange elements are laminated at a predetermined interval, the partition member for total heat exchange elements cut to a predetermined size is attached to a resin frame or a spacing plate, etc. It is fixed and forms an air passage.

ここで、セルロースが水分を吸収して膨張すると、固定された全熱交換素子用仕切部材が伸長し、風路をつぶす形で歪みやシワが生じる。そのため、全熱交換素子の通風抵抗が増加し、必要な換気量が得られなくなる恐れがあるという課題が存在した。   Here, when cellulose absorbs moisture and expands, the fixed partition member for the total heat exchange element expands, and distortion and wrinkles are generated in the form of crushing the air path. Therefore, there existed a subject that the ventilation resistance of a total heat exchange element increased and there existed a possibility that required ventilation could not be obtained.

また、全熱交換素子に流れ込む空気は完全に均一な状態ではないため、全熱交換素子内部を流れる風量のバラつきから全熱交換素子内部での熱交換にも分布が生じている。室内外の温湿度条件差が大きい場合は、この熱交換が良い部分ほど結露が発生しやすくなるため、前述のように熱交換が良い部分から通風抵抗が増加し空気が流れなくなるため、結果として素子の熱交換効率が低下するという課題が存在した。   Further, since the air flowing into the total heat exchange element is not completely uniform, there is a distribution in the heat exchange inside the total heat exchange element due to the variation in the amount of air flowing inside the total heat exchange element. When the temperature / humidity difference between the indoor and outdoor is large, the better the heat exchange, the easier it is for condensation to occur.As mentioned above, the ventilation resistance increases from the good heat exchange and the air does not flow. There existed a subject that the heat exchange efficiency of an element fell.

また、従来例では、セルロースパルプ内にナノファイバーを含むことにより、セルロースパルプの湿潤時の強度低下を抑制するするとあるが、セルロースパルプ間隙にナノファイバーを含んでいるため、セルロースの膨潤を抑制する効果は小さく、この構成で前記課題を解決することはできない。   In addition, in the conventional example, by including nanofibers in the cellulose pulp, there is a suppression of strength reduction when the cellulose pulp is wet. However, since nanofibers are included in the gap between the cellulose pulp, the cellulose swelling is suppressed. The effect is small, and this problem cannot be solved with this configuration.

さらにセルロースは親水性の材料のため、表面に結露が付着しやすい。このため、時間経過に従って結露が成長すると、結露が風路を閉塞し、前記のように換気量が低下し、熱交換効率も低下するという課題が存在した。   Furthermore, since cellulose is a hydrophilic material, condensation tends to adhere to the surface. For this reason, when condensation grows over time, there is a problem that the condensation blocks the air passage, reducing the ventilation amount as described above, and reducing the heat exchange efficiency.

そこで本発明は、前記室内外の温湿度差の大きな寒冷地の暖房条件下においても全熱交換素子の換気量の低下および熱交換効率の低下が抑制された熱交換形換気装置を提供することを目的とする。   Accordingly, the present invention provides a heat exchange type ventilator in which a decrease in the ventilation amount and a decrease in heat exchange efficiency of the total heat exchange element are suppressed even under heating conditions in a cold region where the temperature and humidity difference between the inside and outside of the room is large. With the goal.

そして、この目的を達成するために、本発明は、屋内空気と屋外空気を熱交換する全熱交換素子を備えた全熱交換形換気装置に用いる全熱交換素子用仕切部材であって、基材となる多孔質シートの片面に極細繊維層を備え、前記極細繊維層は疎水性高分子からなり、前記多孔質シートの前記極細繊維層側に前記屋内空気を流通させ、他方の側に前記屋外空気を流通させることを特徴とするものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a partition member for a total heat exchange element used in a total heat exchange type ventilator including a total heat exchange element for exchanging heat between indoor air and outdoor air, Provided with an ultrafine fiber layer on one side of the porous sheet as a material, the ultrafine fiber layer is made of a hydrophobic polymer, the indoor air is circulated on the ultrafine fiber layer side of the porous sheet, and the other side It is characterized by circulating outdoor air, thereby achieving the intended purpose.

本発明は、屋内空気と屋外空気を熱交換する全熱交換素子を備えた全熱交換形換気装置に用いる全熱交換素子用仕切部材であって、基材となる多孔質シートの片面に極細繊維層を備え、前記極細繊維層は疎水性高分子からなり、前記多孔質シートの前記極細繊維層側に前記屋内空気を流通させ、他方の側に前記屋外空気を流通させることを特徴とするものであり、室内外の温湿度差の大きな寒冷地の暖房条件下においても全熱交換素子の換気量の低下および熱交換効率の低下が抑制された熱交換形換気装置を得ることができるものである。   The present invention relates to a partition member for a total heat exchange element used in a total heat exchange type ventilator provided with a total heat exchange element for exchanging heat between indoor air and outdoor air, and is extremely fine on one side of a porous sheet serving as a base material. It comprises a fiber layer, the ultrafine fiber layer is made of a hydrophobic polymer, and the indoor air is circulated on the ultrafine fiber layer side of the porous sheet, and the outdoor air is circulated on the other side. What can obtain a heat exchange type ventilator in which a decrease in ventilation volume and a decrease in heat exchange efficiency of a total heat exchange element are suppressed even under heating conditions in a cold district with a large temperature and humidity difference between indoor and outdoor It is.

すなわち、本発明によれば、疎水性高分子からなる極細繊維層が強い撥水性を発揮することを利用したものであり、極細繊維層が結露をはじくことによって、全熱交換素子に通風する圧力のみで結露を排水することが可能となり、結露による換気量の低下および熱交換効率の低下を抑制することができる。   That is, according to the present invention, it is utilized that the ultrafine fiber layer made of a hydrophobic polymer exhibits strong water repellency, and the pressure that ventilates all the heat exchange elements when the ultrafine fiber layer repels condensation. It becomes possible to drain the dew only by this, and it is possible to suppress a decrease in ventilation amount and a decrease in heat exchange efficiency due to the dew condensation.

以下により詳細に説明する。極細繊維によって層を形成することにより、層の表面には無数の極細繊維による非常に細かい凹凸を形成することができる。さらに疎水性高分子からなる極細繊維を用いることでこの細かい凹凸が疎水性を帯び、凹凸が強い撥水性を示す状態となる。   This will be described in more detail below. By forming a layer with ultrafine fibers, very fine irregularities due to countless ultrafine fibers can be formed on the surface of the layer. Further, by using ultrafine fibers made of a hydrophobic polymer, the fine irregularities become hydrophobic and the irregularities exhibit a strong water repellency.

この凹凸がその撥水性によって表面に付着した結露を球に近い形状に保つことにより、結露と全熱交換素子用仕切部材との摩擦を軽減し、全熱交換素子に流れる空気の圧力でも結露を移動させることができる。   By maintaining the condensate that adheres to the surface due to the water repellency in a shape close to a sphere, the friction between the condensation and the partition member for the total heat exchange element is reduced, and dew condensation occurs even with the pressure of the air flowing through the total heat exchange element. Can be moved.

ここで、室内外の温湿度差の大きな冬季の寒冷地の暖房条件下において、屋内空気は暖房や人の呼気などから湿気を含んだ状態であり、屋外空気は乾燥した状態となっている。全熱交換素子用仕切部材の両面を屋内空気と屋外空気がそれぞれ流れて熱交換すると、全熱交換素子用仕切部材の屋内空気が流れる面で結露が起こるが、屋内空気が流れる面は強い撥水性を示す極細繊維層で形成されているため、結露による通風抵抗の増加が生じないため、全熱交換素子の通風抵抗の増加、あるいは全熱交換素子に流れる空気の偏りの悪化による熱交換効率の低下を抑制できる。   Here, under heating conditions in cold regions in winter when the temperature / humidity difference between the inside and outside of the room is large, the indoor air is in a state of containing moisture from heating or human breath, and the outdoor air is in a dry state. When indoor air and outdoor air flow on both sides of the partition member for the total heat exchange element to exchange heat, condensation occurs on the surface of the partition member for the total heat exchange element where the indoor air flows. Since it is formed with an ultrafine fiber layer that shows water, there is no increase in ventilation resistance due to condensation, so heat exchange efficiency due to increased ventilation resistance of all heat exchange elements or worsening of the bias of air flowing through all heat exchange elements Can be suppressed.

さらに、極細繊維を用いることにより、上記効果のみならず、全熱交換素子にとって重要な透湿性能を向上させるという効果も得ることができる。すなわち、基材として多孔質シートを用いることにより、全熱交換素子用仕切部材に必要な強度を確保することが出来るため、極細繊維層はガスバリア性と透湿性を備えていればよい。ガスバリア性を確保するためには、密に形成された層が必要であるが、極細繊維を用いることで、繊維の細さから、繊維間の空隙を小さくすることができるため、上記密に形成された層を得ることができる。さらに、同じく繊維が細いため、上記密に形成された層を薄くすることができ、高い透湿性能を得ることができる。その上、繊維径が細い繊維で構成されていることにより、細かい空隙を多数備えることができるため、毛細管現象により透湿性を高めることができる。   Furthermore, by using ultrafine fibers, not only the above effects but also the effect of improving the moisture permeability performance important for the total heat exchange element can be obtained. That is, by using a porous sheet as the base material, the strength required for the partition member for the total heat exchange element can be ensured, and therefore the ultrafine fiber layer only needs to have gas barrier properties and moisture permeability. In order to ensure gas barrier properties, a densely formed layer is necessary. However, by using ultrafine fibers, the gap between the fibers can be reduced due to the fineness of the fibers, so the above densely formed layers are used. Layer can be obtained. Furthermore, since the fibers are also thin, the densely formed layer can be thinned, and high moisture permeability can be obtained. In addition, since the fiber has a small fiber diameter, a large number of fine voids can be provided, so that the moisture permeability can be increased by a capillary phenomenon.

以上のことから、疎水性高分子からなる極細繊維層が強い撥水性を発揮することを利用したものであり、極細繊維層が結露をはじくことによって、全熱交換素子に通風する圧力のみで結露を排水することが可能となり、室内外の温湿度差の大きな寒冷地の暖房条件下においても結露による換気量の低下および熱交換効率の低下を抑制することができ、熱交換効率の高い全熱交換形換気装置を得ることができる。   Based on the above, it is based on the fact that the ultrafine fiber layer made of a hydrophobic polymer exhibits strong water repellency, and when the ultrafine fiber layer repels condensation, dew condensation occurs only with the pressure that passes through the total heat exchange element. It is possible to drain water, and even under the heating conditions in cold areas where there is a large temperature and humidity difference between the outside and the room, it is possible to suppress a decrease in ventilation volume due to condensation and a decrease in heat exchange efficiency. An exchangeable ventilator can be obtained.

本発明の実施の形態1にかかる全熱交換形換気装置の設置例を示す概要図Schematic diagram showing an installation example of the total heat exchange ventilator according to the first embodiment of the present invention. 同全熱交換形換気装置の構造を示す図Diagram showing the structure of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す斜視図A perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す分解斜視図An exploded perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す断面図Sectional drawing which shows the partition member for total heat exchange elements of the total heat exchange type ventilator

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

(実施の形態1)
図1において、家1の屋内に全熱交換形換気装置2が設置されている。
(Embodiment 1)
In FIG. 1, a total heat exchange type ventilator 2 is installed in a house 1.

例として日本の冬季を挙げると、屋内からの空気を、黒色矢印のごとく、全熱交換形換気装置2を介して屋外に放出する。   Taking winter in Japan as an example, indoor air is discharged to the outdoors through a total heat exchange type ventilator 2 as indicated by a black arrow.

また、屋外の空気は、白色矢印のごとく、全熱交換形換気装置2を介して室内にとり入れる。   Outdoor air is taken into the room through the total heat exchange type ventilator 2 as indicated by the white arrow.

そして、このことにより換気を行うとともに、この換気時に、屋内空気の熱を屋外空気へと伝達し、不用意な熱の放出を抑制しているのである。   And while ventilating by this, the heat of indoor air is transmitted to outdoor air at the time of this ventilation, and the discharge | emission of inadvertent heat is suppressed.

全熱交換形換気装置2は図2に示すように、本体ケース3に全熱交換素子4を配置し、ファン5を駆動することで、屋内空気を内気口6から吸い込み、全熱交換素子4、ファン5を経由し、排気口7から屋外へと排出する。   As shown in FIG. 2, the total heat exchange type ventilator 2 has a total heat exchange element 4 disposed in the main body case 3, and drives the fan 5, thereby sucking indoor air from the interior air port 6, and the total heat exchange element 4. Then, the air is discharged from the exhaust port 7 to the outside via the fan 5.

また、ファン8を駆動することで、屋外空気を外気口9から吸い込み、全熱交換素子4、ファン8を経由し、給気口10から屋内へと取り入れる構成となっている。   Further, by driving the fan 8, outdoor air is sucked from the outside air port 9 and taken into the indoor through the air supply port 10 via the total heat exchange element 4 and the fan 8.

また、前記全熱交換素子4は、図3、図4に示すように、枠体11の矩形開口部に全熱交換素子用仕切部材14を装着したものを、屋内空気風路リブ12および屋外空気風路リブ13を交互に挟んで所定間隔で配置し、隣接する枠体11間に上述した屋内空気15、次に隣接する枠体11間に上述した屋外空気16を流すことで、熱交換を行わせる構造となっている。   Further, as shown in FIGS. 3 and 4, the total heat exchange element 4 is formed by mounting the total heat exchange element partition member 14 on the rectangular opening of the frame 11, and the indoor air air duct rib 12 and the outdoor. Heat exchange is performed by arranging air air passage ribs 13 alternately at predetermined intervals, and flowing the indoor air 15 described above between adjacent frame bodies 11 and the outdoor air 16 described above between adjacent frame bodies 11. It has a structure that makes it.

冬季の場合、屋内空気15は暖房や人の呼気などから湿気を含んだ状態であり、屋外空気16は乾燥した状態となっている。全熱交換素子用仕切部材14の片面を屋内空気15と屋外空気16がそれぞれ流れることで、全熱交換素子用仕切部材14を介した熱伝達により、屋内空気15の熱が屋外空気16に伝えられる。また、全熱交換素子用仕切部材14を介した湿気伝達により、屋内空気15の水分が屋外空気16に伝えられる。   In the winter season, the indoor air 15 is in a state of containing moisture from heating or human breath, and the outdoor air 16 is in a dry state. The indoor air 15 and the outdoor air 16 each flow on one side of the partition member 14 for the total heat exchange element, whereby the heat of the indoor air 15 is transmitted to the outdoor air 16 by the heat transfer via the partition member 14 for the total heat exchange element. It is done. Further, moisture in the indoor air 15 is transmitted to the outdoor air 16 by moisture transmission through the partition member for total heat exchange element 14.

本発明では、図5に断面を示したように、屋内空気15と屋外空気16を熱交換する全熱交換素子4を備えた全熱交換形換気装置2に用いる全熱交換素子用仕切部材14であって、基材部18となる多孔質シートの片面に極細繊維部17を備え、極細繊維部17は疎水性高分子からなり、多孔質シートの極細繊維部17側に屋内空気15を流通させ、他方の側に屋外空気16を流通させることを特徴とする全熱交換素子用仕切部材14である。すなわち、全熱交換素子4において、屋内空気15が流通する面に全熱交換素子用仕切部材14の極細繊維部17を配置し、屋外空気16が流通する面に全熱交換素子用仕切部材14の基材部18を配置する構成とする。   In the present invention, as shown in the cross section of FIG. 5, the total heat exchange element partition member 14 used in the total heat exchange type ventilator 2 including the total heat exchange element 4 for exchanging heat between the indoor air 15 and the outdoor air 16. In addition, the fine fiber portion 17 is provided on one surface of the porous sheet to be the base material portion 18, the fine fiber portion 17 is made of a hydrophobic polymer, and the indoor air 15 is circulated to the fine fiber portion 17 side of the porous sheet. It is the partition member 14 for total heat exchange elements characterized by making the outdoor air 16 distribute | circulate to the other side. That is, in the total heat exchange element 4, the ultrafine fiber portion 17 of the total heat exchange element partition member 14 is disposed on the surface through which the indoor air 15 flows, and the total heat exchange element partition member 14 is disposed on the surface through which the outdoor air 16 flows. The base material portion 18 is arranged.

極細繊維部17の表面には無数の極細繊維19による非常に細かい凹凸が形成される。さらに疎水性高分子からなる極細繊維19を用いることでこの細かい凹凸が疎水性を帯び、凹凸が強い撥水性を示す状態となる。   Very fine irregularities are formed on the surface of the ultrafine fiber portion 17 by countless ultrafine fibers 19. Further, by using the ultrafine fiber 19 made of a hydrophobic polymer, the fine irregularities become hydrophobic and the irregularities exhibit a strong water repellency.

この凹凸がその撥水性によって表面に付着した結露を球に近い形状に保つことにより、結露と全熱交換素子用仕切部材14との摩擦を軽減し、全熱交換素子4に流れる空気の圧力で結露を移動させることができる。   By maintaining the condensate on the surface due to the water repellency in a shape close to a sphere, the unevenness reduces the friction between the dew and the partition member 14 for the total heat exchange element, and the pressure of the air flowing through the total heat exchange element 4 Condensation can be moved.

ここで、室内外の温湿度差の大きな冬季の寒冷地の暖房条件下において、屋内空気15は暖房や人の呼気などから湿気を含んだ状態であり、屋外空気16は乾燥した状態となっている。全熱交換素子用仕切部材14の両面を屋内空気15と屋外空気16がそれぞれ流れて熱交換すると、全熱交換素子用仕切部材14の屋内空気15が流れる面で結露が起こるが、屋内空気15が流れる面は強い撥水性を示す極細繊維部17で形成されているため、結露による通風抵抗の増加が生じないため、全熱交換素子4の通風抵抗の増加、あるいは全熱交換素子4に流れる空気の偏りの悪化による熱交換効率の低下を抑制できる。   Here, the indoor air 15 is in a state of containing moisture from heating or human breath under the heating conditions in the cold district in winter where the temperature / humidity difference between the inside and outside is large, and the outdoor air 16 is in a dry state. Yes. When the indoor air 15 and the outdoor air 16 flow through both surfaces of the partition member for total heat exchange element 14 to exchange heat, condensation occurs on the surface of the partition member for total heat exchange element 14 through which the indoor air 15 flows, but the indoor air 15 Since the surface through which the air flows is formed by the ultrafine fiber portion 17 exhibiting strong water repellency, an increase in the airflow resistance due to condensation does not occur, and therefore the airflow resistance of the total heat exchange element 4 increases or the total heat exchange element 4 flows. It is possible to suppress a decrease in heat exchange efficiency due to deterioration of the air bias.

さらに、極細繊維19を用いることにより、上記効果のみならず、全熱交換素子4にとって重要な透湿性能を向上させるという効果も得ることができる。すなわち、基材部18が全熱交換素子用仕切部材14に必要な強度を確保することで、極細繊維部17はガスバリア性と透湿性を備えていればよい。ガスバリア性を確保するためには、密に形成された層が必要であるが、極細繊維19を用いることで、繊維の細さから、繊維間の空隙を小さくすることができるため、上記密に形成された層を得ることができる。さらに、同じく繊維が細いため、上記密に形成された層を薄くすることができ、高い透湿性能を得ることができる。その上、繊維径が細い繊維で構成されていることにより、細かい空隙を多数備えることができるため、毛細管現象により透湿性を高めることができる。   Furthermore, by using the ultrafine fibers 19, not only the above effects but also an effect of improving the moisture permeability performance important for the total heat exchange element 4 can be obtained. That is, it is only necessary for the ultrafine fiber portion 17 to have gas barrier properties and moisture permeability by ensuring that the base material portion 18 has a strength necessary for the partition member 14 for the total heat exchange element. In order to ensure the gas barrier property, a densely formed layer is necessary, but by using the ultrafine fiber 19, the gap between the fibers can be reduced from the fineness of the fiber. A formed layer can be obtained. Furthermore, since the fibers are also thin, the densely formed layer can be thinned, and high moisture permeability can be obtained. In addition, since the fiber has a small fiber diameter, a large number of fine voids can be provided, so that the moisture permeability can be increased by a capillary phenomenon.

透湿性の向上は、屋外空気16と屋内空気15との間の水分の移動を促進するため、全熱交換素子4で生じる熱の移動に応じて水分を移動させることが可能となり、空気が露点以下に冷やされることによる結露の発生を抑制するという効果も得ることができる。   The improvement in moisture permeability promotes the movement of moisture between the outdoor air 16 and the indoor air 15, so that the moisture can be moved according to the movement of heat generated in the total heat exchange element 4, and the air has a dew point. The effect of suppressing generation | occurrence | production of the dew condensation by being cooled below can also be acquired.

以上のことから、疎水性高分子からなる極細繊維部17が強い撥水性を発揮することを利用し、極細繊維部17が結露をはじくことによって、全熱交換素子4に通風する圧力のみで結露を排水することが可能となり、室内外の温湿度差の大きな寒冷地の暖房条件下においても結露による換気量の低下および熱交換効率の低下を抑制することができ、熱交換効率の高い全熱交換形換気装置2を得ることができる。   From the above, using the fact that the ultrafine fiber portion 17 made of a hydrophobic polymer exhibits strong water repellency, the ultrafine fiber portion 17 repels dew condensation, so that dew condensation can be achieved only by the pressure passing through the total heat exchange element 4. It is possible to drain water, and even under the heating conditions in cold areas where there is a large temperature and humidity difference between the outside and the room, it is possible to suppress a decrease in ventilation volume due to condensation and a decrease in heat exchange efficiency. Exchangeable ventilation device 2 can be obtained.

極細繊維部17の厚みに関しては、基材部18を覆うことができて、必要なガスバリア性と透湿性を得られる範囲であれば特に制限は無いが、好ましくは15μmから1μmの範囲、さらに好ましくは、10μmから5μmの範囲である。   The thickness of the ultrafine fiber portion 17 is not particularly limited as long as the base material portion 18 can be covered and the necessary gas barrier properties and moisture permeability can be obtained, but preferably in the range of 15 μm to 1 μm, more preferably Is in the range of 10 μm to 5 μm.

また、極細繊維19の繊維径が100nmから1500nmであることを特徴とする材料を用いてもよい。   Moreover, you may use the material characterized by the fiber diameter of the ultrafine fiber 19 being 100 nm to 1500 nm.

この繊維径をもつことにより、繊維同士の重なりによって極細繊維部17の表面にマイクロオーダーからナノオーダーの細かい凹凸が生じる。疎水性の極細繊維19でこの凹凸を形成した場合、例えば水の接触角が100°から140°となるような撥水性の強い表面を得ることができる。   By having this fiber diameter, fine irregularities of micro-order to nano-order are generated on the surface of the ultrafine fiber portion 17 by overlapping of the fibers. When this unevenness is formed by the hydrophobic ultrafine fiber 19, a surface having a strong water repellency such that the contact angle of water is 100 ° to 140 ° can be obtained.

さらに、この繊維径をもつことにより、極細繊維19間の空隙を小さくでき、空隙に働く毛細管現象による透湿性の向上を図ることができる。   Furthermore, by having this fiber diameter, the space | gap between the ultrafine fibers 19 can be made small, and the moisture permeability improvement by the capillary phenomenon which acts on a space | gap can be aimed at.

前記機能を得るための極細繊維部17の空隙は、例えばパームポロシメータ等の測定器具を用いて測定される平均細孔径が0.1μmから10μmの範囲が好ましく、さらに0.3μmから5μmの範囲がより好ましい。ただし、極細繊維19の材質および断面形状によって特性は変化するため、必要なガスバリア性と透湿性を得られる範囲であれば上記範囲に限定されない。   The gap of the ultrafine fiber part 17 for obtaining the function is preferably in the range of 0.1 to 10 μm, and more preferably in the range of 0.3 to 5 μm, for example, with an average pore diameter measured using a measuring instrument such as a palm porosimeter. More preferred. However, since the characteristics change depending on the material and the cross-sectional shape of the ultrafine fibers 19, the characteristics are not limited to the above ranges as long as necessary gas barrier properties and moisture permeability can be obtained.

また、極細繊維部17の目付が0.5g/m2から10g/m2であるものを用いてもよい。 Also, the basis weight of the microfine fiber portion 17 may also be used as from 0.5 g / m 2 is 10 g / m 2.

極細繊維部17の目付が0.5g/m2を下回ると、極細繊維19が付着せずに基材部18が露出する部位が生じる恐れがあり、不適である。また、目付が10g/m2を上回ると、全熱交換素子用仕切部材14としての透湿性が不足する恐れがある。好ましくは、1.0g/m2から5g/m2、さらに好ましくは2.0g/m2から4.0g/m2である。 If the basis weight of the ultrafine fiber portion 17 is less than 0.5 g / m 2 , there is a possibility that a portion where the ultrafine fiber 19 does not adhere and the base material portion 18 is exposed is unsuitable. On the other hand, if the basis weight exceeds 10 g / m 2 , the moisture permeability as the total heat exchange element partition member 14 may be insufficient. Preferably, it is 1.0 g / m 2 to 5 g / m 2 , more preferably 2.0 g / m 2 to 4.0 g / m 2 .

また、基材部18が熱可塑性樹脂を含む材質で構成されていてもよい。   Moreover, the base material part 18 may be comprised with the material containing a thermoplastic resin.

基材部18が熱可塑性樹脂を含むことで、基材部18と極細繊維部17を基材部18の樹脂で熱溶着することが可能となる。基材部18と極細繊維部17とを接着する必要性は低いが、接着されることによって結露等の原因により全熱交換素子用仕切部材14から極細繊維部17が失われる危険性を下げることができるため、全熱交換素子用仕切部材14の耐久性を向上させることができる。   When the base material part 18 contains a thermoplastic resin, the base material part 18 and the ultrafine fiber part 17 can be heat-welded with the resin of the base material part 18. Although the necessity to adhere | attach the base material part 18 and the ultrafine fiber part 17 is low, reducing the danger that the ultrafine fiber part 17 will be lost from the partition member 14 for total heat exchange elements by causes, such as dew condensation, by bonding. Therefore, the durability of the partition member for total heat exchange element 14 can be improved.

この場合、基材部18と極細繊維部17を接着剤等により接着すると、接着剤が基材部18や極細繊維部17に浸みこむことで透湿抵抗となり、全熱交換素子用仕切部材14の透湿性能が低下する。しかし、基材部18が熱可塑性樹脂を含む材質で構成され、基材部18と極細繊維部17を熱によって溶着することで、基材部18と極細繊維部17の接点で、両者を溶着することが可能となる。このことにより、基材部18や極細繊維部17の空隙が接着によって減少する危険性を低下させることができるため、透湿性が高く、耐久性のある全熱交換素子用仕切部材14を得ることができる。   In this case, when the base material portion 18 and the ultrafine fiber portion 17 are bonded with an adhesive or the like, the adhesive soaks into the base material portion 18 or the ultrafine fiber portion 17 to provide moisture permeability resistance, and the partition member 14 for the total heat exchange element. The moisture permeation performance is reduced. However, the base material portion 18 is made of a material containing a thermoplastic resin, and the base material portion 18 and the ultrafine fiber portion 17 are welded by heat, so that both are welded at the contact point of the base material portion 18 and the ultrafine fiber portion 17. It becomes possible to do. Thereby, since the danger that the space | gap of the base material part 18 and the microfiber part 17 reduces by adhesion | attachment can be reduced, the moisture-permeable and durable partition member 14 for total heat exchange elements is obtained. Can do.

さらに、接着剤が表面に露出してしまうと、極細繊維部17の撥水性が失われる恐れがあるため、基材部18と極細繊維部17の接点で溶着することにより、全熱交換素子用仕切部材14の撥水性の低下を抑制することができる。   Furthermore, if the adhesive is exposed on the surface, the water repellency of the ultrafine fiber portion 17 may be lost. Therefore, by welding at the contact point between the base material portion 18 and the ultrafine fiber portion 17, the total heat exchange element is used. A decrease in water repellency of the partition member 14 can be suppressed.

また、全熱交換素子4に、前記構成の全熱交換素子用仕切部材14を用いた構成としてもよい。   Moreover, it is good also as a structure using the partition member 14 for the total heat exchange elements of the said structure for the total heat exchange element 4. FIG.

この構成により、撥水性が高く、透湿性能の高い全熱交換素子用仕切部材14を用いることにより、結露に強い全熱交換素子4を得ることが出来る。   With this configuration, by using the partition member 14 for the total heat exchange element having high water repellency and high moisture permeability, the total heat exchange element 4 resistant to condensation can be obtained.

また、全熱交換形換気装置2に、前記構成の全熱交換素子4を用いた構成としてもよい。   Moreover, it is good also as a structure which used the total heat exchange element 4 of the said structure for the total heat exchange type | formula ventilation apparatus 2. FIG.

この構成により、潜熱交換効率の高い全熱交換素子4を用いることにより、結露に強く全熱交換効率の高い全熱交換形換気装置2を得ることが出来る。   With this configuration, by using the total heat exchange element 4 having a high latent heat exchange efficiency, it is possible to obtain the total heat exchange type ventilator 2 that is resistant to condensation and has a high total heat exchange efficiency.

なお、基材部18としては、多孔質シートであれば特に制限されないが、例えば不織布、プラスチックフィルム、織布が挙げられる。材質としては、例えばポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリフッ化ビニリデン等が挙げられる。   The substrate portion 18 is not particularly limited as long as it is a porous sheet, and examples thereof include a nonwoven fabric, a plastic film, and a woven fabric. Examples of the material include polypropylene, polyethylene, polytetrafluoroethylene, polyester, and polyvinylidene fluoride.

なお、基材部18の厚みは、25μm以上150μm以下が好ましく、40μm以上100μm以下が特に好ましいがこれに制限されない。厚みが25μm未満では、全熱交換素子用仕切部材14として必要な強度が得られない恐れがあり、厚みが150μmよりも大きくなると全熱交換素子用仕切部材14として必要な透湿性能が得られない恐れがある。   In addition, the thickness of the base material portion 18 is preferably 25 μm or more and 150 μm or less, and particularly preferably 40 μm or more and 100 μm or less, but is not limited thereto. If the thickness is less than 25 μm, the strength required for the partition member 14 for the total heat exchange element may not be obtained. If the thickness exceeds 150 μm, the moisture permeability required for the partition member 14 for the total heat exchange element is obtained. There is no fear.

なお、極細繊維19の材質も、疎水性高分子からなるものであって、例えばポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリフッ化ビニリデン等が挙げられる。また、製造方法としては、メルトブローン法、静電紡糸法等が挙げられるがこれに限らず既知の手法を用いることが出来る。   The material of the ultrafine fiber 19 is also made of a hydrophobic polymer, and examples thereof include polypropylene, polyethylene, polytetrafluoroethylene, polyester, and polyvinylidene fluoride. In addition, examples of the manufacturing method include a melt blown method and an electrostatic spinning method, but are not limited thereto, and a known method can be used.

以上のように本実施形態にかかる全熱交換素子用仕切部材は、室内外の温湿度差の大きな寒冷地の暖房条件下においても結露の影響を受けにくい全熱交換素子を提供するものであって、全熱交換形換気装置等に用いる全熱交換素子用仕切部材として有用である。   As described above, the partition member for a total heat exchange element according to the present embodiment provides a total heat exchange element that is not easily affected by condensation even under heating conditions in a cold district where the temperature and humidity difference between the interior and the exterior is large. Thus, it is useful as a partition member for a total heat exchange element used in a total heat exchange type ventilator.

1 家
2 全熱交換形換気装置
3 本体ケース
4 全熱交換素子
5 ファン
6 内気口
7 排気口
8 ファン
9 外気口
10 給気口
11 枠体
12 屋内空気風路リブ
13 屋外空気風路リブ
14 全熱交換素子用仕切部材
15 屋内空気
16 屋外空気
17 極細繊維部
18 基材部
19 極細繊維
DESCRIPTION OF SYMBOLS 1 House 2 Total heat exchange type ventilator 3 Main body case 4 Total heat exchange element 5 Fan 6 Inside air port 7 Exhaust port 8 Fan 9 Outside air port 10 Air supply port 11 Frame 12 Indoor air wind path rib 13 Outdoor air wind path rib 14 Partition member 15 for total heat exchange element Indoor air 16 Outdoor air 17 Extra fine fiber part 18 Substrate part 19 Extra fine fiber

Claims (6)

屋内空気と屋外空気を熱交換する全熱交換素子を備えた全熱交換形換気装置に用いる全熱交換素子用仕切部材であって、基材となる多孔質シートの片面に極細繊維層を備え、前記極細繊維層は疎水性高分子からなり、前記多孔質シートの前記極細繊維層側に前記屋内空気を流通させ、他方の側に前記屋外空気を流通させることを特徴とする全熱交換素子用仕切部材。 A partition member for a total heat exchange element used in a total heat exchange type ventilator having a total heat exchange element for exchanging heat between indoor air and outdoor air, and having an ultrafine fiber layer on one side of a porous sheet as a base material The microfiber layer is made of a hydrophobic polymer, and the indoor air is circulated on the microfiber layer side of the porous sheet and the outdoor air is circulated on the other side. Partition member. 極細繊維の繊維径が100nmから1500nmであることを特徴とする請求項1記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein the fiber diameter of the ultrafine fiber is 100 nm to 1500 nm. 極細繊維の目付が0.5g/m2から10g/m2であることを特徴とする請求項1または2に記載の全熱交換素子用仕切部材。 3. The partition member for a total heat exchange element according to claim 1, wherein the basis weight of the ultrafine fiber is 0.5 g / m 2 to 10 g / m 2 . 基材に熱可塑性樹脂を含むことを特徴とする請求項1〜3のいずれか一項に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to any one of claims 1 to 3, wherein the base material includes a thermoplastic resin. 請求項1〜4のいずれか一項に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 The total heat exchange element using the partition member for total heat exchange elements as described in any one of Claims 1-4. 請求項5に記載の全熱交換素子を用いた全熱交換形換気装置。 A total heat exchange type ventilator using the total heat exchange element according to claim 5.
JP2014212478A 2014-10-17 2014-10-17 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device Pending JP2016080269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212478A JP2016080269A (en) 2014-10-17 2014-10-17 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212478A JP2016080269A (en) 2014-10-17 2014-10-17 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Publications (1)

Publication Number Publication Date
JP2016080269A true JP2016080269A (en) 2016-05-16

Family

ID=55958177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212478A Pending JP2016080269A (en) 2014-10-17 2014-10-17 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Country Status (1)

Country Link
JP (1) JP2016080269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device
WO2019026823A1 (en) * 2017-07-31 2019-02-07 王子ホールディングス株式会社 Sheet for total heat exchangers, element for total heat exchangers, and total heat exchanger
JP2020125893A (en) * 2019-02-06 2020-08-20 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device
WO2019026823A1 (en) * 2017-07-31 2019-02-07 王子ホールディングス株式会社 Sheet for total heat exchangers, element for total heat exchangers, and total heat exchanger
JPWO2019026823A1 (en) * 2017-07-31 2020-06-11 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
JP7173012B2 (en) 2017-07-31 2022-11-16 王子ホールディングス株式会社 TOTAL HEAT EXCHANGER SHEET, TOTAL HEAT EXCHANGER ELEMENT, AND TOTAL HEAT EXCHANGER
JP2020125893A (en) * 2019-02-06 2020-08-20 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger

Similar Documents

Publication Publication Date Title
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP5506441B2 (en) Total heat exchange element and total heat exchanger
TWI525294B (en) Heat exchange components and air conditioning devices
JP6357651B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
US20100032145A1 (en) Heat conduction unit with improved laminar
US20110209858A1 (en) Indirect Evaporative Cooling Apparatus
US20140262125A1 (en) Energy exchange assembly with microporous membrane
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP2008089199A (en) Total enthalpy heat exchanger
JP2011237157A (en) Total heat exchange element of heat exchanger
JP5987854B2 (en) Heat exchange element and heat exchanger
JP2011179800A (en) Air cleaning device with humidifying function
JP6194472B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2013015286A (en) Total heat exchanger, and method for manufacturing partition plate used therefor
JP2015059703A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
JP2013092320A (en) Air conditioning device
JP6364618B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2020034242A (en) Heat exchange element and heat exchange type ventilation device using the same
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP2020051655A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2019060582A (en) Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device
CN210118949U (en) Air deflector of air conditioner and air conditioner
JP6167325B2 (en) Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520