JP5987854B2 - Heat exchange element and heat exchanger - Google Patents

Heat exchange element and heat exchanger Download PDF

Info

Publication number
JP5987854B2
JP5987854B2 JP2014045855A JP2014045855A JP5987854B2 JP 5987854 B2 JP5987854 B2 JP 5987854B2 JP 2014045855 A JP2014045855 A JP 2014045855A JP 2014045855 A JP2014045855 A JP 2014045855A JP 5987854 B2 JP5987854 B2 JP 5987854B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange element
resin layer
partition member
spacing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014045855A
Other languages
Japanese (ja)
Other versions
JP2015169401A (en
Inventor
鴇崎 晋也
晋也 鴇崎
一 外川
一 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014045855A priority Critical patent/JP5987854B2/en
Publication of JP2015169401A publication Critical patent/JP2015169401A/en
Application granted granted Critical
Publication of JP5987854B2 publication Critical patent/JP5987854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、例えば室外から室内への給気と、室内から室外への排気とを同時に行う換気装置等に用いられる熱交換素子及び熱交換器に関するものである。   The present invention relates to a heat exchange element and a heat exchanger that are used in, for example, a ventilator that performs air supply from the outside to the room and exhaust from the room to the outside at the same time.

近年、暖房及び冷房などの空調機器が発達かつ普及し、空調装置を用いた居住区域が拡大するにつれて、温度及び湿度が交換できる換気用の熱交換器に対する重要性も高まっている。こうした熱交換器には熱交換する要素部品として熱交換素子が搭載されている。熱交換を行うための熱交換素子では、給気流路と排気流路とが、仕切部材を挟んで互いに独立した流路として形成され、仕切部材同士の間隔は間隔保持部材で保持されている。   In recent years, as air-conditioning equipment such as heating and cooling has been developed and spread, and the living area using the air-conditioning apparatus has expanded, the importance of a heat exchanger for ventilation that can exchange temperature and humidity has increased. In such a heat exchanger, a heat exchange element is mounted as an element part for heat exchange. In a heat exchange element for performing heat exchange, an air supply channel and an exhaust channel are formed as channels independent of each other with a partition member interposed therebetween, and the interval between the partition members is held by a spacing member.

熱交換素子に要求される特性としては、給気流と排気流間で顕熱と同時に潜熱を交換する性能(熱交換効率)が高いことや、屋外から屋内に吸込まれる新鮮な外気と屋内から屋外へ排気される汚れた空気とが混合しないこと(換気性)が求められる。更に、換気を行なうために気流を流通させるためのファンやブロワ等の送風装置における消費電力を抑え、熱交換器の運転音を低く抑えるために、各気流が流通する際の通風抵抗(圧力損失、静圧損失とも言う)が極力低いことも求められる。近年、空調機器の省エネルギー化の要求の高まりと伴に、これら熱交換素子に要求される特性の向上が益々求められている。また、熱交換器の普及に伴い、給気流と排気流との温度差が大きい寒冷地や浴室・温水プールなどにも熱交換器が設置されるようになってきた。このような環境では、例えば室内側で空調が行われていない状況での熱交換器の運転開始時などに、結露には至らないものの、給気流および排気流ともに湿度が高くなり、一時的に熱交換素子が非常に高湿度な環境に晒されることとなる。このため、近年、熱交換素子に対して高湿度環境に対する耐性も要求されている。   The characteristics required for the heat exchange element are high performance (heat exchange efficiency) for exchanging latent heat at the same time as sensible heat between the supply air flow and the exhaust air flow. There must be no mixing (ventilation) with dirty air exhausted outdoors. Furthermore, in order to reduce the power consumption in the air blower such as a fan or blower for circulating the air flow for ventilation and to keep the operating sound of the heat exchanger low, the ventilation resistance (pressure loss when each air flow flows) , Also called static pressure loss) is required to be as low as possible. In recent years, with the increasing demand for energy saving of air conditioners, improvement in characteristics required for these heat exchange elements has been increasingly demanded. In addition, with the widespread use of heat exchangers, heat exchangers have also been installed in cold districts, bathrooms, and hot water pools where the temperature difference between the supply air flow and the exhaust air flow is large. In such an environment, for example, at the start of operation of the heat exchanger when air conditioning is not performed indoors, although condensation does not occur, both the supply air flow and the exhaust air flow become high and temporarily The heat exchange element is exposed to a very high humidity environment. For this reason, in recent years, resistance to a high humidity environment is also required for the heat exchange element.

これらの熱交換素子に要求される特性は第一義的には仕切部材が担っている。高湿度環境における熱交換素子の仕切部材に対する耐湿性を満足するためには、水分による寸法変化の小さい不織布基材層と樹脂層から構成される仕切部材が有効である。さらに、仕切部材の透湿性(湿気交換性)を向上させるために、仕切部材の樹脂層に吸湿剤を添加する方法が用いられている。   The characteristics required for these heat exchange elements are primarily borne by the partition member. In order to satisfy the moisture resistance with respect to the partition member of the heat exchange element in a high-humidity environment, a partition member composed of a nonwoven fabric base material layer and a resin layer that are small in dimensional change due to moisture is effective. Furthermore, in order to improve the moisture permeability (moisture exchangeability) of the partition member, a method of adding a hygroscopic agent to the resin layer of the partition member is used.

しかし、透湿性を向上させるために吸湿剤を添加した仕切部材では、高湿度環境において、仕切部材に添加された吸湿剤が空気中の大量の水蒸気を吸湿し続けることで、吸湿された水分量が仕切部材の保水力以上になり、水とともに吸湿剤が仕切部材から流失する。この流失した吸湿剤は、仕切部材から間隔保持部材へ吸収されるため、高湿度環境における仕切部材の吸湿剤が流失する問題は、間隔保持部材にも強く影響する。この点において、例えば、吸湿塩を添加した樹脂層を含む仕切部材と、間隔保持部材とを接合する接合部において、吸湿塩が熔解し難い非水性材料を用いて、仕切部材から間隔保持部材への吸湿塩の流失を抑制する熱交換素子が提案されている(特許文献1参照)。   However, in a partition member added with a hygroscopic agent in order to improve moisture permeability, the amount of moisture absorbed by the hygroscopic agent added to the partition member in a high humidity environment continues to absorb a large amount of water vapor in the air. Becomes more than the water retention capacity of the partition member, and the moisture absorbent flows away from the partition member together with water. Since the lost hygroscopic agent is absorbed from the partition member to the interval holding member, the problem of the hygroscopic agent flowing away from the partition member in a high humidity environment strongly affects the interval holding member. In this regard, for example, at the joining portion that joins the partition member including the resin layer to which the moisture absorption salt is added and the spacing member, the partition member is changed to the spacing member using a non-aqueous material in which the moisture absorption salt is difficult to melt. A heat exchange element that suppresses the loss of hygroscopic salt has been proposed (see Patent Document 1).

WO2009/004695号公報WO2009 / 004695 Publication

しかし、特許文献1の熱交換素子では、間隔保持部材として、仕切部材と同様、透湿性が低い樹脂材料を単一で用いており、高湿度な環境下での熱交換素子の長期使用において、仕切部材の吸湿塩が、接合部を介して間隔保持部材へ濃度拡散する懸念が依然として残る。この場合、給気と排気間の湿度交換が十分に行われず、熱交換素子の性能向上の観点から問題である。本発明は、上記に鑑みてなされたものであって、高湿度な環境下での熱交換素子の長期使用において、仕切部材に含まれる吸湿剤の間隔保持部材への濃度拡散を抑制し、熱交換性能の向上を目的としたものである。   However, in the heat exchange element of Patent Document 1, a resin material having low moisture permeability is used as the spacing member, as in the case of the partition member, and in the long-term use of the heat exchange element in a high humidity environment, There is still a concern that the moisture absorption salt of the partition member is diffused to the interval holding member via the joint. In this case, the humidity exchange between the supply air and the exhaust gas is not sufficiently performed, which is a problem from the viewpoint of improving the performance of the heat exchange element. The present invention has been made in view of the above, and in the long-term use of a heat exchange element in a high-humidity environment, suppresses concentration diffusion of the moisture absorbent contained in the partition member to the spacing member, The purpose is to improve the exchange performance.

上述した目的を達成するため、本発明の熱交換素子は、複数の仕切部材と、前記複数の仕切部材間に第一の流路及び第二の流路を形成するとともに、第一の流路及び第二の流路の方向は相互に交差するように前記複数の仕切部材間に積層され、前記仕切部材同士の間隔を保持する間隔保持部材とを備え、前記仕切部材は、吸湿剤を含む樹脂層と不織布基材層との多層構造をなし、前記間隔保持部材は、樹脂層と不織布基材層との多層構造をなし、前記仕切部材の樹脂層と前記間隔保持部材の不織布基材層とが接合され、且つ前記仕切部材の不織布基材層と前記間隔保持部材の樹脂層とが接合されている。   In order to achieve the above-described object, the heat exchange element of the present invention forms a first flow path and a second flow path between a plurality of partition members and the plurality of partition members, and the first flow path. And an interval holding member that holds the interval between the partition members, and the partition member includes a hygroscopic agent. The resin layer and the nonwoven fabric base layer have a multilayer structure, the spacing member has a resin layer and a nonwoven fabric base layer, and the partition member resin layer and the spacing member have a nonwoven fabric base layer. And the nonwoven fabric base material layer of the partition member and the resin layer of the spacing member are joined.

本発明おける熱交換素子及び熱交換器によれば、高湿度な環境下での長期使用において、仕切部材に含まれる吸湿剤の間隔保持部材への濃度拡散を抑制できるので、熱交換性能の向上を図ることができる。   According to the heat exchange element and the heat exchanger of the present invention, in long-term use in a high-humidity environment, the concentration diffusion of the moisture absorbent contained in the partition member to the spacing member can be suppressed, so that the heat exchange performance is improved. Can be achieved.

実施の形態1の熱交換素子の概略構成を示す外観斜視図である。1 is an external perspective view showing a schematic configuration of a heat exchange element according to Embodiment 1. FIG. 実施の形態1の熱交換素子の一の間隔保持部材とその上下にある仕切部材とを抜き出して示した縦断面図である。FIG. 3 is a longitudinal sectional view showing one interval holding member and upper and lower partition members extracted from the heat exchange element according to the first embodiment. 実施の形態1の熱交換素子の一の間隔保持部材とその上下にある仕切部材とを抜き出して示した縦断面図である。FIG. 3 is a longitudinal sectional view showing one interval holding member and upper and lower partition members extracted from the heat exchange element according to the first embodiment. 従来の熱交換素子の一の間隔保持部材とその上下にある仕切部材とを抜き出して示した縦断面図である。It is the longitudinal cross-sectional view which extracted and showed one space | interval holding member of the conventional heat exchange element, and the partition member in the upper and lower sides. 実施の形態1の熱交換器の概略構成を示す図である。It is a figure which shows schematic structure of the heat exchanger of Embodiment 1. FIG.

実施の形態1.
図1は、本発明の実施の形態に係る熱交換素子の概略構成を示す外観斜視図である。熱交換素子10は、層状に設けられた第一の空気流路(第一の流路)4と、層状に設けられた第二の空気流路(第二の流路)5と、各流路4,5間を仕切る平板状の仕切部材1と、各流路4,5を形成して仕切部材1同士の間隔を保持するコルゲート状の間隔保持部材2と、仕切部材1と間隔保持部材2とを接合する接合部3とを備える。コルゲート状とは、山部と谷部で構成される波型の形状を指す。熱交換素子10は、平板状の仕切部材1と、波形をした間隔保持部材2とを交互に積層した構造をなす。仕切部材1と間隔保持部材2とを積層する際に、間隔保持部材2の山部の方向を一段おきに交差させることにより、第一の空気流路4と第二の空気流路5とは平面視において互いに交差し、各流路4、5は互いに独立する。
Embodiment 1 FIG.
FIG. 1 is an external perspective view showing a schematic configuration of a heat exchange element according to an embodiment of the present invention. The heat exchange element 10 includes a first air flow path (first flow path) 4 provided in layers, a second air flow path (second flow path) 5 provided in layers, A flat partition member 1 that partitions the paths 4 and 5, a corrugated spacing member 2 that forms the respective channels 4 and 5 to maintain the spacing between the partition members 1, and the partition member 1 and the spacing member. 2 and a joining portion 3 that joins 2. The corrugated shape refers to a corrugated shape composed of peaks and valleys. The heat exchange element 10 has a structure in which flat partition members 1 and corrugated spacing members 2 are alternately stacked. When the partition member 1 and the spacing member 2 are stacked, the first air flow path 4 and the second air flow path 5 are obtained by crossing the direction of the crests of the spacing holding member 2 every other step. In a plan view, the channels 4 and 5 are independent from each other.

第一の空気流路4を流れる第一の気流6と、第二の空気流路5を流れる第二の気流7との間で、仕切部材1を媒体として潜熱および顕熱が交換される。本実施の形態では、間隔保持部材2をコルゲート状としたが、間隔保持部材2は、仕切部材1同士の間隔を所定の間隔に保持できるものであればよい。例えば、矩形波状や三角波状に折り曲げたシートや、複数枚の板片等であってもよい。   Between the first air flow 6 flowing through the first air flow path 4 and the second air flow 7 flowing through the second air flow path 5, latent heat and sensible heat are exchanged using the partition member 1 as a medium. In the present embodiment, the interval holding member 2 has a corrugated shape, but the interval holding member 2 only needs to be able to hold the interval between the partition members 1 at a predetermined interval. For example, a sheet bent in a rectangular wave shape or a triangular wave shape, a plurality of plate pieces, or the like may be used.

図2は、本実施の形態における熱交換素子10の一の間隔保持部材2と、その上下にある仕切部材1とを抜き出して示した縦断面図である。仕切部材1は吸湿材を含む樹脂層11と不織布基材層12とが積層構造で構成されている。間隔保持部材2は、樹脂層21と不織布基材層22とが積層構造で構成されている。そして、接合部3により、間隔保持部材2の樹脂層21及び仕切部材1の不織布基材層12、間隔保持部材2の不織布基材層22及び仕切部材1の樹脂層11がそれぞれ接合されている。すなわち、仕切部材1の吸湿剤を含む樹脂層11と、間隔保持部材2の樹脂層21とは、接合部3を介して直接触れてない。つまり、本実施の形態の熱交換素子10は、吸湿剤の濃度拡散の障壁となる間隔保持部材2の不織布基材層22が接合部を介して存在することにより、吸湿剤が間隔保持部材2へは濃度拡散しない構造となっている。以下、本実施の形態における熱交換素子では、高湿度な環境下の長期使用において、仕切部材に含まれる吸湿剤が、間隔保持部材へ濃度拡散することを抑制できることを詳細に説明する。   FIG. 2 is a longitudinal cross-sectional view showing one space holding member 2 and the partition members 1 above and below the heat exchange element 10 in the present embodiment. In the partition member 1, a resin layer 11 including a hygroscopic material and a nonwoven fabric base layer 12 are formed in a laminated structure. As for the space | interval holding member 2, the resin layer 21 and the nonwoven fabric base material layer 22 are comprised by the laminated structure. And the resin layer 21 of the space | interval holding member 2, the nonwoven fabric base material layer 12 of the partition member 1, the nonwoven fabric base material layer 22 of the space | interval holding member 2, and the resin layer 11 of the partition member 1 are joined by the junction part 3, respectively. . That is, the resin layer 11 containing the hygroscopic agent of the partition member 1 and the resin layer 21 of the spacing member 2 are not in direct contact with each other through the joint portion 3. That is, in the heat exchange element 10 of the present embodiment, the non-woven fabric base material layer 22 of the spacing member 2 that serves as a barrier to the concentration diffusion of the moisture absorbent exists through the joint portion, so that the moisture absorbent becomes the spacing member 2. It has a structure that does not diffuse the concentration. Hereinafter, in the heat exchange element in this Embodiment, it demonstrates in detail that the hygroscopic agent contained in a partition member can suppress density | concentration diffusion to a space | interval holding member in the long-term use in a high-humidity environment.

一般的に、熱交換素子の高湿度な環境下での長期使用時において、仕切部材の樹脂層に添加された吸湿剤は、空気中の大量の水蒸気を吸湿し続けることで、吸湿された水分量が仕切部材の保水力以上になり、水とともに吸湿剤が仕切部材の樹脂層から流失する。熱交換素子における吸湿剤の流失は、水分の濃度拡散に伴う吸湿剤の移動、または吸湿剤自体の濃度拡散による移動が原因と考えられる。そして、熱交換素子における濃度拡散の駆動力は、水分または吸湿剤自体の濃度の空間分布が異なることに起因する。   In general, when the heat exchange element is used for a long time in a high humidity environment, the moisture absorbent added to the resin layer of the partition member keeps moisture absorbed in the air by continuing to absorb a large amount of water vapor in the air. The amount becomes equal to or greater than the water retention capacity of the partition member, and the moisture absorbent flows away from the resin layer of the partition member together with water. It is considered that the loss of the hygroscopic agent in the heat exchange element is caused by the movement of the hygroscopic agent accompanying the diffusion of the moisture concentration or the movement due to the concentration diffusion of the hygroscopic agent itself. The driving force for concentration diffusion in the heat exchange element is due to the difference in the spatial distribution of the concentration of moisture or the hygroscopic agent itself.

高分子の凝集形態を有する部材は、高分子の熱運動が容易であり、吸湿材または水分の拡散が起り易い。つまり、高分子の凝集形態の部材が、他の高分子の凝集形態を有する部材と物理的に接触していれば、熱交換素子の長期使用において、吸湿剤が他部材の高分子の凝集形態の部材へ濃度拡散する可能性が生じる。更に、吸湿剤が濃度拡散する先の物質量が大きければ、拡散における吸湿剤の濃度平衡に達し難いため、仕切部材からの吸湿剤の濃度拡散し続ける余地が大きく、吸湿剤の流失量の増大が懸念される。   A member having a polymer aggregation form is easy to cause thermal movement of the polymer, and easily absorbs moisture or moisture. In other words, if the polymer aggregated form member is in physical contact with a member having another polymer aggregated form, the hygroscopic agent will form the polymer aggregated form of the other member in the long-term use of the heat exchange element. There is a possibility of concentration diffusion to the members. Furthermore, if the amount of the material to which the hygroscopic agent diffuses is large, it is difficult to reach the concentration equilibrium of the hygroscopic agent in the diffusion. Is concerned.

この点において、高湿度環境における熱交換素子の仕切部材に対する耐湿性を満足させるために、水分による寸法変化の小さい不織布基材層と樹脂層から構成される仕切部材を用いていることが有効であることが知られている。仕切部材において吸湿剤を含む部材である樹脂層及び間隔保持部材の樹脂層で用いられる樹脂は、フィルム状の形状を有するため、高分子の非晶質構造が主成分であり、凝集形態の自由体積が大きいという特徴を有する。その結果、仕切部材及び間隔保持部材は、高分子の熱運動が容易であり、吸湿材または水分の拡散が起り易い。特に、間隔保持部材は、一般的に仕切部材よりも約1.5倍程度の表面積を有するため、仕切部材からの吸湿剤が濃度拡散する余地が非常に大きい。よって、吸湿剤が、仕切部材の樹脂層から接合部を介して間隔保持部材へ濃度拡散する可能性が生じる。   In this regard, in order to satisfy the moisture resistance of the heat exchange element partition member in a high humidity environment, it is effective to use a partition member composed of a nonwoven fabric base material layer and a resin layer that have a small dimensional change due to moisture. It is known that there is. Since the resin used in the partition layer and the resin layer that is a member containing the hygroscopic agent and the resin layer of the spacing member has a film shape, the amorphous structure of the polymer is the main component and the aggregated form is free. It has the feature that the volume is large. As a result, the partition member and the spacing member are easy to thermally move the polymer, and the moisture absorbent or moisture is likely to diffuse. In particular, since the spacing member generally has a surface area that is about 1.5 times that of the partition member, there is a large room for concentration diffusion of the hygroscopic agent from the partition member. Therefore, there is a possibility that the hygroscopic agent may be diffused from the resin layer of the partition member to the spacing member via the joint portion.

一方、本実施の形態における熱交換素子10の間隔保持部材2には、不織布基材層22が含まれているという特徴を有する。不織布基材は、繊維で構成された布帛であるため空隙が多く、高分子の凝集形態である樹脂とは異なる構造的特徴を有している。つまり、繊維材料は高分子材料を延伸して製造されるため、結晶性が高いことから、高分子の熱運動が凍結されており、吸湿剤や水分の拡散が起り難い。したがって、間隔保持部材2の不織布基材層22が濃度拡散の障壁となるため、吸湿塩の濃度拡散は接合部3までで留まることとなる。   On the other hand, the spacing member 2 of the heat exchange element 10 in the present embodiment has a feature that the nonwoven fabric base material layer 22 is included. Since the nonwoven fabric substrate is a fabric composed of fibers, it has many voids and has structural characteristics different from those of a resin that is a polymer aggregated form. In other words, since the fiber material is manufactured by stretching a polymer material, and has high crystallinity, the thermal motion of the polymer is frozen, and it is difficult for the moisture absorbent and moisture to diffuse. Therefore, since the nonwoven fabric base material layer 22 of the spacing member 2 serves as a barrier for concentration diffusion, the concentration diffusion of the hygroscopic salt remains up to the joint 3.

以下に本実施の形態の熱交換素子の製造方法を説明する。熱交換素子では、一般に、効率的な製造を実現するために、片面コルゲートを作製し、この片面コルゲートを直行積層する製造方法が広く用いられる。片面コルゲートは、仕切部材1一枚と波形に成型された間隔保持部材2二枚が接合されたフィルム状のものである。片面コルゲートの製造方法は、一般的なダンボールを作る工程であり、間隔保持部材2となるフィルムを波形形状に成型し、これと仕切部材1を接合する。直行積層の製造方法は、片面コルゲートにおいて波形に成型された間隔保持部材2の山部と、流路を直行させたもう一組の片面コルゲートの仕切部材1とを接合する。これを繰り返し、所定の寸法に切断することで熱交換素子10が得られる。仕切部材1と間隔保持部材2との接合は、接着剤を用いる方法または接着剤を使用しない熱接着方法が用いられるが、熱交換素子の機械強度の観点から、片面コルゲートの接合工程と直行積層の接合工程のいずれかは一方は、接着剤を使う方が望ましい。   A method for manufacturing the heat exchange element of the present embodiment will be described below. In general, for heat exchange elements, a manufacturing method in which a single-sided corrugate is produced and the single-sided corrugated layer is orthogonally stacked is widely used in order to realize efficient manufacturing. The single-sided corrugate is a film in which one partition member 1 and two spacing members 2 formed into a corrugated shape are joined. The manufacturing method of a single-sided corrugate is a process for making a general corrugated cardboard. A film that forms the spacing member 2 is formed into a corrugated shape, and this is joined to the partition member 1. In the manufacturing method of the direct lamination, the crest portion of the spacing member 2 formed into a waveform in the single-sided corrugate and the partition member 1 of another set of single-sided corrugates in which the flow path is orthogonally joined are joined. This is repeated and the heat exchange element 10 is obtained by cutting into predetermined dimensions. For joining the partition member 1 and the spacing member 2, a method using an adhesive or a heat bonding method not using an adhesive is used. From the viewpoint of the mechanical strength of the heat exchange element, a single-side corrugated joining step and direct lamination are performed. In any one of the joining steps, it is preferable to use an adhesive.

図2の熱交換素子10では、片面コルゲートの接合工程と直行積層の接合工程において共に接着剤を用いた熱交換素子10の接合部3の断面構造を示している。図3に、片面コルゲート工程において仕切部材1の樹脂層11と間隔保持部材2の不織布基材層22との間で熱接着により接合し、直行積層工程において仕切部材1の不織布基材層12と間隔保持部材2の樹脂層21との間で接着剤3を用いて接合した熱交換素子10の接合部の断面構造を示す。接着剤を用いて接合する場合、熱交換素子10の機械強度の点で、熱接着方法よりも優れている。一方、図3に示す熱交換素子における熱接着接合では、仕切部材1から間隔保持部材2への吸湿剤の流失を効果的に抑制する観点で、接着剤を用いた方法より好ましい。なお、図3に示す熱交換素子における熱接着方法による接合においては、仕切部材1の樹脂層11が加熱により溶融して仕切部材1の樹脂層11と間隔保持部材2の不織布基材層22とが接合される。   In the heat exchange element 10 of FIG. 2, a cross-sectional structure of the joint portion 3 of the heat exchange element 10 using an adhesive is shown in both the single-side corrugated joining process and the direct lamination joining process. In FIG. 3, the resin layer 11 of the partitioning member 1 and the nonwoven fabric base material layer 22 of the spacing member 2 are joined by thermal bonding in the single-side corrugation process, and the nonwoven fabric base material layer 12 of the partitioning member 1 in the direct lamination process. The cross-sectional structure of the joining part of the heat exchange element 10 joined using the adhesive agent 3 between the resin layers 21 of the space | interval holding member 2 is shown. When joining using an adhesive, it is superior to the thermal bonding method in terms of the mechanical strength of the heat exchange element 10. On the other hand, the thermobonding joining in the heat exchange element shown in FIG. 3 is preferable to the method using an adhesive from the viewpoint of effectively suppressing the flow of the hygroscopic agent from the partition member 1 to the spacing member 2. In the joining by the heat bonding method in the heat exchange element shown in FIG. 3, the resin layer 11 of the partition member 1 is melted by heating, and the nonwoven fabric base material layer 22 of the partition member 1 and the nonwoven fabric substrate layer 22 of the spacing member 2 Are joined.

次に、本実施の形態における熱交換素子を構成する各部材について説明する。仕切部材1は、樹脂層11と不織布基材層12とから成る多層膜である。樹脂層11には、仕切部材1の透湿性の向上のために、吸湿剤が含まれている。高湿度環境下の熱交換素子において、紙材料の仕切部材では水分の膨潤による寸法変化が大きいために、熱交換素子の風路構造を閉塞し、通風抵抗が増大する問題を生じ、また、仕切部材1自体の強度低下などを招く恐れがある。そのため、紙材料の仕切部材では、高湿度環境における使用には適さないため、本実施の形態の熱交換素子10で用いる仕切部材1においては、水分による寸法変化の小さい不織布基材層12に樹脂層11を積層した仕切部材1を用いる。   Next, each member which comprises the heat exchange element in this Embodiment is demonstrated. The partition member 1 is a multilayer film composed of a resin layer 11 and a nonwoven fabric base layer 12. The resin layer 11 contains a hygroscopic agent in order to improve the moisture permeability of the partition member 1. In a heat exchange element in a high humidity environment, the paper material partition member undergoes a large dimensional change due to moisture swelling, which causes a problem that the air flow structure of the heat exchange element is blocked and the ventilation resistance is increased. There is a risk that the strength of the member 1 itself may be reduced. Therefore, since the partition member made of paper material is not suitable for use in a high humidity environment, in the partition member 1 used in the heat exchange element 10 of the present embodiment, a resin is applied to the nonwoven fabric base material layer 12 whose dimensional change due to moisture is small. The partition member 1 in which the layers 11 are stacked is used.

仕切部材1の樹脂層11の樹脂材料は、高透湿性及び気体遮蔽性の膜であれば特に材料には限定されないが、透湿性を十分実現するために、親水性材料で薄膜化が容易なウレタン系材料であることが好ましい。特に、ウレタン系材料は、透湿性が高いエーテル系のポリウレタンがより好ましい。これらのポリウレタン系樹脂は、有機ジイソシアネートとオキシエチレン基含有ジオール等のモノマーとから構成されるか、有機ジイソシアネートとオキシエチレン基含有ジオール等のモノマーの少なくとも1種類と少なくとも1種類のウレタンプレポリマーとから構成されるか、又は有機ジイソシアネートとオキシエチレン基含有ジオール等のモノマー及びウレタンプレポリマーの少なくとも1種類とポリウレタンとから構成される熱硬化型樹脂タイプ、または既にポリウレタン化した樹脂の水系溶液、ジメチルホルムアミド溶液、メチルエチルケトン溶液、トルエン溶液等を用いた加熱乾固タイプのいずれかを用いることができる。   The resin material of the resin layer 11 of the partition member 1 is not particularly limited as long as it is a highly moisture-permeable and gas-shielding film. However, in order to achieve sufficient moisture permeability, a thin film can be easily formed using a hydrophilic material. A urethane material is preferred. In particular, the urethane-based material is more preferably an ether-based polyurethane having high moisture permeability. These polyurethane resins are composed of an organic diisocyanate and a monomer such as an oxyethylene group-containing diol, or from at least one kind of an organic diisocyanate and a monomer such as an oxyethylene group-containing diol and at least one urethane prepolymer. A thermosetting resin type composed of at least one of a monomer such as an organic diisocyanate and an oxyethylene group-containing diol and a urethane prepolymer and polyurethane, or an aqueous solution of a resin already polyurethaneized, dimethylformamide Any one of a heat drying type using a solution, a methyl ethyl ketone solution, a toluene solution or the like can be used.

本実施の形態における熱交換素子10では、透湿性を向上させるために、仕切部材1の樹脂層11に吸湿剤を添加しているが、本実施の形態における吸湿剤は、特に、仕切部材1に高透湿性を持たせるため、潮解性塩を用いることが望ましい。潮解性塩は塩化リチウムおよび塩化カルシウムの少なくとも一方を用いる。塩化リチウムまたは塩化カルシウムの樹脂層への添加量は、樹脂層に対して2〜10g/m、好ましくは3〜6g/mである。 In the heat exchange element 10 in the present embodiment, a hygroscopic agent is added to the resin layer 11 of the partition member 1 in order to improve moisture permeability. It is desirable to use a deliquescent salt in order to impart high moisture permeability. The deliquescent salt uses at least one of lithium chloride and calcium chloride. The addition amount of lithium chloride or calcium chloride to the resin layer is 2 to 10 g / m 2 , preferably 3 to 6 g / m 2 with respect to the resin layer.

不織布基材層12は、繊維を織らずに絡み合わせた布帛であり、繊維材料は布帛の強度及びコストの観点から、セルロース繊維、ポリウレタン繊維、ポリエステル繊維、またはポリプロピレン繊維、及びこれらの混合物が好ましい。ポリエステル繊維またはポリプロピレン繊維は、疎水性材料であるため、繊維内部に吸湿剤または水分の拡散性が低いため、より好ましい。   The nonwoven fabric base layer 12 is a fabric in which fibers are entangled without being woven, and the fiber material is preferably a cellulose fiber, a polyurethane fiber, a polyester fiber, a polypropylene fiber, or a mixture thereof from the viewpoint of the strength and cost of the fabric. . Since the polyester fiber or the polypropylene fiber is a hydrophobic material, it is more preferable because the moisture diffusing agent or moisture is low in the fiber.

不織布基材層12の目付量は、仕切部材1として必要な強度を十分確保し、温度と湿度の熱交換をよりスムーズに行わせる観点から、5g/m以上100g/m以下、好ましくは10g/m以上30g/m以下である。また、不織布の厚さも、仕切部材として必要な強度を十分確保し、温度と湿度の熱交換をよりスムーズに行わせる観点から、2μm以上500μm以下、好ましくは10μm以上200μm以下、さらに好ましくは100μm以上150μm以下である。不織布の通気度は1秒以下(測定限界以下)であることが好ましい。また、温度と湿度の熱交換をよりスムーズに行わせる観点から、透気度は1秒/100cc以下が好ましい。 The basis weight of the nonwoven fabric base layer 12 is 5 g / m 2 or more and 100 g / m 2 or less, preferably from the viewpoint of ensuring sufficient strength necessary for the partition member 1 and performing heat exchange between temperature and humidity more smoothly. It is 10 g / m 2 or more and 30 g / m 2 or less. In addition, the thickness of the non-woven fabric is also 2 μm or more and 500 μm or less, preferably 10 μm or more and 200 μm or less, more preferably 100 μm or more from the viewpoint of ensuring sufficient strength necessary as a partition member and performing heat exchange between temperature and humidity more smoothly 150 μm or less. The air permeability of the nonwoven fabric is preferably 1 second or less (measurement limit or less). Further, from the viewpoint of performing heat exchange between temperature and humidity more smoothly, the air permeability is preferably 1 second / 100 cc or less.

本実施の形態における仕切部材1の透湿性は、熱交換素子10としての十分な湿度交換性能を確保する観点から、相対湿度100%、温度30℃における赤外センサー法(モコン法)透湿度測定において、透湿度10kg/m/day以上、好ましくは15kg/m/day以上である。本実施の形態における仕切部材1の気体遮蔽性は、ガーレ法による透気度測定において、500秒/100cc以上、好ましくは1000秒/100cc以上である。この範囲において、吸排気の隔絶がよりスムーズに行われる。なお、仕切部材1では、吸排気間の熱交換において、空気の境界層における伝熱抵抗が主要因になるため、仕切部材1の素材の伝熱性にほとんど依存しない。そのため、仕切部材1の伝熱性は、熱交換素子の熱交換効率に殆ど影響しない。なお、本実施の形態では、仕切部材1が樹脂層11と不織布基材層12を二層構造で示しているが、本実施の形態の効果を奏する限り、仕切部材1が樹脂層一層であることに特に制限されない。 The moisture permeability of the partition member 1 in the present embodiment is measured from the infrared sensor method (mocon method) moisture permeability at a relative humidity of 100% and a temperature of 30 ° C. from the viewpoint of ensuring sufficient humidity exchange performance as the heat exchange element 10. The moisture permeability is 10 kg / m 2 / day or more, preferably 15 kg / m 2 / day or more. The gas shielding property of the partition member 1 in the present embodiment is 500 seconds / 100 cc or more, preferably 1000 seconds / 100 cc or more, in the air permeability measurement by the Gurley method. In this range, the intake and exhaust are separated more smoothly. In the partition member 1, the heat transfer resistance in the air boundary layer is the main factor in heat exchange between the intake and exhaust, and therefore hardly depends on the heat transfer property of the material of the partition member 1. Therefore, the heat transfer property of the partition member 1 hardly affects the heat exchange efficiency of the heat exchange element. In addition, in this Embodiment, although the partition member 1 has shown the resin layer 11 and the nonwoven fabric base material layer 12 with the two-layer structure, as long as there exists an effect of this Embodiment, the partition member 1 is one resin layer. There is no particular limitation.

間隔保持部材2は、流路形状を規定している。本実施の形態における間隔保持部材2では、樹脂層21と不織布基材層22との多層膜構造を有している。   The interval holding member 2 defines a flow path shape. The spacing member 2 in the present embodiment has a multilayer film structure of the resin layer 21 and the nonwoven fabric base layer 22.

間隔保持部材2の樹脂層21の樹脂材料は、特に仕切部材1と間隔保持部材2とを接合する接合部における透湿性の観点からウレタン系材料が好ましい。特に、ウレタン系材料は、透湿性が高いエーテル系のポリウレタンがさらに好ましい。これらのポリウレタン系樹脂は、有機ジイソシアネートとオキシエチレン基含有ジオール等のモノマーとから構成されるか、有機ジイソシアネートとオキシエチレン基含有ジオール等のモノマーの少なくとも1種類と少なくとも1種類のウレタンプレポリマーとから構成されるか、又は有機ジイソシアネートとオキシエチレン基含有ジオール等のモノマー及びウレタンプレポリマーの少なくとも1種類とポリウレタンとから構成される熱硬化型樹脂タイプ、または既にポリウレタン化した樹脂の水系溶液、ジメチルホルムアミド溶液、メチルエチルケトン溶液、トルエン溶液等を用いた加熱乾固タイプのいずれかを用いることができる。   The resin material of the resin layer 21 of the spacing member 2 is preferably a urethane-based material from the viewpoint of moisture permeability at the joint where the partition member 1 and the spacing member 2 are joined. In particular, the urethane material is more preferably an ether-based polyurethane having high moisture permeability. These polyurethane resins are composed of an organic diisocyanate and a monomer such as an oxyethylene group-containing diol, or from at least one kind of an organic diisocyanate and a monomer such as an oxyethylene group-containing diol and at least one urethane prepolymer. A thermosetting resin type composed of at least one of a monomer such as an organic diisocyanate and an oxyethylene group-containing diol and a urethane prepolymer and polyurethane, or an aqueous solution of a resin already polyurethaneized, dimethylformamide Any one of a heat drying type using a solution, a methyl ethyl ketone solution, a toluene solution or the like can be used.

間隔保持部材2の樹脂層21は、仕切部材1と間隔保持部材2とを接合する接合部3における透湿性のために、吸湿剤が含まれていても良い。吸湿剤の材料は、本実施の形態では、特に限定されないが、仕切部材に高透湿性を持たせるため、潮解性塩を用いることが望ましい。潮解性塩は塩化リチウムおよび塩化カルシウムの少なくとも一方を用いる。塩化リチウムまたは塩化カルシウムの樹脂層への添加量は、樹脂層に対して2〜10g/m、好ましくは3〜6g/mである。 The resin layer 21 of the spacing member 2 may contain a hygroscopic agent for moisture permeability at the joint 3 that joins the partition member 1 and the spacing member 2. The material of the hygroscopic agent is not particularly limited in the present embodiment, but it is desirable to use a deliquescent salt in order to give the partition member high moisture permeability. The deliquescent salt uses at least one of lithium chloride and calcium chloride. The addition amount of lithium chloride or calcium chloride to the resin layer is 2 to 10 g / m 2 , preferably 3 to 6 g / m 2 with respect to the resin layer.

間隔保持部材2の樹脂層31は、熱交換素子の難燃性確保のために、難燃剤が添加されてもよい。間隔保持部材2の難燃性は、メッケルバーナ法において防炎2級レベル以上であり、好ましくは防炎1級以上である。本実施の形態では、間隔保持部材2の樹脂層21に添加される難燃剤の材料としては、臭素系難燃剤、リン系難燃剤、金属水酸化物や酸化物等の無機系難燃剤、シリコーン系難燃剤を用いる。   A flame retardant may be added to the resin layer 31 of the spacing member 2 in order to ensure the flame retardance of the heat exchange element. The flame retardance of the spacing member 2 is not less than the second grade of flameproofing in the Meckel burner method, and preferably not less than the first grade of flameproofing. In the present embodiment, brominated flame retardants, phosphorous flame retardants, inorganic flame retardants such as metal hydroxides and oxides, silicone, etc., are used as the flame retardant material added to the resin layer 21 of the spacing member 2. Use a flame retardant.

間隔保持部材2の不織布基材層22は、繊維を織らずに絡み合わせた布帛であり、繊維の材料は布帛の強度及びコストの観点から、セルロース繊維、ポリウレタン繊維、ポリエステル繊維、またはポリプロピレン繊維、及びこれらの混合物が好ましい。また、ポリエステル繊維、またはポリプロピレン繊維は疎水性材料であるため、繊維内部に吸湿剤または水分の拡散性が低いため、より好ましい。   The nonwoven fabric base layer 22 of the spacing member 2 is a fabric in which fibers are entangled without weaving, and the fiber material is cellulose fiber, polyurethane fiber, polyester fiber, or polypropylene fiber from the viewpoint of fabric strength and cost, And mixtures thereof are preferred. Further, since the polyester fiber or the polypropylene fiber is a hydrophobic material, it is more preferable because the moisture diffusing agent or moisture is low in the fiber.

不織布基材層22の目付量は、間隔保持部材2として必要な強度を十分確保し、温度と湿度の熱交換をよりスムーズに行わせる観点から、10g/m以上200g/m以下、好ましくは15g/m以上150g/m以下である。また、不織布の厚さも、間隔部材として必要な強度を十分確保し、温度と湿度の熱交換をよりスムーズに行わせる観点から、5μm以上500μm以下、好ましくは15μm以上400μm以下、さらに好ましくは100μm以上300μm以下である。 The basis weight of the nonwoven fabric base layer 22 is 10 g / m 2 or more and 200 g / m 2 or less, preferably from the viewpoint of ensuring sufficient strength necessary for the spacing member 2 and performing heat exchange between temperature and humidity more smoothly. Is 15 g / m 2 or more and 150 g / m 2 or less. In addition, the thickness of the non-woven fabric is sufficiently 5 μm or more and 500 μm or less, preferably 15 μm or more and 400 μm or less, more preferably 100 μm or more, from the viewpoint of ensuring sufficient strength necessary for the spacing member and smoother heat exchange between temperature and humidity 300 μm or less.

熱交換素子の換気性のために、間隔保持部材2は気体遮蔽性が必要である。本実施の解体における間隔保持部材2の気体遮蔽性は、ガーレ法による透気度測定において、1秒/100cc以上、好ましくは3秒/100cc以上である。この範囲において、吸排気の隔絶がよりスムーズに行われ、換気性が十分に確保される。   For the ventilation of the heat exchange element, the spacing member 2 needs to be gas-shielding. The gas shielding property of the spacing member 2 in the dismantling of the present embodiment is 1 second / 100 cc or more, preferably 3 seconds / 100 cc or more, in the air permeability measurement by the Gurley method. In this range, the intake and exhaust are separated more smoothly, and the ventilation is sufficiently ensured.

また、本実施の形態における間隔保持部材2の透湿性は、相対湿度100%、温度30℃における赤外センサー法(モコン法)透湿度測定において、透湿度6kg/m/day以上、好ましくは10kg/m/day以上である。この範囲において、仕切部材1と間隔部材2の接合部における透湿性が十分に確保され、かつ給気と排気の湿度交換性能が十分に維持されるからである。なお、本実施の形態の熱交換素子10では、間隔保持部材2が樹脂層21一層と不織布基材層22一層との二層構造で示しているが、樹脂層21は、複数層であることに制限されない。 Further, the moisture permeability of the spacing member 2 in the present embodiment is such that the moisture permeability is 6 kg / m 2 / day or more in the infrared sensor method (mocon method) moisture permeability measurement at a relative humidity of 100% and a temperature of 30 ° C., preferably 10 kg / m 2 / day or more. This is because in this range, the moisture permeability at the joint between the partition member 1 and the spacing member 2 is sufficiently ensured, and the humidity exchange performance between the supply air and the exhaust gas is sufficiently maintained. In addition, in the heat exchange element 10 of this Embodiment, although the space | interval holding member 2 has shown by the two-layer structure of 21 resin layers and 22 nonwoven fabric base material layers, the resin layer 21 is multiple layers. Not limited to.

仕切部材1と間隔保持部材2とを接合する接合部3においては、接合方法として、接着剤を用いる方法または接着剤を用いない熱接着方法が用いられる。接合部3に接着剤を用いる場合、接着剤の主成分は、仕切部材1と間隔保持部材2とをより強力に接着する観点から、仕切部材1及び間隔保持部材2の樹脂層で用いた材料と高分子構造が近い、酢酸ビニル系、ウレタン系、またはポリエステル系などの樹脂材料、またはこれらの組成物が望ましい。接着剤には、仕切部材1と間隔保持部材2との間の透湿性の一層の向上の観点から、吸湿剤が含まれていた方が望ましい。この場合、仕切部材に高透湿性を持たせるため、潮解性塩を用いることが望ましく、更に好ましくは、潮解性塩は塩化リチウムおよび塩化カルシウムの少なくとも一方を用いた方が望ましい。接合部3に接着剤を用いる場合、熱交換素子の難燃性確保のために、接着剤に難燃剤が添加されても良い。本実施の形態で接着剤に添加される難燃剤の材料としては、臭素系難燃剤、リン系難燃剤、金属水酸化物や酸化物等の無機系難燃剤、シリコーン系難燃剤を用いる。   In the joining part 3 which joins the partition member 1 and the space | interval holding member 2, the method using an adhesive agent or the heat bonding method which does not use an adhesive agent is used as a joining method. When an adhesive is used for the joint 3, the main component of the adhesive is the material used in the resin layers of the partition member 1 and the spacing member 2 from the viewpoint of bonding the partition member 1 and the spacing member 2 more strongly. A resin material such as vinyl acetate, urethane, or polyester, or a composition thereof, having a polymer structure close to that of the resin is desirable. From the viewpoint of further improving the moisture permeability between the partition member 1 and the spacing member 2, it is desirable that the adhesive contains a hygroscopic agent. In this case, in order to give the partition member high moisture permeability, it is desirable to use a deliquescent salt, and it is more desirable to use at least one of lithium chloride and calcium chloride as the deliquescent salt. In the case where an adhesive is used for the joint portion 3, a flame retardant may be added to the adhesive in order to ensure the flame retardance of the heat exchange element. As a material of the flame retardant added to the adhesive in the present embodiment, a brominated flame retardant, a phosphorus flame retardant, an inorganic flame retardant such as a metal hydroxide or an oxide, or a silicone flame retardant is used.

接合部3に熱接着を用いる場合、仕切部材1の樹脂層11の軟化温度程度で仕切部材1を加熱し、仕切部材1と間隔保持部材2を加圧して接合する。熱接着の方法は接合部3を加圧する必要があるため、加圧が容易な片面コルゲート工程で行うことが望ましい。   When heat bonding is used for the joint portion 3, the partition member 1 is heated at about the softening temperature of the resin layer 11 of the partition member 1, and the partition member 1 and the spacing member 2 are pressed and joined. Since the method of thermal bonding needs to pressurize the joint 3, it is desirable to perform it in a single-sided corrugating process in which pressurization is easy.

図4に従来技術である間隔保持部材2が高分子材料の凝集形態で構成された単一素材である熱交換素子20を示す。図4に示す従来技術の熱交換素子20では、間隔保持部材2が樹脂の単一素材(樹脂層)であるため、仕切部材1の吸湿剤を含む樹脂層11が、接合部3を介して間隔保持部材2の樹脂層と物理的に接触する。そのため、接合部3における接着剤の種類や熱接着の方法の仔細にかかわらず、熱交換素子の長期的使用において仕切部材1の吸湿剤が間隔保持部材2へ濃度拡散する可能性が生じる。   FIG. 4 shows a heat exchange element 20 that is a single material in which the spacing member 2 according to the prior art is configured in an aggregated form of polymer materials. In the heat exchange element 20 of the prior art shown in FIG. 4, since the spacing member 2 is a single resin material (resin layer), the resin layer 11 containing the hygroscopic agent of the partition member 1 passes through the joint 3. It physically contacts the resin layer of the spacing member 2. For this reason, there is a possibility that the moisture absorbent of the partition member 1 may diffuse into the spacing member 2 in the long-term use of the heat exchange element regardless of the type of adhesive in the joint 3 and the details of the method of thermal bonding.

本実施の形態の熱交換素子10では、間隔保持部材2が樹脂層21と不織布基材層22で構成されている。また、仕切部材における吸湿剤を含む樹脂層11は、仕切部材1を構成する間隔保持部材2の不織布基材層22と接合部を介して存在している。そのため、吸湿剤を含む樹脂層11は、吸湿塩の濃度拡散の障壁となる不織布基材により、吸湿剤の濃度拡散先となる間隔保持部材2の樹脂層31と隔離されることになる。よって、本実施の形態の熱交換素子の間隔保持部材2の構成及び接合構造により、仕切部材1に含まれる吸湿剤の間隔保持部材2への濃度拡散を抑制することが可能となる。 In the heat exchange element 10 of the present embodiment, the spacing member 2 is composed of a resin layer 21 and a nonwoven fabric base layer 22. Moreover, the resin layer 11 containing the hygroscopic agent in the partition member exists through the non-woven fabric base material layer 22 of the spacing member 2 constituting the partition member 1 and the joint portion. For this reason, the resin layer 11 containing the hygroscopic agent is isolated from the resin layer 31 of the spacing member 2 serving as the concentration diffusion destination of the hygroscopic agent by the nonwoven fabric base material serving as a barrier for the concentration diffusion of the hygroscopic salt. Therefore, it is possible to suppress the concentration diffusion of the hygroscopic agent contained in the partition member 1 to the interval holding member 2 by the configuration and the joining structure of the interval holding member 2 of the heat exchange element of the present embodiment.

次に、図5を用いて、本実施の形態に係る全熱交換素子10を備える熱交換器について説明する。図5は、本実施の形態の熱交換器100の概略構成を示す図である。熱交換器100の内部には、本実施の形態の熱交換素子10が収容される。熱交換器100の内部には、室外の空気を室内に給気するための給気流路44が、熱交換素子10の第一の空気流路4を含めて形成される。また、熱交換器100の内部には、室内の空気を室外に排気するための排気流路45が、熱交換素子10の第二の空気流路5を含めて構成される。給気流路44には、室外から室内に向けた空気の流れを発生させる給気送風機46が設けられる。排気流路45には、室内から室外に向けた空気の流れを発生させる排気送風機47が設けられる。   Next, the heat exchanger provided with the total heat exchange element 10 which concerns on this Embodiment is demonstrated using FIG. FIG. 5 is a diagram showing a schematic configuration of the heat exchanger 100 of the present embodiment. Inside the heat exchanger 100, the heat exchange element 10 of the present embodiment is accommodated. An air supply passage 44 for supplying outdoor air into the room including the first air passage 4 of the heat exchange element 10 is formed inside the heat exchanger 100. In addition, an exhaust passage 45 for exhausting indoor air to the outside including the second air passage 5 of the heat exchange element 10 is configured inside the heat exchanger 100. The air supply passage 44 is provided with an air supply blower 46 that generates an air flow from the outside to the inside of the room. The exhaust passage 45 is provided with an exhaust blower 47 that generates an air flow from the room to the outside.

熱交換器10が運転されると、給気送風機46と排気送風機47とが作動する。これにより、例えば、冷たくて乾燥した室外の空気が給気流(第一の気流6)として第一の空気流路4に通され、暖かくて湿気の高い室内の空気が排気流(第二の気流7)として第二の空気流路5に通される。給気流および排気流の各気流(二種の気流)が仕切部材1を隔てて流れる。このとき、仕切部材1を介して各気流の間で熱が伝わり、仕切部材1を水蒸気が透過することで、給気流と排気流との間で顕熱および潜熱の熱交換が行われる。これにより、給気流は暖められるとともに加湿されて室内に供給され、排気流は冷やされるとともに減湿されて室外へ排出される。したがって、熱交換器10で換気を行うことで、室内の空調の冷暖房効率の損失を抑えて、室外と室内の空気を換気することができる。
本実施の形態における熱交換素子を備えた熱交換器100によれば、高湿度な環境下の長期使用において、熱交換素子の仕切部材に含まれる吸湿剤の間隔保持部材への濃度拡散を抑制し、熱交換性能の向上できる。
When the heat exchanger 10 is operated, the air supply blower 46 and the exhaust blower 47 are activated. Thereby, for example, cold and dry outdoor air is passed through the first air flow path 4 as a supply airflow (first airflow 6), and warm and humid indoor air is exhausted (second airflow). 7) is passed through the second air flow path 5. Each of the air supply airflow and the exhaust airflow (two types of airflows) flows across the partition member 1. At this time, heat is transmitted between the airflows via the partition member 1, and water vapor permeates through the partition member 1, whereby sensible heat and latent heat are exchanged between the supply airflow and the exhaust stream. As a result, the supply airflow is warmed and humidified and supplied to the room, and the exhaust stream is cooled and dehumidified and discharged outside the room. Therefore, by ventilating with the heat exchanger 10, the loss of the air-conditioning efficiency of indoor air conditioning can be suppressed, and the outdoor and indoor air can be ventilated.
According to the heat exchanger 100 provided with the heat exchange element in the present embodiment, the concentration diffusion of the moisture absorbent contained in the partition member of the heat exchange element to the spacing member is suppressed during long-term use in a high humidity environment. In addition, the heat exchange performance can be improved.

1 仕切部材、2 間隔保持部材、3 接合部、4 第一の流路、5 第二の流路、6 第一の気流、7 第二の気流、10 熱交換素子、11 仕切部材の樹脂層、12 仕切部材の不織布基材層、21 間隔保持部材の樹脂層、22 間隔保持部材の不織布基材層、44 給気流路、45 排気流路、46 給気送風機、47 排気送風機、100 熱交換器 DESCRIPTION OF SYMBOLS 1 Partition member, 2 Space | interval holding member, 3 Junction part, 4 1st flow path, 5 2nd flow path, 6 1st airflow, 7 2nd airflow, 10 Heat exchange element, 11 Resin layer of partition member , 12 Non-woven fabric base layer of partition member, 21 Resin layer of spacing holding member, 22 Non-woven fabric base layer of spacing holding member, 44 Air supply flow path, 45 Exhaust flow path, 46 Air supply blower, 47 Exhaust blower, 100 Heat exchange vessel

Claims (11)

複数の仕切部材と、前記複数の仕切部材間に第一の流路または第二の流路を形成するとともに、前記仕切部材同士の間隔を保持する間隔保持部材とを備え、
第一の流路の方向及び第二の流路の方向は相互に交差するように形成され、
前記仕切部材は、吸湿剤を含む樹脂層と不織布基材層との積層構造をなし、
前記間隔保持部材は、樹脂層と不織布基材層との積層構造をなし、
前記仕切部材の樹脂層と前記間隔保持部材の不織布基材層とが接合され、且つ前記仕切部材の不織布基材層と前記間隔保持部材の樹脂層とが接合されていることを特徴とする熱交換素子。
A plurality of partition members, and a space holding member that forms a first flow path or a second flow path between the plurality of partition members and holds a space between the partition members,
The direction of the first flow path and the direction of the second flow path are formed to intersect each other,
The partition member has a laminated structure of a resin layer containing a hygroscopic agent and a nonwoven fabric base layer,
The spacing member has a laminated structure of a resin layer and a nonwoven fabric base layer,
The heat characterized in that the resin layer of the partition member and the nonwoven fabric base material layer of the spacing member are joined, and the nonwoven fabric base material layer of the partition member and the resin layer of the spacing member are joined. Exchange element.
前記仕切部材または前記間隔保持部材の不織布基材層は、ポリエステル繊維またはポリプロピレン繊維の少なくとも一方を含むことを特徴とする請求項1に記載の熱交換素子。 The heat exchange element according to claim 1, wherein the nonwoven fabric base material layer of the partition member or the spacing member includes at least one of a polyester fiber or a polypropylene fiber. 前記仕切部材の樹脂層に含まれる吸湿剤は、潮解性塩を含むことを特徴とする請求項1又は2に記載の熱交換素子。 The heat exchange element according to claim 1 or 2, wherein the hygroscopic agent contained in the resin layer of the partition member contains a deliquescent salt. 前記潮解性塩は、塩化リチウムまたは塩化カルシウムの少なくとも一方を含むことを特徴とする請求項3に記載の熱交換素子。 The heat exchange element according to claim 3, wherein the deliquescent salt contains at least one of lithium chloride and calcium chloride. 前記仕切部材の樹脂層と前記間隔保持部材の不織布基材層の接合は、熱接着による接合であり、前記仕切部材の不織布基材層と前記間隔保持部材の樹脂層の接合は、接着剤による接合であることを特徴とする請求項1〜4のいずれか1項に記載の熱交換素子。 The joining of the resin layer of the partition member and the nonwoven fabric base material layer of the spacing member is joining by thermal bonding, and the joining of the nonwoven fabric base material layer of the partitioning member and the resin layer of the spacing member is by an adhesive. It is joining, The heat exchange element of any one of Claims 1-4 characterized by the above-mentioned. 前記間隔保持部材の樹脂層には、難燃剤が含まれることを特徴とする請求項1〜5のいずれか1項に記載の熱交換素子。 The heat exchange element according to claim 1, wherein the resin layer of the spacing member includes a flame retardant. 前記間隔保持部材の樹脂層には、吸湿剤が含まれていることを特徴とする請求項1〜6のいずれか1項に記載の熱交換素子。 The heat exchange element according to claim 1, wherein the resin layer of the spacing member includes a hygroscopic agent. 前記間隔保持部材の樹脂層に含まれた吸湿剤は、潮解性塩を含むことを特徴とする請求項7に記載の熱交換素子。 The heat exchange element according to claim 7, wherein the hygroscopic agent contained in the resin layer of the spacing member contains a deliquescent salt. 前記潮解性塩は、塩化リチウムまたは塩化カルシウムの少なくとも一方を含むことを特徴とする請求項8に記載の熱交換素子。 The heat exchange element according to claim 8, wherein the deliquescent salt contains at least one of lithium chloride and calcium chloride. 前記間隔保持部材は、コルゲート状であることを特徴とする請求項1〜9のいずれか1項に記載の熱交換素子。 The heat exchange element according to claim 1, wherein the spacing member has a corrugated shape. 請求項1〜10のいずれか1つに記載の熱交換素子と、前記第一の流路に、室外から室内に向けた気流の流れを発生させる給気送風機と、前記第二の流路に、室内から室外に向けた気流の流れを発生させる排気送風機とを備えることを特徴とする熱交換器。 The heat exchange element according to any one of claims 1 to 10, the supply air blower that generates a flow of airflow from the outside to the inside of the first flow path, and the second flow path A heat exchanger comprising: an exhaust blower that generates a flow of airflow from the room to the outside.
JP2014045855A 2014-03-10 2014-03-10 Heat exchange element and heat exchanger Active JP5987854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045855A JP5987854B2 (en) 2014-03-10 2014-03-10 Heat exchange element and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045855A JP5987854B2 (en) 2014-03-10 2014-03-10 Heat exchange element and heat exchanger

Publications (2)

Publication Number Publication Date
JP2015169401A JP2015169401A (en) 2015-09-28
JP5987854B2 true JP5987854B2 (en) 2016-09-07

Family

ID=54202289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045855A Active JP5987854B2 (en) 2014-03-10 2014-03-10 Heat exchange element and heat exchanger

Country Status (1)

Country Link
JP (1) JP5987854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180834A1 (en) 2018-03-20 2019-09-26 三菱電機株式会社 Total heat exchange element and total heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193849A1 (en) * 2017-04-21 2018-10-25 三菱電機株式会社 Flow channel plate, heat exchange element, heat exchange ventilation device, and method for producing flow channel plate
JP6648849B1 (en) * 2019-02-06 2020-02-14 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same
WO2022172339A1 (en) * 2021-02-09 2022-08-18 三菱電機株式会社 Partition plate for countercurrent total heat exchange elements, countercurrent total heat exchange element and heat exchange ventilation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738284B2 (en) * 1993-12-28 1998-04-08 三菱電機株式会社 Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP3460358B2 (en) * 1995-02-15 2003-10-27 三菱電機株式会社 Heat exchangers, heat exchanger spacing plates and heat exchanger partition plates
US8689859B2 (en) * 2006-10-03 2014-04-08 Mitsubishi Electric Corporation Total heat exchanging element and total heat exchanger
CN101688761B (en) * 2007-06-29 2011-09-14 三菱电机株式会社 Total heat exchanger element and process for manufacturing the same
JP5506441B2 (en) * 2010-02-09 2014-05-28 三菱電機株式会社 Total heat exchange element and total heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180834A1 (en) 2018-03-20 2019-09-26 三菱電機株式会社 Total heat exchange element and total heat exchanger
US11644248B2 (en) 2018-03-20 2023-05-09 Mitsubishi Electric Corporation Total heat exchange element and total heat exchanger

Also Published As

Publication number Publication date
JP2015169401A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US9140471B2 (en) Indirect evaporative coolers with enhanced heat transfer
TWI525294B (en) Heat exchange components and air conditioning devices
JP5987854B2 (en) Heat exchange element and heat exchanger
US9518784B2 (en) Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
US20140262125A1 (en) Energy exchange assembly with microporous membrane
US20130340449A1 (en) Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
US20110209858A1 (en) Indirect Evaporative Cooling Apparatus
US9404689B2 (en) Heat exchange matrix
JP5610777B2 (en) Total heat exchange element
KR200409727Y1 (en) Method for producing heat exchange panel and air to air heat exchange produced by said method
JP6833106B2 (en) Total heat exchanger and total heat exchanger
JP6078668B1 (en) Indirect vaporization air conditioner
JPH09280765A (en) Heat-exchange element
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JP2019515244A (en) Heat exchanger to exchange energy between two air flows
WO2022130470A1 (en) Total heat exchange element and total heat exchange ventilation device
WO2023223455A1 (en) Total heat exchange element, total heat exchanger, and production method of total heat exchange element
JP3156162U (en) Total heat exchange element
WO2022172339A1 (en) Partition plate for countercurrent total heat exchange elements, countercurrent total heat exchange element and heat exchange ventilation device
JP6815516B2 (en) Total heat exchange element and heat exchange ventilation system
KR20070087798A (en) Method for producing heat exchange panel and air to air heat exchange produced by said method
JP2012035230A (en) Desiccant unit and desiccant air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250